diff --git a/invokeai/app/invocations/denoise_latents.py b/invokeai/app/invocations/denoise_latents.py index dc23fcb781..560bc9003c 100644 --- a/invokeai/app/invocations/denoise_latents.py +++ b/invokeai/app/invocations/denoise_latents.py @@ -37,7 +37,7 @@ from invokeai.app.services.shared.invocation_context import InvocationContext from invokeai.app.util.controlnet_utils import prepare_control_image from invokeai.backend.ip_adapter.ip_adapter import IPAdapter from invokeai.backend.lora import LoRAModelRaw -from invokeai.backend.model_manager import BaseModelType +from invokeai.backend.model_manager import BaseModelType, ModelVariantType from invokeai.backend.model_patcher import ModelPatcher from invokeai.backend.stable_diffusion import PipelineIntermediateState from invokeai.backend.stable_diffusion.denoise_context import DenoiseContext, DenoiseInputs @@ -60,6 +60,8 @@ from invokeai.backend.stable_diffusion.diffusion_backend import StableDiffusionB from invokeai.backend.stable_diffusion.extension_callback_type import ExtensionCallbackType from invokeai.backend.stable_diffusion.extensions.controlnet import ControlNetExt from invokeai.backend.stable_diffusion.extensions.freeu import FreeUExt +from invokeai.backend.stable_diffusion.extensions.inpaint import InpaintExt +from invokeai.backend.stable_diffusion.extensions.inpaint_model import InpaintModelExt from invokeai.backend.stable_diffusion.extensions.preview import PreviewExt from invokeai.backend.stable_diffusion.extensions.rescale_cfg import RescaleCFGExt from invokeai.backend.stable_diffusion.extensions.seamless import SeamlessExt @@ -736,7 +738,7 @@ class DenoiseLatentsInvocation(BaseInvocation): else: masked_latents = torch.where(mask < 0.5, 0.0, latents) - return 1 - mask, masked_latents, self.denoise_mask.gradient + return mask, masked_latents, self.denoise_mask.gradient @staticmethod def prepare_noise_and_latents( @@ -794,10 +796,6 @@ class DenoiseLatentsInvocation(BaseInvocation): dtype = TorchDevice.choose_torch_dtype() seed, noise, latents = self.prepare_noise_and_latents(context, self.noise, self.latents) - latents = latents.to(device=device, dtype=dtype) - if noise is not None: - noise = noise.to(device=device, dtype=dtype) - _, _, latent_height, latent_width = latents.shape conditioning_data = self.get_conditioning_data( @@ -830,21 +828,6 @@ class DenoiseLatentsInvocation(BaseInvocation): denoising_end=self.denoising_end, ) - denoise_ctx = DenoiseContext( - inputs=DenoiseInputs( - orig_latents=latents, - timesteps=timesteps, - init_timestep=init_timestep, - noise=noise, - seed=seed, - scheduler_step_kwargs=scheduler_step_kwargs, - conditioning_data=conditioning_data, - attention_processor_cls=CustomAttnProcessor2_0, - ), - unet=None, - scheduler=scheduler, - ) - # get the unet's config so that we can pass the base to sd_step_callback() unet_config = context.models.get_config(self.unet.unet.key) @@ -866,6 +849,36 @@ class DenoiseLatentsInvocation(BaseInvocation): if self.unet.seamless_axes: ext_manager.add_extension(SeamlessExt(self.unet.seamless_axes)) + ### inpaint + mask, masked_latents, is_gradient_mask = self.prep_inpaint_mask(context, latents) + # NOTE: We used to identify inpainting models by inpecting the shape of the loaded UNet model weights. Now we + # use the ModelVariantType config. During testing, there was a report of a user with models that had an + # incorrect ModelVariantType value. Re-installing the model fixed the issue. If this issue turns out to be + # prevalent, we will have to revisit how we initialize the inpainting extensions. + if unet_config.variant == ModelVariantType.Inpaint: + ext_manager.add_extension(InpaintModelExt(mask, masked_latents, is_gradient_mask)) + elif mask is not None: + ext_manager.add_extension(InpaintExt(mask, is_gradient_mask)) + + # Initialize context for modular denoise + latents = latents.to(device=device, dtype=dtype) + if noise is not None: + noise = noise.to(device=device, dtype=dtype) + denoise_ctx = DenoiseContext( + inputs=DenoiseInputs( + orig_latents=latents, + timesteps=timesteps, + init_timestep=init_timestep, + noise=noise, + seed=seed, + scheduler_step_kwargs=scheduler_step_kwargs, + conditioning_data=conditioning_data, + attention_processor_cls=CustomAttnProcessor2_0, + ), + unet=None, + scheduler=scheduler, + ) + # context for loading additional models with ExitStack() as exit_stack: # later should be smth like: @@ -905,6 +918,10 @@ class DenoiseLatentsInvocation(BaseInvocation): seed, noise, latents = self.prepare_noise_and_latents(context, self.noise, self.latents) mask, masked_latents, gradient_mask = self.prep_inpaint_mask(context, latents) + # At this point, the mask ranges from 0 (leave unchanged) to 1 (inpaint). + # We invert the mask here for compatibility with the old backend implementation. + if mask is not None: + mask = 1 - mask # TODO(ryand): I have hard-coded `do_classifier_free_guidance=True` to mirror the behaviour of ControlNets, # below. Investigate whether this is appropriate. diff --git a/invokeai/backend/stable_diffusion/extensions/inpaint.py b/invokeai/backend/stable_diffusion/extensions/inpaint.py new file mode 100644 index 0000000000..0079359155 --- /dev/null +++ b/invokeai/backend/stable_diffusion/extensions/inpaint.py @@ -0,0 +1,120 @@ +from __future__ import annotations + +from typing import TYPE_CHECKING, Optional + +import einops +import torch +from diffusers import UNet2DConditionModel + +from invokeai.backend.stable_diffusion.extension_callback_type import ExtensionCallbackType +from invokeai.backend.stable_diffusion.extensions.base import ExtensionBase, callback + +if TYPE_CHECKING: + from invokeai.backend.stable_diffusion.denoise_context import DenoiseContext + + +class InpaintExt(ExtensionBase): + """An extension for inpainting with non-inpainting models. See `InpaintModelExt` for inpainting with inpainting + models. + """ + + def __init__( + self, + mask: torch.Tensor, + is_gradient_mask: bool, + ): + """Initialize InpaintExt. + Args: + mask (torch.Tensor): The inpainting mask. Shape: (1, 1, latent_height, latent_width). Values are + expected to be in the range [0, 1]. A value of 1 means that the corresponding 'pixel' should not be + inpainted. + is_gradient_mask (bool): If True, mask is interpreted as a gradient mask meaning that the mask values range + from 0 to 1. If False, mask is interpreted as binary mask meaning that the mask values are either 0 or + 1. + """ + super().__init__() + self._mask = mask + self._is_gradient_mask = is_gradient_mask + + # Noise, which used to noisify unmasked part of image + # if noise provided to context, then it will be used + # if no noise provided, then noise will be generated based on seed + self._noise: Optional[torch.Tensor] = None + + @staticmethod + def _is_normal_model(unet: UNet2DConditionModel): + """Checks if the provided UNet belongs to a regular model. + The `in_channels` of a UNet vary depending on model type: + - normal - 4 + - depth - 5 + - inpaint - 9 + """ + return unet.conv_in.in_channels == 4 + + def _apply_mask(self, ctx: DenoiseContext, latents: torch.Tensor, t: torch.Tensor) -> torch.Tensor: + batch_size = latents.size(0) + mask = einops.repeat(self._mask, "b c h w -> (repeat b) c h w", repeat=batch_size) + if t.dim() == 0: + # some schedulers expect t to be one-dimensional. + # TODO: file diffusers bug about inconsistency? + t = einops.repeat(t, "-> batch", batch=batch_size) + # Noise shouldn't be re-randomized between steps here. The multistep schedulers + # get very confused about what is happening from step to step when we do that. + mask_latents = ctx.scheduler.add_noise(ctx.inputs.orig_latents, self._noise, t) + # TODO: Do we need to also apply scheduler.scale_model_input? Or is add_noise appropriately scaled already? + # mask_latents = self.scheduler.scale_model_input(mask_latents, t) + mask_latents = einops.repeat(mask_latents, "b c h w -> (repeat b) c h w", repeat=batch_size) + if self._is_gradient_mask: + threshold = (t.item()) / ctx.scheduler.config.num_train_timesteps + mask_bool = mask < 1 - threshold + masked_input = torch.where(mask_bool, latents, mask_latents) + else: + masked_input = torch.lerp(latents, mask_latents.to(dtype=latents.dtype), mask.to(dtype=latents.dtype)) + return masked_input + + @callback(ExtensionCallbackType.PRE_DENOISE_LOOP) + def init_tensors(self, ctx: DenoiseContext): + if not self._is_normal_model(ctx.unet): + raise ValueError( + "InpaintExt should be used only on normal (non-inpainting) models. This could be caused by an " + "inpainting model that was incorrectly marked as a non-inpainting model. In some cases, this can be " + "fixed by removing and re-adding the model (so that it gets re-probed)." + ) + + self._mask = self._mask.to(device=ctx.latents.device, dtype=ctx.latents.dtype) + + self._noise = ctx.inputs.noise + # 'noise' might be None if the latents have already been noised (e.g. when running the SDXL refiner). + # We still need noise for inpainting, so we generate it from the seed here. + if self._noise is None: + self._noise = torch.randn( + ctx.latents.shape, + dtype=torch.float32, + device="cpu", + generator=torch.Generator(device="cpu").manual_seed(ctx.seed), + ).to(device=ctx.latents.device, dtype=ctx.latents.dtype) + + # Use negative order to make extensions with default order work with patched latents + @callback(ExtensionCallbackType.PRE_STEP, order=-100) + def apply_mask_to_initial_latents(self, ctx: DenoiseContext): + ctx.latents = self._apply_mask(ctx, ctx.latents, ctx.timestep) + + # TODO: redo this with preview events rewrite + # Use negative order to make extensions with default order work with patched latents + @callback(ExtensionCallbackType.POST_STEP, order=-100) + def apply_mask_to_step_output(self, ctx: DenoiseContext): + timestep = ctx.scheduler.timesteps[-1] + if hasattr(ctx.step_output, "denoised"): + ctx.step_output.denoised = self._apply_mask(ctx, ctx.step_output.denoised, timestep) + elif hasattr(ctx.step_output, "pred_original_sample"): + ctx.step_output.pred_original_sample = self._apply_mask(ctx, ctx.step_output.pred_original_sample, timestep) + else: + ctx.step_output.pred_original_sample = self._apply_mask(ctx, ctx.step_output.prev_sample, timestep) + + # Restore unmasked part after the last step is completed + @callback(ExtensionCallbackType.POST_DENOISE_LOOP) + def restore_unmasked(self, ctx: DenoiseContext): + if self._is_gradient_mask: + ctx.latents = torch.where(self._mask < 1, ctx.latents, ctx.inputs.orig_latents) + else: + ctx.latents = torch.lerp(ctx.latents, ctx.inputs.orig_latents, self._mask) diff --git a/invokeai/backend/stable_diffusion/extensions/inpaint_model.py b/invokeai/backend/stable_diffusion/extensions/inpaint_model.py new file mode 100644 index 0000000000..6ee8ef6311 --- /dev/null +++ b/invokeai/backend/stable_diffusion/extensions/inpaint_model.py @@ -0,0 +1,88 @@ +from __future__ import annotations + +from typing import TYPE_CHECKING, Optional + +import torch +from diffusers import UNet2DConditionModel + +from invokeai.backend.stable_diffusion.extension_callback_type import ExtensionCallbackType +from invokeai.backend.stable_diffusion.extensions.base import ExtensionBase, callback + +if TYPE_CHECKING: + from invokeai.backend.stable_diffusion.denoise_context import DenoiseContext + + +class InpaintModelExt(ExtensionBase): + """An extension for inpainting with inpainting models. See `InpaintExt` for inpainting with non-inpainting + models. + """ + + def __init__( + self, + mask: Optional[torch.Tensor], + masked_latents: Optional[torch.Tensor], + is_gradient_mask: bool, + ): + """Initialize InpaintModelExt. + Args: + mask (Optional[torch.Tensor]): The inpainting mask. Shape: (1, 1, latent_height, latent_width). Values are + expected to be in the range [0, 1]. A value of 1 means that the corresponding 'pixel' should not be + inpainted. + masked_latents (Optional[torch.Tensor]): Latents of initial image, with masked out by black color inpainted area. + If mask provided, then too should be provided. Shape: (1, 1, latent_height, latent_width) + is_gradient_mask (bool): If True, mask is interpreted as a gradient mask meaning that the mask values range + from 0 to 1. If False, mask is interpreted as binary mask meaning that the mask values are either 0 or + 1. + """ + super().__init__() + if mask is not None and masked_latents is None: + raise ValueError("Source image required for inpaint mask when inpaint model used!") + + # Inverse mask, because inpaint models treat mask as: 0 - remain same, 1 - inpaint + self._mask = None + if mask is not None: + self._mask = 1 - mask + self._masked_latents = masked_latents + self._is_gradient_mask = is_gradient_mask + + @staticmethod + def _is_inpaint_model(unet: UNet2DConditionModel): + """Checks if the provided UNet belongs to a regular model. + The `in_channels` of a UNet vary depending on model type: + - normal - 4 + - depth - 5 + - inpaint - 9 + """ + return unet.conv_in.in_channels == 9 + + @callback(ExtensionCallbackType.PRE_DENOISE_LOOP) + def init_tensors(self, ctx: DenoiseContext): + if not self._is_inpaint_model(ctx.unet): + raise ValueError("InpaintModelExt should be used only on inpaint models!") + + if self._mask is None: + self._mask = torch.ones_like(ctx.latents[:1, :1]) + self._mask = self._mask.to(device=ctx.latents.device, dtype=ctx.latents.dtype) + + if self._masked_latents is None: + self._masked_latents = torch.zeros_like(ctx.latents[:1]) + self._masked_latents = self._masked_latents.to(device=ctx.latents.device, dtype=ctx.latents.dtype) + + # Do last so that other extensions works with normal latents + @callback(ExtensionCallbackType.PRE_UNET, order=1000) + def append_inpaint_layers(self, ctx: DenoiseContext): + batch_size = ctx.unet_kwargs.sample.shape[0] + b_mask = torch.cat([self._mask] * batch_size) + b_masked_latents = torch.cat([self._masked_latents] * batch_size) + ctx.unet_kwargs.sample = torch.cat( + [ctx.unet_kwargs.sample, b_mask, b_masked_latents], + dim=1, + ) + + # Restore unmasked part as inpaint model can change unmasked part slightly + @callback(ExtensionCallbackType.POST_DENOISE_LOOP) + def restore_unmasked(self, ctx: DenoiseContext): + if self._is_gradient_mask: + ctx.latents = torch.where(self._mask > 0, ctx.latents, ctx.inputs.orig_latents) + else: + ctx.latents = torch.lerp(ctx.inputs.orig_latents, ctx.latents, self._mask)