add i2l invocation

This round trip now works:

```
load_image --image_name ./test.png --image_type local | i2l | l2i | show_image
```
This commit is contained in:
Lincoln Stein 2023-04-08 10:44:21 -04:00
parent cf7adb1815
commit 307cfc075d
2 changed files with 51 additions and 6 deletions

View File

@ -4,14 +4,15 @@ from PIL import Image
from typing import Literal, Optional
from pydantic import BaseModel, Field
from torch import Tensor
import einops
import torch
from ...backend.model_management.model_manager import ModelManager
from ...backend.util.devices import CUDA_DEVICE, torch_dtype, choose_torch_device
from ...backend.util.devices import torch_dtype, choose_torch_device
from ...backend.stable_diffusion.diffusion.shared_invokeai_diffusion import PostprocessingSettings
from ...backend.image_util.seamless import configure_model_padding
from ...backend.prompting.conditioning import get_uc_and_c_and_ec
from ...backend.stable_diffusion.diffusers_pipeline import ConditioningData, StableDiffusionGeneratorPipeline
from ...backend.stable_diffusion.diffusers_pipeline import ConditioningData, StableDiffusionGeneratorPipeline, image_resized_to_grid_as_tensor
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext
import numpy as np
from ..services.image_storage import ImageType
@ -319,6 +320,7 @@ class LatentsToImageInvocation(BaseInvocation):
image=ImageField(image_type=image_type, image_name=image_name)
)
# this should be refactored - duplicated code in diffusers.pipelines.stable_diffusion_pipeline
@classmethod
def _decode_latents(self, vae:AutoencoderKL, latents:torch.Tensor)->Image:
latents = 1 / vae.config.scaling_factor * latents
@ -328,3 +330,43 @@ class LatentsToImageInvocation(BaseInvocation):
return image
# Image to latent
class ImageToLatentsInvocation(BaseInvocation):
"""Generates latents from an image."""
type: Literal["i2l"] = "i2l"
# Inputs
image: Optional[ImageField] = Field(description="The image to generate latents from")
model: str = Field(default="", description="The model to use")
@torch.no_grad()
def invoke(self, context: InvocationContext) -> LatentsOutput:
image = context.services.images.get(self.image.image_type,self.image.image_name)
vae = context.services.model_manager.get_model_vae(self.model)
with torch.inference_mode():
result_latents = self._encode_latents(vae,image)
name = f'{context.graph_execution_state_id}__{self.id}'
context.services.latents.set(name, result_latents)
return LatentsOutput(
latents=LatentsField(latents_name=name)
)
# this should be refactored - similar code in invokeai.stable_diffusion.diffusers_pipeline
@classmethod
def _encode_latents(self, vae:AutoencoderKL, image:Image)->torch.Tensor:
device = choose_torch_device()
dtype = torch_dtype(device)
image_tensor = image_resized_to_grid_as_tensor(image)
if image_tensor.dim() == 3:
image_tensor = einops.rearrange(image_tensor, "c h w -> 1 c h w")
image_tensor = image_tensor.to(device=device, dtype=dtype)
init_latent_dist = vae.encode(image_tensor).latent_dist
init_latents = init_latent_dist.sample().to(
dtype=dtype
)
init_latents = 0.18215 * init_latents
return init_latents

View File

@ -1,13 +1,13 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
import datetime
import PIL
import os
from abc import ABC, abstractmethod
from enum import Enum
from pathlib import Path
from queue import Queue
from typing import Dict
from PIL.Image import Image
from invokeai.app.util.save_thumbnail import save_thumbnail
@ -18,7 +18,7 @@ class ImageType(str, Enum):
RESULT = "results"
INTERMEDIATE = "intermediates"
UPLOAD = "uploads"
LOCAL = "local" # a local path, relative to cwd or absolute
class ImageStorageBase(ABC):
"""Responsible for storing and retrieving images."""
@ -77,13 +77,16 @@ class DiskImageStorage(ImageStorageBase):
if cache_item:
return cache_item
image = Image.open(image_path)
image = PIL.Image.open(image_path)
self.__set_cache(image_path, image)
return image
# TODO: make this a bit more flexible for e.g. cloud storage
def get_path(self, image_type: ImageType, image_name: str) -> str:
path = os.path.join(self.__output_folder, image_type, image_name)
if image_type == ImageType.LOCAL:
path = image_name
else:
path = os.path.join(self.__output_folder, image_type, image_name)
return path
def save(self, image_type: ImageType, image_name: str, image: Image) -> None: