fix merge conflicts
@ -2,7 +2,7 @@
|
||||
Initialization file for invokeai.backend.image_util methods.
|
||||
"""
|
||||
|
||||
from .patchmatch import PatchMatch # noqa: F401
|
||||
from .infill_methods.patchmatch import PatchMatch # noqa: F401
|
||||
from .pngwriter import PngWriter, PromptFormatter, retrieve_metadata, write_metadata # noqa: F401
|
||||
from .seamless import configure_model_padding # noqa: F401
|
||||
from .util import InitImageResizer, make_grid # noqa: F401
|
||||
|
@ -7,6 +7,7 @@ from PIL import Image
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from invokeai.app.services.config.config_default import get_config
|
||||
from invokeai.app.util.download_with_progress import download_with_progress_bar
|
||||
from invokeai.backend.util.devices import choose_torch_device
|
||||
|
||||
|
||||
@ -30,6 +31,14 @@ class LaMA:
|
||||
def __call__(self, input_image: Image.Image, *args: Any, **kwds: Any) -> Any:
|
||||
device = choose_torch_device()
|
||||
model_location = get_config().models_path / "core/misc/lama/lama.pt"
|
||||
|
||||
if not model_location.exists():
|
||||
download_with_progress_bar(
|
||||
name="LaMa Inpainting Model",
|
||||
url="https://github.com/Sanster/models/releases/download/add_big_lama/big-lama.pt",
|
||||
dest_path=model_location,
|
||||
)
|
||||
|
||||
model = load_jit_model(model_location, device)
|
||||
|
||||
image = np.asarray(input_image.convert("RGB"))
|
60
invokeai/backend/image_util/infill_methods/mosaic.py
Normal file
@ -0,0 +1,60 @@
|
||||
from typing import Tuple
|
||||
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
|
||||
|
||||
def infill_mosaic(
|
||||
image: Image.Image,
|
||||
tile_shape: Tuple[int, int] = (64, 64),
|
||||
min_color: Tuple[int, int, int, int] = (0, 0, 0, 0),
|
||||
max_color: Tuple[int, int, int, int] = (255, 255, 255, 0),
|
||||
) -> Image.Image:
|
||||
"""
|
||||
image:PIL - A PIL Image
|
||||
tile_shape: Tuple[int,int] - Tile width & Tile Height
|
||||
min_color: Tuple[int,int,int] - RGB values for the lowest color to clip to (0-255)
|
||||
max_color: Tuple[int,int,int] - RGB values for the highest color to clip to (0-255)
|
||||
"""
|
||||
|
||||
np_image = np.array(image) # Convert image to np array
|
||||
alpha = np_image[:, :, 3] # Get the mask from the alpha channel of the image
|
||||
non_transparent_pixels = np_image[alpha != 0, :3] # List of non-transparent pixels
|
||||
|
||||
# Create color tiles to paste in the empty areas of the image
|
||||
tile_width, tile_height = tile_shape
|
||||
|
||||
# Clip the range of colors in the image to a particular spectrum only
|
||||
r_min, g_min, b_min, _ = min_color
|
||||
r_max, g_max, b_max, _ = max_color
|
||||
non_transparent_pixels[:, 0] = np.clip(non_transparent_pixels[:, 0], r_min, r_max)
|
||||
non_transparent_pixels[:, 1] = np.clip(non_transparent_pixels[:, 1], g_min, g_max)
|
||||
non_transparent_pixels[:, 2] = np.clip(non_transparent_pixels[:, 2], b_min, b_max)
|
||||
|
||||
tiles = []
|
||||
for _ in range(256):
|
||||
color = non_transparent_pixels[np.random.randint(len(non_transparent_pixels))]
|
||||
tile = np.zeros((tile_height, tile_width, 3), dtype=np.uint8)
|
||||
tile[:, :] = color
|
||||
tiles.append(tile)
|
||||
|
||||
# Fill the transparent area with tiles
|
||||
filled_image = np.zeros((image.height, image.width, 3), dtype=np.uint8)
|
||||
|
||||
for x in range(image.width):
|
||||
for y in range(image.height):
|
||||
tile = tiles[np.random.randint(len(tiles))]
|
||||
try:
|
||||
filled_image[
|
||||
y - (y % tile_height) : y - (y % tile_height) + tile_height,
|
||||
x - (x % tile_width) : x - (x % tile_width) + tile_width,
|
||||
] = tile
|
||||
except ValueError:
|
||||
# Need to handle edge cases - literally
|
||||
pass
|
||||
|
||||
filled_image = Image.fromarray(filled_image) # Convert the filled tiles image to PIL
|
||||
image = Image.composite(
|
||||
image, filled_image, image.split()[-1]
|
||||
) # Composite the original image on top of the filled tiles
|
||||
return image
|
67
invokeai/backend/image_util/infill_methods/patchmatch.py
Normal file
@ -0,0 +1,67 @@
|
||||
"""
|
||||
This module defines a singleton object, "patchmatch" that
|
||||
wraps the actual patchmatch object. It respects the global
|
||||
"try_patchmatch" attribute, so that patchmatch loading can
|
||||
be suppressed or deferred
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from invokeai.app.services.config.config_default import get_config
|
||||
|
||||
|
||||
class PatchMatch:
|
||||
"""
|
||||
Thin class wrapper around the patchmatch function.
|
||||
"""
|
||||
|
||||
patch_match = None
|
||||
tried_load: bool = False
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
@classmethod
|
||||
def _load_patch_match(cls):
|
||||
if cls.tried_load:
|
||||
return
|
||||
if get_config().patchmatch:
|
||||
from patchmatch import patch_match as pm
|
||||
|
||||
if pm.patchmatch_available:
|
||||
logger.info("Patchmatch initialized")
|
||||
cls.patch_match = pm
|
||||
else:
|
||||
logger.info("Patchmatch not loaded (nonfatal)")
|
||||
else:
|
||||
logger.info("Patchmatch loading disabled")
|
||||
cls.tried_load = True
|
||||
|
||||
@classmethod
|
||||
def patchmatch_available(cls) -> bool:
|
||||
cls._load_patch_match()
|
||||
if not cls.patch_match:
|
||||
return False
|
||||
return cls.patch_match.patchmatch_available
|
||||
|
||||
@classmethod
|
||||
def inpaint(cls, image: Image.Image) -> Image.Image:
|
||||
if cls.patch_match is None or not cls.patchmatch_available():
|
||||
return image
|
||||
|
||||
np_image = np.array(image)
|
||||
mask = 255 - np_image[:, :, 3]
|
||||
infilled = cls.patch_match.inpaint(np_image[:, :, :3], mask, patch_size=3)
|
||||
return Image.fromarray(infilled, mode="RGB")
|
||||
|
||||
|
||||
def infill_patchmatch(image: Image.Image) -> Image.Image:
|
||||
IS_PATCHMATCH_AVAILABLE = PatchMatch.patchmatch_available()
|
||||
|
||||
if not IS_PATCHMATCH_AVAILABLE:
|
||||
logger.warning("PatchMatch is not available on this system")
|
||||
return image
|
||||
|
||||
return PatchMatch.inpaint(image)
|
After Width: | Height: | Size: 45 KiB |
After Width: | Height: | Size: 2.2 KiB |
After Width: | Height: | Size: 36 KiB |
After Width: | Height: | Size: 33 KiB |
After Width: | Height: | Size: 21 KiB |
After Width: | Height: | Size: 39 KiB |
After Width: | Height: | Size: 42 KiB |
After Width: | Height: | Size: 48 KiB |
After Width: | Height: | Size: 49 KiB |
After Width: | Height: | Size: 60 KiB |
95
invokeai/backend/image_util/infill_methods/tile.ipynb
Normal file
@ -0,0 +1,95 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"\"\"\"Smoke test for the tile infill\"\"\"\n",
|
||||
"\n",
|
||||
"from pathlib import Path\n",
|
||||
"from typing import Optional\n",
|
||||
"from PIL import Image\n",
|
||||
"from invokeai.backend.image_util.infill_methods.tile import infill_tile\n",
|
||||
"\n",
|
||||
"images: list[tuple[str, Image.Image]] = []\n",
|
||||
"\n",
|
||||
"for i in sorted(Path(\"./test_images/\").glob(\"*.webp\")):\n",
|
||||
" images.append((i.name, Image.open(i)))\n",
|
||||
" images.append((i.name, Image.open(i).transpose(Image.FLIP_LEFT_RIGHT)))\n",
|
||||
" images.append((i.name, Image.open(i).transpose(Image.FLIP_TOP_BOTTOM)))\n",
|
||||
" images.append((i.name, Image.open(i).resize((512, 512))))\n",
|
||||
" images.append((i.name, Image.open(i).resize((1234, 461))))\n",
|
||||
"\n",
|
||||
"outputs: list[tuple[str, Image.Image, Image.Image, Optional[Image.Image]]] = []\n",
|
||||
"\n",
|
||||
"for name, image in images:\n",
|
||||
" try:\n",
|
||||
" output = infill_tile(image, seed=0, tile_size=32)\n",
|
||||
" outputs.append((name, image, output.infilled, output.tile_image))\n",
|
||||
" except ValueError as e:\n",
|
||||
" print(f\"Skipping image {name}: {e}\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Display the images in jupyter notebook\n",
|
||||
"import matplotlib.pyplot as plt\n",
|
||||
"from PIL import ImageOps\n",
|
||||
"\n",
|
||||
"fig, axes = plt.subplots(len(outputs), 3, figsize=(10, 3 * len(outputs)))\n",
|
||||
"plt.subplots_adjust(hspace=0)\n",
|
||||
"\n",
|
||||
"for i, (name, original, infilled, tile_image) in enumerate(outputs):\n",
|
||||
" # Add a border to each image, helps to see the edges\n",
|
||||
" size = original.size\n",
|
||||
" original = ImageOps.expand(original, border=5, fill=\"red\")\n",
|
||||
" filled = ImageOps.expand(infilled, border=5, fill=\"red\")\n",
|
||||
" if tile_image:\n",
|
||||
" tile_image = ImageOps.expand(tile_image, border=5, fill=\"red\")\n",
|
||||
"\n",
|
||||
" axes[i, 0].imshow(original)\n",
|
||||
" axes[i, 0].axis(\"off\")\n",
|
||||
" axes[i, 0].set_title(f\"Original ({name} - {size})\")\n",
|
||||
"\n",
|
||||
" if tile_image:\n",
|
||||
" axes[i, 1].imshow(tile_image)\n",
|
||||
" axes[i, 1].axis(\"off\")\n",
|
||||
" axes[i, 1].set_title(\"Tile Image\")\n",
|
||||
" else:\n",
|
||||
" axes[i, 1].axis(\"off\")\n",
|
||||
" axes[i, 1].set_title(\"NO TILES GENERATED (NO TRANSPARENCY)\")\n",
|
||||
"\n",
|
||||
" axes[i, 2].imshow(filled)\n",
|
||||
" axes[i, 2].axis(\"off\")\n",
|
||||
" axes[i, 2].set_title(\"Filled\")"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": ".invokeai",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.12"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
122
invokeai/backend/image_util/infill_methods/tile.py
Normal file
@ -0,0 +1,122 @@
|
||||
from dataclasses import dataclass
|
||||
from typing import Optional
|
||||
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
|
||||
|
||||
def create_tile_pool(img_array: np.ndarray, tile_size: tuple[int, int]) -> list[np.ndarray]:
|
||||
"""
|
||||
Create a pool of tiles from non-transparent areas of the image by systematically walking through the image.
|
||||
|
||||
Args:
|
||||
img_array: numpy array of the image.
|
||||
tile_size: tuple (tile_width, tile_height) specifying the size of each tile.
|
||||
|
||||
Returns:
|
||||
A list of numpy arrays, each representing a tile.
|
||||
"""
|
||||
tiles: list[np.ndarray] = []
|
||||
rows, cols = img_array.shape[:2]
|
||||
tile_width, tile_height = tile_size
|
||||
|
||||
for y in range(0, rows - tile_height + 1, tile_height):
|
||||
for x in range(0, cols - tile_width + 1, tile_width):
|
||||
tile = img_array[y : y + tile_height, x : x + tile_width]
|
||||
# Check if the image has an alpha channel and the tile is completely opaque
|
||||
if img_array.shape[2] == 4 and np.all(tile[:, :, 3] == 255):
|
||||
tiles.append(tile)
|
||||
elif img_array.shape[2] == 3: # If no alpha channel, append the tile
|
||||
tiles.append(tile)
|
||||
|
||||
if not tiles:
|
||||
raise ValueError(
|
||||
"Not enough opaque pixels to generate any tiles. Use a smaller tile size or a different image."
|
||||
)
|
||||
|
||||
return tiles
|
||||
|
||||
|
||||
def create_filled_image(
|
||||
img_array: np.ndarray, tile_pool: list[np.ndarray], tile_size: tuple[int, int], seed: int
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Create an image of the same dimensions as the original, filled entirely with tiles from the pool.
|
||||
|
||||
Args:
|
||||
img_array: numpy array of the original image.
|
||||
tile_pool: A list of numpy arrays, each representing a tile.
|
||||
tile_size: tuple (tile_width, tile_height) specifying the size of each tile.
|
||||
|
||||
Returns:
|
||||
A numpy array representing the filled image.
|
||||
"""
|
||||
|
||||
rows, cols, _ = img_array.shape
|
||||
tile_width, tile_height = tile_size
|
||||
|
||||
# Prep an empty RGB image
|
||||
filled_img_array = np.zeros((rows, cols, 3), dtype=img_array.dtype)
|
||||
|
||||
# Make the random tile selection reproducible
|
||||
rng = np.random.default_rng(seed)
|
||||
|
||||
for y in range(0, rows, tile_height):
|
||||
for x in range(0, cols, tile_width):
|
||||
# Pick a random tile from the pool
|
||||
tile = tile_pool[rng.integers(len(tile_pool))]
|
||||
|
||||
# Calculate the space available (may be less than tile size near the edges)
|
||||
space_y = min(tile_height, rows - y)
|
||||
space_x = min(tile_width, cols - x)
|
||||
|
||||
# Crop the tile if necessary to fit into the available space
|
||||
cropped_tile = tile[:space_y, :space_x, :3]
|
||||
|
||||
# Fill the available space with the (possibly cropped) tile
|
||||
filled_img_array[y : y + space_y, x : x + space_x, :3] = cropped_tile
|
||||
|
||||
return filled_img_array
|
||||
|
||||
|
||||
@dataclass
|
||||
class InfillTileOutput:
|
||||
infilled: Image.Image
|
||||
tile_image: Optional[Image.Image] = None
|
||||
|
||||
|
||||
def infill_tile(image_to_infill: Image.Image, seed: int, tile_size: int) -> InfillTileOutput:
|
||||
"""Infills an image with random tiles from the image itself.
|
||||
|
||||
If the image is not an RGBA image, it is returned untouched.
|
||||
|
||||
Args:
|
||||
image: The image to infill.
|
||||
tile_size: The size of the tiles to use for infilling.
|
||||
|
||||
Raises:
|
||||
ValueError: If there are not enough opaque pixels to generate any tiles.
|
||||
"""
|
||||
|
||||
if image_to_infill.mode != "RGBA":
|
||||
return InfillTileOutput(infilled=image_to_infill)
|
||||
|
||||
# Internally, we want a tuple of (tile_width, tile_height). In the future, the tile size can be any rectangle.
|
||||
_tile_size = (tile_size, tile_size)
|
||||
np_image = np.array(image_to_infill, dtype=np.uint8)
|
||||
|
||||
# Create the pool of tiles that we will use to infill
|
||||
tile_pool = create_tile_pool(np_image, _tile_size)
|
||||
|
||||
# Create an image from the tiles, same size as the original
|
||||
tile_np_image = create_filled_image(np_image, tile_pool, _tile_size, seed)
|
||||
|
||||
# Paste the OG image over the tile image, effectively infilling the area
|
||||
tile_image = Image.fromarray(tile_np_image, "RGB")
|
||||
infilled = tile_image.copy()
|
||||
infilled.paste(image_to_infill, (0, 0), image_to_infill.split()[-1])
|
||||
|
||||
# I think we want this to be "RGBA"?
|
||||
infilled.convert("RGBA")
|
||||
|
||||
return InfillTileOutput(infilled=infilled, tile_image=tile_image)
|
@ -1,49 +0,0 @@
|
||||
"""
|
||||
This module defines a singleton object, "patchmatch" that
|
||||
wraps the actual patchmatch object. It respects the global
|
||||
"try_patchmatch" attribute, so that patchmatch loading can
|
||||
be suppressed or deferred
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from invokeai.app.services.config.config_default import get_config
|
||||
|
||||
|
||||
class PatchMatch:
|
||||
"""
|
||||
Thin class wrapper around the patchmatch function.
|
||||
"""
|
||||
|
||||
patch_match = None
|
||||
tried_load: bool = False
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
@classmethod
|
||||
def _load_patch_match(self):
|
||||
if self.tried_load:
|
||||
return
|
||||
if get_config().patchmatch:
|
||||
from patchmatch import patch_match as pm
|
||||
|
||||
if pm.patchmatch_available:
|
||||
logger.info("Patchmatch initialized")
|
||||
else:
|
||||
logger.info("Patchmatch not loaded (nonfatal)")
|
||||
self.patch_match = pm
|
||||
else:
|
||||
logger.info("Patchmatch loading disabled")
|
||||
self.tried_load = True
|
||||
|
||||
@classmethod
|
||||
def patchmatch_available(self) -> bool:
|
||||
self._load_patch_match()
|
||||
return self.patch_match and self.patch_match.patchmatch_available
|
||||
|
||||
@classmethod
|
||||
def inpaint(self, *args, **kwargs) -> np.ndarray:
|
||||
if self.patchmatch_available():
|
||||
return self.patch_match.inpaint(*args, **kwargs)
|