support for wheel building; webserver broken

This commit is contained in:
Lincoln Stein 2022-11-18 03:21:07 +00:00
parent fdb16000ab
commit 3ad598761c
7 changed files with 30 additions and 1483 deletions

View File

@ -25,6 +25,8 @@ from backend.modules.parameters import parameters_to_command
opt = Args()
args = opt.parse_args()
if not os.path.isabs(args.outdir):
args.outdir=os.path.join(args.root_dir,args.outdir)
class InvokeAIWebServer:
def __init__(self, generate, gfpgan, codeformer, esrgan) -> None:
@ -63,7 +65,7 @@ class InvokeAIWebServer:
socketio_args["cors_allowed_origins"] = opt.cors
self.app = Flask(
__name__, static_url_path="", static_folder="../frontend/dist/"
__name__, static_url_path="", static_folder=os.path.join(args.root_dir,"frontend/dist")
)
self.socketio = SocketIO(self.app, **socketio_args)

File diff suppressed because one or more lines are too long

View File

@ -17,7 +17,8 @@ from ldm.invoke.args import Args
try:
import readline
readline_available = True
except (ImportError,ModuleNotFoundError):
except (ImportError,ModuleNotFoundError) as e:
print(f'** An error occurred when loading the readline module: {str(e)}')
readline_available = False
IMG_EXTENSIONS = ('.png','.jpg','.jpeg','.PNG','.JPG','.JPEG','.gif','.GIF')

View File

@ -2,10 +2,9 @@
# Copyright (c) 2022 Lincoln D. Stein (https://github.com/lstein)
import warnings
import invoke
if __name__ == '__main__':
warnings.warn("dream.py is being deprecated, please run invoke.py for the "
import ldm.invoke.CLI
warnings.warn("dream.py is being deprecated, please run invoke.py for the "
"new UI/API or legacy_api.py for the old API",
DeprecationWarning)
invoke.main()
ldm.invoke.CLI.main()

View File

@ -1,952 +1,5 @@
#!/usr/bin/env python3
# Copyright (c) 2022 Lincoln D. Stein (https://github.com/lstein)
#!/usr/bin/env python
import os
import re
import sys
import shlex
import copy
import warnings
import time
import traceback
import yaml
import ldm.invoke.CLI
ldm.invoke.CLI.main()
sys.path.append('.') # corrects a weird problem on Macs
from ldm.invoke.globals import Globals
from ldm.invoke.prompt_parser import PromptParser
from ldm.invoke.readline import get_completer, Completer
from ldm.invoke.args import Args, metadata_dumps, metadata_from_png, dream_cmd_from_png
from ldm.invoke.pngwriter import PngWriter, retrieve_metadata, write_metadata
from ldm.invoke.image_util import make_grid
from ldm.invoke.log import write_log
from omegaconf import OmegaConf
from pathlib import Path
import pyparsing
# global used in multiple functions (fix)
infile = None
def main():
"""Initialize command-line parsers and the diffusion model"""
global infile
print('* Initializing, be patient...')
opt = Args()
args = opt.parse_args()
if not args:
sys.exit(-1)
if args.laion400m:
print('--laion400m flag has been deprecated. Please use --model laion400m instead.')
sys.exit(-1)
if args.weights:
print('--weights argument has been deprecated. Please edit ./configs/models.yaml, and select the weights using --model instead.')
sys.exit(-1)
if args.max_loaded_models is not None:
if args.max_loaded_models <= 0:
print('--max_loaded_models must be >= 1; using 1')
args.max_loaded_models = 1
# alert - setting a global here
Globals.root = os.path.expanduser(args.root_dir or os.environ.get('INVOKEAI_ROOT') or '.')
print(f'>> Using InvokeAI directory {Globals.root}')
# loading here to avoid long delays on startup
from ldm.generate import Generate
# these two lines prevent a horrible warning message from appearing
# when the frozen CLIP tokenizer is imported
import transformers
transformers.logging.set_verbosity_error()
# Loading Face Restoration and ESRGAN Modules
gfpgan,codeformer,esrgan = load_face_restoration(opt)
# normalize the config directory relative to root
if not os.path.isabs(opt.conf):
opt.conf=os.path.normpath(os.path.join(Globals.root,opt.conf))
# load the infile as a list of lines
if opt.infile:
try:
if os.path.isfile(opt.infile):
infile = open(opt.infile, 'r', encoding='utf-8')
elif opt.infile == '-': # stdin
infile = sys.stdin
else:
raise FileNotFoundError(f'{opt.infile} not found.')
except (FileNotFoundError, IOError) as e:
print(f'{e}. Aborting.')
sys.exit(-1)
# creating a Generate object:
try:
gen = Generate(
conf = os.path.join(Globals.root,opt.conf),
model = opt.model,
sampler_name = opt.sampler_name,
embedding_path = opt.embedding_path,
full_precision = opt.full_precision,
precision = opt.precision,
gfpgan=gfpgan,
codeformer=codeformer,
esrgan=esrgan,
free_gpu_mem=opt.free_gpu_mem,
safety_checker=opt.safety_checker,
max_loaded_models=opt.max_loaded_models,
)
except FileNotFoundError:
print('** You appear to be missing configs/models.yaml')
print('** You can either exit this script and run scripts/preload_models.py, or fix the problem now.')
emergency_model_create(opt)
sys.exit(-1)
except (IOError, KeyError) as e:
print(f'{e}. Aborting.')
sys.exit(-1)
if opt.seamless:
print(">> changed to seamless tiling mode")
# preload the model
gen.load_model()
# web server loops forever
if opt.web or opt.gui:
invoke_ai_web_server_loop(gen, gfpgan, codeformer, esrgan)
sys.exit(0)
if not infile:
print(
"\n* Initialization done! Awaiting your command (-h for help, 'q' to quit)"
)
try:
main_loop(gen, opt)
except KeyboardInterrupt:
print("\ngoodbye!")
# TODO: main_loop() has gotten busy. Needs to be refactored.
def main_loop(gen, opt):
"""prompt/read/execute loop"""
global infile
done = False
doneAfterInFile = infile is not None
path_filter = re.compile(r'[<>:"/\\|?*]')
last_results = list()
if not os.path.isabs(opt.conf):
opt.conf = os.path.join(Globals.root,opt.conf)
model_config = OmegaConf.load(opt.conf)
# The readline completer reads history from the .dream_history file located in the
# output directory specified at the time of script launch. We do not currently support
# changing the history file midstream when the output directory is changed.
completer = get_completer(opt, models=list(model_config.keys()))
set_default_output_dir(opt, completer)
output_cntr = completer.get_current_history_length()+1
# os.pathconf is not available on Windows
if hasattr(os, 'pathconf'):
path_max = os.pathconf(opt.outdir, 'PC_PATH_MAX')
name_max = os.pathconf(opt.outdir, 'PC_NAME_MAX')
else:
path_max = 260
name_max = 255
while not done:
operation = 'generate'
try:
command = get_next_command(infile)
except EOFError:
done = infile is None or doneAfterInFile
infile = None
continue
# skip empty lines
if not command.strip():
continue
if command.startswith(('#', '//')):
continue
if len(command.strip()) == 1 and command.startswith('q'):
done = True
break
if not command.startswith('!history'):
completer.add_history(command)
if command.startswith('!'):
command, operation = do_command(command, gen, opt, completer)
if operation is None:
continue
if opt.parse_cmd(command) is None:
continue
if opt.init_img:
try:
if not opt.prompt:
oldargs = metadata_from_png(opt.init_img)
opt.prompt = oldargs.prompt
print(f'>> Retrieved old prompt "{opt.prompt}" from {opt.init_img}')
except (OSError, AttributeError, KeyError):
pass
if len(opt.prompt) == 0:
opt.prompt = ''
# width and height are set by model if not specified
if not opt.width:
opt.width = gen.width
if not opt.height:
opt.height = gen.height
# retrieve previous value of init image if requested
if opt.init_img is not None and re.match('^-\\d+$', opt.init_img):
try:
opt.init_img = last_results[int(opt.init_img)][0]
print(f'>> Reusing previous image {opt.init_img}')
except IndexError:
print(
f'>> No previous initial image at position {opt.init_img} found')
opt.init_img = None
continue
# the outdir can change with each command, so we adjust it here
set_default_output_dir(opt,completer)
# try to relativize pathnames
for attr in ('init_img','init_mask','init_color','embedding_path'):
if getattr(opt,attr) and not os.path.exists(getattr(opt,attr)):
basename = getattr(opt,attr)
path = os.path.join(opt.outdir,basename)
setattr(opt,attr,path)
# retrieve previous value of seed if requested
# Exception: for postprocess operations negative seed values
# mean "discard the original seed and generate a new one"
# (this is a non-obvious hack and needs to be reworked)
if opt.seed is not None and opt.seed < 0 and operation != 'postprocess':
try:
opt.seed = last_results[opt.seed][1]
print(f'>> Reusing previous seed {opt.seed}')
except IndexError:
print(f'>> No previous seed at position {opt.seed} found')
opt.seed = None
continue
if opt.strength is None:
opt.strength = 0.75 if opt.out_direction is None else 0.83
if opt.with_variations is not None:
opt.with_variations = split_variations(opt.with_variations)
if opt.prompt_as_dir and operation == 'generate':
# sanitize the prompt to a valid folder name
subdir = path_filter.sub('_', opt.prompt)[:name_max].rstrip(' .')
# truncate path to maximum allowed length
# 39 is the length of '######.##########.##########-##.png', plus two separators and a NUL
subdir = subdir[:(path_max - 39 - len(os.path.abspath(opt.outdir)))]
current_outdir = os.path.join(opt.outdir, subdir)
print('Writing files to directory: "' + current_outdir + '"')
# make sure the output directory exists
if not os.path.exists(current_outdir):
os.makedirs(current_outdir)
else:
if not os.path.exists(opt.outdir):
os.makedirs(opt.outdir)
current_outdir = opt.outdir
# Here is where the images are actually generated!
last_results = []
try:
file_writer = PngWriter(current_outdir)
results = [] # list of filename, prompt pairs
grid_images = dict() # seed -> Image, only used if `opt.grid`
prior_variations = opt.with_variations or []
prefix = file_writer.unique_prefix()
step_callback = make_step_callback(gen, opt, prefix) if opt.save_intermediates > 0 else None
def image_writer(image, seed, upscaled=False, first_seed=None, use_prefix=None):
# note the seed is the seed of the current image
# the first_seed is the original seed that noise is added to
# when the -v switch is used to generate variations
nonlocal prior_variations
nonlocal prefix
path = None
if opt.grid:
grid_images[seed] = image
elif operation == 'mask':
filename = f'{prefix}.{use_prefix}.{seed}.png'
tm = opt.text_mask[0]
th = opt.text_mask[1] if len(opt.text_mask)>1 else 0.5
formatted_dream_prompt = f'!mask {opt.input_file_path} -tm {tm} {th}'
path = file_writer.save_image_and_prompt_to_png(
image = image,
dream_prompt = formatted_dream_prompt,
metadata = {},
name = filename,
compress_level = opt.png_compression,
)
results.append([path, formatted_dream_prompt])
else:
if use_prefix is not None:
prefix = use_prefix
postprocessed = upscaled if upscaled else operation=='postprocess'
filename, formatted_dream_prompt = prepare_image_metadata(
opt,
prefix,
seed,
operation,
prior_variations,
postprocessed,
first_seed
)
path = file_writer.save_image_and_prompt_to_png(
image = image,
dream_prompt = formatted_dream_prompt,
metadata = metadata_dumps(
opt,
seeds = [seed if opt.variation_amount==0 and len(prior_variations)==0 else first_seed],
model_hash = gen.model_hash,
),
name = filename,
compress_level = opt.png_compression,
)
# update rfc metadata
if operation == 'postprocess':
tool = re.match('postprocess:(\w+)',opt.last_operation).groups()[0]
add_postprocessing_to_metadata(
opt,
opt.input_file_path,
filename,
tool,
formatted_dream_prompt,
)
if (not postprocessed) or opt.save_original:
# only append to results if we didn't overwrite an earlier output
results.append([path, formatted_dream_prompt])
# so that the seed autocompletes (on linux|mac when -S or --seed specified
if completer and operation == 'generate':
completer.add_seed(seed)
completer.add_seed(first_seed)
last_results.append([path, seed])
if operation == 'generate':
catch_ctrl_c = infile is None # if running interactively, we catch keyboard interrupts
opt.last_operation='generate'
try:
gen.prompt2image(
image_callback=image_writer,
step_callback=step_callback,
catch_interrupts=catch_ctrl_c,
**vars(opt)
)
except (PromptParser.ParsingException, pyparsing.ParseException) as e:
print('** An error occurred while processing your prompt **')
print(f'** {str(e)} **')
elif operation == 'postprocess':
print(f'>> fixing {opt.prompt}')
opt.last_operation = do_postprocess(gen,opt,image_writer)
elif operation == 'mask':
print(f'>> generating masks from {opt.prompt}')
do_textmask(gen, opt, image_writer)
if opt.grid and len(grid_images) > 0:
grid_img = make_grid(list(grid_images.values()))
grid_seeds = list(grid_images.keys())
first_seed = last_results[0][1]
filename = f'{prefix}.{first_seed}.png'
formatted_dream_prompt = opt.dream_prompt_str(seed=first_seed,grid=True,iterations=len(grid_images))
formatted_dream_prompt += f' # {grid_seeds}'
metadata = metadata_dumps(
opt,
seeds = grid_seeds,
model_hash = gen.model_hash
)
path = file_writer.save_image_and_prompt_to_png(
image = grid_img,
dream_prompt = formatted_dream_prompt,
metadata = metadata,
name = filename
)
results = [[path, formatted_dream_prompt]]
except AssertionError as e:
print(e)
continue
except OSError as e:
print(e)
continue
print('Outputs:')
log_path = os.path.join(current_outdir, 'invoke_log')
output_cntr = write_log(results, log_path ,('txt', 'md'), output_cntr)
print()
print('goodbye!')
# TO DO: remove repetitive code and the awkward command.replace() trope
# Just do a simple parse of the command!
def do_command(command:str, gen, opt:Args, completer) -> tuple:
global infile
operation = 'generate' # default operation, alternative is 'postprocess'
if command.startswith('!dream'): # in case a stored prompt still contains the !dream command
command = command.replace('!dream ','',1)
elif command.startswith('!fix'):
command = command.replace('!fix ','',1)
operation = 'postprocess'
elif command.startswith('!mask'):
command = command.replace('!mask ','',1)
operation = 'mask'
elif command.startswith('!switch'):
model_name = command.replace('!switch ','',1)
gen.set_model(model_name)
completer.add_history(command)
operation = None
elif command.startswith('!models'):
gen.model_cache.print_models()
completer.add_history(command)
operation = None
elif command.startswith('!import'):
path = shlex.split(command)
if len(path) < 2:
print('** please provide a path to a .ckpt or .vae model file')
elif not os.path.exists(path[1]):
print(f'** {path[1]}: file not found')
else:
add_weights_to_config(path[1], gen, opt, completer)
completer.add_history(command)
operation = None
elif command.startswith('!edit'):
path = shlex.split(command)
if len(path) < 2:
print('** please provide the name of a model')
else:
edit_config(path[1], gen, opt, completer)
completer.add_history(command)
operation = None
elif command.startswith('!del'):
path = shlex.split(command)
if len(path) < 2:
print('** please provide the name of a model')
else:
del_config(path[1], gen, opt, completer)
completer.add_history(command)
operation = None
elif command.startswith('!fetch'):
file_path = command.replace('!fetch','',1).strip()
retrieve_dream_command(opt,file_path,completer)
completer.add_history(command)
operation = None
elif command.startswith('!replay'):
file_path = command.replace('!replay','',1).strip()
if infile is None and os.path.isfile(file_path):
infile = open(file_path, 'r', encoding='utf-8')
completer.add_history(command)
operation = None
elif command.startswith('!history'):
completer.show_history()
operation = None
elif command.startswith('!search'):
search_str = command.replace('!search','',1).strip()
completer.show_history(search_str)
operation = None
elif command.startswith('!clear'):
completer.clear_history()
operation = None
elif re.match('^!(\d+)',command):
command_no = re.match('^!(\d+)',command).groups()[0]
command = completer.get_line(int(command_no))
completer.set_line(command)
operation = None
else: # not a recognized command, so give the --help text
command = '-h'
return command, operation
def set_default_output_dir(opt:Args, completer:Completer):
'''
If opt.outdir is relative, we add the root directory to it
normalize the outdir relative to root and make sure it exists.
'''
if not os.path.isabs(opt.outdir):
opt.outdir=os.path.normpath(os.path.join(Globals.root,opt.outdir))
if not os.path.exists(opt.outdir):
os.makedirs(opt.outdir)
completer.set_default_dir(opt.outdir)
def add_weights_to_config(model_path:str, gen, opt, completer):
print(f'>> Model import in process. Please enter the values needed to configure this model:')
print()
new_config = {}
new_config['weights'] = model_path
done = False
while not done:
model_name = input('Short name for this model: ')
if not re.match('^[\w._-]+$',model_name):
print('** model name must contain only words, digits and the characters [._-] **')
else:
done = True
new_config['description'] = input('Description of this model: ')
completer.complete_extensions(('.yaml','.yml'))
completer.linebuffer = 'configs/stable-diffusion/v1-inference.yaml'
done = False
while not done:
new_config['config'] = input('Configuration file for this model: ')
done = os.path.exists(new_config['config'])
done = False
completer.complete_extensions(('.vae.pt','.vae','.ckpt'))
while not done:
vae = input('VAE autoencoder file for this model [None]: ')
if os.path.exists(vae):
new_config['vae'] = vae
done = True
else:
done = len(vae)==0
completer.complete_extensions(None)
for field in ('width','height'):
done = False
while not done:
try:
completer.linebuffer = '512'
value = int(input(f'Default image {field}: '))
assert value >= 64 and value <= 2048
new_config[field] = value
done = True
except:
print('** Please enter a valid integer between 64 and 2048')
make_default = input('Make this the default model? [n] ') in ('y','Y')
if write_config_file(opt.conf, gen, model_name, new_config, make_default=make_default):
completer.add_model(model_name)
def del_config(model_name:str, gen, opt, completer):
current_model = gen.model_name
if model_name == current_model:
print("** Can't delete active model. !switch to another model first. **")
return
if gen.model_cache.del_model(model_name):
gen.model_cache.commit(opt.conf)
print(f'** {model_name} deleted')
completer.del_model(model_name)
def edit_config(model_name:str, gen, opt, completer):
config = gen.model_cache.config
if model_name not in config:
print(f'** Unknown model {model_name}')
return
print(f'\n>> Editing model {model_name} from configuration file {opt.conf}')
conf = config[model_name]
new_config = {}
completer.complete_extensions(('.yaml','.yml','.ckpt','.vae.pt'))
for field in ('description', 'weights', 'vae', 'config', 'width','height'):
completer.linebuffer = str(conf[field]) if field in conf else ''
new_value = input(f'{field}: ')
new_config[field] = int(new_value) if field in ('width','height') else new_value
make_default = input('Make this the default model? [n] ') in ('y','Y')
completer.complete_extensions(None)
write_config_file(opt.conf, gen, model_name, new_config, clobber=True, make_default=make_default)
def write_config_file(conf_path, gen, model_name, new_config, clobber=False, make_default=False):
current_model = gen.model_name
op = 'modify' if clobber else 'import'
print('\n>> New configuration:')
if make_default:
new_config['default'] = True
print(yaml.dump({model_name:new_config}))
if input(f'OK to {op} [n]? ') not in ('y','Y'):
return False
try:
print('>> Verifying that new model loads...')
gen.model_cache.add_model(model_name, new_config, clobber)
assert gen.set_model(model_name) is not None, 'model failed to load'
except AssertionError as e:
print(f'** aborting **')
gen.model_cache.del_model(model_name)
return False
if make_default:
print('making this default')
gen.model_cache.set_default_model(model_name)
gen.model_cache.commit(conf_path)
do_switch = input(f'Keep model loaded? [y]')
if len(do_switch)==0 or do_switch[0] in ('y','Y'):
pass
else:
gen.set_model(current_model)
return True
def do_textmask(gen, opt, callback):
image_path = opt.prompt
if not os.path.exists(image_path):
image_path = os.path.join(opt.outdir,image_path)
assert os.path.exists(image_path), '** "{opt.prompt}" not found. Please enter the name of an existing image file to mask **'
assert opt.text_mask is not None and len(opt.text_mask) >= 1, '** Please provide a text mask with -tm **'
opt.input_file_path = image_path
tm = opt.text_mask[0]
threshold = float(opt.text_mask[1]) if len(opt.text_mask) > 1 else 0.5
gen.apply_textmask(
image_path = image_path,
prompt = tm,
threshold = threshold,
callback = callback,
)
def do_postprocess (gen, opt, callback):
file_path = opt.prompt # treat the prompt as the file pathname
if opt.new_prompt is not None:
opt.prompt = opt.new_prompt
else:
opt.prompt = None
if os.path.dirname(file_path) == '': #basename given
file_path = os.path.join(opt.outdir,file_path)
opt.input_file_path = file_path
tool=None
if opt.facetool_strength > 0:
tool = opt.facetool
elif opt.embiggen:
tool = 'embiggen'
elif opt.upscale:
tool = 'upscale'
elif opt.out_direction:
tool = 'outpaint'
elif opt.outcrop:
tool = 'outcrop'
opt.save_original = True # do not overwrite old image!
opt.last_operation = f'postprocess:{tool}'
try:
gen.apply_postprocessor(
image_path = file_path,
tool = tool,
facetool_strength = opt.facetool_strength,
codeformer_fidelity = opt.codeformer_fidelity,
save_original = opt.save_original,
upscale = opt.upscale,
out_direction = opt.out_direction,
outcrop = opt.outcrop,
callback = callback,
opt = opt,
)
except OSError:
print(traceback.format_exc(), file=sys.stderr)
print(f'** {file_path}: file could not be read')
return
except (KeyError, AttributeError):
print(traceback.format_exc(), file=sys.stderr)
return
return opt.last_operation
def add_postprocessing_to_metadata(opt,original_file,new_file,tool,command):
original_file = original_file if os.path.exists(original_file) else os.path.join(opt.outdir,original_file)
new_file = new_file if os.path.exists(new_file) else os.path.join(opt.outdir,new_file)
try:
meta = retrieve_metadata(original_file)['sd-metadata']
except AttributeError:
try:
meta = retrieve_metadata(new_file)['sd-metadata']
except AttributeError:
meta = {}
if 'image' not in meta:
meta = metadata_dumps(opt,seeds=[opt.seed])['image']
meta['image'] = {}
img_data = meta.get('image')
pp = img_data.get('postprocessing',[]) or []
pp.append(
{
'tool':tool,
'dream_command':command,
}
)
meta['image']['postprocessing'] = pp
write_metadata(new_file,meta)
def prepare_image_metadata(
opt,
prefix,
seed,
operation='generate',
prior_variations=[],
postprocessed=False,
first_seed=None
):
if postprocessed and opt.save_original:
filename = choose_postprocess_name(opt,prefix,seed)
else:
wildcards = dict(opt.__dict__)
wildcards['prefix'] = prefix
wildcards['seed'] = seed
try:
filename = opt.fnformat.format(**wildcards)
except KeyError as e:
print(f'** The filename format contains an unknown key \'{e.args[0]}\'. Will use \'{{prefix}}.{{seed}}.png\' instead')
filename = f'{prefix}.{seed}.png'
except IndexError as e:
print(f'** The filename format is broken or complete. Will use \'{{prefix}}.{{seed}}.png\' instead')
filename = f'{prefix}.{seed}.png'
if opt.variation_amount > 0:
first_seed = first_seed or seed
this_variation = [[seed, opt.variation_amount]]
opt.with_variations = prior_variations + this_variation
formatted_dream_prompt = opt.dream_prompt_str(seed=first_seed)
elif len(prior_variations) > 0:
formatted_dream_prompt = opt.dream_prompt_str(seed=first_seed)
elif operation == 'postprocess':
formatted_dream_prompt = '!fix '+opt.dream_prompt_str(seed=seed,prompt=opt.input_file_path)
else:
formatted_dream_prompt = opt.dream_prompt_str(seed=seed)
return filename,formatted_dream_prompt
def choose_postprocess_name(opt,prefix,seed) -> str:
match = re.search('postprocess:(\w+)',opt.last_operation)
if match:
modifier = match.group(1) # will look like "gfpgan", "upscale", "outpaint" or "embiggen"
else:
modifier = 'postprocessed'
counter = 0
filename = None
available = False
while not available:
if counter == 0:
filename = f'{prefix}.{seed}.{modifier}.png'
else:
filename = f'{prefix}.{seed}.{modifier}-{counter:02d}.png'
available = not os.path.exists(os.path.join(opt.outdir,filename))
counter += 1
return filename
def get_next_command(infile=None) -> str: # command string
if infile is None:
command = input('invoke> ')
else:
command = infile.readline()
if not command:
raise EOFError
else:
command = command.strip()
if len(command)>0:
print(f'#{command}')
return command
def invoke_ai_web_server_loop(gen, gfpgan, codeformer, esrgan):
print('\n* --web was specified, starting web server...')
from backend.invoke_ai_web_server import InvokeAIWebServer
# Change working directory to the stable-diffusion directory
os.chdir(
os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))
)
invoke_ai_web_server = InvokeAIWebServer(generate=gen, gfpgan=gfpgan, codeformer=codeformer, esrgan=esrgan)
try:
invoke_ai_web_server.run()
except KeyboardInterrupt:
pass
def split_variations(variations_string) -> list:
# shotgun parsing, woo
parts = []
broken = False # python doesn't have labeled loops...
for part in variations_string.split(','):
seed_and_weight = part.split(':')
if len(seed_and_weight) != 2:
print(f'** Could not parse with_variation part "{part}"')
broken = True
break
try:
seed = int(seed_and_weight[0])
weight = float(seed_and_weight[1])
except ValueError:
print(f'** Could not parse with_variation part "{part}"')
broken = True
break
parts.append([seed, weight])
if broken:
return None
elif len(parts) == 0:
return None
else:
return parts
def load_face_restoration(opt):
try:
gfpgan, codeformer, esrgan = None, None, None
if opt.restore or opt.esrgan:
from ldm.invoke.restoration import Restoration
restoration = Restoration()
if opt.restore:
gfpgan, codeformer = restoration.load_face_restore_models(opt.gfpgan_model_path)
else:
print('>> Face restoration disabled')
if opt.esrgan:
esrgan = restoration.load_esrgan(opt.esrgan_bg_tile)
else:
print('>> Upscaling disabled')
else:
print('>> Face restoration and upscaling disabled')
except (ModuleNotFoundError, ImportError):
print(traceback.format_exc(), file=sys.stderr)
print('>> You may need to install the ESRGAN and/or GFPGAN modules')
return gfpgan,codeformer,esrgan
def make_step_callback(gen, opt, prefix):
destination = os.path.join(opt.outdir,'intermediates',prefix)
os.makedirs(destination,exist_ok=True)
print(f'>> Intermediate images will be written into {destination}')
def callback(img, step):
if step % opt.save_intermediates == 0 or step == opt.steps-1:
filename = os.path.join(destination,f'{step:04}.png')
image = gen.sample_to_image(img)
image.save(filename,'PNG')
return callback
def retrieve_dream_command(opt,command,completer):
'''
Given a full or partial path to a previously-generated image file,
will retrieve and format the dream command used to generate the image,
and pop it into the readline buffer (linux, Mac), or print out a comment
for cut-and-paste (windows)
Given a wildcard path to a folder with image png files,
will retrieve and format the dream command used to generate the images,
and save them to a file commands.txt for further processing
'''
if len(command) == 0:
return
tokens = command.split()
dir,basename = os.path.split(tokens[0])
if len(dir) == 0:
path = os.path.join(opt.outdir,basename)
else:
path = tokens[0]
if len(tokens) > 1:
return write_commands(opt, path, tokens[1])
cmd = ''
try:
cmd = dream_cmd_from_png(path)
except OSError:
print(f'## {tokens[0]}: file could not be read')
except (KeyError, AttributeError, IndexError):
print(f'## {tokens[0]}: file has no metadata')
except:
print(f'## {tokens[0]}: file could not be processed')
if len(cmd)>0:
completer.set_line(cmd)
def write_commands(opt, file_path:str, outfilepath:str):
dir,basename = os.path.split(file_path)
try:
paths = sorted(list(Path(dir).glob(basename)))
except ValueError:
print(f'## "{basename}": unacceptable pattern')
return
commands = []
cmd = None
for path in paths:
try:
cmd = dream_cmd_from_png(path)
except (KeyError, AttributeError, IndexError):
print(f'## {path}: file has no metadata')
except:
print(f'## {path}: file could not be processed')
if cmd:
commands.append(f'# {path}')
commands.append(cmd)
if len(commands)>0:
dir,basename = os.path.split(outfilepath)
if len(dir)==0:
outfilepath = os.path.join(opt.outdir,basename)
with open(outfilepath, 'w', encoding='utf-8') as f:
f.write('\n'.join(commands))
print(f'>> File {outfilepath} with commands created')
def emergency_model_create(opt:Args):
completer = get_completer(opt)
completer.complete_extensions(('.yaml','.yml','.ckpt','.vae.pt'))
completer.set_default_dir('.')
valid_path = False
while not valid_path:
weights_file = input('Enter the path to a downloaded models file, or ^C to exit: ')
valid_path = os.path.exists(weights_file)
dir,basename = os.path.split(weights_file)
valid_name = False
while not valid_name:
name = input('Enter a short name for this model (no spaces): ')
name = 'unnamed model' if len(name)==0 else name
valid_name = ' ' not in name
description = input('Enter a description for this model: ')
description = 'no description' if len(description)==0 else description
with open(opt.conf, 'w', encoding='utf-8') as f:
f.write(f'{name}:\n')
f.write(f' description: {description}\n')
f.write(f' weights: {weights_file}\n')
f.write(f' config: ./configs/stable-diffusion/v1-inference.yaml\n')
f.write(f' width: 512\n')
f.write(f' height: 512\n')
f.write(f' default: true\n')
print(f'Config file {opt.conf} is created. This script will now exit.')
print(f'After restarting you may examine the entry with !models and edit it with !edit.')
######################################
if __name__ == '__main__':
main()

View File

@ -31,7 +31,7 @@ warnings.filterwarnings('ignore')
import torch
transformers.logging.set_verbosity_error()
#--------------------------globals--
#--------------------------globals-----------------------
Model_dir = 'models'
Weights_dir = 'ldm/stable-diffusion-v1/'
Default_config_file = './configs/models.yaml'
@ -603,9 +603,9 @@ def initialize_rootdir(root:str):
print(f'Creating a directory named {root} to contain InvokeAI models, configuration files and outputs.')
print(f'If you move this directory, please change its location using the --root option in "{Globals.initfile},')
print(f'or set the environment variable INVOKEAI_ROOT to the new location.\n')
for name in ('models','configs','outputs','scripts'):
for name in ('models','configs','outputs','scripts','frontend/dist'):
os.makedirs(os.path.join(root,name), exist_ok=True)
for src in ('configs','scripts'):
for src in ('configs','scripts','frontend/dist'):
dest = os.path.join(root,src)
if not os.path.samefile(src,dest):
shutil.copytree(src,dest,dirs_exist_ok=True)
@ -676,7 +676,8 @@ def main():
introduction()
# We check for this specific file, without which we are toast...
if not os.path.exists(os.path.join(Globals.root,'configs/stable-diffusion/v1-inference.yaml')):
if not os.path.exists(os.path.join(Globals.root,'configs/stable-diffusion/v1-inference.yaml')) \
or not os.path.exists(os.path.join(Globals.root,'frontend/dist')):
initialize_rootdir(Globals.root)
if opt.interactive:

View File

@ -1,22 +1,16 @@
from setuptools import setup, find_packages
from setuptools.command.develop import develop
from setuptools.command.install import install
import os
class PostDevelopCommand(develop):
"""Post-installation for development mode."""
def run(self):
develop.run(self)
print('Will now try loading a module (develop)')
import ldm.generate
print('ldm.generate loaded ok')
def frontend_files(directory):
paths = []
for (path, directories, filenames) in os.walk(directory):
for filename in filenames:
paths.append(os.path.join(path, filename))
return paths
frontend_files = frontend_files('frontend/dist')
print(f'DEBUG: {frontend_files}')
class PostInstallCommand(install):
"""Post-installation for installation mode."""
def run(self):
install.run(self)
print('Will now try loading a module (install)')
import ldm.generate
print('ldm.generate loaded ok')
setup(
name='invoke-ai',
@ -28,9 +22,7 @@ setup(
'numpy',
'tqdm',
],
cmdclass={
'develop': PostDevelopCommand,
'install': PostInstallCommand,
},
scripts = ['scripts/invoke.py','scripts/load_models.py','scripts/sd-metadata.py'],
data_files=[('frontend',frontend_files)],
)