mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Revert "Revert "Fixing some var and arg names.""
This reverts commit 58a0709c1e
.
This commit is contained in:
parent
58a0709c1e
commit
282d36b640
@ -546,11 +546,13 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
|||||||
# Handle ControlNet(s) and T2I-Adapter(s)
|
# Handle ControlNet(s) and T2I-Adapter(s)
|
||||||
down_block_additional_residuals = None
|
down_block_additional_residuals = None
|
||||||
mid_block_additional_residual = None
|
mid_block_additional_residual = None
|
||||||
if control_data is not None and t2i_adapter_data is not None:
|
down_intrablock_additional_residuals = None
|
||||||
|
# if control_data is not None and t2i_adapter_data is not None:
|
||||||
# TODO(ryand): This is a limitation of the UNet2DConditionModel API, not a fundamental incompatibility
|
# TODO(ryand): This is a limitation of the UNet2DConditionModel API, not a fundamental incompatibility
|
||||||
# between ControlNets and T2I-Adapters. We will try to fix this upstream in diffusers.
|
# between ControlNets and T2I-Adapters. We will try to fix this upstream in diffusers.
|
||||||
raise Exception("ControlNet(s) and T2I-Adapter(s) cannot be used simultaneously (yet).")
|
# raise Exception("ControlNet(s) and T2I-Adapter(s) cannot be used simultaneously (yet).")
|
||||||
elif control_data is not None:
|
# elif control_data is not None:
|
||||||
|
if control_data is not None:
|
||||||
down_block_additional_residuals, mid_block_additional_residual = self.invokeai_diffuser.do_controlnet_step(
|
down_block_additional_residuals, mid_block_additional_residual = self.invokeai_diffuser.do_controlnet_step(
|
||||||
control_data=control_data,
|
control_data=control_data,
|
||||||
sample=latent_model_input,
|
sample=latent_model_input,
|
||||||
@ -559,7 +561,8 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
|||||||
total_step_count=total_step_count,
|
total_step_count=total_step_count,
|
||||||
conditioning_data=conditioning_data,
|
conditioning_data=conditioning_data,
|
||||||
)
|
)
|
||||||
elif t2i_adapter_data is not None:
|
# elif t2i_adapter_data is not None:
|
||||||
|
if t2i_adapter_data is not None:
|
||||||
accum_adapter_state = None
|
accum_adapter_state = None
|
||||||
for single_t2i_adapter_data in t2i_adapter_data:
|
for single_t2i_adapter_data in t2i_adapter_data:
|
||||||
# Determine the T2I-Adapter weights for the current denoising step.
|
# Determine the T2I-Adapter weights for the current denoising step.
|
||||||
@ -584,7 +587,8 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
|||||||
for idx, value in enumerate(single_t2i_adapter_data.adapter_state):
|
for idx, value in enumerate(single_t2i_adapter_data.adapter_state):
|
||||||
accum_adapter_state[idx] += value * t2i_adapter_weight
|
accum_adapter_state[idx] += value * t2i_adapter_weight
|
||||||
|
|
||||||
down_block_additional_residuals = accum_adapter_state
|
# down_block_additional_residuals = accum_adapter_state
|
||||||
|
down_intrablock_additional_residuals = accum_adapter_state
|
||||||
|
|
||||||
uc_noise_pred, c_noise_pred = self.invokeai_diffuser.do_unet_step(
|
uc_noise_pred, c_noise_pred = self.invokeai_diffuser.do_unet_step(
|
||||||
sample=latent_model_input,
|
sample=latent_model_input,
|
||||||
@ -593,8 +597,9 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
|||||||
total_step_count=total_step_count,
|
total_step_count=total_step_count,
|
||||||
conditioning_data=conditioning_data,
|
conditioning_data=conditioning_data,
|
||||||
# extra:
|
# extra:
|
||||||
down_block_additional_residuals=down_block_additional_residuals,
|
down_block_additional_residuals=down_block_additional_residuals, # for ControlNet
|
||||||
mid_block_additional_residual=mid_block_additional_residual,
|
mid_block_additional_residual=mid_block_additional_residual, # for ControlNet
|
||||||
|
down_intrablock_additional_residuals=down_intrablock_additional_residuals, # for T2I-Adapter
|
||||||
)
|
)
|
||||||
|
|
||||||
guidance_scale = conditioning_data.guidance_scale
|
guidance_scale = conditioning_data.guidance_scale
|
||||||
|
Loading…
Reference in New Issue
Block a user