mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Squashed commit of the following:
commitafee7f9cea
Merge:6531446
171f8db
Author: Lincoln Stein <lincoln.stein@gmail.com> Date: Thu Sep 8 22:14:32 2022 -0400 Merge branch 'development' of github.com:deNULL/stable-diffusion into deNULL-development commit171f8db742
Author: Denis Olshin <me@denull.ru> Date: Thu Sep 8 03:15:20 2022 +0300 saving full prompt to metadata when using web ui commitd7e67b62f0
Author: Denis Olshin <me@denull.ru> Date: Thu Sep 8 01:51:47 2022 +0300 better logic for clicking to make variations
This commit is contained in:
parent
653144694f
commit
33874bae8d
@ -1,11 +1,59 @@
|
|||||||
|
import argparse
|
||||||
import json
|
import json
|
||||||
import base64
|
import base64
|
||||||
import mimetypes
|
import mimetypes
|
||||||
import os
|
import os
|
||||||
from http.server import BaseHTTPRequestHandler, ThreadingHTTPServer
|
from http.server import BaseHTTPRequestHandler, ThreadingHTTPServer
|
||||||
from ldm.dream.pngwriter import PngWriter
|
from ldm.dream.pngwriter import PngWriter, PromptFormatter
|
||||||
from threading import Event
|
from threading import Event
|
||||||
|
|
||||||
|
def build_opt(post_data, seed, gfpgan_model_exists):
|
||||||
|
opt = argparse.Namespace()
|
||||||
|
setattr(opt, 'prompt', post_data['prompt'])
|
||||||
|
setattr(opt, 'init_img', post_data['initimg'])
|
||||||
|
setattr(opt, 'strength', float(post_data['strength']))
|
||||||
|
setattr(opt, 'iterations', int(post_data['iterations']))
|
||||||
|
setattr(opt, 'steps', int(post_data['steps']))
|
||||||
|
setattr(opt, 'width', int(post_data['width']))
|
||||||
|
setattr(opt, 'height', int(post_data['height']))
|
||||||
|
setattr(opt, 'seamless', 'seamless' in post_data)
|
||||||
|
setattr(opt, 'fit', 'fit' in post_data)
|
||||||
|
setattr(opt, 'mask', 'mask' in post_data)
|
||||||
|
setattr(opt, 'invert_mask', 'invert_mask' in post_data)
|
||||||
|
setattr(opt, 'cfg_scale', float(post_data['cfg_scale']))
|
||||||
|
setattr(opt, 'sampler_name', post_data['sampler_name'])
|
||||||
|
setattr(opt, 'gfpgan_strength', float(post_data['gfpgan_strength']) if gfpgan_model_exists else 0)
|
||||||
|
setattr(opt, 'upscale', [int(post_data['upscale_level']), float(post_data['upscale_strength'])] if post_data['upscale_level'] != '' else None)
|
||||||
|
setattr(opt, 'progress_images', 'progress_images' in post_data)
|
||||||
|
setattr(opt, 'seed', seed if int(post_data['seed']) == -1 else int(post_data['seed']))
|
||||||
|
setattr(opt, 'variation_amount', float(post_data['variation_amount']) if int(post_data['seed']) != -1 else 0)
|
||||||
|
setattr(opt, 'with_variations', [])
|
||||||
|
|
||||||
|
broken = False
|
||||||
|
if int(post_data['seed']) != -1 and post_data['with_variations'] != '':
|
||||||
|
for part in post_data['with_variations'].split(','):
|
||||||
|
seed_and_weight = part.split(':')
|
||||||
|
if len(seed_and_weight) != 2:
|
||||||
|
print(f'could not parse with_variation part "{part}"')
|
||||||
|
broken = True
|
||||||
|
break
|
||||||
|
try:
|
||||||
|
seed = int(seed_and_weight[0])
|
||||||
|
weight = float(seed_and_weight[1])
|
||||||
|
except ValueError:
|
||||||
|
print(f'could not parse with_variation part "{part}"')
|
||||||
|
broken = True
|
||||||
|
break
|
||||||
|
opt.with_variations.append([seed, weight])
|
||||||
|
|
||||||
|
if broken:
|
||||||
|
raise CanceledException
|
||||||
|
|
||||||
|
if len(opt.with_variations) == 0:
|
||||||
|
opt.with_variations = None
|
||||||
|
|
||||||
|
return opt
|
||||||
|
|
||||||
class CanceledException(Exception):
|
class CanceledException(Exception):
|
||||||
pass
|
pass
|
||||||
|
|
||||||
@ -81,57 +129,15 @@ class DreamServer(BaseHTTPRequestHandler):
|
|||||||
|
|
||||||
content_length = int(self.headers['Content-Length'])
|
content_length = int(self.headers['Content-Length'])
|
||||||
post_data = json.loads(self.rfile.read(content_length))
|
post_data = json.loads(self.rfile.read(content_length))
|
||||||
prompt = post_data['prompt']
|
opt = build_opt(post_data, self.model.seed, gfpgan_model_exists)
|
||||||
initimg = post_data['initimg']
|
|
||||||
strength = float(post_data['strength'])
|
|
||||||
iterations = int(post_data['iterations'])
|
|
||||||
steps = int(post_data['steps'])
|
|
||||||
width = int(post_data['width'])
|
|
||||||
height = int(post_data['height'])
|
|
||||||
fit = 'fit' in post_data
|
|
||||||
seamless = 'seamless' in post_data
|
|
||||||
cfgscale = float(post_data['cfgscale'])
|
|
||||||
sampler_name = post_data['sampler']
|
|
||||||
variation_amount = float(post_data['variation_amount'])
|
|
||||||
with_variations = post_data['with_variations']
|
|
||||||
gfpgan_strength = float(post_data['gfpgan_strength']) if gfpgan_model_exists else 0
|
|
||||||
upscale_level = post_data['upscale_level']
|
|
||||||
upscale_strength = post_data['upscale_strength']
|
|
||||||
upscale = [int(upscale_level),float(upscale_strength)] if upscale_level != '' else None
|
|
||||||
progress_images = 'progress_images' in post_data
|
|
||||||
seed = None if int(post_data['seed']) == -1 else int(post_data['seed'])
|
|
||||||
|
|
||||||
if with_variations != '':
|
|
||||||
parts = []
|
|
||||||
broken = False
|
|
||||||
for part in with_variations.split(','):
|
|
||||||
seed_and_weight = part.split(':')
|
|
||||||
if len(seed_and_weight) != 2:
|
|
||||||
print(f'could not parse with_variation part "{part}"')
|
|
||||||
broken = True
|
|
||||||
break
|
|
||||||
try:
|
|
||||||
vseed = int(seed_and_weight[0])
|
|
||||||
vweight = float(seed_and_weight[1])
|
|
||||||
except ValueError:
|
|
||||||
print(f'could not parse with_variation part "{part}"')
|
|
||||||
broken = True
|
|
||||||
break
|
|
||||||
parts.append([vseed, vweight])
|
|
||||||
if broken:
|
|
||||||
raise CanceledException
|
|
||||||
if len(parts) > 0:
|
|
||||||
with_variations = parts
|
|
||||||
else:
|
|
||||||
with_variations = None
|
|
||||||
|
|
||||||
self.canceled.clear()
|
self.canceled.clear()
|
||||||
print(f">> Request to generate with prompt: {prompt}")
|
print(f">> Request to generate with prompt: {opt.prompt}")
|
||||||
# In order to handle upscaled images, the PngWriter needs to maintain state
|
# In order to handle upscaled images, the PngWriter needs to maintain state
|
||||||
# across images generated by each call to prompt2img(), so we define it in
|
# across images generated by each call to prompt2img(), so we define it in
|
||||||
# the outer scope of image_done()
|
# the outer scope of image_done()
|
||||||
config = post_data.copy() # Shallow copy
|
config = post_data.copy() # Shallow copy
|
||||||
config['initimg'] = config.pop('initimg_name','')
|
config['initimg'] = config.pop('initimg_name', '')
|
||||||
|
|
||||||
images_generated = 0 # helps keep track of when upscaling is started
|
images_generated = 0 # helps keep track of when upscaling is started
|
||||||
images_upscaled = 0 # helps keep track of when upscaling is completed
|
images_upscaled = 0 # helps keep track of when upscaling is completed
|
||||||
@ -144,8 +150,20 @@ class DreamServer(BaseHTTPRequestHandler):
|
|||||||
# entry should not be inserted into the image list.
|
# entry should not be inserted into the image list.
|
||||||
def image_done(image, seed, upscaled=False):
|
def image_done(image, seed, upscaled=False):
|
||||||
name = f'{prefix}.{seed}.png'
|
name = f'{prefix}.{seed}.png'
|
||||||
path = pngwriter.save_image_and_prompt_to_png(image, f'{prompt} -S{seed}', name)
|
iter_opt = argparse.Namespace(**vars(opt)) # copy
|
||||||
|
if opt.variation_amount > 0:
|
||||||
|
this_variation = [[seed, opt.variation_amount]]
|
||||||
|
if opt.with_variations is None:
|
||||||
|
iter_opt.with_variations = this_variation
|
||||||
|
else:
|
||||||
|
iter_opt.with_variations = opt.with_variations + this_variation
|
||||||
|
iter_opt.variation_amount = 0
|
||||||
|
elif opt.with_variations is None:
|
||||||
|
iter_opt.seed = seed
|
||||||
|
normalized_prompt = PromptFormatter(self.model, iter_opt).normalize_prompt()
|
||||||
|
path = pngwriter.save_image_and_prompt_to_png(image, f'{normalized_prompt} -S{iter_opt.seed}', name)
|
||||||
|
|
||||||
|
if int(config['seed']) == -1:
|
||||||
config['seed'] = seed
|
config['seed'] = seed
|
||||||
# Append post_data to log, but only once!
|
# Append post_data to log, but only once!
|
||||||
if not upscaled:
|
if not upscaled:
|
||||||
@ -157,24 +175,24 @@ class DreamServer(BaseHTTPRequestHandler):
|
|||||||
) + '\n',"utf-8"))
|
) + '\n',"utf-8"))
|
||||||
|
|
||||||
# control state of the "postprocessing..." message
|
# control state of the "postprocessing..." message
|
||||||
upscaling_requested = upscale or gfpgan_strength>0
|
upscaling_requested = opt.upscale or opt.gfpgan_strength > 0
|
||||||
nonlocal images_generated # NB: Is this bad python style? It is typical usage in a perl closure.
|
nonlocal images_generated # NB: Is this bad python style? It is typical usage in a perl closure.
|
||||||
nonlocal images_upscaled # NB: Is this bad python style? It is typical usage in a perl closure.
|
nonlocal images_upscaled # NB: Is this bad python style? It is typical usage in a perl closure.
|
||||||
if upscaled:
|
if upscaled:
|
||||||
images_upscaled += 1
|
images_upscaled += 1
|
||||||
else:
|
else:
|
||||||
images_generated +=1
|
images_generated += 1
|
||||||
if upscaling_requested:
|
if upscaling_requested:
|
||||||
action = None
|
action = None
|
||||||
if images_generated >= iterations:
|
if images_generated >= opt.iterations:
|
||||||
if images_upscaled < iterations:
|
if images_upscaled < opt.iterations:
|
||||||
action = 'upscaling-started'
|
action = 'upscaling-started'
|
||||||
else:
|
else:
|
||||||
action = 'upscaling-done'
|
action = 'upscaling-done'
|
||||||
if action:
|
if action:
|
||||||
x = images_upscaled+1
|
x = images_upscaled + 1
|
||||||
self.wfile.write(bytes(json.dumps(
|
self.wfile.write(bytes(json.dumps(
|
||||||
{'event':action,'processed_file_cnt':f'{x}/{iterations}'}
|
{'event': action, 'processed_file_cnt': f'{x}/{opt.iterations}'}
|
||||||
) + '\n',"utf-8"))
|
) + '\n',"utf-8"))
|
||||||
|
|
||||||
step_writer = PngWriter(os.path.join(self.outdir, "intermediates"))
|
step_writer = PngWriter(os.path.join(self.outdir, "intermediates"))
|
||||||
@ -187,10 +205,10 @@ class DreamServer(BaseHTTPRequestHandler):
|
|||||||
# since rendering images is moderately expensive, only render every 5th image
|
# since rendering images is moderately expensive, only render every 5th image
|
||||||
# and don't bother with the last one, since it'll render anyway
|
# and don't bother with the last one, since it'll render anyway
|
||||||
nonlocal step_index
|
nonlocal step_index
|
||||||
if progress_images and step % 5 == 0 and step < steps - 1:
|
if opt.progress_images and step % 5 == 0 and step < opt.steps - 1:
|
||||||
image = self.model.sample_to_image(sample)
|
image = self.model.sample_to_image(sample)
|
||||||
name = f'{prefix}.{seed}.{step_index}.png'
|
name = f'{prefix}.{opt.seed}.{step_index}.png'
|
||||||
metadata = f'{prompt} -S{seed} [intermediate]'
|
metadata = f'{opt.prompt} -S{opt.seed} [intermediate]'
|
||||||
path = step_writer.save_image_and_prompt_to_png(image, metadata, name)
|
path = step_writer.save_image_and_prompt_to_png(image, metadata, name)
|
||||||
step_index += 1
|
step_index += 1
|
||||||
self.wfile.write(bytes(json.dumps(
|
self.wfile.write(bytes(json.dumps(
|
||||||
@ -198,49 +216,20 @@ class DreamServer(BaseHTTPRequestHandler):
|
|||||||
) + '\n',"utf-8"))
|
) + '\n',"utf-8"))
|
||||||
|
|
||||||
try:
|
try:
|
||||||
if initimg is None:
|
if opt.init_img is None:
|
||||||
# Run txt2img
|
# Run txt2img
|
||||||
self.model.prompt2image(prompt,
|
self.model.prompt2image(**vars(opt), step_callback=image_progress, image_callback=image_done)
|
||||||
iterations=iterations,
|
|
||||||
cfg_scale = cfgscale,
|
|
||||||
width = width,
|
|
||||||
height = height,
|
|
||||||
seed = seed,
|
|
||||||
steps = steps,
|
|
||||||
variation_amount = variation_amount,
|
|
||||||
with_variations = with_variations,
|
|
||||||
gfpgan_strength = gfpgan_strength,
|
|
||||||
upscale = upscale,
|
|
||||||
sampler_name = sampler_name,
|
|
||||||
seamless = seamless,
|
|
||||||
step_callback=image_progress,
|
|
||||||
image_callback=image_done)
|
|
||||||
else:
|
else:
|
||||||
# Decode initimg as base64 to temp file
|
# Decode initimg as base64 to temp file
|
||||||
with open("./img2img-tmp.png", "wb") as f:
|
with open("./img2img-tmp.png", "wb") as f:
|
||||||
initimg = initimg.split(",")[1] # Ignore mime type
|
initimg = opt.init_img.split(",")[1] # Ignore mime type
|
||||||
f.write(base64.b64decode(initimg))
|
f.write(base64.b64decode(initimg))
|
||||||
|
opt1 = argparse.Namespace(**vars(opt))
|
||||||
|
opt1.init_img = "./img2img-tmp.png"
|
||||||
|
|
||||||
try:
|
try:
|
||||||
# Run img2img
|
# Run img2img
|
||||||
self.model.prompt2image(prompt,
|
self.model.prompt2image(**vars(opt1), step_callback=image_progress, image_callback=image_done)
|
||||||
init_img = "./img2img-tmp.png",
|
|
||||||
strength = strength,
|
|
||||||
iterations = iterations,
|
|
||||||
cfg_scale = cfgscale,
|
|
||||||
seed = seed,
|
|
||||||
steps = steps,
|
|
||||||
variation_amount = variation_amount,
|
|
||||||
with_variations = with_variations,
|
|
||||||
sampler_name = sampler_name,
|
|
||||||
width = width,
|
|
||||||
height = height,
|
|
||||||
fit = fit,
|
|
||||||
seamless = seamless,
|
|
||||||
gfpgan_strength=gfpgan_strength,
|
|
||||||
upscale = upscale,
|
|
||||||
step_callback=image_progress,
|
|
||||||
image_callback=image_done)
|
|
||||||
finally:
|
finally:
|
||||||
# Remove the temp file
|
# Remove the temp file
|
||||||
os.remove("./img2img-tmp.png")
|
os.remove("./img2img-tmp.png")
|
||||||
|
@ -30,10 +30,10 @@
|
|||||||
<input value="1" type="number" id="iterations" name="iterations" size="4">
|
<input value="1" type="number" id="iterations" name="iterations" size="4">
|
||||||
<label for="steps">Steps:</label>
|
<label for="steps">Steps:</label>
|
||||||
<input value="50" type="number" id="steps" name="steps">
|
<input value="50" type="number" id="steps" name="steps">
|
||||||
<label for="cfgscale">Cfg Scale:</label>
|
<label for="cfg_scale">Cfg Scale:</label>
|
||||||
<input value="7.5" type="number" id="cfgscale" name="cfgscale" step="any">
|
<input value="7.5" type="number" id="cfg_scale" name="cfg_scale" step="any">
|
||||||
<label for="sampler">Sampler:</label>
|
<label for="sampler_name">Sampler:</label>
|
||||||
<select id="sampler" name="sampler" value="k_lms">
|
<select id="sampler_name" name="sampler_name" value="k_lms">
|
||||||
<option value="ddim">DDIM</option>
|
<option value="ddim">DDIM</option>
|
||||||
<option value="plms">PLMS</option>
|
<option value="plms">PLMS</option>
|
||||||
<option value="k_lms" selected>KLMS</option>
|
<option value="k_lms" selected>KLMS</option>
|
||||||
|
@ -9,7 +9,13 @@ function toBase64(file) {
|
|||||||
|
|
||||||
function appendOutput(src, seed, config) {
|
function appendOutput(src, seed, config) {
|
||||||
let outputNode = document.createElement("figure");
|
let outputNode = document.createElement("figure");
|
||||||
let altText = seed.toString() + " | " + config.prompt;
|
|
||||||
|
let variations = config.with_variations;
|
||||||
|
if (config.variation_amount > 0) {
|
||||||
|
variations = (variations ? variations + ',' : '') + seed + ':' + config.variation_amount;
|
||||||
|
}
|
||||||
|
let baseseed = (config.with_variations || config.variation_amount > 0) ? config.seed : seed;
|
||||||
|
let altText = baseseed + ' | ' + (variations ? variations + ' | ' : '') + config.prompt;
|
||||||
|
|
||||||
// img needs width and height for lazy loading to work
|
// img needs width and height for lazy loading to work
|
||||||
const figureContents = `
|
const figureContents = `
|
||||||
@ -25,7 +31,7 @@ function appendOutput(src, seed, config) {
|
|||||||
`;
|
`;
|
||||||
|
|
||||||
outputNode.innerHTML = figureContents;
|
outputNode.innerHTML = figureContents;
|
||||||
let figcaption = outputNode.querySelector('figcaption')
|
let figcaption = outputNode.querySelector('figcaption');
|
||||||
|
|
||||||
// Reload image config
|
// Reload image config
|
||||||
figcaption.addEventListener('click', () => {
|
figcaption.addEventListener('click', () => {
|
||||||
@ -34,21 +40,11 @@ function appendOutput(src, seed, config) {
|
|||||||
if (k == 'initimg') { continue; }
|
if (k == 'initimg') { continue; }
|
||||||
form.querySelector(`*[name=${k}]`).value = config[k];
|
form.querySelector(`*[name=${k}]`).value = config[k];
|
||||||
}
|
}
|
||||||
if (config.variation_amount > 0 || config.with_variations != '') {
|
|
||||||
document.querySelector("#seed").value = config.seed;
|
|
||||||
} else {
|
|
||||||
document.querySelector("#seed").value = seed;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (config.variation_amount > 0) {
|
document.querySelector("#seed").value = baseseed;
|
||||||
let oldVarAmt = document.querySelector("#variation_amount").value
|
document.querySelector("#with_variations").value = variations || '';
|
||||||
let oldVariations = document.querySelector("#with_variations").value
|
if (document.querySelector("#variation_amount").value <= 0) {
|
||||||
let varSep = ''
|
document.querySelector("#variation_amount").value = 0.2;
|
||||||
document.querySelector("#variation_amount").value = 0;
|
|
||||||
if (document.querySelector("#with_variations").value != '') {
|
|
||||||
varSep = ","
|
|
||||||
}
|
|
||||||
document.querySelector("#with_variations").value = oldVariations + varSep + seed + ':' + config.variation_amount
|
|
||||||
}
|
}
|
||||||
|
|
||||||
saveFields(document.querySelector("#generate-form"));
|
saveFields(document.querySelector("#generate-form"));
|
||||||
|
Loading…
Reference in New Issue
Block a user