mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Add nodes for tile splitting and merging. The main motivation for these nodes is for use in tiled upscaling workflows.
This commit is contained in:
parent
86fd1d5b22
commit
29eade4880
162
invokeai/app/invocations/tiles.py
Normal file
162
invokeai/app/invocations/tiles.py
Normal file
@ -0,0 +1,162 @@
|
|||||||
|
import numpy as np
|
||||||
|
from PIL import Image
|
||||||
|
from pydantic import BaseModel
|
||||||
|
|
||||||
|
from invokeai.app.invocations.baseinvocation import (
|
||||||
|
BaseInvocation,
|
||||||
|
BaseInvocationOutput,
|
||||||
|
InputField,
|
||||||
|
InvocationContext,
|
||||||
|
OutputField,
|
||||||
|
WithMetadata,
|
||||||
|
WithWorkflow,
|
||||||
|
invocation,
|
||||||
|
invocation_output,
|
||||||
|
)
|
||||||
|
from invokeai.app.invocations.primitives import ImageField, ImageOutput
|
||||||
|
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
|
||||||
|
from invokeai.backend.tiles.tiles import calc_tiles, merge_tiles_with_linear_blending
|
||||||
|
from invokeai.backend.tiles.utils import Tile
|
||||||
|
|
||||||
|
# TODO(ryand): Is this important?
|
||||||
|
_DIMENSION_MULTIPLE_OF = 8
|
||||||
|
|
||||||
|
|
||||||
|
class TileWithImage(BaseModel):
|
||||||
|
tile: Tile
|
||||||
|
image: ImageField
|
||||||
|
|
||||||
|
|
||||||
|
@invocation_output("calc_tiles_output")
|
||||||
|
class CalcTilesOutput(BaseInvocationOutput):
|
||||||
|
# TODO(ryand): Add description from FieldDescriptions.
|
||||||
|
tiles: list[Tile] = OutputField(description="")
|
||||||
|
|
||||||
|
|
||||||
|
@invocation("calculate_tiles", title="Calculate Tiles", tags=["tiles"], category="tiles", version="1.0.0")
|
||||||
|
class CalcTiles(BaseInvocation):
|
||||||
|
"""TODO(ryand)"""
|
||||||
|
|
||||||
|
# Inputs
|
||||||
|
image_height: int = InputField(ge=1)
|
||||||
|
image_width: int = InputField(ge=1)
|
||||||
|
tile_height: int = InputField(ge=1, multiple_of=_DIMENSION_MULTIPLE_OF, default=576)
|
||||||
|
tile_width: int = InputField(ge=1, multiple_of=_DIMENSION_MULTIPLE_OF, default=576)
|
||||||
|
overlap: int = InputField(ge=0, multiple_of=_DIMENSION_MULTIPLE_OF, default=64)
|
||||||
|
|
||||||
|
def invoke(self, context: InvocationContext) -> CalcTilesOutput:
|
||||||
|
tiles = calc_tiles(
|
||||||
|
image_height=self.image_height,
|
||||||
|
image_width=self.image_width,
|
||||||
|
tile_height=self.tile_height,
|
||||||
|
tile_width=self.tile_width,
|
||||||
|
overlap=self.overlap,
|
||||||
|
)
|
||||||
|
return CalcTilesOutput(tiles=tiles)
|
||||||
|
|
||||||
|
|
||||||
|
@invocation_output("tile_to_properties_output")
|
||||||
|
class TileToPropertiesOutput(BaseInvocationOutput):
|
||||||
|
# TODO(ryand): Add descriptions.
|
||||||
|
coords_top: int = OutputField(description="")
|
||||||
|
coords_bottom: int = OutputField(description="")
|
||||||
|
coords_left: int = OutputField(description="")
|
||||||
|
coords_right: int = OutputField(description="")
|
||||||
|
|
||||||
|
overlap_top: int = OutputField(description="")
|
||||||
|
overlap_bottom: int = OutputField(description="")
|
||||||
|
overlap_left: int = OutputField(description="")
|
||||||
|
overlap_right: int = OutputField(description="")
|
||||||
|
|
||||||
|
|
||||||
|
@invocation("tile_to_properties")
|
||||||
|
class TileToProperties(BaseInvocation):
|
||||||
|
"""Split a Tile into its individual properties."""
|
||||||
|
|
||||||
|
tile: Tile = InputField()
|
||||||
|
|
||||||
|
def invoke(self, context: InvocationContext) -> TileToPropertiesOutput:
|
||||||
|
return TileToPropertiesOutput(
|
||||||
|
coords_top=self.tile.coords.top,
|
||||||
|
coords_bottom=self.tile.coords.bottom,
|
||||||
|
coords_left=self.tile.coords.left,
|
||||||
|
coords_right=self.tile.coords.right,
|
||||||
|
overlap_top=self.tile.overlap.top,
|
||||||
|
overlap_bottom=self.tile.overlap.bottom,
|
||||||
|
overlap_left=self.tile.overlap.left,
|
||||||
|
overlap_right=self.tile.overlap.right,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
# HACK(ryand): The only reason that PairTileImage is needed is because the iterate/collect nodes don't preserve order.
|
||||||
|
# Can this be fixed?
|
||||||
|
|
||||||
|
|
||||||
|
@invocation_output("pair_tile_image_output")
|
||||||
|
class PairTileImageOutput(BaseInvocationOutput):
|
||||||
|
tile_with_image: TileWithImage = OutputField(description="")
|
||||||
|
|
||||||
|
|
||||||
|
@invocation("pair_tile_image", title="Pair Tile with Image", tags=["tiles"], category="tiles", version="1.0.0")
|
||||||
|
class PairTileImage(BaseInvocation):
|
||||||
|
image: ImageField = InputField()
|
||||||
|
tile: Tile = InputField()
|
||||||
|
|
||||||
|
def invoke(self, context: InvocationContext) -> PairTileImageOutput:
|
||||||
|
return PairTileImageOutput(
|
||||||
|
tile_with_image=TileWithImage(
|
||||||
|
tile=self.tile,
|
||||||
|
image=self.image,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
@invocation("merge_tiles_to_image", title="Merge Tiles To Image", tags=["tiles"], category="tiles", version="1.0.0")
|
||||||
|
class MergeTilesToImage(BaseInvocation, WithMetadata, WithWorkflow):
|
||||||
|
"""TODO(ryand)"""
|
||||||
|
|
||||||
|
# Inputs
|
||||||
|
image_height: int = InputField(ge=1)
|
||||||
|
image_width: int = InputField(ge=1)
|
||||||
|
tiles_with_images: list[TileWithImage] = InputField()
|
||||||
|
blend_amount: int = InputField(ge=0)
|
||||||
|
|
||||||
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||||
|
images = [twi.image for twi in self.tiles_with_images]
|
||||||
|
tiles = [twi.tile for twi in self.tiles_with_images]
|
||||||
|
|
||||||
|
# Get all tile images for processing.
|
||||||
|
# TODO(ryand): It pains me that we spend time PNG decoding each tile from disk when they almost certainly
|
||||||
|
# existed in memory at an earlier point in the graph.
|
||||||
|
tile_np_images: list[np.ndarray] = []
|
||||||
|
for image in images:
|
||||||
|
pil_image = context.services.images.get_pil_image(image.image_name)
|
||||||
|
pil_image = pil_image.convert("RGB")
|
||||||
|
tile_np_images.append(np.array(pil_image))
|
||||||
|
|
||||||
|
# Prepare the output image buffer.
|
||||||
|
# Check the first tile to determine how many image channels are expected in the output.
|
||||||
|
channels = tile_np_images[0].shape[-1]
|
||||||
|
dtype = tile_np_images[0].dtype
|
||||||
|
np_image = np.zeros(shape=(self.image_height, self.image_width, channels), dtype=dtype)
|
||||||
|
|
||||||
|
merge_tiles_with_linear_blending(
|
||||||
|
dst_image=np_image, tiles=tiles, tile_images=tile_np_images, blend_amount=self.blend_amount
|
||||||
|
)
|
||||||
|
pil_image = Image.fromarray(np_image)
|
||||||
|
|
||||||
|
image_dto = context.services.images.create(
|
||||||
|
image=pil_image,
|
||||||
|
image_origin=ResourceOrigin.INTERNAL,
|
||||||
|
image_category=ImageCategory.GENERAL,
|
||||||
|
node_id=self.id,
|
||||||
|
session_id=context.graph_execution_state_id,
|
||||||
|
is_intermediate=self.is_intermediate,
|
||||||
|
metadata=self.metadata,
|
||||||
|
workflow=self.workflow,
|
||||||
|
)
|
||||||
|
return ImageOutput(
|
||||||
|
image=ImageField(image_name=image_dto.image_name),
|
||||||
|
width=image_dto.width,
|
||||||
|
height=image_dto.height,
|
||||||
|
)
|
0
invokeai/backend/tiles/__init__.py
Normal file
0
invokeai/backend/tiles/__init__.py
Normal file
155
invokeai/backend/tiles/tiles.py
Normal file
155
invokeai/backend/tiles/tiles.py
Normal file
@ -0,0 +1,155 @@
|
|||||||
|
import math
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
from invokeai.backend.tiles.utils import TBLR, Tile, paste
|
||||||
|
|
||||||
|
# TODO(ryand)
|
||||||
|
# Test the following:
|
||||||
|
# - Tile too big in x, y
|
||||||
|
# - Overlap too big in x, y
|
||||||
|
# - Single tile fits
|
||||||
|
# - Multiple tiles fit perfectly
|
||||||
|
# - Not evenly divisible by tile size(with overlap)
|
||||||
|
|
||||||
|
|
||||||
|
def calc_tiles_with_overlap(
|
||||||
|
image_height: int, image_width: int, tile_height: int, tile_width: int, overlap: int = 0
|
||||||
|
) -> list[Tile]:
|
||||||
|
"""Calculate the tile coordinates for a given image shape under a simple tiling scheme with overlaps.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
image_height (int): The image height in px.
|
||||||
|
image_width (int): The image width in px.
|
||||||
|
tile_height (int): The tile height in px. All tiles will have this height.
|
||||||
|
tile_width (int): The tile width in px. All tiles will have this width.
|
||||||
|
overlap (int, optional): The target overlap between adjacent tiles. If the tiles do not evenly cover the image
|
||||||
|
shape, then the last row/column of tiles will overlap more than this. Defaults to 0.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
list[Tile]: A list of tiles that cover the image shape. Ordered from left-to-right, top-to-bottom.
|
||||||
|
"""
|
||||||
|
assert image_height >= tile_height
|
||||||
|
assert image_width >= tile_width
|
||||||
|
assert overlap < tile_height
|
||||||
|
assert overlap < tile_width
|
||||||
|
|
||||||
|
non_overlap_per_tile_height = tile_height - overlap
|
||||||
|
non_overlap_per_tile_width = tile_width - overlap
|
||||||
|
|
||||||
|
num_tiles_y = math.ceil((image_height - overlap) / non_overlap_per_tile_height)
|
||||||
|
num_tiles_x = math.ceil((image_width - overlap) / non_overlap_per_tile_width)
|
||||||
|
|
||||||
|
# Calculate tile coordinates and overlaps.
|
||||||
|
tiles: list[Tile] = []
|
||||||
|
for tile_idx_y in range(num_tiles_y):
|
||||||
|
for tile_idx_x in range(num_tiles_x):
|
||||||
|
tile = Tile(
|
||||||
|
coords=TBLR(
|
||||||
|
top=tile_idx_y * non_overlap_per_tile_height,
|
||||||
|
bottom=tile_idx_y * non_overlap_per_tile_height + tile_height,
|
||||||
|
left=tile_idx_x * non_overlap_per_tile_width,
|
||||||
|
right=tile_idx_x * non_overlap_per_tile_width + tile_width,
|
||||||
|
),
|
||||||
|
overlap=TBLR(
|
||||||
|
top=0 if tile_idx_y == 0 else overlap,
|
||||||
|
bottom=overlap,
|
||||||
|
left=0 if tile_idx_x == 0 else overlap,
|
||||||
|
right=overlap,
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
|
if tile.coords.bottom > image_height:
|
||||||
|
# If this tile would go off the bottom of the image, shift it so that it is aligned with the bottom
|
||||||
|
# of the image.
|
||||||
|
tile.coords.bottom = image_height
|
||||||
|
tile.coords.top = image_height - tile_height
|
||||||
|
tile.overlap.bottom = 0
|
||||||
|
# Note that this could result in a large overlap between this tile and the one above it.
|
||||||
|
top_neighbor_bottom = (tile_idx_y - 1) * non_overlap_per_tile_height + tile_height
|
||||||
|
tile.overlap.top = top_neighbor_bottom - tile.coords.top
|
||||||
|
|
||||||
|
if tile.coords.right > image_width:
|
||||||
|
# If this tile would go off the right edge of the image, shift it so that it is aligned with the
|
||||||
|
# right edge of the image.
|
||||||
|
tile.coords.right = image_width
|
||||||
|
tile.coords.left = image_width - tile_width
|
||||||
|
tile.overlap.right = 0
|
||||||
|
# Note that this could result in a large overlap between this tile and the one to its left.
|
||||||
|
left_neighbor_right = (tile_idx_x - 1) * non_overlap_per_tile_width + tile_width
|
||||||
|
tile.overlap.left = left_neighbor_right - tile.coords.left
|
||||||
|
|
||||||
|
tiles.append(tile)
|
||||||
|
|
||||||
|
return tiles
|
||||||
|
|
||||||
|
|
||||||
|
# TODO(ryand):
|
||||||
|
# - Test with blend_amount=0
|
||||||
|
# - Test tiles that go off of the dst_image.
|
||||||
|
# - Test mismatched tiles and tile_images lengths.
|
||||||
|
# - Test mismatched
|
||||||
|
|
||||||
|
|
||||||
|
def merge_tiles_with_linear_blending(
|
||||||
|
dst_image: np.ndarray, tiles: list[Tile], tile_images: list[np.ndarray], blend_amount: int
|
||||||
|
):
|
||||||
|
"""Merge a set of image tiles into `dst_image` with linear blending between the tiles.
|
||||||
|
|
||||||
|
We expect every tile edge to either:
|
||||||
|
1) have an overlap of 0, because it is aligned with the image edge, or
|
||||||
|
2) have an overlap >= blend_amount.
|
||||||
|
If neither of these conditions are satisfied, we raise an exception.
|
||||||
|
|
||||||
|
The linear blending is centered at the halfway point of the overlap between adjacent tiles.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
dst_image (np.ndarray): The destination image. Shape: (H, W, C).
|
||||||
|
tiles (list[Tile]): The list of tiles describing the locations of the respective `tile_images`.
|
||||||
|
tile_images (list[np.ndarray]): The tile images to merge into `dst_image`.
|
||||||
|
blend_amount (int): The amount of blending (in px) between adjacent overlapping tiles.
|
||||||
|
"""
|
||||||
|
# Sort tiles and images first by left x coordinate, then by top y coordinate. During tile processing, we want to
|
||||||
|
# iterate over tiles left-to-right, top-to-bottom.
|
||||||
|
tiles_and_images = list(zip(tiles, tile_images, strict=True))
|
||||||
|
tiles_and_images = sorted(tiles_and_images, key=lambda x: x[0].coords.left)
|
||||||
|
tiles_and_images = sorted(tiles_and_images, key=lambda x: x[0].coords.top)
|
||||||
|
|
||||||
|
# Prepare 1D linear gradients for blending.
|
||||||
|
gradient_left_x = np.linspace(start=0.0, stop=1.0, num=blend_amount)
|
||||||
|
gradient_top_y = np.linspace(start=0.0, stop=1.0, num=blend_amount)
|
||||||
|
# Convert shape: (blend_amount, ) -> (blend_amount, 1). The extra dimension enables the gradient to be applied
|
||||||
|
# to a 2D image via broadcasting. Note that no additional dimension is needed on gradient_left_x for
|
||||||
|
# broadcasting to work correctly.
|
||||||
|
gradient_top_y = np.expand_dims(gradient_top_y, axis=1)
|
||||||
|
|
||||||
|
for tile, tile_image in tiles_and_images:
|
||||||
|
# We expect tiles to be written left-to-right, top-to-bottom. We construct a mask that applies linear blending
|
||||||
|
# to the top and to the left of the current tile. The inverse linear blending is automatically applied to the
|
||||||
|
# bottom/right of the tiles that have already been pasted by the paste(...) operation.
|
||||||
|
tile_height, tile_width, _ = tile_image.shape
|
||||||
|
mask = np.ones(shape=(tile_height, tile_width), dtype=np.float64)
|
||||||
|
# Top blending:
|
||||||
|
if tile.overlap.top > 0:
|
||||||
|
assert tile.overlap.top >= blend_amount
|
||||||
|
# Center the blending gradient in the middle of the overlap.
|
||||||
|
blend_start_top = tile.overlap.top // 2 - blend_amount // 2
|
||||||
|
# The region above the blending region is masked completely.
|
||||||
|
mask[:blend_start_top, :] = 0.0
|
||||||
|
# Apply the blend gradient to the mask. Note that we use `*=` rather than `=` to achieve more natural
|
||||||
|
# behavior on the corners where vertical and horizontal blending gradients overlap.
|
||||||
|
mask[blend_start_top : blend_start_top + blend_amount, :] *= gradient_top_y
|
||||||
|
# HACK(ryand): For debugging
|
||||||
|
# tile_image[blend_start_top : blend_start_top + blend_amount, :] = 0
|
||||||
|
|
||||||
|
# Left blending:
|
||||||
|
# (See comments under 'top blending' for an explanation of the logic.)
|
||||||
|
if tile.overlap.left > 0:
|
||||||
|
assert tile.overlap.left >= blend_amount
|
||||||
|
blend_start_left = tile.overlap.left // 2 - blend_amount // 2
|
||||||
|
mask[:, :blend_start_left] = 0.0
|
||||||
|
mask[:, blend_start_left : blend_start_left + blend_amount] *= gradient_left_x
|
||||||
|
# HACK(ryand): For debugging
|
||||||
|
# tile_image[:, blend_start_left : blend_start_left + blend_amount] = 0
|
||||||
|
|
||||||
|
paste(dst_image=dst_image, src_image=tile_image, box=tile.coords, mask=mask)
|
36
invokeai/backend/tiles/utils.py
Normal file
36
invokeai/backend/tiles/utils.py
Normal file
@ -0,0 +1,36 @@
|
|||||||
|
from typing import Optional
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
from pydantic import BaseModel, Field
|
||||||
|
|
||||||
|
|
||||||
|
class TBLR(BaseModel):
|
||||||
|
top: int
|
||||||
|
bottom: int
|
||||||
|
left: int
|
||||||
|
right: int
|
||||||
|
|
||||||
|
|
||||||
|
class Tile(BaseModel):
|
||||||
|
coords: TBLR = Field(description="The coordinates of this tile relative to its parent image.")
|
||||||
|
overlap: TBLR = Field(description="The amount of overlap with adjacent tiles on each side of this tile.")
|
||||||
|
|
||||||
|
|
||||||
|
def paste(dst_image: np.ndarray, src_image: np.ndarray, box: TBLR, mask: Optional[np.ndarray] = None):
|
||||||
|
"""Paste a source image into a destination image.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
dst_image (torch.Tensor): The destination image to paste into. Shape: (H, W, C).
|
||||||
|
src_image (torch.Tensor): The source image to paste. Shape: (H, W, C). H and W must be compatible with 'box'.
|
||||||
|
box (TBLR): Box defining the region in the 'dst_image' where 'src_image' will be pasted.
|
||||||
|
mask (Optional[torch.Tensor]): A mask that defines the blending between 'src_image' and 'dst_image'.
|
||||||
|
Range: [0.0, 1.0], Shape: (H, W). The output is calculate per-pixel according to
|
||||||
|
`src * mask + dst * (1 - mask)`.
|
||||||
|
"""
|
||||||
|
|
||||||
|
if mask is None:
|
||||||
|
dst_image[box.top : box.bottom, box.left : box.right] = src_image
|
||||||
|
else:
|
||||||
|
mask = np.expand_dims(mask, -1)
|
||||||
|
dst_image_box = dst_image[box.top : box.bottom, box.left : box.right]
|
||||||
|
dst_image[box.top : box.bottom, box.left : box.right] = src_image * mask + dst_image_box * (1.0 - mask)
|
Loading…
Reference in New Issue
Block a user