mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
fix: Manually update eta(gamma) to 1.0 for TCDScheduler
seems to work best with invoke at 4 steps
This commit is contained in:
parent
38880cde5c
commit
2ddb82200c
@ -3,7 +3,7 @@ import inspect
|
|||||||
import math
|
import math
|
||||||
from contextlib import ExitStack
|
from contextlib import ExitStack
|
||||||
from functools import singledispatchmethod
|
from functools import singledispatchmethod
|
||||||
from typing import Any, Iterator, List, Literal, Optional, Tuple, Union
|
from typing import Any, Dict, Iterator, List, Literal, Optional, Tuple, Union
|
||||||
|
|
||||||
import einops
|
import einops
|
||||||
import numpy as np
|
import numpy as np
|
||||||
@ -521,9 +521,10 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
|||||||
)
|
)
|
||||||
|
|
||||||
if is_sdxl:
|
if is_sdxl:
|
||||||
return SDXLConditioningInfo(
|
return (
|
||||||
embeds=text_embedding, pooled_embeds=pooled_embedding, add_time_ids=add_time_ids
|
SDXLConditioningInfo(embeds=text_embedding, pooled_embeds=pooled_embedding, add_time_ids=add_time_ids),
|
||||||
), regions
|
regions,
|
||||||
|
)
|
||||||
return BasicConditioningInfo(embeds=text_embedding), regions
|
return BasicConditioningInfo(embeds=text_embedding), regions
|
||||||
|
|
||||||
def get_conditioning_data(
|
def get_conditioning_data(
|
||||||
@ -825,7 +826,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
|||||||
denoising_start: float,
|
denoising_start: float,
|
||||||
denoising_end: float,
|
denoising_end: float,
|
||||||
seed: int,
|
seed: int,
|
||||||
) -> Tuple[int, List[int], int]:
|
) -> Tuple[int, List[int], int, Dict[str, Union[torch.Generator, float]]]:
|
||||||
assert isinstance(scheduler, ConfigMixin)
|
assert isinstance(scheduler, ConfigMixin)
|
||||||
if scheduler.config.get("cpu_only", False):
|
if scheduler.config.get("cpu_only", False):
|
||||||
scheduler.set_timesteps(steps, device="cpu")
|
scheduler.set_timesteps(steps, device="cpu")
|
||||||
@ -853,13 +854,16 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
|||||||
timesteps = timesteps[t_start_idx : t_start_idx + t_end_idx]
|
timesteps = timesteps[t_start_idx : t_start_idx + t_end_idx]
|
||||||
num_inference_steps = len(timesteps) // scheduler.order
|
num_inference_steps = len(timesteps) // scheduler.order
|
||||||
|
|
||||||
scheduler_step_kwargs = {}
|
scheduler_step_kwargs: Dict[str, Union[torch.Generator, float]] = {}
|
||||||
scheduler_step_signature = inspect.signature(scheduler.step)
|
scheduler_step_signature = inspect.signature(scheduler.step)
|
||||||
|
print(scheduler_step_signature.parameters)
|
||||||
if "generator" in scheduler_step_signature.parameters:
|
if "generator" in scheduler_step_signature.parameters:
|
||||||
# At some point, someone decided that schedulers that accept a generator should use the original seed with
|
# At some point, someone decided that schedulers that accept a generator should use the original seed with
|
||||||
# all bits flipped. I don't know the original rationale for this, but now we must keep it like this for
|
# all bits flipped. I don't know the original rationale for this, but now we must keep it like this for
|
||||||
# reproducibility.
|
# reproducibility.
|
||||||
scheduler_step_kwargs = {"generator": torch.Generator(device=device).manual_seed(seed ^ 0xFFFFFFFF)}
|
scheduler_step_kwargs = {"generator": torch.Generator(device=device).manual_seed(seed ^ 0xFFFFFFFF)}
|
||||||
|
if "eta" in scheduler_step_signature.parameters:
|
||||||
|
scheduler_step_kwargs = {"eta": 1.0}
|
||||||
|
|
||||||
return num_inference_steps, timesteps, init_timestep, scheduler_step_kwargs
|
return num_inference_steps, timesteps, init_timestep, scheduler_step_kwargs
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user