disable neonpixel optimizations on M1 hardware (#414)

* disable neonpixel optimizations on M1 hardware

* fix typo that was causing random noise images on m1
This commit is contained in:
Lincoln Stein 2022-09-07 13:28:11 -04:00 committed by GitHub
parent 7670ecc63f
commit 29ab3c2028
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -1,9 +1,10 @@
from inspect import isfunction
import math
from inspect import isfunction
import torch
import torch.nn.functional as F
from torch import nn, einsum
from einops import rearrange, repeat
from torch import nn, einsum
from ldm.modules.diffusionmodules.util import checkpoint
@ -174,6 +175,7 @@ class CrossAttention(nn.Module):
context = default(context, x)
k = self.to_k(context)
v = self.to_v(context)
device_type = x.device.type
del context, x
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
@ -188,7 +190,9 @@ class CrossAttention(nn.Module):
sim.masked_fill_(~mask, max_neg_value)
del mask
# attention, what we cannot get enough of, by halves
if device_type == 'mps': #special case for M1 - disable neonsecret optimization
sim = sim.softmax(dim=-1)
else:
sim[4:] = sim[4:].softmax(dim=-1)
sim[:4] = sim[:4].softmax(dim=-1)
@ -200,7 +204,8 @@ class CrossAttention(nn.Module):
class BasicTransformerBlock(nn.Module):
def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True):
super().__init__()
self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout) # is a self-attention
self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head,
dropout=dropout) # is a self-attention
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim,
heads=n_heads, dim_head=d_head, dropout=dropout) # is self-attn if context is none
@ -228,6 +233,7 @@ class SpatialTransformer(nn.Module):
Then apply standard transformer action.
Finally, reshape to image
"""
def __init__(self, in_channels, n_heads, d_head,
depth=1, dropout=0., context_dim=None):
super().__init__()