wip new TextualInversionManager

This commit is contained in:
Damian Stewart 2022-12-15 10:57:57 +01:00
parent 5d20f47993
commit 2e80872e3b
2 changed files with 177 additions and 54 deletions

View File

@ -1,6 +1,7 @@
import os.path
from cmath import log
import torch
from attr import dataclass
from torch import nn
import sys
@ -14,7 +15,7 @@ from picklescan.scanner import scan_file_path
PROGRESSIVE_SCALE = 2000
def get_clip_token_for_string(tokenizer, string):
def get_clip_token_id_for_string(tokenizer, string):
batch_encoding = tokenizer(
string,
truncation=True,
@ -25,9 +26,9 @@ def get_clip_token_for_string(tokenizer, string):
return_tensors='pt',
)
tokens = batch_encoding['input_ids']
""" assert (
assert (
torch.count_nonzero(tokens - 49407) == 2
), f"String '{string}' maps to more than a single token. Please use another string" """
), f"String '{string}' maps to more than a single token. Please use another string"
return tokens[0, 1]
@ -44,6 +45,134 @@ def get_bert_token_for_string(tokenizer, string):
def get_embedding_for_clip_token(embedder, token):
return embedder(token.unsqueeze(0))[0, 0]
@dataclass
class TextualInversion:
token_string: str
token_id: int
embedding: torch.Tensor
@property
def embedding_vector_length(self) -> int:
return self.embedding.shape[0]
class TextualInversionManager():
def __init__(self, clip_embedder):
self.clip_embedder = clip_embedder
defatul_textual_inversions: list[TextualInversion] = []
self.textual_inversions = defatul_textual_inversions
def load_textual_inversion(self, ckpt_path, full_precision=True):
scan_result = scan_file_path(ckpt_path)
if scan_result.infected_files == 1:
print(f'\n### Security Issues Found in Model: {scan_result.issues_count}')
print('### For your safety, InvokeAI will not load this embed.')
return
ckpt = torch.load(ckpt_path, map_location='cpu')
# Handle .pt textual inversion files
if 'string_to_token' in ckpt and 'string_to_param' in ckpt:
filename = os.path.basename(ckpt_path)
token_str = '.'.join(filename.split('.')[:-1]) # filename excluding extension
if len(ckpt["string_to_token"]) > 1:
print(f">> {ckpt_path} has >1 embedding, only the first will be used")
string_to_param_dict = ckpt['string_to_param']
embedding = list(string_to_param_dict.values())[0]
self.add_textual_inversion(token_str, embedding, full_precision)
# Handle .bin textual inversion files from Huggingface Concepts
# https://huggingface.co/sd-concepts-library
else:
for token_str in list(ckpt.keys()):
embedding = ckpt[token_str]
self.add_textual_inversion(token_str, embedding, full_precision)
def add_textual_inversion(self, token_str, embedding):
"""
Add a textual inversion to be recognised.
:param token_str: The trigger text in the prompt that activates this textual inversion. Should be unknown to the embedder's tokenizer.
:param embedding: The actual embedding data that will be inserted into the conditioning at the point where the token_str appears.
:return: The token id of the added embedding.
"""
if token_str in [ti.token_string for ti in self.textual_inversions]:
print(f">> Embedding manager refusing to overwrite already-loaded term '{token_str}'")
return
if len(embedding.shape) == 1:
embedding = embedding.unsqueeze(0)
elif len(embedding.shape) > 2:
raise ValueError(f"embedding shape {embedding.shape} is incorrect - must have shape [token_dim] or [V, token_dim] where V is vector length and token_dim is 768 for SD1 or 1280 for SD2")
num_tokens_added = self.clip_embedder.tokenizer.add_tokens(token_str)
current_embeddings = self.clip_embedder.transformer.resize_token_embeddings(None)
current_token_count = current_embeddings.num_embeddings
new_token_count = current_token_count + num_tokens_added
self.clip_embedder.transformer.resize_token_embeddings(new_token_count)
token_id = get_clip_token_id_for_string(self.clip_embedder.tokenizer, token_str)
self.textual_inversions.append(TextualInversion(
token_string=token_str,
token_id=token_id,
embedding=embedding
))
return token_id
def has_textual_inversion(self, token_str):
return token_str in [ti.token_string for ti in self.textual_inversions]
def expand_textual_inversion_token_ids(self, prompt_token_ids: list[int]) -> list[int]:
"""
Insert padding tokens as necessary into the passed-in list of token ids to match any textual inversions it includes.
:param prompt_token_ids: The prompt as a list of token ids (`int`s). Should not include bos and eos markers.
:param pad_token_id: The token id to use to pad out the list to account for textual inversion vector lengths >1.
:return: The prompt token ids with any necessary padding to account for textual inversions inserted. May be too
long - caller is reponsible for truncating it if necessary and prepending/appending eos and bos token ids.
"""
assert(prompt_token_ids[0] != self.clip_embedder.bos_token_id)
assert(prompt_token_ids[-1] != self.clip_embedder.eos_token_id)
textual_inversion_token_ids = [ti.token_id for ti in self.textual_inversions]
for i, token_id in reversed(list(enumerate(prompt_token_ids))):
if token_id in textual_inversion_token_ids:
textual_inversion = next(ti for ti in self.textual_inversions if ti.token_id == token_id)
for pad_idx in range(1, textual_inversion.embedding_vector_length):
prompt_token_ids.insert(i+1, self.clip_embedder.pad_token_id)
return prompt_token_ids
def overwrite_textual_inversion_embeddings(self, prompt_token_ids: list[int], prompt_embeddings: torch.Tensor) -> torch.Tensor:
"""
For each token id in prompt_token_ids that refers to a loaded textual inversion, overwrite the corresponding
row in `prompt_embeddings` with the textual inversion embedding. If the embedding has vector length >1, overwrite
subsequent rows in `prompt_embeddings` as well.
:param `prompt_token_ids`: Prompt token ids, already expanded to account for any textual inversions with vector lenght
>1 (call `expand_textual_inversion_token_ids()` to do this)
:param `prompt_embeddings`: Prompt embeddings tensor of shape with indices aligning to token ids in
`prompt_token_ids` (i.e., also already expanded).
:return: `The prompt_embeddings` tensor overwritten as appropriate with the textual inversion embeddings.
"""
assert(prompt_embeddings.shape[0] == self.clip_embedder.max_length, f"prompt_embeddings must have 77 entries (has: {prompt_embeddings.shape[0]})")
textual_inversion_token_ids = [ti.token_id for ti in self.textual_inversions]
for i, token_id in enumerate(prompt_token_ids):
if token_id == pad_token_id:
continue
if token_id in textual_inversion_token_ids:
textual_inversion = next(ti for ti in self.textual_inversions if ti.token_id == token_id)
for j in range(0, textual_inversion.embedding_vector_length):
# only overwrite the textual inversion token id or the padding token id
if prompt_token_ids[i+j] != self.clip_embedder.pad_token_id and prompt_token_ids[i+j] != token_id:
break
prompt_embeddings[i+j] = textual_inversion.embedding[j]
return prompt_embeddings
class EmbeddingManager(nn.Module):
def __init__(
self,
@ -78,7 +207,7 @@ class EmbeddingManager(nn.Module):
): # using Stable Diffusion's CLIP encoder
self.is_clip = True
get_token_for_string = partial(
get_clip_token_for_string, embedder.tokenizer
get_clip_token_id_for_string, embedder.tokenizer
)
get_embedding_for_tkn = partial(
get_embedding_for_clip_token,
@ -255,55 +384,6 @@ class EmbeddingManager(nn.Module):
expanded_paths.append(os.path.join(root,name))
return [x for x in expanded_paths if os.path.splitext(x)[1] in ('.pt','.bin')]
def _load(self, ckpt_path, full=True):
scan_result = scan_file_path(ckpt_path)
if scan_result.infected_files == 1:
print(f'\n### Security Issues Found in Model: {scan_result.issues_count}')
print('### For your safety, InvokeAI will not load this embed.')
return
ckpt = torch.load(ckpt_path, map_location='cpu')
# Handle .pt textual inversion files
if 'string_to_token' in ckpt and 'string_to_param' in ckpt:
filename = os.path.basename(ckpt_path)
token_str = '.'.join(filename.split('.')[:-1]) # filename excluding extension
if len(ckpt["string_to_token"]) > 1:
print(f">> {ckpt_path} has >1 embedding, only the first will be used")
string_to_param_dict = ckpt['string_to_param']
embedding = list(string_to_param_dict.values())[0]
self.add_embedding(token_str, embedding, full)
# Handle .bin textual inversion files from Huggingface Concepts
# https://huggingface.co/sd-concepts-library
else:
for token_str in list(ckpt.keys()):
embedding = ckpt[token_str]
self.add_embedding(token_str, embedding, full)
def add_embedding(self, token_str, embedding, full):
if token_str in self.string_to_param_dict:
print(f">> Embedding manager refusing to overwrite already-loaded term '{token_str}'")
return
if not full:
embedding = embedding.half()
if len(embedding.shape) == 1:
embedding = embedding.unsqueeze(0)
num_tokens_added = self.embedder.tokenizer.add_tokens(token_str)
current_embeddings = self.embedder.transformer.resize_token_embeddings(None)
current_token_count = current_embeddings.num_embeddings
new_token_count = current_token_count + num_tokens_added
self.embedder.transformer.resize_token_embeddings(new_token_count)
token = get_clip_token_for_string(self.embedder.tokenizer, token_str)
self.string_to_token_dict[token_str] = token
self.string_to_param_dict[token_str] = torch.nn.Parameter(embedding)
def has_embedding_for_token(self, token_str):
return token_str in self.string_to_token_dict
def get_embedding_norms_squared(self):
all_params = torch.cat(

View File

@ -0,0 +1,43 @@
import unittest
import torch
from ldm.modules.embedding_manager import TextualInversionManager
class DummyClipEmbedder:
max_length = 77
bos_token_id = 49406
eos_token_id = 49407
class TextualInversionManagerTestCase(unittest.TestCase):
def test_construction(self):
tim = TextualInversionManager(DummyClipEmbedder())
def test_add_embedding(self):
tim = TextualInversionManager(DummyClipEmbedder())
test_embedding = torch.random([1, 768])
test_embedding_name = "test"
token_id = tim.add_textual_inversion(test_embedding_name, test_embedding)
self.assertTrue(tim.has_textual_inversion(test_embedding_name))
textual_inversion = next(ti for ti in tim.textual_inversions if ti.token_id == token_id)
self.assertIsNotNone(textual_inversion)
self.assertEqual(textual_inversion.embedding, test_embedding)
self.assertEqual(textual_inversion.token_string, test_embedding_name)
self.assertEqual(textual_inversion.token_id, token_id)
def test_pad_tokens_list(self):
tim = TextualInversionManager(DummyClipEmbedder())
prompt_token_ids = [DummyClipEmbedder.bos_token_id, 0, 1, 2, DummyClipEmbedder.eos_token_id]
expanded_prompt_token_ids = tim.expand_textual_inversion_token_ids(prompt_token_ids=prompt_token_ids)
self.assertEqual(prompt_token_ids, expanded_prompt_token_ids)
test_embedding = torch.random([1, 768])
test_embedding_name = "test"
tim.add_textual_inversion("<token>",
self.assertRaises()