numerous tweaks

1. only load triton on linux machines
2. require pip >= 23.0 so that editable installs can run without setup.py
3. model files default to SD-1.5, not 2.1
4. use diffusers model of inpainting rather than ckpt
5. selected a new set of initial models based on # of likes at huggingface
This commit is contained in:
Lincoln Stein 2023-02-02 00:28:38 -05:00
parent 3996ee843c
commit 3810d6a4ce
4 changed files with 590 additions and 455 deletions

View File

@ -14,7 +14,7 @@ from tempfile import TemporaryDirectory
from typing import Union
SUPPORTED_PYTHON = ">=3.9.0,<3.11"
INSTALLER_REQS = ["pip", "rich", "semver", "requests", "plumbum", "prompt-toolkit"]
INSTALLER_REQS = ["pip>=23.0", "rich", "semver", "requests", "plumbum", "prompt-toolkit"]
BOOTSTRAP_VENV_PREFIX = "invokeai-installer-tmp"
OS = platform.uname().system
@ -91,7 +91,7 @@ class Installer:
venv_dir = self.mktemp_venv()
pip = get_pip_from_venv(Path(venv_dir.name))
cmd = [pip, "install", "--require-virtualenv", "--use-pep517", "--upgrade"]
cmd = [pip, "install", "--require-virtualenv", "--use-pep517"]
cmd.extend(self.reqs)
try:
@ -308,6 +308,18 @@ class InvokeAiInstance:
Configure the InvokeAI runtime directory
"""
print(f'DEBUG: sys.argv = {sys.argv}')
new_argv = [sys.argv[0]]
for i in range(1,len(sys.argv)):
el = sys.argv[i]
if el in ['-r','--root']:
new_argv.append(el)
new_argv.append(sys.argv[i+1])
elif el in ['-y','--yes','--yes-to-all']:
new_argv.append(el)
sys.argv = new_argv
print(f'DEBUG: sys.argv = {sys.argv}')
from messages import introduction
introduction()
@ -317,6 +329,9 @@ class InvokeAiInstance:
# NOTE: currently the config script does its own arg parsing! this means the command-line switches
# from the installer will also automatically propagate down to the config script.
# this may change in the future with config refactoring!
# set sys.argv to a consistent state
configure_invokeai.main()
def install_user_scripts(self):

View File

@ -1,69 +1,63 @@
stable-diffusion-2.1-768:
description: Stable Diffusion version 2.1 diffusers model, trained on 768x768 images (5.21 GB)
repo_id: stabilityai/stable-diffusion-2-1
format: diffusers
recommended: True
stable-diffusion-2.1-base:
description: Stable Diffusion version 2.1 diffusers base model, trained on 512x512 images (5.21 GB)
repo_id: stabilityai/stable-diffusion-2-1-base
format: diffusers
recommended: False
stable-diffusion-1.5:
description: Stable Diffusion version 1.5 weight file (4.27 GB)
repo_id: runwayml/stable-diffusion-v1-5
format: diffusers
recommended: True
default: True
vae:
repo_id: stabilityai/sd-vae-ft-mse
stable-diffusion-1.4:
description: The original Stable Diffusion version 1.4 weight file (4.27 GB)
repo_id: CompVis/stable-diffusion-v1-4
recommended: False
format: diffusers
vae:
repo_id: stabilityai/sd-vae-ft-mse
width: 512
height: 512
inpainting-1.5:
description: RunwayML SD 1.5 model optimized for inpainting (ckpt version) (4.27 GB)
repo_id: runwayml/stable-diffusion-inpainting
config: v1-inpainting-inference.yaml
file: sd-v1-5-inpainting.ckpt
format: ckpt
vae:
repo_id: stabilityai/sd-vae-ft-mse-original
file: vae-ft-mse-840000-ema-pruned.ckpt
recommended: True
width: 512
height: 512
waifu-diffusion-1.4:
description: Latest waifu diffusion 1.4 (diffusers version)
default: True
inpainting-1.5:
description: RunwayML SD 1.5 model optimized for inpainting (4.27 GB)
repo_id: runwayml/stable-diffusion-inpainting
format: diffusers
repo_id: hakurei/waifu-diffusion
vae:
repo_id: stabilityai/sd-vae-ft-mse
recommended: True
waifu-diffusion-1.3:
description: Stable Diffusion 1.4 fine tuned on anime-styled images (ckpt version) (4.27 GB)
repo_id: hakurei/waifu-diffusion-v1-3
config: v1-inference.yaml
file: model-epoch09-float32.ckpt
format: ckpt
vae:
repo_id: stabilityai/sd-vae-ft-mse-original
file: vae-ft-mse-840000-ema-pruned.ckpt
dreamlike-diffusion-1.0:
description: An SD 1.5 model fine tuned on high quality art by dreamlike.art
format: diffusers
repo_id: dreamlike-art/dreamlike-diffusion-1.0
vae:
repo_id: stabilityai/sd-vae-ft-mse
recommended: True
dreamlike-photoreal-2.0:
description: A photorealistic model trained on 768 pixel images based on SD 1.5 (2.13 GB)
format: diffusers
repo_id: dreamlike-art/dreamlike-photoreal-2.0
recommended: False
stable-diffusion-2.1-768:
description: Stable Diffusion version 2.1 diffusers model, trained on 768 pixel images (5.21 GB)
repo_id: stabilityai/stable-diffusion-2-1
format: diffusers
recommended: True
stable-diffusion-2.1-base:
description: Stable Diffusion version 2.1 diffusers base model, trained on 512 pixel images (5.21 GB)
repo_id: stabilityai/stable-diffusion-2-1-base
format: diffusers
recommended: False
width: 512
height: 512
openjourney-4.0:
description: An SD 1.5 model fine tuned on Midjourney images by PromptHero - include "mdjrny-v4 style" in your prompts (2.13 GB)
format: diffusers
repo_id: prompthero/openjourney
vae:
repo_id: stabilityai/sd-vae-ft-mse
recommended: False
nitro-diffusion-1.0:
description: A SD 1.5 model trained on three artstyles - prompt with "archer style", "arcane style" and/or "modern disney style" (2.13 GB)
repo_id: nitrosocke/Nitro-Diffusion
format: diffusers
vae:
repo_id: stabilityai/sd-vae-ft-mse
recommended: False
trinart-2.0:
description: An SD model finetuned with ~40,000 assorted high resolution manga/anime-style pictures (2.13 GB)
repo_id: naclbit/trinart_stable_diffusion_v2
format: diffusers
recommended: False
vae:
repo_id: stabilityai/sd-vae-ft-mse
trinart_characters-2_0:
recommended: False
trinart-characters-2_0:
description: An SD model finetuned with 19.2M anime/manga style images (ckpt version) (4.27 GB)
repo_id: naclbit/trinart_derrida_characters_v2_stable_diffusion
config: v1-inference.yaml
@ -72,50 +66,24 @@ trinart_characters-2_0:
vae:
repo_id: naclbit/trinart_derrida_characters_v2_stable_diffusion
file: autoencoder_fix_kl-f8-trinart_characters.ckpt
recommended: False
width: 512
height: 512
anything-4.0:
description: High-quality, highly detailed anime style images with just a few prompts
format: diffusers
repo_id: andite/anything-v4.0
vae:
repo_id: stabilityai/sd-vae-ft-mse
recommended: False
papercut-1.0:
description: SD 1.5 fine-tuned for papercut art (use "PaperCut" in your prompts) (2.13 GB)
repo_id: Fictiverse/Stable_Diffusion_PaperCut_Model
format: diffusers
vae:
repo_id: stabilityai/sd-vae-ft-mse
recommended: False
voxel_art-1.0:
description: Stable Diffusion trained on voxel art (use "VoxelArt" in your prompts) (4.27 GB)
repo_id: Fictiverse/Stable_Diffusion_VoxelArt_Model
config: v1-inference.yaml
file: VoxelArt_v1.ckpt
format: ckpt
vae:
repo_id: stabilityai/sd-vae-ft-mse
file: vae-ft-mse-840000-ema-pruned.ckpt
recommended: False
width: 512
height: 512
ft-mse-improved-autoencoder-840000:
description: StabilityAI improved autoencoder fine-tuned for human faces. Use with legacy .ckpt models ONLY (335 MB)
description: StabilityAI improved autoencoder fine-tuned for human faces. Improves legacy .ckpt models (335 MB)
repo_id: stabilityai/sd-vae-ft-mse-original
format: ckpt
config: VAE/default
file: vae-ft-mse-840000-ema-pruned.ckpt
recommended: True
width: 512
height: 512
recommended: True
trinart_vae:
description: Custom autoencoder for trinart_characters for legacy .ckpt models only (335 MB)
repo_id: naclbit/trinart_characters_19.2m_stable_diffusion_v1
config: VAE/trinart
format: ckpt
file: autoencoder_fix_kl-f8-trinart_characters.ckpt
recommended: False
width: 512
height: 512
recommended: False

File diff suppressed because it is too large Load Diff

View File

@ -60,6 +60,7 @@ dependencies = [
"opencv-python",
"picklescan",
"pillow",
'pip>=23.0',
"pudb",
"prompt-toolkit",
"pypatchmatch",
@ -91,7 +92,7 @@ dependencies = [
"test" = ["pytest>6.0.0", "pytest-cov"]
"xformers" = [
"xformers~=0.0.16; sys_platform!='darwin'",
"triton; sys_platform!='darwin'",
"triton; sys_platform=='linux'",
]
[project.scripts]