Refactor code a bit

This commit is contained in:
Sergey Borisov 2024-07-25 02:00:30 +03:00
parent 0ccb304b8b
commit 31949ed2f2

View File

@ -46,11 +46,18 @@ class LoRALayerBase:
self.rank = None # set in layer implementation self.rank = None # set in layer implementation
self.layer_key = layer_key self.layer_key = layer_key
def get_weight(self, orig_weight: Optional[torch.Tensor]) -> torch.Tensor: def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
raise NotImplementedError() raise NotImplementedError()
def get_parameters(self, orig_module: Optional[torch.nn.Module]) -> Dict[str, torch.Tensor]: def get_bias(self, orig_bias: torch.Tensor) -> Optional[torch.Tensor]:
raise NotImplementedError() return self.bias
def get_parameters(self, orig_module: torch.nn.Module) -> Dict[str, torch.Tensor]:
params = {"weight": self.get_weight(orig_module.weight)}
bias = self.get_bias(orig_module.bias)
if bias is not None:
params["bias"] = bias
return params
def calc_size(self) -> int: def calc_size(self) -> int:
model_size = 0 model_size = 0
@ -79,14 +86,11 @@ class LoRALayer(LoRALayerBase):
self.up = values["lora_up.weight"] self.up = values["lora_up.weight"]
self.down = values["lora_down.weight"] self.down = values["lora_down.weight"]
if "lora_mid.weight" in values: self.mid = values.get("lora_mid.weight", None)
self.mid: Optional[torch.Tensor] = values["lora_mid.weight"]
else:
self.mid = None
self.rank = self.down.shape[0] self.rank = self.down.shape[0]
def get_weight(self, orig_weight: Optional[torch.Tensor]) -> torch.Tensor: def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
if self.mid is not None: if self.mid is not None:
up = self.up.reshape(self.up.shape[0], self.up.shape[1]) up = self.up.reshape(self.up.shape[0], self.up.shape[1])
down = self.down.reshape(self.down.shape[0], self.down.shape[1]) down = self.down.reshape(self.down.shape[0], self.down.shape[1])
@ -96,9 +100,6 @@ class LoRALayer(LoRALayerBase):
return weight return weight
def get_parameters(self, orig_module: Optional[torch.nn.Module]) -> Dict[str, torch.Tensor]:
return {"weight": self.get_weight(orig_module.weight)}
def calc_size(self) -> int: def calc_size(self) -> int:
model_size = super().calc_size() model_size = super().calc_size()
for val in [self.up, self.mid, self.down]: for val in [self.up, self.mid, self.down]:
@ -131,20 +132,12 @@ class LoHALayer(LoRALayerBase):
self.w1_b = values["hada_w1_b"] self.w1_b = values["hada_w1_b"]
self.w2_a = values["hada_w2_a"] self.w2_a = values["hada_w2_a"]
self.w2_b = values["hada_w2_b"] self.w2_b = values["hada_w2_b"]
self.t1 = values.get("hada_t1", None)
if "hada_t1" in values: self.t2 = values.get("hada_t2", None)
self.t1: Optional[torch.Tensor] = values["hada_t1"]
else:
self.t1 = None
if "hada_t2" in values:
self.t2: Optional[torch.Tensor] = values["hada_t2"]
else:
self.t2 = None
self.rank = self.w1_b.shape[0] self.rank = self.w1_b.shape[0]
def get_weight(self, orig_weight: Optional[torch.Tensor]) -> torch.Tensor: def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
if self.t1 is None: if self.t1 is None:
weight: torch.Tensor = (self.w1_a @ self.w1_b) * (self.w2_a @ self.w2_b) weight: torch.Tensor = (self.w1_a @ self.w1_b) * (self.w2_a @ self.w2_b)
@ -155,9 +148,6 @@ class LoHALayer(LoRALayerBase):
return weight return weight
def get_parameters(self, orig_module: Optional[torch.nn.Module]) -> Dict[str, torch.Tensor]:
return {"weight": self.get_weight(orig_module.weight)}
def calc_size(self) -> int: def calc_size(self) -> int:
model_size = super().calc_size() model_size = super().calc_size()
for val in [self.w1_a, self.w1_b, self.w2_a, self.w2_b, self.t1, self.t2]: for val in [self.w1_a, self.w1_b, self.w2_a, self.w2_b, self.t1, self.t2]:
@ -195,37 +185,26 @@ class LoKRLayer(LoRALayerBase):
): ):
super().__init__(layer_key, values) super().__init__(layer_key, values)
if "lokr_w1" in values: self.w1 = values.get("lokr_w1", None)
self.w1: Optional[torch.Tensor] = values["lokr_w1"] if self.w1 is None:
self.w1_a = None
self.w1_b = None
else:
self.w1 = None
self.w1_a = values["lokr_w1_a"] self.w1_a = values["lokr_w1_a"]
self.w1_b = values["lokr_w1_b"] self.w1_b = values["lokr_w1_b"]
if "lokr_w2" in values: self.w2 = values.get("lokr_w2", None)
self.w2: Optional[torch.Tensor] = values["lokr_w2"] if self.w2 is None:
self.w2_a = None
self.w2_b = None
else:
self.w2 = None
self.w2_a = values["lokr_w2_a"] self.w2_a = values["lokr_w2_a"]
self.w2_b = values["lokr_w2_b"] self.w2_b = values["lokr_w2_b"]
if "lokr_t2" in values: self.t2 = values.get("lokr_t2", None)
self.t2: Optional[torch.Tensor] = values["lokr_t2"]
else:
self.t2 = None
if "lokr_w1_b" in values: if self.w1_b is not None:
self.rank = values["lokr_w1_b"].shape[0] self.rank = self.w1_b.shape[0]
elif "lokr_w2_b" in values: elif self.w2_b is not None:
self.rank = values["lokr_w2_b"].shape[0] self.rank = self.w2_b.shape[0]
else: else:
self.rank = None # unscaled self.rank = None # unscaled
def get_weight(self, orig_weight: Optional[torch.Tensor]) -> torch.Tensor: def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
w1: Optional[torch.Tensor] = self.w1 w1: Optional[torch.Tensor] = self.w1
if w1 is None: if w1 is None:
assert self.w1_a is not None assert self.w1_a is not None
@ -250,9 +229,6 @@ class LoKRLayer(LoRALayerBase):
return weight return weight
def get_parameters(self, orig_module: Optional[torch.nn.Module]) -> Dict[str, torch.Tensor]:
return {"weight": self.get_weight(orig_module.weight)}
def calc_size(self) -> int: def calc_size(self) -> int:
model_size = super().calc_size() model_size = super().calc_size()
for val in [self.w1, self.w1_a, self.w1_b, self.w2, self.w2_a, self.w2_b, self.t2]: for val in [self.w1, self.w1_a, self.w1_b, self.w2, self.w2_a, self.w2_b, self.t2]:
@ -302,12 +278,9 @@ class FullLayer(LoRALayerBase):
self.rank = None # unscaled self.rank = None # unscaled
def get_weight(self, orig_weight: Optional[torch.Tensor]) -> torch.Tensor: def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
return self.weight return self.weight
def get_parameters(self, orig_module: Optional[torch.nn.Module]) -> Dict[str, torch.Tensor]:
return {"weight": self.get_weight(orig_module.weight)}
def calc_size(self) -> int: def calc_size(self) -> int:
model_size = super().calc_size() model_size = super().calc_size()
model_size += self.weight.nelement() * self.weight.element_size() model_size += self.weight.nelement() * self.weight.element_size()
@ -335,16 +308,13 @@ class IA3Layer(LoRALayerBase):
self.rank = None # unscaled self.rank = None # unscaled
def get_weight(self, orig_weight: Optional[torch.Tensor]) -> torch.Tensor: def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
weight = self.weight weight = self.weight
if not self.on_input: if not self.on_input:
weight = weight.reshape(-1, 1) weight = weight.reshape(-1, 1)
assert orig_weight is not None assert orig_weight is not None
return orig_weight * weight return orig_weight * weight
def get_parameters(self, orig_module: Optional[torch.nn.Module]) -> Dict[str, torch.Tensor]:
return {"weight": self.get_weight(orig_module.weight)}
def calc_size(self) -> int: def calc_size(self) -> int:
model_size = super().calc_size() model_size = super().calc_size()
model_size += self.weight.nelement() * self.weight.element_size() model_size += self.weight.nelement() * self.weight.element_size()