mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Merge branch 'main' into bugfix/trim-whitespace-from-urls
This commit is contained in:
commit
334dcf71c4
@ -20,6 +20,7 @@ from multiprocessing import Process
|
||||
from multiprocessing.connection import Connection, Pipe
|
||||
from pathlib import Path
|
||||
from shutil import get_terminal_size
|
||||
from typing import Optional
|
||||
|
||||
import npyscreen
|
||||
import torch
|
||||
@ -630,21 +631,23 @@ def ask_user_for_prediction_type(model_path: Path, tui_conn: Connection = None)
|
||||
return _ask_user_for_pt_cmdline(model_path)
|
||||
|
||||
|
||||
def _ask_user_for_pt_cmdline(model_path: Path) -> SchedulerPredictionType:
|
||||
def _ask_user_for_pt_cmdline(model_path: Path) -> Optional[SchedulerPredictionType]:
|
||||
choices = [SchedulerPredictionType.Epsilon, SchedulerPredictionType.VPrediction, None]
|
||||
print(
|
||||
f"""
|
||||
Please select the type of the V2 checkpoint named {model_path.name}:
|
||||
[1] A model based on Stable Diffusion v2 trained on 512 pixel images (SD-2-base)
|
||||
[2] A model based on Stable Diffusion v2 trained on 768 pixel images (SD-2-768)
|
||||
[3] Skip this model and come back later.
|
||||
Please select the scheduler prediction type of the checkpoint named {model_path.name}:
|
||||
[1] "epsilon" - most v1.5 models and v2 models trained on 512 pixel images
|
||||
[2] "vprediction" - v2 models trained on 768 pixel images and a few v1.5 models
|
||||
[3] Accept the best guess; you can fix it in the Web UI later
|
||||
"""
|
||||
)
|
||||
choice = None
|
||||
ok = False
|
||||
while not ok:
|
||||
try:
|
||||
choice = input("select> ").strip()
|
||||
choice = input("select [3]> ").strip()
|
||||
if not choice:
|
||||
return None
|
||||
choice = choices[int(choice) - 1]
|
||||
ok = True
|
||||
except (ValueError, IndexError):
|
||||
@ -655,7 +658,6 @@ Please select the type of the V2 checkpoint named {model_path.name}:
|
||||
|
||||
|
||||
def _ask_user_for_pt_tui(model_path: Path, tui_conn: Connection) -> SchedulerPredictionType:
|
||||
try:
|
||||
tui_conn.send_bytes(f"*need v2 config for:{model_path}".encode("utf-8"))
|
||||
# note that we don't do any status checking here
|
||||
response = tui_conn.recv_bytes().decode("utf-8")
|
||||
@ -665,12 +667,9 @@ def _ask_user_for_pt_tui(model_path: Path, tui_conn: Connection) -> SchedulerPre
|
||||
return SchedulerPredictionType.epsilon
|
||||
elif response == "v":
|
||||
return SchedulerPredictionType.VPrediction
|
||||
elif response == "abort":
|
||||
logger.info("Conversion aborted")
|
||||
elif response == "guess":
|
||||
return None
|
||||
else:
|
||||
return response
|
||||
except Exception:
|
||||
return None
|
||||
|
||||
|
||||
|
@ -381,12 +381,12 @@ def select_stable_diffusion_config_file(
|
||||
wrap: bool = True,
|
||||
model_name: str = "Unknown",
|
||||
):
|
||||
message = f"Please select the correct base model for the V2 checkpoint named '{model_name}'. Press <CANCEL> to skip installation."
|
||||
message = f"Please select the correct prediction type for the checkpoint named '{model_name}'. Press <CANCEL> to skip installation."
|
||||
title = "CONFIG FILE SELECTION"
|
||||
options = [
|
||||
"An SD v2.x base model (512 pixels; no 'parameterization:' line in its yaml file)",
|
||||
"An SD v2.x v-predictive model (768 pixels; 'parameterization: \"v\"' line in its yaml file)",
|
||||
"Skip installation for now and come back later",
|
||||
"'epsilon' - most v1.5 models and v2 models trained on 512 pixel images",
|
||||
"'vprediction' - v2 models trained on 768 pixel images and a few v1.5 models)",
|
||||
"Accept the best guess; you can fix it in the Web UI later",
|
||||
]
|
||||
|
||||
F = ConfirmCancelPopup(
|
||||
@ -410,7 +410,7 @@ def select_stable_diffusion_config_file(
|
||||
choice = F.add(
|
||||
npyscreen.SelectOne,
|
||||
values=options,
|
||||
value=[0],
|
||||
value=[2],
|
||||
max_height=len(options) + 1,
|
||||
scroll_exit=True,
|
||||
)
|
||||
@ -420,5 +420,5 @@ def select_stable_diffusion_config_file(
|
||||
if not F.value:
|
||||
return None
|
||||
assert choice.value[0] in range(0, 3), "invalid choice"
|
||||
choices = ["epsilon", "v", "abort"]
|
||||
choices = ["epsilon", "v", "guess"]
|
||||
return choices[choice.value[0]]
|
||||
|
Loading…
Reference in New Issue
Block a user