recover gracefuly from GPU out of memory errors (next version)

This commit is contained in:
Lincoln Stein 2024-02-24 12:32:30 -05:00 committed by psychedelicious
parent d22738723d
commit 371e3cc260
2 changed files with 22 additions and 8 deletions

View File

@ -245,7 +245,13 @@ class ModelCache(ModelCacheBase[AnyModel]):
mps.empty_cache() mps.empty_cache()
def move_model_to_device(self, cache_entry: CacheRecord[AnyModel], target_device: torch.device) -> None: def move_model_to_device(self, cache_entry: CacheRecord[AnyModel], target_device: torch.device) -> None:
"""Move model into the indicated device.""" """Move model into the indicated device.
:param cache_entry: The CacheRecord for the model
:param target_device: The torch.device to move the model into
May raise a torch.cuda.OutOfMemoryError
"""
# These attributes are not in the base ModelMixin class but in various derived classes. # These attributes are not in the base ModelMixin class but in various derived classes.
# Some models don't have these attributes, in which case they run in RAM/CPU. # Some models don't have these attributes, in which case they run in RAM/CPU.
self.logger.debug(f"Called to move {cache_entry.key} to {target_device}") self.logger.debug(f"Called to move {cache_entry.key} to {target_device}")
@ -259,6 +265,9 @@ class ModelCache(ModelCacheBase[AnyModel]):
if torch.device(source_device).type == torch.device(target_device).type: if torch.device(source_device).type == torch.device(target_device).type:
return return
# may raise an exception here if insufficient GPU VRAM
self._check_free_vram(target_device, cache_entry.size)
start_model_to_time = time.time() start_model_to_time = time.time()
snapshot_before = self._capture_memory_snapshot() snapshot_before = self._capture_memory_snapshot()
cache_entry.model.to(target_device) cache_entry.model.to(target_device)
@ -294,12 +303,6 @@ class ModelCache(ModelCacheBase[AnyModel]):
f"{get_pretty_snapshot_diff(snapshot_before, snapshot_after)}" f"{get_pretty_snapshot_diff(snapshot_before, snapshot_after)}"
) )
def _clear_vram(self) -> None:
"""Called on out of memory errors. Moves all our models out of VRAM."""
self.logger.warning('Resetting VRAM cache.')
for model in self._cached_models.values():
self.move_model_to_device(model, torch.device('cpu'))
def print_cuda_stats(self) -> None: def print_cuda_stats(self) -> None:
"""Log CUDA diagnostics.""" """Log CUDA diagnostics."""
vram = "%4.2fG" % (torch.cuda.memory_allocated() / GIG) vram = "%4.2fG" % (torch.cuda.memory_allocated() / GIG)
@ -411,3 +414,13 @@ class ModelCache(ModelCacheBase[AnyModel]):
mps.empty_cache() mps.empty_cache()
self.logger.debug(f"After making room: cached_models={len(self._cached_models)}") self.logger.debug(f"After making room: cached_models={len(self._cached_models)}")
def _check_free_vram(self, target_device: torch.device, needed_size: int) -> None:
if target_device.type != "cuda":
return
vram_device = ( # mem_get_info() needs an indexed device
target_device if target_device.index is not None else torch.device(str(target_device), index=0)
)
free_mem, _ = torch.cuda.mem_get_info(torch.device(vram_device))
if needed_size > free_mem:
raise torch.cuda.OutOfMemoryError

View File

@ -43,7 +43,8 @@ class ModelLocker(ModelLockerBase):
self._cache.logger.debug(f"Locking {self._cache_entry.key} in {self._cache.execution_device}") self._cache.logger.debug(f"Locking {self._cache_entry.key} in {self._cache.execution_device}")
self._cache.print_cuda_stats() self._cache.print_cuda_stats()
except torch.cuda.OutOfMemoryError: except torch.cuda.OutOfMemoryError:
self._cache._clear_vram() self._cache.logger.warning("Insufficient GPU memory to load model. Aborting")
self._cache_entry.unlock()
raise raise
except Exception: except Exception:
self._cache_entry.unlock() self._cache_entry.unlock()