mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Copy existing utils for converting SDXL LoRA state dict formats to a new file.
This commit is contained in:
parent
8260252aeb
commit
24950dea8c
@ -2,9 +2,10 @@ from pathlib import Path
|
|||||||
from typing import Optional, Union
|
from typing import Optional, Union
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
from safetensors.torch import load_file
|
|
||||||
|
|
||||||
from invokeai.backend.model_manager.config import BaseModelType
|
from invokeai.backend.model_manager.config import BaseModelType
|
||||||
|
from invokeai.backend.peft.sdxl_format_utils import convert_sdxl_keys_to_diffusers_format
|
||||||
|
from invokeai.backend.util.serialization import load_state_dict
|
||||||
|
|
||||||
|
|
||||||
class PeftModel:
|
class PeftModel:
|
||||||
@ -14,17 +15,15 @@ class PeftModel:
|
|||||||
self,
|
self,
|
||||||
name: str,
|
name: str,
|
||||||
state_dict: dict[str, torch.Tensor],
|
state_dict: dict[str, torch.Tensor],
|
||||||
|
network_alphas: dict[str, torch.Tensor],
|
||||||
):
|
):
|
||||||
self._name = name
|
self.name = name
|
||||||
self._state_dict = state_dict
|
self.state_dict = state_dict
|
||||||
|
self.network_alphas = network_alphas
|
||||||
@property
|
|
||||||
def name(self) -> str:
|
|
||||||
return self._name
|
|
||||||
|
|
||||||
def calc_size(self) -> int:
|
def calc_size(self) -> int:
|
||||||
model_size = 0
|
model_size = 0
|
||||||
for tensor in self._state_dict.values():
|
for tensor in self.state_dict.values():
|
||||||
model_size += tensor.nelement() * tensor.element_size()
|
model_size += tensor.nelement() * tensor.element_size()
|
||||||
return model_size
|
return model_size
|
||||||
|
|
||||||
@ -41,16 +40,11 @@ class PeftModel:
|
|||||||
|
|
||||||
file_path = Path(file_path)
|
file_path = Path(file_path)
|
||||||
|
|
||||||
# TODO(ryand): Implement a helper function for this. This logic is duplicated repeatedly.
|
state_dict = load_state_dict(file_path, device=str(device))
|
||||||
if file_path.suffix == ".safetensors":
|
if base_model == BaseModelType.StableDiffusionXL:
|
||||||
state_dict = load_file(file_path, device="cpu")
|
state_dict = convert_sdxl_keys_to_diffusers_format(state_dict)
|
||||||
else:
|
|
||||||
state_dict = torch.load(file_path, map_location="cpu")
|
|
||||||
|
|
||||||
# TODO(ryand):
|
# TODO(ryand): We shouldn't be using an unexported function from diffusers here. Consider opening an upstream PR
|
||||||
# - Detect state_dict format
|
# to move this function to state_dict_utils.py.
|
||||||
# - Convert state_dict to diffusers format if necessary
|
# state_dict, network_alphas = _convert_kohya_lora_to_diffusers(state_dict)
|
||||||
|
return cls(name=file_path.stem, state_dict=state_dict, network_alphas=network_alphas)
|
||||||
# if base_model == BaseModelType.StableDiffusionXL:
|
|
||||||
# state_dict = cls._convert_sdxl_keys_to_diffusers_format(state_dict)
|
|
||||||
return cls(name=file_path.stem, state_dict=state_dict)
|
|
||||||
|
155
invokeai/backend/peft/sdxl_format_utils.py
Normal file
155
invokeai/backend/peft/sdxl_format_utils.py
Normal file
@ -0,0 +1,155 @@
|
|||||||
|
import bisect
|
||||||
|
from typing import Dict, List, Tuple
|
||||||
|
|
||||||
|
import torch
|
||||||
|
|
||||||
|
|
||||||
|
# code from
|
||||||
|
# https://github.com/bmaltais/kohya_ss/blob/2accb1305979ba62f5077a23aabac23b4c37e935/networks/lora_diffusers.py#L15C1-L97C32
|
||||||
|
def make_sdxl_unet_conversion_map() -> List[Tuple[str, str]]:
|
||||||
|
"""Create a dict mapping state_dict keys from Stability AI SDXL format to diffusers SDXL format."""
|
||||||
|
unet_conversion_map_layer = []
|
||||||
|
|
||||||
|
for i in range(3): # num_blocks is 3 in sdxl
|
||||||
|
# loop over downblocks/upblocks
|
||||||
|
for j in range(2):
|
||||||
|
# loop over resnets/attentions for downblocks
|
||||||
|
hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
|
||||||
|
sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0."
|
||||||
|
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
|
||||||
|
|
||||||
|
if i < 3:
|
||||||
|
# no attention layers in down_blocks.3
|
||||||
|
hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
|
||||||
|
sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1."
|
||||||
|
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
|
||||||
|
|
||||||
|
for j in range(3):
|
||||||
|
# loop over resnets/attentions for upblocks
|
||||||
|
hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}."
|
||||||
|
sd_up_res_prefix = f"output_blocks.{3*i + j}.0."
|
||||||
|
unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
|
||||||
|
|
||||||
|
# if i > 0: commentout for sdxl
|
||||||
|
# no attention layers in up_blocks.0
|
||||||
|
hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}."
|
||||||
|
sd_up_atn_prefix = f"output_blocks.{3*i + j}.1."
|
||||||
|
unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
|
||||||
|
|
||||||
|
if i < 3:
|
||||||
|
# no downsample in down_blocks.3
|
||||||
|
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
|
||||||
|
sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op."
|
||||||
|
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
|
||||||
|
|
||||||
|
# no upsample in up_blocks.3
|
||||||
|
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
|
||||||
|
sd_upsample_prefix = f"output_blocks.{3*i + 2}.{2}." # change for sdxl
|
||||||
|
unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
|
||||||
|
|
||||||
|
hf_mid_atn_prefix = "mid_block.attentions.0."
|
||||||
|
sd_mid_atn_prefix = "middle_block.1."
|
||||||
|
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
|
||||||
|
|
||||||
|
for j in range(2):
|
||||||
|
hf_mid_res_prefix = f"mid_block.resnets.{j}."
|
||||||
|
sd_mid_res_prefix = f"middle_block.{2*j}."
|
||||||
|
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
|
||||||
|
|
||||||
|
unet_conversion_map_resnet = [
|
||||||
|
# (stable-diffusion, HF Diffusers)
|
||||||
|
("in_layers.0.", "norm1."),
|
||||||
|
("in_layers.2.", "conv1."),
|
||||||
|
("out_layers.0.", "norm2."),
|
||||||
|
("out_layers.3.", "conv2."),
|
||||||
|
("emb_layers.1.", "time_emb_proj."),
|
||||||
|
("skip_connection.", "conv_shortcut."),
|
||||||
|
]
|
||||||
|
|
||||||
|
unet_conversion_map = []
|
||||||
|
for sd, hf in unet_conversion_map_layer:
|
||||||
|
if "resnets" in hf:
|
||||||
|
for sd_res, hf_res in unet_conversion_map_resnet:
|
||||||
|
unet_conversion_map.append((sd + sd_res, hf + hf_res))
|
||||||
|
else:
|
||||||
|
unet_conversion_map.append((sd, hf))
|
||||||
|
|
||||||
|
for j in range(2):
|
||||||
|
hf_time_embed_prefix = f"time_embedding.linear_{j+1}."
|
||||||
|
sd_time_embed_prefix = f"time_embed.{j*2}."
|
||||||
|
unet_conversion_map.append((sd_time_embed_prefix, hf_time_embed_prefix))
|
||||||
|
|
||||||
|
for j in range(2):
|
||||||
|
hf_label_embed_prefix = f"add_embedding.linear_{j+1}."
|
||||||
|
sd_label_embed_prefix = f"label_emb.0.{j*2}."
|
||||||
|
unet_conversion_map.append((sd_label_embed_prefix, hf_label_embed_prefix))
|
||||||
|
|
||||||
|
unet_conversion_map.append(("input_blocks.0.0.", "conv_in."))
|
||||||
|
unet_conversion_map.append(("out.0.", "conv_norm_out."))
|
||||||
|
unet_conversion_map.append(("out.2.", "conv_out."))
|
||||||
|
|
||||||
|
return unet_conversion_map
|
||||||
|
|
||||||
|
|
||||||
|
SDXL_UNET_STABILITY_TO_DIFFUSERS_MAP = {
|
||||||
|
sd.rstrip(".").replace(".", "_"): hf.rstrip(".").replace(".", "_") for sd, hf in make_sdxl_unet_conversion_map()
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def convert_sdxl_keys_to_diffusers_format(cls, state_dict: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
|
||||||
|
"""Convert the keys of an SDXL LoRA state_dict to diffusers format.
|
||||||
|
|
||||||
|
The input state_dict can be in either Stability AI format or diffusers format. If the state_dict is already in
|
||||||
|
diffusers format, then this function will have no effect.
|
||||||
|
|
||||||
|
This function is adapted from:
|
||||||
|
https://github.com/bmaltais/kohya_ss/blob/2accb1305979ba62f5077a23aabac23b4c37e935/networks/lora_diffusers.py#L385-L409
|
||||||
|
|
||||||
|
Args:
|
||||||
|
state_dict (Dict[str, Tensor]): The SDXL LoRA state_dict.
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
ValueError: If state_dict contains an unrecognized key, or not all keys could be converted.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Dict[str, Tensor]: The diffusers-format state_dict.
|
||||||
|
"""
|
||||||
|
converted_count = 0 # The number of Stability AI keys converted to diffusers format.
|
||||||
|
not_converted_count = 0 # The number of keys that were not converted.
|
||||||
|
|
||||||
|
# Get a sorted list of Stability AI UNet keys so that we can efficiently search for keys with matching prefixes.
|
||||||
|
# For example, we want to efficiently find `input_blocks_4_1` in the list when searching for
|
||||||
|
# `input_blocks_4_1_proj_in`.
|
||||||
|
stability_unet_keys = list(SDXL_UNET_STABILITY_TO_DIFFUSERS_MAP)
|
||||||
|
stability_unet_keys.sort()
|
||||||
|
|
||||||
|
new_state_dict = {}
|
||||||
|
for full_key, value in state_dict.items():
|
||||||
|
if full_key.startswith("lora_unet_"):
|
||||||
|
search_key = full_key.replace("lora_unet_", "")
|
||||||
|
# Use bisect to find the key in stability_unet_keys that *may* match the search_key's prefix.
|
||||||
|
position = bisect.bisect_right(stability_unet_keys, search_key)
|
||||||
|
map_key = stability_unet_keys[position - 1]
|
||||||
|
# Now, check if the map_key *actually* matches the search_key.
|
||||||
|
if search_key.startswith(map_key):
|
||||||
|
new_key = full_key.replace(map_key, SDXL_UNET_STABILITY_TO_DIFFUSERS_MAP[map_key])
|
||||||
|
new_state_dict[new_key] = value
|
||||||
|
converted_count += 1
|
||||||
|
else:
|
||||||
|
new_state_dict[full_key] = value
|
||||||
|
not_converted_count += 1
|
||||||
|
elif full_key.startswith("lora_te1_") or full_key.startswith("lora_te2_"):
|
||||||
|
# The CLIP text encoders have the same keys in both Stability AI and diffusers formats.
|
||||||
|
new_state_dict[full_key] = value
|
||||||
|
continue
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Unrecognized SDXL LoRA key prefix: '{full_key}'.")
|
||||||
|
|
||||||
|
if converted_count > 0 and not_converted_count > 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"The SDXL LoRA could only be partially converted to diffusers format. converted={converted_count},"
|
||||||
|
f" not_converted={not_converted_count}"
|
||||||
|
)
|
||||||
|
|
||||||
|
return new_state_dict
|
Loading…
Reference in New Issue
Block a user