mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Remove references to model_records service, change submodel property on ModelInfo to submodel_type to support new params in model manager
This commit is contained in:
parent
b0835db47d
commit
35e8a33dfd
@ -1627,7 +1627,7 @@ payload=dict(
|
|||||||
queue_batch_id=queue_batch_id,
|
queue_batch_id=queue_batch_id,
|
||||||
graph_execution_state_id=graph_execution_state_id,
|
graph_execution_state_id=graph_execution_state_id,
|
||||||
model_key=model_key,
|
model_key=model_key,
|
||||||
submodel=submodel,
|
submodel_type=submodel,
|
||||||
hash=model_info.hash,
|
hash=model_info.hash,
|
||||||
location=str(model_info.location),
|
location=str(model_info.location),
|
||||||
precision=str(model_info.precision),
|
precision=str(model_info.precision),
|
||||||
|
@ -812,7 +812,7 @@ class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
|
|||||||
)
|
)
|
||||||
|
|
||||||
with set_seamless(vae_info.model, self.vae.seamless_axes), vae_info as vae:
|
with set_seamless(vae_info.model, self.vae.seamless_axes), vae_info as vae:
|
||||||
assert isinstance(vae, torch.Tensor)
|
assert isinstance(vae, torch.nn.Module)
|
||||||
latents = latents.to(vae.device)
|
latents = latents.to(vae.device)
|
||||||
if self.fp32:
|
if self.fp32:
|
||||||
vae.to(dtype=torch.float32)
|
vae.to(dtype=torch.float32)
|
||||||
|
@ -18,7 +18,7 @@ from .baseinvocation import (
|
|||||||
|
|
||||||
class ModelInfo(BaseModel):
|
class ModelInfo(BaseModel):
|
||||||
key: str = Field(description="Key of model as returned by ModelRecordServiceBase.get_model()")
|
key: str = Field(description="Key of model as returned by ModelRecordServiceBase.get_model()")
|
||||||
submodel: Optional[SubModelType] = Field(default=None, description="Info to load submodel")
|
submodel_type: Optional[SubModelType] = Field(default=None, description="Info to load submodel")
|
||||||
|
|
||||||
|
|
||||||
class LoraInfo(ModelInfo):
|
class LoraInfo(ModelInfo):
|
||||||
@ -110,22 +110,22 @@ class MainModelLoaderInvocation(BaseInvocation):
|
|||||||
unet=UNetField(
|
unet=UNetField(
|
||||||
unet=ModelInfo(
|
unet=ModelInfo(
|
||||||
key=key,
|
key=key,
|
||||||
submodel=SubModelType.UNet,
|
submodel_type=SubModelType.UNet,
|
||||||
),
|
),
|
||||||
scheduler=ModelInfo(
|
scheduler=ModelInfo(
|
||||||
key=key,
|
key=key,
|
||||||
submodel=SubModelType.Scheduler,
|
submodel_type=SubModelType.Scheduler,
|
||||||
),
|
),
|
||||||
loras=[],
|
loras=[],
|
||||||
),
|
),
|
||||||
clip=ClipField(
|
clip=ClipField(
|
||||||
tokenizer=ModelInfo(
|
tokenizer=ModelInfo(
|
||||||
key=key,
|
key=key,
|
||||||
submodel=SubModelType.Tokenizer,
|
submodel_type=SubModelType.Tokenizer,
|
||||||
),
|
),
|
||||||
text_encoder=ModelInfo(
|
text_encoder=ModelInfo(
|
||||||
key=key,
|
key=key,
|
||||||
submodel=SubModelType.TextEncoder,
|
submodel_type=SubModelType.TextEncoder,
|
||||||
),
|
),
|
||||||
loras=[],
|
loras=[],
|
||||||
skipped_layers=0,
|
skipped_layers=0,
|
||||||
@ -133,7 +133,7 @@ class MainModelLoaderInvocation(BaseInvocation):
|
|||||||
vae=VaeField(
|
vae=VaeField(
|
||||||
vae=ModelInfo(
|
vae=ModelInfo(
|
||||||
key=key,
|
key=key,
|
||||||
submodel=SubModelType.Vae,
|
submodel_type=SubModelType.Vae,
|
||||||
),
|
),
|
||||||
),
|
),
|
||||||
)
|
)
|
||||||
@ -188,7 +188,7 @@ class LoraLoaderInvocation(BaseInvocation):
|
|||||||
output.unet.loras.append(
|
output.unet.loras.append(
|
||||||
LoraInfo(
|
LoraInfo(
|
||||||
key=lora_key,
|
key=lora_key,
|
||||||
submodel=None,
|
submodel_type=None,
|
||||||
weight=self.weight,
|
weight=self.weight,
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
@ -198,7 +198,7 @@ class LoraLoaderInvocation(BaseInvocation):
|
|||||||
output.clip.loras.append(
|
output.clip.loras.append(
|
||||||
LoraInfo(
|
LoraInfo(
|
||||||
key=lora_key,
|
key=lora_key,
|
||||||
submodel=None,
|
submodel_type=None,
|
||||||
weight=self.weight,
|
weight=self.weight,
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
@ -271,7 +271,7 @@ class SDXLLoraLoaderInvocation(BaseInvocation):
|
|||||||
output.unet.loras.append(
|
output.unet.loras.append(
|
||||||
LoraInfo(
|
LoraInfo(
|
||||||
key=lora_key,
|
key=lora_key,
|
||||||
submodel=None,
|
submodel_type=None,
|
||||||
weight=self.weight,
|
weight=self.weight,
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
@ -281,7 +281,7 @@ class SDXLLoraLoaderInvocation(BaseInvocation):
|
|||||||
output.clip.loras.append(
|
output.clip.loras.append(
|
||||||
LoraInfo(
|
LoraInfo(
|
||||||
key=lora_key,
|
key=lora_key,
|
||||||
submodel=None,
|
submodel_type=None,
|
||||||
weight=self.weight,
|
weight=self.weight,
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
@ -291,7 +291,7 @@ class SDXLLoraLoaderInvocation(BaseInvocation):
|
|||||||
output.clip2.loras.append(
|
output.clip2.loras.append(
|
||||||
LoraInfo(
|
LoraInfo(
|
||||||
key=lora_key,
|
key=lora_key,
|
||||||
submodel=None,
|
submodel_type=None,
|
||||||
weight=self.weight,
|
weight=self.weight,
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
|
@ -43,29 +43,29 @@ class SDXLModelLoaderInvocation(BaseInvocation):
|
|||||||
model_key = self.model.key
|
model_key = self.model.key
|
||||||
|
|
||||||
# TODO: not found exceptions
|
# TODO: not found exceptions
|
||||||
if not context.services.model_records.exists(model_key):
|
if not context.services.model_manager.store.exists(model_key):
|
||||||
raise Exception(f"Unknown model: {model_key}")
|
raise Exception(f"Unknown model: {model_key}")
|
||||||
|
|
||||||
return SDXLModelLoaderOutput(
|
return SDXLModelLoaderOutput(
|
||||||
unet=UNetField(
|
unet=UNetField(
|
||||||
unet=ModelInfo(
|
unet=ModelInfo(
|
||||||
key=model_key,
|
key=model_key,
|
||||||
submodel=SubModelType.UNet,
|
submodel_type=SubModelType.UNet,
|
||||||
),
|
),
|
||||||
scheduler=ModelInfo(
|
scheduler=ModelInfo(
|
||||||
key=model_key,
|
key=model_key,
|
||||||
submodel=SubModelType.Scheduler,
|
submodel_type=SubModelType.Scheduler,
|
||||||
),
|
),
|
||||||
loras=[],
|
loras=[],
|
||||||
),
|
),
|
||||||
clip=ClipField(
|
clip=ClipField(
|
||||||
tokenizer=ModelInfo(
|
tokenizer=ModelInfo(
|
||||||
key=model_key,
|
key=model_key,
|
||||||
submodel=SubModelType.Tokenizer,
|
submodel_type=SubModelType.Tokenizer,
|
||||||
),
|
),
|
||||||
text_encoder=ModelInfo(
|
text_encoder=ModelInfo(
|
||||||
key=model_key,
|
key=model_key,
|
||||||
submodel=SubModelType.TextEncoder,
|
submodel_type=SubModelType.TextEncoder,
|
||||||
),
|
),
|
||||||
loras=[],
|
loras=[],
|
||||||
skipped_layers=0,
|
skipped_layers=0,
|
||||||
@ -73,11 +73,11 @@ class SDXLModelLoaderInvocation(BaseInvocation):
|
|||||||
clip2=ClipField(
|
clip2=ClipField(
|
||||||
tokenizer=ModelInfo(
|
tokenizer=ModelInfo(
|
||||||
key=model_key,
|
key=model_key,
|
||||||
submodel=SubModelType.Tokenizer2,
|
submodel_type=SubModelType.Tokenizer2,
|
||||||
),
|
),
|
||||||
text_encoder=ModelInfo(
|
text_encoder=ModelInfo(
|
||||||
key=model_key,
|
key=model_key,
|
||||||
submodel=SubModelType.TextEncoder2,
|
submodel_type=SubModelType.TextEncoder2,
|
||||||
),
|
),
|
||||||
loras=[],
|
loras=[],
|
||||||
skipped_layers=0,
|
skipped_layers=0,
|
||||||
@ -85,7 +85,7 @@ class SDXLModelLoaderInvocation(BaseInvocation):
|
|||||||
vae=VaeField(
|
vae=VaeField(
|
||||||
vae=ModelInfo(
|
vae=ModelInfo(
|
||||||
key=model_key,
|
key=model_key,
|
||||||
submodel=SubModelType.Vae,
|
submodel_type=SubModelType.Vae,
|
||||||
),
|
),
|
||||||
),
|
),
|
||||||
)
|
)
|
||||||
@ -112,29 +112,29 @@ class SDXLRefinerModelLoaderInvocation(BaseInvocation):
|
|||||||
model_key = self.model.key
|
model_key = self.model.key
|
||||||
|
|
||||||
# TODO: not found exceptions
|
# TODO: not found exceptions
|
||||||
if not context.services.model_records.exists(model_key):
|
if not context.services.model_manager.store.exists(model_key):
|
||||||
raise Exception(f"Unknown model: {model_key}")
|
raise Exception(f"Unknown model: {model_key}")
|
||||||
|
|
||||||
return SDXLRefinerModelLoaderOutput(
|
return SDXLRefinerModelLoaderOutput(
|
||||||
unet=UNetField(
|
unet=UNetField(
|
||||||
unet=ModelInfo(
|
unet=ModelInfo(
|
||||||
key=model_key,
|
key=model_key,
|
||||||
submodel=SubModelType.UNet,
|
submodel_type=SubModelType.UNet,
|
||||||
),
|
),
|
||||||
scheduler=ModelInfo(
|
scheduler=ModelInfo(
|
||||||
key=model_key,
|
key=model_key,
|
||||||
submodel=SubModelType.Scheduler,
|
submodel_type=SubModelType.Scheduler,
|
||||||
),
|
),
|
||||||
loras=[],
|
loras=[],
|
||||||
),
|
),
|
||||||
clip2=ClipField(
|
clip2=ClipField(
|
||||||
tokenizer=ModelInfo(
|
tokenizer=ModelInfo(
|
||||||
key=model_key,
|
key=model_key,
|
||||||
submodel=SubModelType.Tokenizer2,
|
submodel_type=SubModelType.Tokenizer2,
|
||||||
),
|
),
|
||||||
text_encoder=ModelInfo(
|
text_encoder=ModelInfo(
|
||||||
key=model_key,
|
key=model_key,
|
||||||
submodel=SubModelType.TextEncoder2,
|
submodel_type=SubModelType.TextEncoder2,
|
||||||
),
|
),
|
||||||
loras=[],
|
loras=[],
|
||||||
skipped_layers=0,
|
skipped_layers=0,
|
||||||
@ -142,7 +142,7 @@ class SDXLRefinerModelLoaderInvocation(BaseInvocation):
|
|||||||
vae=VaeField(
|
vae=VaeField(
|
||||||
vae=ModelInfo(
|
vae=ModelInfo(
|
||||||
key=model_key,
|
key=model_key,
|
||||||
submodel=SubModelType.Vae,
|
submodel_type=SubModelType.Vae,
|
||||||
),
|
),
|
||||||
),
|
),
|
||||||
)
|
)
|
||||||
|
@ -499,7 +499,7 @@ class ModelManager(object):
|
|||||||
model_class=model_class,
|
model_class=model_class,
|
||||||
base_model=base_model,
|
base_model=base_model,
|
||||||
model_type=model_type,
|
model_type=model_type,
|
||||||
submodel=submodel_type,
|
submodel_type=submodel_type,
|
||||||
)
|
)
|
||||||
|
|
||||||
if model_key not in self.cache_keys:
|
if model_key not in self.cache_keys:
|
||||||
|
@ -245,7 +245,7 @@ module = [
|
|||||||
"invokeai.app.services.invocation_stats.invocation_stats_default",
|
"invokeai.app.services.invocation_stats.invocation_stats_default",
|
||||||
"invokeai.app.services.model_manager.model_manager_base",
|
"invokeai.app.services.model_manager.model_manager_base",
|
||||||
"invokeai.app.services.model_manager.model_manager_default",
|
"invokeai.app.services.model_manager.model_manager_default",
|
||||||
"invokeai.app.services.model_records.model_records_sql",
|
"invokeai.app.services.model_manager.store.model_records_sql",
|
||||||
"invokeai.app.util.controlnet_utils",
|
"invokeai.app.util.controlnet_utils",
|
||||||
"invokeai.backend.image_util.txt2mask",
|
"invokeai.backend.image_util.txt2mask",
|
||||||
"invokeai.backend.image_util.safety_checker",
|
"invokeai.backend.image_util.safety_checker",
|
||||||
|
Loading…
Reference in New Issue
Block a user