Merge branch 'main' into save-load-nodes

This commit is contained in:
blessedcoolant 2023-07-13 13:37:36 +12:00 committed by GitHub
commit 2cfe67bf1f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
22 changed files with 527 additions and 315 deletions

View File

@ -1,25 +1,9 @@
# use this file as a whitelist
* *
!invokeai !invokeai
!ldm
!pyproject.toml !pyproject.toml
!docker/docker-entrypoint.sh
!LICENSE
# ignore frontend/web but whitelist dist **/node_modules
invokeai/frontend/web/ **/__pycache__
!invokeai/frontend/web/dist/ **/*.egg-info
# ignore invokeai/assets but whitelist invokeai/assets/web
invokeai/assets/
!invokeai/assets/web/
# Guard against pulling in any models that might exist in the directory tree
**/*.pt*
**/*.ckpt
# Byte-compiled / optimized / DLL files
**/__pycache__/
**/*.py[cod]
# Distribution / packaging
**/*.egg-info/
**/*.egg

View File

@ -3,17 +3,15 @@ on:
push: push:
branches: branches:
- 'main' - 'main'
- 'update/ci/docker/*'
- 'update/docker/*'
- 'dev/ci/docker/*'
- 'dev/docker/*'
paths: paths:
- 'pyproject.toml' - 'pyproject.toml'
- '.dockerignore' - '.dockerignore'
- 'invokeai/**' - 'invokeai/**'
- 'docker/Dockerfile' - 'docker/Dockerfile'
- 'docker/docker-entrypoint.sh'
- 'workflows/build-container.yml'
tags: tags:
- 'v*.*.*' - 'v*'
workflow_dispatch: workflow_dispatch:
permissions: permissions:
@ -26,23 +24,27 @@ jobs:
strategy: strategy:
fail-fast: false fail-fast: false
matrix: matrix:
flavor: gpu-driver:
- rocm
- cuda - cuda
- cpu - cpu
include: - rocm
- flavor: rocm
pip-extra-index-url: 'https://download.pytorch.org/whl/rocm5.2'
- flavor: cuda
pip-extra-index-url: ''
- flavor: cpu
pip-extra-index-url: 'https://download.pytorch.org/whl/cpu'
runs-on: ubuntu-latest runs-on: ubuntu-latest
name: ${{ matrix.flavor }} name: ${{ matrix.gpu-driver }}
env: env:
PLATFORMS: 'linux/amd64,linux/arm64' # torch/arm64 does not support GPU currently, so arm64 builds
DOCKERFILE: 'docker/Dockerfile' # would not be GPU-accelerated.
# re-enable arm64 if there is sufficient demand.
# PLATFORMS: 'linux/amd64,linux/arm64'
PLATFORMS: 'linux/amd64'
steps: steps:
- name: Free up more disk space on the runner
# https://github.com/actions/runner-images/issues/2840#issuecomment-1284059930
run: |
sudo rm -rf /usr/share/dotnet
sudo rm -rf "$AGENT_TOOLSDIRECTORY"
sudo swapoff /mnt/swapfile
sudo rm -rf /mnt/swapfile
- name: Checkout - name: Checkout
uses: actions/checkout@v3 uses: actions/checkout@v3
@ -53,7 +55,7 @@ jobs:
github-token: ${{ secrets.GITHUB_TOKEN }} github-token: ${{ secrets.GITHUB_TOKEN }}
images: | images: |
ghcr.io/${{ github.repository }} ghcr.io/${{ github.repository }}
${{ vars.DOCKERHUB_REPOSITORY }} ${{ env.DOCKERHUB_REPOSITORY }}
tags: | tags: |
type=ref,event=branch type=ref,event=branch
type=ref,event=tag type=ref,event=tag
@ -62,8 +64,8 @@ jobs:
type=pep440,pattern={{major}} type=pep440,pattern={{major}}
type=sha,enable=true,prefix=sha-,format=short type=sha,enable=true,prefix=sha-,format=short
flavor: | flavor: |
latest=${{ matrix.flavor == 'cuda' && github.ref == 'refs/heads/main' }} latest=${{ matrix.gpu-driver == 'cuda' && github.ref == 'refs/heads/main' }}
suffix=-${{ matrix.flavor }},onlatest=false suffix=-${{ matrix.gpu-driver }},onlatest=false
- name: Set up QEMU - name: Set up QEMU
uses: docker/setup-qemu-action@v2 uses: docker/setup-qemu-action@v2
@ -81,34 +83,33 @@ jobs:
username: ${{ github.repository_owner }} username: ${{ github.repository_owner }}
password: ${{ secrets.GITHUB_TOKEN }} password: ${{ secrets.GITHUB_TOKEN }}
- name: Login to Docker Hub # - name: Login to Docker Hub
if: github.event_name != 'pull_request' && vars.DOCKERHUB_REPOSITORY != '' # if: github.event_name != 'pull_request' && vars.DOCKERHUB_REPOSITORY != ''
uses: docker/login-action@v2 # uses: docker/login-action@v2
with: # with:
username: ${{ secrets.DOCKERHUB_USERNAME }} # username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_TOKEN }} # password: ${{ secrets.DOCKERHUB_TOKEN }}
- name: Build container - name: Build container
id: docker_build id: docker_build
uses: docker/build-push-action@v4 uses: docker/build-push-action@v4
with: with:
context: . context: .
file: ${{ env.DOCKERFILE }} file: docker/Dockerfile
platforms: ${{ env.PLATFORMS }} platforms: ${{ env.PLATFORMS }}
push: ${{ github.ref == 'refs/heads/main' || github.ref_type == 'tag' }} push: ${{ github.ref == 'refs/heads/main' || github.ref_type == 'tag' }}
tags: ${{ steps.meta.outputs.tags }} tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }} labels: ${{ steps.meta.outputs.labels }}
build-args: PIP_EXTRA_INDEX_URL=${{ matrix.pip-extra-index-url }}
cache-from: | cache-from: |
type=gha,scope=${{ github.ref_name }}-${{ matrix.flavor }} type=gha,scope=${{ github.ref_name }}-${{ matrix.gpu-driver }}
type=gha,scope=main-${{ matrix.flavor }} type=gha,scope=main-${{ matrix.gpu-driver }}
cache-to: type=gha,mode=max,scope=${{ github.ref_name }}-${{ matrix.flavor }} cache-to: type=gha,mode=max,scope=${{ github.ref_name }}-${{ matrix.gpu-driver }}
- name: Docker Hub Description # - name: Docker Hub Description
if: github.ref == 'refs/heads/main' || github.ref == 'refs/tags/*' && vars.DOCKERHUB_REPOSITORY != '' # if: github.ref == 'refs/heads/main' || github.ref == 'refs/tags/*' && vars.DOCKERHUB_REPOSITORY != ''
uses: peter-evans/dockerhub-description@v3 # uses: peter-evans/dockerhub-description@v3
with: # with:
username: ${{ secrets.DOCKERHUB_USERNAME }} # username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_TOKEN }} # password: ${{ secrets.DOCKERHUB_TOKEN }}
repository: ${{ vars.DOCKERHUB_REPOSITORY }} # repository: ${{ vars.DOCKERHUB_REPOSITORY }}
short-description: ${{ github.event.repository.description }} # short-description: ${{ github.event.repository.description }}

13
docker/.env.sample Normal file
View File

@ -0,0 +1,13 @@
## Make a copy of this file named `.env` and fill in the values below.
## Any environment variables supported by InvokeAI can be specified here.
# INVOKEAI_ROOT is the path to a path on the local filesystem where InvokeAI will store data.
# Outputs will also be stored here by default.
# This **must** be an absolute path.
INVOKEAI_ROOT=
HUGGINGFACE_TOKEN=
## optional variables specific to the docker setup
# GPU_DRIVER=cuda
# CONTAINER_UID=1000

View File

@ -1,107 +1,129 @@
# syntax=docker/dockerfile:1 # syntax=docker/dockerfile:1.4
ARG PYTHON_VERSION=3.9 ## Builder stage
##################
## base image ##
##################
FROM --platform=${TARGETPLATFORM} python:${PYTHON_VERSION}-slim AS python-base
LABEL org.opencontainers.image.authors="mauwii@outlook.de" FROM library/ubuntu:22.04 AS builder
# Prepare apt for buildkit cache ARG DEBIAN_FRONTEND=noninteractive
RUN rm -f /etc/apt/apt.conf.d/docker-clean \ RUN rm -f /etc/apt/apt.conf.d/docker-clean; echo 'Binary::apt::APT::Keep-Downloaded-Packages "true";' > /etc/apt/apt.conf.d/keep-cache
&& echo 'Binary::apt::APT::Keep-Downloaded-Packages "true";' >/etc/apt/apt.conf.d/keep-cache RUN --mount=type=cache,target=/var/cache/apt,sharing=locked \
# Install dependencies
RUN \
--mount=type=cache,target=/var/cache/apt,sharing=locked \
--mount=type=cache,target=/var/lib/apt,sharing=locked \ --mount=type=cache,target=/var/lib/apt,sharing=locked \
apt-get update \ apt update && apt-get install -y \
&& apt-get install -y \ git \
--no-install-recommends \ python3.10-venv \
libgl1-mesa-glx=20.3.* \ python3-pip \
libglib2.0-0=2.66.* \ build-essential
libopencv-dev=4.5.*
# Set working directory and env ENV INVOKEAI_SRC=/opt/invokeai
ARG APPDIR=/usr/src ENV VIRTUAL_ENV=/opt/venv/invokeai
ARG APPNAME=InvokeAI
WORKDIR ${APPDIR}
ENV PATH ${APPDIR}/${APPNAME}/bin:$PATH
# Keeps Python from generating .pyc files in the container
ENV PYTHONDONTWRITEBYTECODE 1
# Turns off buffering for easier container logging
ENV PYTHONUNBUFFERED 1
# Don't fall back to legacy build system
ENV PIP_USE_PEP517=1
####################### ENV PATH="$VIRTUAL_ENV/bin:$PATH"
## build pyproject ## ARG TORCH_VERSION=2.0.1
####################### ARG TORCHVISION_VERSION=0.15.2
FROM python-base AS pyproject-builder ARG GPU_DRIVER=cuda
ARG TARGETPLATFORM="linux/amd64"
# unused but available
ARG BUILDPLATFORM
# Install build dependencies WORKDIR ${INVOKEAI_SRC}
RUN \
--mount=type=cache,target=/var/cache/apt,sharing=locked \
--mount=type=cache,target=/var/lib/apt,sharing=locked \
apt-get update \
&& apt-get install -y \
--no-install-recommends \
build-essential=12.9 \
gcc=4:10.2.* \
python3-dev=3.9.*
# Prepare pip for buildkit cache # Install pytorch before all other pip packages
ARG PIP_CACHE_DIR=/var/cache/buildkit/pip # NOTE: there are no pytorch builds for arm64 + cuda, only cpu
ENV PIP_CACHE_DIR ${PIP_CACHE_DIR} # x86_64/CUDA is default
RUN mkdir -p ${PIP_CACHE_DIR} RUN --mount=type=cache,target=/root/.cache/pip \
python3 -m venv ${VIRTUAL_ENV} &&\
if [ "$TARGETPLATFORM" = "linux/arm64" ] || [ "$GPU_DRIVER" = "cpu" ]; then \
extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/cpu"; \
elif [ "$GPU_DRIVER" = "rocm" ]; then \
extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/rocm5.4.2"; \
else \
extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/cu118"; \
fi &&\
pip install $extra_index_url_arg \
torch==$TORCH_VERSION \
torchvision==$TORCHVISION_VERSION
# Create virtual environment # Install the local package.
RUN --mount=type=cache,target=${PIP_CACHE_DIR} \ # Editable mode helps use the same image for development:
python3 -m venv "${APPNAME}" \ # the local working copy can be bind-mounted into the image
--upgrade-deps # at path defined by ${INVOKEAI_SRC}
COPY invokeai ./invokeai
COPY pyproject.toml ./
RUN --mount=type=cache,target=/root/.cache/pip \
# xformers + triton fails to install on arm64
if [ "$GPU_DRIVER" = "cuda" ] && [ "$TARGETPLATFORM" = "linux/amd64" ]; then \
pip install -e ".[xformers]"; \
else \
pip install -e "."; \
fi
# Install requirements # #### Build the Web UI ------------------------------------
COPY --link pyproject.toml .
COPY --link invokeai/version/invokeai_version.py invokeai/version/__init__.py invokeai/version/
ARG PIP_EXTRA_INDEX_URL
ENV PIP_EXTRA_INDEX_URL ${PIP_EXTRA_INDEX_URL}
RUN --mount=type=cache,target=${PIP_CACHE_DIR} \
"${APPNAME}"/bin/pip install .
# Install pyproject.toml FROM node:18 AS web-builder
COPY --link . . WORKDIR /build
RUN --mount=type=cache,target=${PIP_CACHE_DIR} \ COPY invokeai/frontend/web/ ./
"${APPNAME}/bin/pip" install . RUN --mount=type=cache,target=/usr/lib/node_modules \
npm install --include dev
RUN --mount=type=cache,target=/usr/lib/node_modules \
yarn vite build
# Build patchmatch
#### Runtime stage ---------------------------------------
FROM library/ubuntu:22.04 AS runtime
ARG DEBIAN_FRONTEND=noninteractive
ENV PYTHONUNBUFFERED=1
ENV PYTHONDONTWRITEBYTECODE=1
RUN apt update && apt install -y --no-install-recommends \
git \
curl \
vim \
tmux \
ncdu \
iotop \
bzip2 \
gosu \
libglib2.0-0 \
libgl1-mesa-glx \
python3-venv \
python3-pip \
build-essential \
libopencv-dev \
libstdc++-10-dev &&\
apt-get clean && apt-get autoclean
# globally add magic-wormhole
# for ease of transferring data to and from the container
# when running in sandboxed cloud environments; e.g. Runpod etc.
RUN pip install magic-wormhole
ENV INVOKEAI_SRC=/opt/invokeai
ENV VIRTUAL_ENV=/opt/venv/invokeai
ENV INVOKEAI_ROOT=/invokeai
ENV PATH="$VIRTUAL_ENV/bin:$INVOKEAI_SRC:$PATH"
# --link requires buldkit w/ dockerfile syntax 1.4
COPY --link --from=builder ${INVOKEAI_SRC} ${INVOKEAI_SRC}
COPY --link --from=builder ${VIRTUAL_ENV} ${VIRTUAL_ENV}
COPY --link --from=web-builder /build/dist ${INVOKEAI_SRC}/invokeai/frontend/web/dist
# Link amdgpu.ids for ROCm builds
# contributed by https://github.com/Rubonnek
RUN mkdir -p "/opt/amdgpu/share/libdrm" &&\
ln -s "/usr/share/libdrm/amdgpu.ids" "/opt/amdgpu/share/libdrm/amdgpu.ids"
WORKDIR ${INVOKEAI_SRC}
# build patchmatch
RUN cd /usr/lib/$(uname -p)-linux-gnu/pkgconfig/ && ln -sf opencv4.pc opencv.pc
RUN python3 -c "from patchmatch import patch_match" RUN python3 -c "from patchmatch import patch_match"
##################### # Create unprivileged user and make the local dir
## runtime image ## RUN useradd --create-home --shell /bin/bash -u 1000 --comment "container local user" invoke
##################### RUN mkdir -p ${INVOKEAI_ROOT} && chown -R invoke:invoke ${INVOKEAI_ROOT}
FROM python-base AS runtime
# Create a new user COPY docker/docker-entrypoint.sh ./
ARG UNAME=appuser ENTRYPOINT ["/opt/invokeai/docker-entrypoint.sh"]
RUN useradd \ CMD ["invokeai-web", "--host", "0.0.0.0"]
--no-log-init \
-m \
-U \
"${UNAME}"
# Create volume directory
ARG VOLUME_DIR=/data
RUN mkdir -p "${VOLUME_DIR}" \
&& chown -hR "${UNAME}:${UNAME}" "${VOLUME_DIR}"
# Setup runtime environment
USER ${UNAME}:${UNAME}
COPY --chown=${UNAME}:${UNAME} --from=pyproject-builder ${APPDIR}/${APPNAME} ${APPNAME}
ENV INVOKEAI_ROOT ${VOLUME_DIR}
ENV TRANSFORMERS_CACHE ${VOLUME_DIR}/.cache
ENV INVOKE_MODEL_RECONFIGURE "--yes --default_only"
EXPOSE 9090
ENTRYPOINT [ "invokeai" ]
CMD [ "--web", "--host", "0.0.0.0", "--port", "9090" ]
VOLUME [ "${VOLUME_DIR}" ]

77
docker/README.md Normal file
View File

@ -0,0 +1,77 @@
# InvokeAI Containerized
All commands are to be run from the `docker` directory: `cd docker`
#### Linux
1. Ensure builkit is enabled in the Docker daemon settings (`/etc/docker/daemon.json`)
2. Install the `docker compose` plugin using your package manager, or follow a [tutorial](https://www.digitalocean.com/community/tutorials/how-to-install-and-use-docker-compose-on-ubuntu-22-04).
- The deprecated `docker-compose` (hyphenated) CLI continues to work for now.
3. Ensure docker daemon is able to access the GPU.
- You may need to install [nvidia-container-toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html)
#### macOS
1. Ensure Docker has at least 16GB RAM
2. Enable VirtioFS for file sharing
3. Enable `docker compose` V2 support
This is done via Docker Desktop preferences
## Quickstart
1. Make a copy of `env.sample` and name it `.env` (`cp env.sample .env` (Mac/Linux) or `copy example.env .env` (Windows)). Make changes as necessary. Set `INVOKEAI_ROOT` to an absolute path to:
a. the desired location of the InvokeAI runtime directory, or
b. an existing, v3.0.0 compatible runtime directory.
1. `docker compose up`
The image will be built automatically if needed.
The runtime directory (holding models and outputs) will be created in the location specified by `INVOKEAI_ROOT`. The default location is `~/invokeai`. The runtime directory will be populated with the base configs and models necessary to start generating.
### Use a GPU
- Linux is *recommended* for GPU support in Docker.
- WSL2 is *required* for Windows.
- only `x86_64` architecture is supported.
The Docker daemon on the system must be already set up to use the GPU. In case of Linux, this involves installing `nvidia-docker-runtime` and configuring the `nvidia` runtime as default. Steps will be different for AMD. Please see Docker documentation for the most up-to-date instructions for using your GPU with Docker.
## Customize
Check the `.env.sample` file. It contains some environment variables for running in Docker. Copy it, name it `.env`, and fill it in with your own values. Next time you run `docker compose up`, your custom values will be used.
You can also set these values in `docker compose.yml` directly, but `.env` will help avoid conflicts when code is updated.
Example (most values are optional):
```
INVOKEAI_ROOT=/Volumes/WorkDrive/invokeai
HUGGINGFACE_TOKEN=the_actual_token
CONTAINER_UID=1000
GPU_DRIVER=cuda
```
## Even Moar Customizing!
See the `docker compose.yaml` file. The `command` instruction can be uncommented and used to run arbitrary startup commands. Some examples below.
### Reconfigure the runtime directory
Can be used to download additional models from the supported model list
In conjunction with `INVOKEAI_ROOT` can be also used to initialize a runtime directory
```
command:
- invokeai-configure
- --yes
```
Or install models:
```
command:
- invokeai-model-install
```

View File

@ -1,51 +1,11 @@
#!/usr/bin/env bash #!/usr/bin/env bash
set -e set -e
# If you want to build a specific flavor, set the CONTAINER_FLAVOR environment variable build_args=""
# e.g. CONTAINER_FLAVOR=cpu ./build.sh
# Possible Values are:
# - cpu
# - cuda
# - rocm
# Don't forget to also set it when executing run.sh
# if it is not set, the script will try to detect the flavor by itself.
#
# Doc can be found here:
# https://invoke-ai.github.io/InvokeAI/installation/040_INSTALL_DOCKER/
SCRIPTDIR=$(dirname "${BASH_SOURCE[0]}") [[ -f ".env" ]] && build_args=$(awk '$1 ~ /\=[^$]/ {print "--build-arg " $0 " "}' .env)
cd "$SCRIPTDIR" || exit 1
source ./env.sh echo "docker-compose build args:"
echo $build_args
DOCKERFILE=${INVOKE_DOCKERFILE:-./Dockerfile} docker-compose build $build_args
# print the settings
echo -e "You are using these values:\n"
echo -e "Dockerfile:\t\t${DOCKERFILE}"
echo -e "index-url:\t\t${PIP_EXTRA_INDEX_URL:-none}"
echo -e "Volumename:\t\t${VOLUMENAME}"
echo -e "Platform:\t\t${PLATFORM}"
echo -e "Container Registry:\t${CONTAINER_REGISTRY}"
echo -e "Container Repository:\t${CONTAINER_REPOSITORY}"
echo -e "Container Tag:\t\t${CONTAINER_TAG}"
echo -e "Container Flavor:\t${CONTAINER_FLAVOR}"
echo -e "Container Image:\t${CONTAINER_IMAGE}\n"
# Create docker volume
if [[ -n "$(docker volume ls -f name="${VOLUMENAME}" -q)" ]]; then
echo -e "Volume already exists\n"
else
echo -n "creating docker volume "
docker volume create "${VOLUMENAME}"
fi
# Build Container
docker build \
--platform="${PLATFORM:-linux/amd64}" \
--tag="${CONTAINER_IMAGE:-invokeai}" \
${CONTAINER_FLAVOR:+--build-arg="CONTAINER_FLAVOR=${CONTAINER_FLAVOR}"} \
${PIP_EXTRA_INDEX_URL:+--build-arg="PIP_EXTRA_INDEX_URL=${PIP_EXTRA_INDEX_URL}"} \
${PIP_PACKAGE:+--build-arg="PIP_PACKAGE=${PIP_PACKAGE}"} \
--file="${DOCKERFILE}" \
..

48
docker/docker-compose.yml Normal file
View File

@ -0,0 +1,48 @@
# Copyright (c) 2023 Eugene Brodsky https://github.com/ebr
version: '3.8'
services:
invokeai:
image: "local/invokeai:latest"
# edit below to run on a container runtime other than nvidia-container-runtime.
# not yet tested with rocm/AMD GPUs
# Comment out the "deploy" section to run on CPU only
deploy:
resources:
reservations:
devices:
- driver: nvidia
count: 1
capabilities: [gpu]
build:
context: ..
dockerfile: docker/Dockerfile
# variables without a default will automatically inherit from the host environment
environment:
- INVOKEAI_ROOT
- HF_HOME
# Create a .env file in the same directory as this docker-compose.yml file
# and populate it with environment variables. See .env.sample
env_file:
- .env
ports:
- "${INVOKEAI_PORT:-9090}:9090"
volumes:
- ${INVOKEAI_ROOT:-~/invokeai}:${INVOKEAI_ROOT:-/invokeai}
- ${HF_HOME:-~/.cache/huggingface}:${HF_HOME:-/invokeai/.cache/huggingface}
# - ${INVOKEAI_MODELS_DIR:-${INVOKEAI_ROOT:-/invokeai/models}}
# - ${INVOKEAI_MODELS_CONFIG_PATH:-${INVOKEAI_ROOT:-/invokeai/configs/models.yaml}}
tty: true
stdin_open: true
# # Example of running alternative commands/scripts in the container
# command:
# - bash
# - -c
# - |
# invokeai-model-install --yes --default-only --config_file ${INVOKEAI_ROOT}/config_custom.yaml
# invokeai-nodes-web --host 0.0.0.0

65
docker/docker-entrypoint.sh Executable file
View File

@ -0,0 +1,65 @@
#!/bin/bash
set -e -o pipefail
### Container entrypoint
# Runs the CMD as defined by the Dockerfile or passed to `docker run`
# Can be used to configure the runtime dir
# Bypass by using ENTRYPOINT or `--entrypoint`
### Set INVOKEAI_ROOT pointing to a valid runtime directory
# Otherwise configure the runtime dir first.
### Configure the InvokeAI runtime directory (done by default)):
# docker run --rm -it <this image> --configure
# or skip with --no-configure
### Set the CONTAINER_UID envvar to match your user.
# Ensures files created in the container are owned by you:
# docker run --rm -it -v /some/path:/invokeai -e CONTAINER_UID=$(id -u) <this image>
# Default UID: 1000 chosen due to popularity on Linux systems. Possibly 501 on MacOS.
USER_ID=${CONTAINER_UID:-1000}
USER=invoke
usermod -u ${USER_ID} ${USER} 1>/dev/null
configure() {
# Configure the runtime directory
if [[ -f ${INVOKEAI_ROOT}/invokeai.yaml ]]; then
echo "${INVOKEAI_ROOT}/invokeai.yaml exists. InvokeAI is already configured."
echo "To reconfigure InvokeAI, delete the above file."
echo "======================================================================"
else
mkdir -p ${INVOKEAI_ROOT}
chown --recursive ${USER} ${INVOKEAI_ROOT}
gosu ${USER} invokeai-configure --yes --default_only
fi
}
## Skip attempting to configure.
## Must be passed first, before any other args.
if [[ $1 != "--no-configure" ]]; then
configure
else
shift
fi
### Set the $PUBLIC_KEY env var to enable SSH access.
# We do not install openssh-server in the image by default to avoid bloat.
# but it is useful to have the full SSH server e.g. on Runpod.
# (use SCP to copy files to/from the image, etc)
if [[ -v "PUBLIC_KEY" ]] && [[ ! -d "${HOME}/.ssh" ]]; then
apt-get update
apt-get install -y openssh-server
pushd $HOME
mkdir -p .ssh
echo ${PUBLIC_KEY} > .ssh/authorized_keys
chmod -R 700 .ssh
popd
service ssh start
fi
cd ${INVOKEAI_ROOT}
# Run the CMD as the Container User (not root).
exec gosu ${USER} "$@"

View File

@ -1,54 +0,0 @@
#!/usr/bin/env bash
# This file is used to set environment variables for the build.sh and run.sh scripts.
# Try to detect the container flavor if no PIP_EXTRA_INDEX_URL got specified
if [[ -z "$PIP_EXTRA_INDEX_URL" ]]; then
# Activate virtual environment if not already activated and exists
if [[ -z $VIRTUAL_ENV ]]; then
[[ -e "$(dirname "${BASH_SOURCE[0]}")/../.venv/bin/activate" ]] \
&& source "$(dirname "${BASH_SOURCE[0]}")/../.venv/bin/activate" \
&& echo "Activated virtual environment: $VIRTUAL_ENV"
fi
# Decide which container flavor to build if not specified
if [[ -z "$CONTAINER_FLAVOR" ]] && python -c "import torch" &>/dev/null; then
# Check for CUDA and ROCm
CUDA_AVAILABLE=$(python -c "import torch;print(torch.cuda.is_available())")
ROCM_AVAILABLE=$(python -c "import torch;print(torch.version.hip is not None)")
if [[ "${CUDA_AVAILABLE}" == "True" ]]; then
CONTAINER_FLAVOR="cuda"
elif [[ "${ROCM_AVAILABLE}" == "True" ]]; then
CONTAINER_FLAVOR="rocm"
else
CONTAINER_FLAVOR="cpu"
fi
fi
# Set PIP_EXTRA_INDEX_URL based on container flavor
if [[ "$CONTAINER_FLAVOR" == "rocm" ]]; then
PIP_EXTRA_INDEX_URL="https://download.pytorch.org/whl/rocm"
elif [[ "$CONTAINER_FLAVOR" == "cpu" ]]; then
PIP_EXTRA_INDEX_URL="https://download.pytorch.org/whl/cpu"
# elif [[ -z "$CONTAINER_FLAVOR" || "$CONTAINER_FLAVOR" == "cuda" ]]; then
# PIP_PACKAGE=${PIP_PACKAGE-".[xformers]"}
fi
fi
# Variables shared by build.sh and run.sh
REPOSITORY_NAME="${REPOSITORY_NAME-$(basename "$(git rev-parse --show-toplevel)")}"
REPOSITORY_NAME="${REPOSITORY_NAME,,}"
VOLUMENAME="${VOLUMENAME-"${REPOSITORY_NAME}_data"}"
ARCH="${ARCH-$(uname -m)}"
PLATFORM="${PLATFORM-linux/${ARCH}}"
INVOKEAI_BRANCH="${INVOKEAI_BRANCH-$(git branch --show)}"
CONTAINER_REGISTRY="${CONTAINER_REGISTRY-"ghcr.io"}"
CONTAINER_REPOSITORY="${CONTAINER_REPOSITORY-"$(whoami)/${REPOSITORY_NAME}"}"
CONTAINER_FLAVOR="${CONTAINER_FLAVOR-cuda}"
CONTAINER_TAG="${CONTAINER_TAG-"${INVOKEAI_BRANCH##*/}-${CONTAINER_FLAVOR}"}"
CONTAINER_IMAGE="${CONTAINER_REGISTRY}/${CONTAINER_REPOSITORY}:${CONTAINER_TAG}"
CONTAINER_IMAGE="${CONTAINER_IMAGE,,}"
# enable docker buildkit
export DOCKER_BUILDKIT=1

View File

@ -1,41 +1,8 @@
#!/usr/bin/env bash #!/usr/bin/env bash
set -e set -e
# How to use: https://invoke-ai.github.io/InvokeAI/installation/040_INSTALL_DOCKER/
SCRIPTDIR=$(dirname "${BASH_SOURCE[0]}") SCRIPTDIR=$(dirname "${BASH_SOURCE[0]}")
cd "$SCRIPTDIR" || exit 1 cd "$SCRIPTDIR" || exit 1
source ./env.sh docker-compose up --build -d
docker-compose logs -f
# Create outputs directory if it does not exist
[[ -d ./outputs ]] || mkdir ./outputs
echo -e "You are using these values:\n"
echo -e "Volumename:\t${VOLUMENAME}"
echo -e "Invokeai_tag:\t${CONTAINER_IMAGE}"
echo -e "local Models:\t${MODELSPATH:-unset}\n"
docker run \
--interactive \
--tty \
--rm \
--platform="${PLATFORM}" \
--name="${REPOSITORY_NAME}" \
--hostname="${REPOSITORY_NAME}" \
--mount type=volume,volume-driver=local,source="${VOLUMENAME}",target=/data \
--mount type=bind,source="$(pwd)"/outputs/,target=/data/outputs/ \
${MODELSPATH:+--mount="type=bind,source=${MODELSPATH},target=/data/models"} \
${HUGGING_FACE_HUB_TOKEN:+--env="HUGGING_FACE_HUB_TOKEN=${HUGGING_FACE_HUB_TOKEN}"} \
--publish=9090:9090 \
--cap-add=sys_nice \
${GPU_FLAGS:+--gpus="${GPU_FLAGS}"} \
"${CONTAINER_IMAGE}" ${@:+$@}
echo -e "\nCleaning trash folder ..."
for f in outputs/.Trash*; do
if [ -e "$f" ]; then
rm -Rf "$f"
break
fi
done

60
docker/runpod-readme.md Normal file
View File

@ -0,0 +1,60 @@
# InvokeAI - A Stable Diffusion Toolkit
Stable Diffusion distribution by InvokeAI: https://github.com/invoke-ai
The Docker image tracks the `main` branch of the InvokeAI project, which means it includes the latest features, but may contain some bugs.
Your working directory is mounted under the `/workspace` path inside the pod. The models are in `/workspace/invokeai/models`, and outputs are in `/workspace/invokeai/outputs`.
> **Only the /workspace directory will persist between pod restarts!**
> **If you _terminate_ (not just _stop_) the pod, the /workspace will be lost.**
## Quickstart
1. Launch a pod from this template. **It will take about 5-10 minutes to run through the initial setup**. Be patient.
1. Wait for the application to load.
- TIP: you know it's ready when the CPU usage goes idle
- You can also check the logs for a line that says "_Point your browser at..._"
1. Open the Invoke AI web UI: click the `Connect` => `connect over HTTP` button.
1. Generate some art!
## Other things you can do
At any point you may edit the pod configuration and set an arbitrary Docker command. For example, you could run a command to downloads some models using `curl`, or fetch some images and place them into your outputs to continue a working session.
If you need to run *multiple commands*, define them in the Docker Command field like this:
`bash -c "cd ${INVOKEAI_ROOT}/outputs; wormhole receive 2-foo-bar; invoke.py --web --host 0.0.0.0"`
### Copying your data in and out of the pod
This image includes a couple of handy tools to help you get the data into the pod (such as your custom models or embeddings), and out of the pod (such as downloading your outputs). Here are your options for getting your data in and out of the pod:
- **SSH server**:
1. Make sure to create and set your Public Key in the RunPod settings (follow the official instructions)
1. Add an exposed port 22 (TCP) in the pod settings!
1. When your pod restarts, you will see a new entry in the `Connect` dialog. Use this SSH server to `scp` or `sftp` your files as necessary, or SSH into the pod using the fully fledged SSH server.
- [**Magic Wormhole**](https://magic-wormhole.readthedocs.io/en/latest/welcome.html):
1. On your computer, `pip install magic-wormhole` (see above instructions for details)
1. Connect to the command line **using the "light" SSH client** or the browser-based console. _Currently there's a bug where `wormhole` isn't available when connected to "full" SSH server, as described above_.
1. `wormhole send /workspace/invokeai/outputs` will send the entire `outputs` directory. You can also send individual files.
1. Once packaged, you will see a `wormhole receive <123-some-words>` command. Copy it
1. Paste this command into the terminal on your local machine to securely download the payload.
1. It works the same in reverse: you can `wormhole send` some models from your computer to the pod. Again, save your files somewhere in `/workspace` or they will be lost when the pod is stopped.
- **RunPod's Cloud Sync feature** may be used to sync the persistent volume to cloud storage. You could, for example, copy the entire `/workspace` to S3, add some custom models to it, and copy it back from S3 when launching new pod configurations. Follow the Cloud Sync instructions.
### Disable the NSFW checker
The NSFW checker is enabled by default. To disable it, edit the pod configuration and set the following command:
```
invoke --web --host 0.0.0.0 --no-nsfw_checker
```
---
Template ©2023 Eugene Brodsky [ebr](https://github.com/ebr)

View File

@ -250,8 +250,8 @@ from .model_cache import ModelCache, ModelLocker
from .models import ( from .models import (
BaseModelType, ModelType, SubModelType, BaseModelType, ModelType, SubModelType,
ModelError, SchedulerPredictionType, MODEL_CLASSES, ModelError, SchedulerPredictionType, MODEL_CLASSES,
ModelConfigBase, ModelNotFoundException, ModelConfigBase, ModelNotFoundException, InvalidModelException,
) )
# We are only starting to number the config file with release 3. # We are only starting to number the config file with release 3.
# The config file version doesn't have to start at release version, but it will help # The config file version doesn't have to start at release version, but it will help
@ -275,10 +275,6 @@ class ModelInfo():
def __exit__(self,*args, **kwargs): def __exit__(self,*args, **kwargs):
self.context.__exit__(*args, **kwargs) self.context.__exit__(*args, **kwargs)
class InvalidModelError(Exception):
"Raised when an invalid model is requested"
pass
class AddModelResult(BaseModel): class AddModelResult(BaseModel):
name: str = Field(description="The name of the model after installation") name: str = Field(description="The name of the model after installation")
model_type: ModelType = Field(description="The type of model") model_type: ModelType = Field(description="The type of model")
@ -817,6 +813,8 @@ class ModelManager(object):
model_config: ModelConfigBase = model_class.probe_config(str(model_path)) model_config: ModelConfigBase = model_class.probe_config(str(model_path))
self.models[model_key] = model_config self.models[model_key] = model_config
new_models_found = True new_models_found = True
except InvalidModelException:
self.logger.warning(f"Not a valid model: {model_path}")
except NotImplementedError as e: except NotImplementedError as e:
self.logger.warning(e) self.logger.warning(e)

View File

@ -2,7 +2,7 @@ import inspect
from enum import Enum from enum import Enum
from pydantic import BaseModel from pydantic import BaseModel
from typing import Literal, get_origin from typing import Literal, get_origin
from .base import BaseModelType, ModelType, SubModelType, ModelBase, ModelConfigBase, ModelVariantType, SchedulerPredictionType, ModelError, SilenceWarnings, ModelNotFoundException from .base import BaseModelType, ModelType, SubModelType, ModelBase, ModelConfigBase, ModelVariantType, SchedulerPredictionType, ModelError, SilenceWarnings, ModelNotFoundException, InvalidModelException
from .stable_diffusion import StableDiffusion1Model, StableDiffusion2Model from .stable_diffusion import StableDiffusion1Model, StableDiffusion2Model
from .vae import VaeModel from .vae import VaeModel
from .lora import LoRAModel from .lora import LoRAModel

View File

@ -15,6 +15,9 @@ from contextlib import suppress
from pydantic import BaseModel, Field from pydantic import BaseModel, Field
from typing import List, Dict, Optional, Type, Literal, TypeVar, Generic, Callable, Any, Union from typing import List, Dict, Optional, Type, Literal, TypeVar, Generic, Callable, Any, Union
class InvalidModelException(Exception):
pass
class ModelNotFoundException(Exception): class ModelNotFoundException(Exception):
pass pass

View File

@ -13,6 +13,7 @@ from .base import (
calc_model_size_by_fs, calc_model_size_by_fs,
calc_model_size_by_data, calc_model_size_by_data,
classproperty, classproperty,
InvalidModelException,
) )
class ControlNetModelFormat(str, Enum): class ControlNetModelFormat(str, Enum):
@ -73,11 +74,19 @@ class ControlNetModel(ModelBase):
@classmethod @classmethod
def detect_format(cls, path: str): def detect_format(cls, path: str):
if not os.path.exists(path):
raise ModelNotFoundException()
if os.path.isdir(path): if os.path.isdir(path):
if os.path.exists(os.path.join(path, "config.json")):
return ControlNetModelFormat.Diffusers return ControlNetModelFormat.Diffusers
else:
if os.path.isfile(path):
if any([path.endswith(f".{ext}") for ext in ["safetensors", "ckpt", "pt", "pth"]]):
return ControlNetModelFormat.Checkpoint return ControlNetModelFormat.Checkpoint
raise InvalidModelException(f"Not a valid model: {path}")
@classmethod @classmethod
def convert_if_required( def convert_if_required(
cls, cls,

View File

@ -9,6 +9,7 @@ from .base import (
ModelType, ModelType,
SubModelType, SubModelType,
classproperty, classproperty,
InvalidModelException,
) )
# TODO: naming # TODO: naming
from ..lora import LoRAModel as LoRAModelRaw from ..lora import LoRAModel as LoRAModelRaw
@ -56,11 +57,19 @@ class LoRAModel(ModelBase):
@classmethod @classmethod
def detect_format(cls, path: str): def detect_format(cls, path: str):
if not os.path.exists(path):
raise ModelNotFoundException()
if os.path.isdir(path): if os.path.isdir(path):
if os.path.exists(os.path.join(path, "pytorch_lora_weights.bin")):
return LoRAModelFormat.Diffusers return LoRAModelFormat.Diffusers
else:
if os.path.isfile(path):
if any([path.endswith(f".{ext}") for ext in ["safetensors", "ckpt", "pt"]]):
return LoRAModelFormat.LyCORIS return LoRAModelFormat.LyCORIS
raise InvalidModelException(f"Not a valid model: {path}")
@classmethod @classmethod
def convert_if_required( def convert_if_required(
cls, cls,

View File

@ -16,6 +16,7 @@ from .base import (
SilenceWarnings, SilenceWarnings,
read_checkpoint_meta, read_checkpoint_meta,
classproperty, classproperty,
InvalidModelException,
) )
from invokeai.app.services.config import InvokeAIAppConfig from invokeai.app.services.config import InvokeAIAppConfig
from omegaconf import OmegaConf from omegaconf import OmegaConf
@ -98,11 +99,19 @@ class StableDiffusion1Model(DiffusersModel):
@classmethod @classmethod
def detect_format(cls, model_path: str): def detect_format(cls, model_path: str):
if not os.path.exists(model_path):
raise ModelNotFoundException()
if os.path.isdir(model_path): if os.path.isdir(model_path):
if os.path.exists(os.path.join(model_path, "model_index.json")):
return StableDiffusion1ModelFormat.Diffusers return StableDiffusion1ModelFormat.Diffusers
else:
if os.path.isfile(model_path):
if any([model_path.endswith(f".{ext}") for ext in ["safetensors", "ckpt", "pt"]]):
return StableDiffusion1ModelFormat.Checkpoint return StableDiffusion1ModelFormat.Checkpoint
raise InvalidModelException(f"Not a valid model: {model_path}")
@classmethod @classmethod
def convert_if_required( def convert_if_required(
cls, cls,
@ -200,11 +209,19 @@ class StableDiffusion2Model(DiffusersModel):
@classmethod @classmethod
def detect_format(cls, model_path: str): def detect_format(cls, model_path: str):
if not os.path.exists(model_path):
raise ModelNotFoundException()
if os.path.isdir(model_path): if os.path.isdir(model_path):
if os.path.exists(os.path.join(model_path, "model_index.json")):
return StableDiffusion2ModelFormat.Diffusers return StableDiffusion2ModelFormat.Diffusers
else:
if os.path.isfile(model_path):
if any([model_path.endswith(f".{ext}") for ext in ["safetensors", "ckpt", "pt"]]):
return StableDiffusion2ModelFormat.Checkpoint return StableDiffusion2ModelFormat.Checkpoint
raise InvalidModelException(f"Not a valid model: {model_path}")
@classmethod @classmethod
def convert_if_required( def convert_if_required(
cls, cls,

View File

@ -9,6 +9,7 @@ from .base import (
SubModelType, SubModelType,
classproperty, classproperty,
ModelNotFoundException, ModelNotFoundException,
InvalidModelException,
) )
# TODO: naming # TODO: naming
from ..lora import TextualInversionModel as TextualInversionModelRaw from ..lora import TextualInversionModel as TextualInversionModelRaw
@ -59,8 +60,19 @@ class TextualInversionModel(ModelBase):
@classmethod @classmethod
def detect_format(cls, path: str): def detect_format(cls, path: str):
if not os.path.exists(path):
raise ModelNotFoundException()
if os.path.isdir(path):
if os.path.exists(os.path.join(path, "learned_embeds.bin")):
return None # diffusers-ti
if os.path.isfile(path):
if any([path.endswith(f".{ext}") for ext in ["safetensors", "ckpt", "pt"]]):
return None return None
raise InvalidModelException(f"Not a valid model: {path}")
@classmethod @classmethod
def convert_if_required( def convert_if_required(
cls, cls,

View File

@ -15,6 +15,7 @@ from .base import (
calc_model_size_by_fs, calc_model_size_by_fs,
calc_model_size_by_data, calc_model_size_by_data,
classproperty, classproperty,
InvalidModelException,
) )
from invokeai.app.services.config import InvokeAIAppConfig from invokeai.app.services.config import InvokeAIAppConfig
from diffusers.utils import is_safetensors_available from diffusers.utils import is_safetensors_available
@ -75,11 +76,19 @@ class VaeModel(ModelBase):
@classmethod @classmethod
def detect_format(cls, path: str): def detect_format(cls, path: str):
if not os.path.exists(path):
raise ModelNotFoundException()
if os.path.isdir(path): if os.path.isdir(path):
if os.path.exists(os.path.join(path, "config.json")):
return VaeModelFormat.Diffusers return VaeModelFormat.Diffusers
else:
if os.path.isfile(path):
if any([path.endswith(f".{ext}") for ext in ["safetensors", "ckpt", "pt"]]):
return VaeModelFormat.Checkpoint return VaeModelFormat.Checkpoint
raise InvalidModelException(f"Not a valid model: {path}")
@classmethod @classmethod
def convert_if_required( def convert_if_required(
cls, cls,

View File

@ -102,6 +102,8 @@ export type AppFeature =
export type SDFeature = export type SDFeature =
| 'controlNet' | 'controlNet'
| 'noise' | 'noise'
| 'perlinNoise'
| 'noiseThreshold'
| 'variation' | 'variation'
| 'symmetry' | 'symmetry'
| 'seamless' | 'seamless'

View File

@ -27,6 +27,9 @@ const ParamNoiseCollapse = () => {
const { t } = useTranslation(); const { t } = useTranslation();
const isNoiseEnabled = useFeatureStatus('noise').isFeatureEnabled; const isNoiseEnabled = useFeatureStatus('noise').isFeatureEnabled;
const isPerlinNoiseEnabled = useFeatureStatus('perlinNoise').isFeatureEnabled;
const isNoiseThresholdEnabled =
useFeatureStatus('noiseThreshold').isFeatureEnabled;
const { activeLabel } = useAppSelector(selector); const { activeLabel } = useAppSelector(selector);
@ -42,8 +45,8 @@ const ParamNoiseCollapse = () => {
<Flex sx={{ gap: 2, flexDirection: 'column' }}> <Flex sx={{ gap: 2, flexDirection: 'column' }}>
<ParamNoiseToggle /> <ParamNoiseToggle />
<ParamCpuNoiseToggle /> <ParamCpuNoiseToggle />
<ParamPerlinNoise /> {isPerlinNoiseEnabled && <ParamPerlinNoise />}
<ParamNoiseThreshold /> {isNoiseThresholdEnabled && <ParamNoiseThreshold />}
</Flex> </Flex>
</IAICollapse> </IAICollapse>
); );

View File

@ -6,8 +6,15 @@ import { merge } from 'lodash-es';
export const initialConfigState: AppConfig = { export const initialConfigState: AppConfig = {
shouldUpdateImagesOnConnect: false, shouldUpdateImagesOnConnect: false,
disabledTabs: [], disabledTabs: [],
disabledFeatures: [], disabledFeatures: ['lightbox', 'faceRestore'],
disabledSDFeatures: [], disabledSDFeatures: [
'variation',
'seamless',
'symmetry',
'hires',
'perlinNoise',
'noiseThreshold',
],
canRestoreDeletedImagesFromBin: true, canRestoreDeletedImagesFromBin: true,
sd: { sd: {
disabledControlNetModels: [], disabledControlNetModels: [],