mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Fix static type errors with SCHEDULER_NAME_VALUES. And, avoid bi-directional cross-directory imports, which contribute to circular import issues.
This commit is contained in:
parent
3a24d70279
commit
35f8781ea2
@ -1,6 +1,5 @@
|
||||
from typing import Literal
|
||||
|
||||
from invokeai.backend.stable_diffusion.schedulers import SCHEDULER_MAP
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
|
||||
LATENT_SCALE_FACTOR = 8
|
||||
@ -11,9 +10,6 @@ factor is hard-coded to a literal '8' rather than using this constant.
|
||||
The ratio of image:latent dimensions is LATENT_SCALE_FACTOR:1, or 8:1.
|
||||
"""
|
||||
|
||||
SCHEDULER_NAME_VALUES = Literal[tuple(SCHEDULER_MAP.keys())]
|
||||
"""A literal type representing the valid scheduler names."""
|
||||
|
||||
IMAGE_MODES = Literal["L", "RGB", "RGBA", "CMYK", "YCbCr", "LAB", "HSV", "I", "F"]
|
||||
"""A literal type for PIL image modes supported by Invoke"""
|
||||
|
||||
|
@ -17,7 +17,7 @@ from torchvision.transforms.functional import resize as tv_resize
|
||||
from transformers import CLIPVisionModelWithProjection
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
||||
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR, SCHEDULER_NAME_VALUES
|
||||
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
|
||||
from invokeai.app.invocations.controlnet_image_processors import ControlField
|
||||
from invokeai.app.invocations.fields import (
|
||||
ConditioningField,
|
||||
@ -54,6 +54,7 @@ from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
|
||||
TextConditioningRegions,
|
||||
)
|
||||
from invokeai.backend.stable_diffusion.schedulers import SCHEDULER_MAP
|
||||
from invokeai.backend.stable_diffusion.schedulers.schedulers import SCHEDULER_NAME_VALUES
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
from invokeai.backend.util.hotfixes import ControlNetModel
|
||||
from invokeai.backend.util.mask import to_standard_float_mask
|
||||
|
@ -1,5 +1,4 @@
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
|
||||
from invokeai.app.invocations.constants import SCHEDULER_NAME_VALUES
|
||||
from invokeai.app.invocations.fields import (
|
||||
FieldDescriptions,
|
||||
InputField,
|
||||
@ -7,6 +6,7 @@ from invokeai.app.invocations.fields import (
|
||||
UIType,
|
||||
)
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.stable_diffusion.schedulers.schedulers import SCHEDULER_NAME_VALUES
|
||||
|
||||
|
||||
@invocation_output("scheduler_output")
|
||||
|
@ -8,7 +8,7 @@ from diffusers.schedulers.scheduling_utils import SchedulerMixin
|
||||
from pydantic import field_validator
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
|
||||
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR, SCHEDULER_NAME_VALUES
|
||||
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
|
||||
from invokeai.app.invocations.controlnet_image_processors import ControlField
|
||||
from invokeai.app.invocations.denoise_latents import DenoiseLatentsInvocation, get_scheduler
|
||||
from invokeai.app.invocations.fields import (
|
||||
@ -29,6 +29,7 @@ from invokeai.backend.stable_diffusion.multi_diffusion_pipeline import (
|
||||
MultiDiffusionPipeline,
|
||||
MultiDiffusionRegionConditioning,
|
||||
)
|
||||
from invokeai.backend.stable_diffusion.schedulers.schedulers import SCHEDULER_NAME_VALUES
|
||||
from invokeai.backend.tiles.tiles import (
|
||||
calc_tiles_min_overlap,
|
||||
)
|
||||
|
@ -30,10 +30,10 @@ from diffusers.models.modeling_utils import ModelMixin
|
||||
from pydantic import BaseModel, ConfigDict, Discriminator, Field, Tag, TypeAdapter
|
||||
from typing_extensions import Annotated, Any, Dict
|
||||
|
||||
from invokeai.app.invocations.constants import SCHEDULER_NAME_VALUES
|
||||
from invokeai.app.util.misc import uuid_string
|
||||
from invokeai.backend.model_hash.hash_validator import validate_hash
|
||||
from invokeai.backend.raw_model import RawModel
|
||||
from invokeai.backend.stable_diffusion.schedulers.schedulers import SCHEDULER_NAME_VALUES
|
||||
|
||||
# ModelMixin is the base class for all diffusers and transformers models
|
||||
# RawModel is the InvokeAI wrapper class for ip_adapters, loras, textual_inversion and onnx runtime
|
||||
|
@ -1,3 +1,5 @@
|
||||
from typing import Any, Literal, Type
|
||||
|
||||
from diffusers import (
|
||||
DDIMScheduler,
|
||||
DDPMScheduler,
|
||||
@ -16,8 +18,36 @@ from diffusers import (
|
||||
TCDScheduler,
|
||||
UniPCMultistepScheduler,
|
||||
)
|
||||
from diffusers.schedulers.scheduling_utils import SchedulerMixin
|
||||
|
||||
SCHEDULER_MAP = {
|
||||
SCHEDULER_NAME_VALUES = Literal[
|
||||
"ddim",
|
||||
"ddpm",
|
||||
"deis",
|
||||
"lms",
|
||||
"lms_k",
|
||||
"pndm",
|
||||
"heun",
|
||||
"heun_k",
|
||||
"euler",
|
||||
"euler_k",
|
||||
"euler_a",
|
||||
"kdpm_2",
|
||||
"kdpm_2_a",
|
||||
"dpmpp_2s",
|
||||
"dpmpp_2s_k",
|
||||
"dpmpp_2m",
|
||||
"dpmpp_2m_k",
|
||||
"dpmpp_2m_sde",
|
||||
"dpmpp_2m_sde_k",
|
||||
"dpmpp_sde",
|
||||
"dpmpp_sde_k",
|
||||
"unipc",
|
||||
"lcm",
|
||||
"tcd",
|
||||
]
|
||||
|
||||
SCHEDULER_MAP: dict[SCHEDULER_NAME_VALUES, tuple[Type[SchedulerMixin], dict[str, Any]]] = {
|
||||
"ddim": (DDIMScheduler, {}),
|
||||
"ddpm": (DDPMScheduler, {}),
|
||||
"deis": (DEISMultistepScheduler, {}),
|
||||
|
@ -11,7 +11,6 @@ from invokeai.app.invocations.baseinvocation import (
|
||||
invocation,
|
||||
invocation_output,
|
||||
)
|
||||
from invokeai.app.invocations.constants import SCHEDULER_NAME_VALUES
|
||||
from invokeai.app.invocations.fields import (
|
||||
BoardField,
|
||||
ColorField,
|
||||
@ -78,6 +77,7 @@ from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
|
||||
ConditioningFieldData,
|
||||
SDXLConditioningInfo,
|
||||
)
|
||||
from invokeai.backend.stable_diffusion.schedulers.schedulers import SCHEDULER_NAME_VALUES
|
||||
from invokeai.backend.util.devices import CPU_DEVICE, CUDA_DEVICE, MPS_DEVICE, choose_precision, choose_torch_device
|
||||
from invokeai.version import __version__
|
||||
|
||||
@ -163,7 +163,7 @@ __all__ = [
|
||||
"BaseModelType",
|
||||
"ModelType",
|
||||
"SubModelType",
|
||||
# invokeai.app.invocations.constants
|
||||
# invokeai.backend.stable_diffusion.schedulers.schedulers
|
||||
"SCHEDULER_NAME_VALUES",
|
||||
# invokeai.version
|
||||
"__version__",
|
||||
|
10
tests/backend/stable_diffusion/schedulers/test_schedulers.py
Normal file
10
tests/backend/stable_diffusion/schedulers/test_schedulers.py
Normal file
@ -0,0 +1,10 @@
|
||||
from typing import get_args
|
||||
|
||||
from invokeai.backend.stable_diffusion.schedulers.schedulers import SCHEDULER_MAP, SCHEDULER_NAME_VALUES
|
||||
|
||||
|
||||
def test_scheduler_map_has_all_keys():
|
||||
# Assert that SCHEDULER_MAP has all keys from SCHEDULER_NAME_VALUES.
|
||||
# TODO(ryand): This feels like it should be a type check, but I couldn't find a clean way to do this and didn't want
|
||||
# to spend more time on it.
|
||||
assert set(SCHEDULER_MAP.keys()) == set(get_args(SCHEDULER_NAME_VALUES))
|
Loading…
Reference in New Issue
Block a user