Fix IP-Adapter calculation of memory footprint.

This commit is contained in:
Ryan Dick 2023-09-25 18:28:10 -04:00
parent 13919ff300
commit 399ebe443e
2 changed files with 22 additions and 2 deletions

View File

@ -9,6 +9,8 @@ from diffusers.models import UNet2DConditionModel
from PIL import Image
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
from invokeai.backend.model_management.models.base import calc_model_size_by_data
from .attention_processor import AttnProcessor2_0, IPAttnProcessor2_0
from .resampler import Resampler
@ -87,6 +89,20 @@ class IPAdapter:
if self._attn_processors is not None:
torch.nn.ModuleList(self._attn_processors.values()).to(device=self.device, dtype=self.dtype)
def calc_size(self):
if self._state_dict is not None:
image_proj_size = sum(
[tensor.nelement() * tensor.element_size() for tensor in self._state_dict["image_proj"].values()]
)
ip_adapter_size = sum(
[tensor.nelement() * tensor.element_size() for tensor in self._state_dict["ip_adapter"].values()]
)
return image_proj_size + ip_adapter_size
else:
return calc_model_size_by_data(self._image_proj_model) + calc_model_size_by_data(
torch.nn.ModuleList(self._attn_processors.values())
)
def _init_image_proj_model(self, state_dict):
return ImageProjModel.from_state_dict(state_dict, self._num_tokens).to(self.device, dtype=self.dtype)

View File

@ -13,6 +13,7 @@ from invokeai.backend.model_management.models.base import (
ModelConfigBase,
ModelType,
SubModelType,
calc_model_size_by_fs,
classproperty,
)
@ -30,7 +31,7 @@ class IPAdapterModel(ModelBase):
assert model_type == ModelType.IPAdapter
super().__init__(model_path, base_model, model_type)
self.model_size = os.path.getsize(self.model_path)
self.model_size = calc_model_size_by_fs(self.model_path)
@classmethod
def detect_format(cls, path: str) -> str:
@ -63,10 +64,13 @@ class IPAdapterModel(ModelBase):
if child_type is not None:
raise ValueError("There are no child models in an IP-Adapter model.")
return build_ip_adapter(
model = build_ip_adapter(
ip_adapter_ckpt_path=os.path.join(self.model_path, "ip_adapter.bin"), device="cpu", dtype=torch_dtype
)
self.model_size = model.calc_size()
return model
@classmethod
def convert_if_required(
cls,