mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
disable neonpixel optimizations on M1 hardware (#414)
* disable neonpixel optimizations on M1 hardware * fix typo that was causing random noise images on m1
This commit is contained in:
parent
7670ecc63f
commit
29ab3c2028
@ -1,9 +1,10 @@
|
||||
from inspect import isfunction
|
||||
import math
|
||||
from inspect import isfunction
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torch import nn, einsum
|
||||
from einops import rearrange, repeat
|
||||
from torch import nn, einsum
|
||||
|
||||
from ldm.modules.diffusionmodules.util import checkpoint
|
||||
|
||||
@ -13,7 +14,7 @@ def exists(val):
|
||||
|
||||
|
||||
def uniq(arr):
|
||||
return{el: True for el in arr}.keys()
|
||||
return {el: True for el in arr}.keys()
|
||||
|
||||
|
||||
def default(val, d):
|
||||
@ -82,14 +83,14 @@ class LinearAttention(nn.Module):
|
||||
super().__init__()
|
||||
self.heads = heads
|
||||
hidden_dim = dim_head * heads
|
||||
self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False)
|
||||
self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias=False)
|
||||
self.to_out = nn.Conv2d(hidden_dim, dim, 1)
|
||||
|
||||
def forward(self, x):
|
||||
b, c, h, w = x.shape
|
||||
qkv = self.to_qkv(x)
|
||||
q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads = self.heads, qkv=3)
|
||||
k = k.softmax(dim=-1)
|
||||
q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads=self.heads, qkv=3)
|
||||
k = k.softmax(dim=-1)
|
||||
context = torch.einsum('bhdn,bhen->bhde', k, v)
|
||||
out = torch.einsum('bhde,bhdn->bhen', context, q)
|
||||
out = rearrange(out, 'b heads c (h w) -> b (heads c) h w', heads=self.heads, h=h, w=w)
|
||||
@ -131,12 +132,12 @@ class SpatialSelfAttention(nn.Module):
|
||||
v = self.v(h_)
|
||||
|
||||
# compute attention
|
||||
b,c,h,w = q.shape
|
||||
b, c, h, w = q.shape
|
||||
q = rearrange(q, 'b c h w -> b (h w) c')
|
||||
k = rearrange(k, 'b c h w -> b c (h w)')
|
||||
w_ = torch.einsum('bij,bjk->bik', q, k)
|
||||
|
||||
w_ = w_ * (int(c)**(-0.5))
|
||||
w_ = w_ * (int(c) ** (-0.5))
|
||||
w_ = torch.nn.functional.softmax(w_, dim=2)
|
||||
|
||||
# attend to values
|
||||
@ -146,7 +147,7 @@ class SpatialSelfAttention(nn.Module):
|
||||
h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h)
|
||||
h_ = self.proj_out(h_)
|
||||
|
||||
return x+h_
|
||||
return x + h_
|
||||
|
||||
|
||||
class CrossAttention(nn.Module):
|
||||
@ -174,6 +175,7 @@ class CrossAttention(nn.Module):
|
||||
context = default(context, x)
|
||||
k = self.to_k(context)
|
||||
v = self.to_v(context)
|
||||
device_type = x.device.type
|
||||
del context, x
|
||||
|
||||
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
|
||||
@ -188,9 +190,11 @@ class CrossAttention(nn.Module):
|
||||
sim.masked_fill_(~mask, max_neg_value)
|
||||
del mask
|
||||
|
||||
# attention, what we cannot get enough of, by halves
|
||||
sim[4:] = sim[4:].softmax(dim=-1)
|
||||
sim[:4] = sim[:4].softmax(dim=-1)
|
||||
if device_type == 'mps': #special case for M1 - disable neonsecret optimization
|
||||
sim = sim.softmax(dim=-1)
|
||||
else:
|
||||
sim[4:] = sim[4:].softmax(dim=-1)
|
||||
sim[:4] = sim[:4].softmax(dim=-1)
|
||||
|
||||
sim = einsum('b i j, b j d -> b i d', sim, v)
|
||||
sim = rearrange(sim, '(b h) n d -> b n (h d)', h=h)
|
||||
@ -200,7 +204,8 @@ class CrossAttention(nn.Module):
|
||||
class BasicTransformerBlock(nn.Module):
|
||||
def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True):
|
||||
super().__init__()
|
||||
self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout) # is a self-attention
|
||||
self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head,
|
||||
dropout=dropout) # is a self-attention
|
||||
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
|
||||
self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim,
|
||||
heads=n_heads, dim_head=d_head, dropout=dropout) # is self-attn if context is none
|
||||
@ -228,6 +233,7 @@ class SpatialTransformer(nn.Module):
|
||||
Then apply standard transformer action.
|
||||
Finally, reshape to image
|
||||
"""
|
||||
|
||||
def __init__(self, in_channels, n_heads, d_head,
|
||||
depth=1, dropout=0., context_dim=None):
|
||||
super().__init__()
|
||||
@ -243,7 +249,7 @@ class SpatialTransformer(nn.Module):
|
||||
|
||||
self.transformer_blocks = nn.ModuleList(
|
||||
[BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim)
|
||||
for d in range(depth)]
|
||||
for d in range(depth)]
|
||||
)
|
||||
|
||||
self.proj_out = zero_module(nn.Conv2d(inner_dim,
|
||||
|
Loading…
Reference in New Issue
Block a user