Merge branch 'main' into unify-prompt

This commit is contained in:
blessedcoolant 2023-07-28 05:36:04 +12:00
commit 3bb81bedbd
155 changed files with 5536 additions and 6302 deletions

View File

@ -20,13 +20,13 @@ def calc_images_mean_L1(image1_path, image2_path):
def parse_args(): def parse_args():
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser.add_argument('image1_path') parser.add_argument("image1_path")
parser.add_argument('image2_path') parser.add_argument("image2_path")
args = parser.parse_args() args = parser.parse_args()
return args return args
if __name__ == '__main__': if __name__ == "__main__":
args = parse_args() args = parse_args()
mean_L1 = calc_images_mean_L1(args.image1_path, args.image2_path) mean_L1 = calc_images_mean_L1(args.image1_path, args.image2_path)
print(mean_L1) print(mean_L1)

View File

@ -1 +1,2 @@
b3dccfaeb636599c02effc377cdd8a87d658256c b3dccfaeb636599c02effc377cdd8a87d658256c
218b6d0546b990fc449c876fb99f44b50c4daa35

27
.github/workflows/style-checks.yml vendored Normal file
View File

@ -0,0 +1,27 @@
name: Black # TODO: add isort and flake8 later
on:
pull_request: {}
push:
branches: master
tags: "*"
jobs:
test:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Setup Python
uses: actions/setup-python@v4
with:
python-version: '3.10'
- name: Install dependencies with pip
run: |
pip install --upgrade pip wheel
pip install .[test]
# - run: isort --check-only .
- run: black --check .
# - run: flake8

1
.gitignore vendored
View File

@ -38,7 +38,6 @@ develop-eggs/
downloads/ downloads/
eggs/ eggs/
.eggs/ .eggs/
lib/
lib64/ lib64/
parts/ parts/
sdist/ sdist/

10
.pre-commit-config.yaml Normal file
View File

@ -0,0 +1,10 @@
# See https://pre-commit.com/ for usage and config
repos:
- repo: local
hooks:
- id: black
name: black
stages: [commit]
language: system
entry: black
types: [python]

View File

@ -141,15 +141,16 @@ class Installer:
# upgrade pip in Python 3.9 environments # upgrade pip in Python 3.9 environments
if int(platform.python_version_tuple()[1]) == 9: if int(platform.python_version_tuple()[1]) == 9:
from plumbum import FG, local from plumbum import FG, local
pip = local[get_pip_from_venv(venv_dir)] pip = local[get_pip_from_venv(venv_dir)]
pip[ "install", "--upgrade", "pip"] & FG pip["install", "--upgrade", "pip"] & FG
return venv_dir return venv_dir
def install(self, root: str = "~/invokeai-3", version: str = "latest", yes_to_all=False, find_links: Path = None) -> None: def install(
self, root: str = "~/invokeai-3", version: str = "latest", yes_to_all=False, find_links: Path = None
) -> None:
""" """
Install the InvokeAI application into the given runtime path Install the InvokeAI application into the given runtime path
@ -175,7 +176,7 @@ class Installer:
self.instance = InvokeAiInstance(runtime=self.dest, venv=self.venv, version=version) self.instance = InvokeAiInstance(runtime=self.dest, venv=self.venv, version=version)
# install dependencies and the InvokeAI application # install dependencies and the InvokeAI application
(extra_index_url,optional_modules) = get_torch_source() if not yes_to_all else (None,None) (extra_index_url, optional_modules) = get_torch_source() if not yes_to_all else (None, None)
self.instance.install( self.instance.install(
extra_index_url, extra_index_url,
optional_modules, optional_modules,
@ -188,6 +189,7 @@ class Installer:
# run through the configuration flow # run through the configuration flow
self.instance.configure() self.instance.configure()
class InvokeAiInstance: class InvokeAiInstance:
""" """
Manages an installed instance of InvokeAI, comprising a virtual environment and a runtime directory. Manages an installed instance of InvokeAI, comprising a virtual environment and a runtime directory.
@ -196,7 +198,6 @@ class InvokeAiInstance:
""" """
def __init__(self, runtime: Path, venv: Path, version: str) -> None: def __init__(self, runtime: Path, venv: Path, version: str) -> None:
self.runtime = runtime self.runtime = runtime
self.venv = venv self.venv = venv
self.pip = get_pip_from_venv(venv) self.pip = get_pip_from_venv(venv)
@ -312,7 +313,7 @@ class InvokeAiInstance:
"install", "install",
"--require-virtualenv", "--require-virtualenv",
"--use-pep517", "--use-pep517",
str(src)+(optional_modules if optional_modules else ''), str(src) + (optional_modules if optional_modules else ""),
"--find-links" if find_links is not None else None, "--find-links" if find_links is not None else None,
find_links, find_links,
"--extra-index-url" if extra_index_url is not None else None, "--extra-index-url" if extra_index_url is not None else None,
@ -329,15 +330,15 @@ class InvokeAiInstance:
# set sys.argv to a consistent state # set sys.argv to a consistent state
new_argv = [sys.argv[0]] new_argv = [sys.argv[0]]
for i in range(1,len(sys.argv)): for i in range(1, len(sys.argv)):
el = sys.argv[i] el = sys.argv[i]
if el in ['-r','--root']: if el in ["-r", "--root"]:
new_argv.append(el) new_argv.append(el)
new_argv.append(sys.argv[i+1]) new_argv.append(sys.argv[i + 1])
elif el in ['-y','--yes','--yes-to-all']: elif el in ["-y", "--yes", "--yes-to-all"]:
new_argv.append(el) new_argv.append(el)
sys.argv = new_argv sys.argv = new_argv
import requests # to catch download exceptions import requests # to catch download exceptions
from messages import introduction from messages import introduction
@ -353,16 +354,16 @@ class InvokeAiInstance:
invokeai_configure() invokeai_configure()
succeeded = True succeeded = True
except requests.exceptions.ConnectionError as e: except requests.exceptions.ConnectionError as e:
print(f'\nA network error was encountered during configuration and download: {str(e)}') print(f"\nA network error was encountered during configuration and download: {str(e)}")
except OSError as e: except OSError as e:
print(f'\nAn OS error was encountered during configuration and download: {str(e)}') print(f"\nAn OS error was encountered during configuration and download: {str(e)}")
except Exception as e: except Exception as e:
print(f'\nA problem was encountered during the configuration and download steps: {str(e)}') print(f"\nA problem was encountered during the configuration and download steps: {str(e)}")
finally: finally:
if not succeeded: if not succeeded:
print('To try again, find the "invokeai" directory, run the script "invoke.sh" or "invoke.bat"') print('To try again, find the "invokeai" directory, run the script "invoke.sh" or "invoke.bat"')
print('and choose option 7 to fix a broken install, optionally followed by option 5 to install models.') print("and choose option 7 to fix a broken install, optionally followed by option 5 to install models.")
print('Alternatively you can relaunch the installer.') print("Alternatively you can relaunch the installer.")
def install_user_scripts(self): def install_user_scripts(self):
""" """
@ -371,11 +372,11 @@ class InvokeAiInstance:
ext = "bat" if OS == "Windows" else "sh" ext = "bat" if OS == "Windows" else "sh"
#scripts = ['invoke', 'update'] # scripts = ['invoke', 'update']
scripts = ['invoke'] scripts = ["invoke"]
for script in scripts: for script in scripts:
src = Path(__file__).parent / '..' / "templates" / f"{script}.{ext}.in" src = Path(__file__).parent / ".." / "templates" / f"{script}.{ext}.in"
dest = self.runtime / f"{script}.{ext}" dest = self.runtime / f"{script}.{ext}"
shutil.copy(src, dest) shutil.copy(src, dest)
os.chmod(dest, 0o0755) os.chmod(dest, 0o0755)
@ -420,11 +421,7 @@ def set_sys_path(venv_path: Path) -> None:
# filter out any paths in sys.path that may be system- or user-wide # filter out any paths in sys.path that may be system- or user-wide
# but leave the temporary bootstrap virtualenv as it contains packages we # but leave the temporary bootstrap virtualenv as it contains packages we
# temporarily need at install time # temporarily need at install time
sys.path = list(filter( sys.path = list(filter(lambda p: not p.endswith("-packages") or p.find(BOOTSTRAP_VENV_PREFIX) != -1, sys.path))
lambda p: not p.endswith("-packages")
or p.find(BOOTSTRAP_VENV_PREFIX) != -1,
sys.path
))
# determine site-packages/lib directory location for the venv # determine site-packages/lib directory location for the venv
lib = "Lib" if OS == "Windows" else f"lib/python{sys.version_info.major}.{sys.version_info.minor}" lib = "Lib" if OS == "Windows" else f"lib/python{sys.version_info.major}.{sys.version_info.minor}"
@ -433,7 +430,7 @@ def set_sys_path(venv_path: Path) -> None:
sys.path.append(str(Path(venv_path, lib, "site-packages").expanduser().resolve())) sys.path.append(str(Path(venv_path, lib, "site-packages").expanduser().resolve()))
def get_torch_source() -> (Union[str, None],str): def get_torch_source() -> (Union[str, None], str):
""" """
Determine the extra index URL for pip to use for torch installation. Determine the extra index URL for pip to use for torch installation.
This depends on the OS and the graphics accelerator in use. This depends on the OS and the graphics accelerator in use.
@ -461,9 +458,9 @@ def get_torch_source() -> (Union[str, None],str):
elif device == "cpu": elif device == "cpu":
url = "https://download.pytorch.org/whl/cpu" url = "https://download.pytorch.org/whl/cpu"
if device == 'cuda': if device == "cuda":
url = 'https://download.pytorch.org/whl/cu117' url = "https://download.pytorch.org/whl/cu117"
optional_modules = '[xformers]' optional_modules = "[xformers]"
# in all other cases, Torch wheels should be coming from PyPi as of Torch 1.13 # in all other cases, Torch wheels should be coming from PyPi as of Torch 1.13

View File

@ -41,7 +41,7 @@ if __name__ == "__main__":
type=Path, type=Path,
default=None, default=None,
) )
args = parser.parse_args() args = parser.parse_args()
inst = Installer() inst = Installer()

View File

@ -36,13 +36,15 @@ else:
def welcome(): def welcome():
@group() @group()
def text(): def text():
if (platform_specific := _platform_specific_help()) != "": if (platform_specific := _platform_specific_help()) != "":
yield platform_specific yield platform_specific
yield "" yield ""
yield Text.from_markup("Some of the installation steps take a long time to run. Please be patient. If the script appears to hang for more than 10 minutes, please interrupt with [i]Control-C[/] and retry.", justify="center") yield Text.from_markup(
"Some of the installation steps take a long time to run. Please be patient. If the script appears to hang for more than 10 minutes, please interrupt with [i]Control-C[/] and retry.",
justify="center",
)
console.rule() console.rule()
print( print(
@ -58,6 +60,7 @@ def welcome():
) )
console.line() console.line()
def confirm_install(dest: Path) -> bool: def confirm_install(dest: Path) -> bool:
if dest.exists(): if dest.exists():
print(f":exclamation: Directory {dest} already exists :exclamation:") print(f":exclamation: Directory {dest} already exists :exclamation:")
@ -92,7 +95,6 @@ def dest_path(dest=None) -> Path:
dest_confirmed = confirm_install(dest) dest_confirmed = confirm_install(dest)
while not dest_confirmed: while not dest_confirmed:
# if the given destination already exists, the starting point for browsing is its parent directory. # if the given destination already exists, the starting point for browsing is its parent directory.
# the user may have made a typo, or otherwise wants to place the root dir next to an existing one. # the user may have made a typo, or otherwise wants to place the root dir next to an existing one.
# if the destination dir does NOT exist, then the user must have changed their mind about the selection. # if the destination dir does NOT exist, then the user must have changed their mind about the selection.
@ -300,15 +302,20 @@ def introduction() -> None:
) )
console.line(2) console.line(2)
def _platform_specific_help()->str:
def _platform_specific_help() -> str:
if OS == "Darwin": if OS == "Darwin":
text = Text.from_markup("""[b wheat1]macOS Users![/]\n\nPlease be sure you have the [b wheat1]Xcode command-line tools[/] installed before continuing.\nIf not, cancel with [i]Control-C[/] and follow the Xcode install instructions at [deep_sky_blue1]https://www.freecodecamp.org/news/install-xcode-command-line-tools/[/].""") text = Text.from_markup(
"""[b wheat1]macOS Users![/]\n\nPlease be sure you have the [b wheat1]Xcode command-line tools[/] installed before continuing.\nIf not, cancel with [i]Control-C[/] and follow the Xcode install instructions at [deep_sky_blue1]https://www.freecodecamp.org/news/install-xcode-command-line-tools/[/]."""
)
elif OS == "Windows": elif OS == "Windows":
text = Text.from_markup("""[b wheat1]Windows Users![/]\n\nBefore you start, please do the following: text = Text.from_markup(
"""[b wheat1]Windows Users![/]\n\nBefore you start, please do the following:
1. Double-click on the file [b wheat1]WinLongPathsEnabled.reg[/] in order to 1. Double-click on the file [b wheat1]WinLongPathsEnabled.reg[/] in order to
enable long path support on your system. enable long path support on your system.
2. Make sure you have the [b wheat1]Visual C++ core libraries[/] installed. If not, install from 2. Make sure you have the [b wheat1]Visual C++ core libraries[/] installed. If not, install from
[deep_sky_blue1]https://learn.microsoft.com/en-US/cpp/windows/latest-supported-vc-redist?view=msvc-170[/]""") [deep_sky_blue1]https://learn.microsoft.com/en-US/cpp/windows/latest-supported-vc-redist?view=msvc-170[/]"""
)
else: else:
text = "" text = ""
return text return text

View File

@ -78,9 +78,7 @@ class ApiDependencies:
image_record_storage = SqliteImageRecordStorage(db_location) image_record_storage = SqliteImageRecordStorage(db_location)
image_file_storage = DiskImageFileStorage(f"{output_folder}/images") image_file_storage = DiskImageFileStorage(f"{output_folder}/images")
names = SimpleNameService() names = SimpleNameService()
latents = ForwardCacheLatentsStorage( latents = ForwardCacheLatentsStorage(DiskLatentsStorage(f"{output_folder}/latents"))
DiskLatentsStorage(f"{output_folder}/latents")
)
board_record_storage = SqliteBoardRecordStorage(db_location) board_record_storage = SqliteBoardRecordStorage(db_location)
board_image_record_storage = SqliteBoardImageRecordStorage(db_location) board_image_record_storage = SqliteBoardImageRecordStorage(db_location)
@ -125,9 +123,7 @@ class ApiDependencies:
boards=boards, boards=boards,
board_images=board_images, board_images=board_images,
queue=MemoryInvocationQueue(), queue=MemoryInvocationQueue(),
graph_library=SqliteItemStorage[LibraryGraph]( graph_library=SqliteItemStorage[LibraryGraph](filename=db_location, table_name="graphs"),
filename=db_location, table_name="graphs"
),
graph_execution_manager=graph_execution_manager, graph_execution_manager=graph_execution_manager,
processor=DefaultInvocationProcessor(), processor=DefaultInvocationProcessor(),
configuration=config, configuration=config,

View File

@ -15,6 +15,7 @@ from invokeai.version import __version__
from ..dependencies import ApiDependencies from ..dependencies import ApiDependencies
from invokeai.backend.util.logging import logging from invokeai.backend.util.logging import logging
class LogLevel(int, Enum): class LogLevel(int, Enum):
NotSet = logging.NOTSET NotSet = logging.NOTSET
Debug = logging.DEBUG Debug = logging.DEBUG
@ -23,10 +24,12 @@ class LogLevel(int, Enum):
Error = logging.ERROR Error = logging.ERROR
Critical = logging.CRITICAL Critical = logging.CRITICAL
class Upscaler(BaseModel): class Upscaler(BaseModel):
upscaling_method: str = Field(description="Name of upscaling method") upscaling_method: str = Field(description="Name of upscaling method")
upscaling_models: list[str] = Field(description="List of upscaling models for this method") upscaling_models: list[str] = Field(description="List of upscaling models for this method")
app_router = APIRouter(prefix="/v1/app", tags=["app"]) app_router = APIRouter(prefix="/v1/app", tags=["app"])
@ -45,38 +48,30 @@ class AppConfig(BaseModel):
watermarking_methods: list[str] = Field(description="List of invisible watermark methods") watermarking_methods: list[str] = Field(description="List of invisible watermark methods")
@app_router.get( @app_router.get("/version", operation_id="app_version", status_code=200, response_model=AppVersion)
"/version", operation_id="app_version", status_code=200, response_model=AppVersion
)
async def get_version() -> AppVersion: async def get_version() -> AppVersion:
return AppVersion(version=__version__) return AppVersion(version=__version__)
@app_router.get( @app_router.get("/config", operation_id="get_config", status_code=200, response_model=AppConfig)
"/config", operation_id="get_config", status_code=200, response_model=AppConfig
)
async def get_config() -> AppConfig: async def get_config() -> AppConfig:
infill_methods = ['tile'] infill_methods = ["tile"]
if PatchMatch.patchmatch_available(): if PatchMatch.patchmatch_available():
infill_methods.append('patchmatch') infill_methods.append("patchmatch")
upscaling_models = [] upscaling_models = []
for model in typing.get_args(ESRGAN_MODELS): for model in typing.get_args(ESRGAN_MODELS):
upscaling_models.append(str(Path(model).stem)) upscaling_models.append(str(Path(model).stem))
upscaler = Upscaler( upscaler = Upscaler(upscaling_method="esrgan", upscaling_models=upscaling_models)
upscaling_method = 'esrgan',
upscaling_models = upscaling_models
)
nsfw_methods = [] nsfw_methods = []
if SafetyChecker.safety_checker_available(): if SafetyChecker.safety_checker_available():
nsfw_methods.append('nsfw_checker') nsfw_methods.append("nsfw_checker")
watermarking_methods = [] watermarking_methods = []
if InvisibleWatermark.invisible_watermark_available(): if InvisibleWatermark.invisible_watermark_available():
watermarking_methods.append('invisible_watermark') watermarking_methods.append("invisible_watermark")
return AppConfig( return AppConfig(
infill_methods=infill_methods, infill_methods=infill_methods,
upscaling_methods=[upscaler], upscaling_methods=[upscaler],
@ -84,25 +79,26 @@ async def get_config() -> AppConfig:
watermarking_methods=watermarking_methods, watermarking_methods=watermarking_methods,
) )
@app_router.get( @app_router.get(
"/logging", "/logging",
operation_id="get_log_level", operation_id="get_log_level",
responses={200: {"description" : "The operation was successful"}}, responses={200: {"description": "The operation was successful"}},
response_model = LogLevel, response_model=LogLevel,
) )
async def get_log_level( async def get_log_level() -> LogLevel:
) -> LogLevel:
"""Returns the log level""" """Returns the log level"""
return LogLevel(ApiDependencies.invoker.services.logger.level) return LogLevel(ApiDependencies.invoker.services.logger.level)
@app_router.post( @app_router.post(
"/logging", "/logging",
operation_id="set_log_level", operation_id="set_log_level",
responses={200: {"description" : "The operation was successful"}}, responses={200: {"description": "The operation was successful"}},
response_model = LogLevel, response_model=LogLevel,
) )
async def set_log_level( async def set_log_level(
level: LogLevel = Body(description="New log verbosity level"), level: LogLevel = Body(description="New log verbosity level"),
) -> LogLevel: ) -> LogLevel:
"""Sets the log verbosity level""" """Sets the log verbosity level"""
ApiDependencies.invoker.services.logger.setLevel(level) ApiDependencies.invoker.services.logger.setLevel(level)

View File

@ -52,4 +52,3 @@ async def remove_board_image(
return result return result
except Exception as e: except Exception as e:
raise HTTPException(status_code=500, detail="Failed to update board") raise HTTPException(status_code=500, detail="Failed to update board")

View File

@ -18,9 +18,7 @@ class DeleteBoardResult(BaseModel):
deleted_board_images: list[str] = Field( deleted_board_images: list[str] = Field(
description="The image names of the board-images relationships that were deleted." description="The image names of the board-images relationships that were deleted."
) )
deleted_images: list[str] = Field( deleted_images: list[str] = Field(description="The names of the images that were deleted.")
description="The names of the images that were deleted."
)
@boards_router.post( @boards_router.post(
@ -73,22 +71,16 @@ async def update_board(
) -> BoardDTO: ) -> BoardDTO:
"""Updates a board""" """Updates a board"""
try: try:
result = ApiDependencies.invoker.services.boards.update( result = ApiDependencies.invoker.services.boards.update(board_id=board_id, changes=changes)
board_id=board_id, changes=changes
)
return result return result
except Exception as e: except Exception as e:
raise HTTPException(status_code=500, detail="Failed to update board") raise HTTPException(status_code=500, detail="Failed to update board")
@boards_router.delete( @boards_router.delete("/{board_id}", operation_id="delete_board", response_model=DeleteBoardResult)
"/{board_id}", operation_id="delete_board", response_model=DeleteBoardResult
)
async def delete_board( async def delete_board(
board_id: str = Path(description="The id of board to delete"), board_id: str = Path(description="The id of board to delete"),
include_images: Optional[bool] = Query( include_images: Optional[bool] = Query(description="Permanently delete all images on the board", default=False),
description="Permanently delete all images on the board", default=False
),
) -> DeleteBoardResult: ) -> DeleteBoardResult:
"""Deletes a board""" """Deletes a board"""
try: try:
@ -96,9 +88,7 @@ async def delete_board(
deleted_images = ApiDependencies.invoker.services.board_images.get_all_board_image_names_for_board( deleted_images = ApiDependencies.invoker.services.board_images.get_all_board_image_names_for_board(
board_id=board_id board_id=board_id
) )
ApiDependencies.invoker.services.images.delete_images_on_board( ApiDependencies.invoker.services.images.delete_images_on_board(board_id=board_id)
board_id=board_id
)
ApiDependencies.invoker.services.boards.delete(board_id=board_id) ApiDependencies.invoker.services.boards.delete(board_id=board_id)
return DeleteBoardResult( return DeleteBoardResult(
board_id=board_id, board_id=board_id,
@ -127,9 +117,7 @@ async def delete_board(
async def list_boards( async def list_boards(
all: Optional[bool] = Query(default=None, description="Whether to list all boards"), all: Optional[bool] = Query(default=None, description="Whether to list all boards"),
offset: Optional[int] = Query(default=None, description="The page offset"), offset: Optional[int] = Query(default=None, description="The page offset"),
limit: Optional[int] = Query( limit: Optional[int] = Query(default=None, description="The number of boards per page"),
default=None, description="The number of boards per page"
),
) -> Union[OffsetPaginatedResults[BoardDTO], list[BoardDTO]]: ) -> Union[OffsetPaginatedResults[BoardDTO], list[BoardDTO]]:
"""Gets a list of boards""" """Gets a list of boards"""
if all: if all:

View File

@ -40,15 +40,9 @@ async def upload_image(
response: Response, response: Response,
image_category: ImageCategory = Query(description="The category of the image"), image_category: ImageCategory = Query(description="The category of the image"),
is_intermediate: bool = Query(description="Whether this is an intermediate image"), is_intermediate: bool = Query(description="Whether this is an intermediate image"),
board_id: Optional[str] = Query( board_id: Optional[str] = Query(default=None, description="The board to add this image to, if any"),
default=None, description="The board to add this image to, if any" session_id: Optional[str] = Query(default=None, description="The session ID associated with this upload, if any"),
), crop_visible: Optional[bool] = Query(default=False, description="Whether to crop the image"),
session_id: Optional[str] = Query(
default=None, description="The session ID associated with this upload, if any"
),
crop_visible: Optional[bool] = Query(
default=False, description="Whether to crop the image"
),
) -> ImageDTO: ) -> ImageDTO:
"""Uploads an image""" """Uploads an image"""
if not file.content_type.startswith("image"): if not file.content_type.startswith("image"):
@ -115,9 +109,7 @@ async def clear_intermediates() -> int:
) )
async def update_image( async def update_image(
image_name: str = Path(description="The name of the image to update"), image_name: str = Path(description="The name of the image to update"),
image_changes: ImageRecordChanges = Body( image_changes: ImageRecordChanges = Body(description="The changes to apply to the image"),
description="The changes to apply to the image"
),
) -> ImageDTO: ) -> ImageDTO:
"""Updates an image""" """Updates an image"""
@ -212,15 +204,11 @@ async def get_image_thumbnail(
"""Gets a thumbnail image file""" """Gets a thumbnail image file"""
try: try:
path = ApiDependencies.invoker.services.images.get_path( path = ApiDependencies.invoker.services.images.get_path(image_name, thumbnail=True)
image_name, thumbnail=True
)
if not ApiDependencies.invoker.services.images.validate_path(path): if not ApiDependencies.invoker.services.images.validate_path(path):
raise HTTPException(status_code=404) raise HTTPException(status_code=404)
response = FileResponse( response = FileResponse(path, media_type="image/webp", content_disposition_type="inline")
path, media_type="image/webp", content_disposition_type="inline"
)
response.headers["Cache-Control"] = f"max-age={IMAGE_MAX_AGE}" response.headers["Cache-Control"] = f"max-age={IMAGE_MAX_AGE}"
return response return response
except Exception as e: except Exception as e:
@ -239,9 +227,7 @@ async def get_image_urls(
try: try:
image_url = ApiDependencies.invoker.services.images.get_url(image_name) image_url = ApiDependencies.invoker.services.images.get_url(image_name)
thumbnail_url = ApiDependencies.invoker.services.images.get_url( thumbnail_url = ApiDependencies.invoker.services.images.get_url(image_name, thumbnail=True)
image_name, thumbnail=True
)
return ImageUrlsDTO( return ImageUrlsDTO(
image_name=image_name, image_name=image_name,
image_url=image_url, image_url=image_url,
@ -257,15 +243,9 @@ async def get_image_urls(
response_model=OffsetPaginatedResults[ImageDTO], response_model=OffsetPaginatedResults[ImageDTO],
) )
async def list_image_dtos( async def list_image_dtos(
image_origin: Optional[ResourceOrigin] = Query( image_origin: Optional[ResourceOrigin] = Query(default=None, description="The origin of images to list."),
default=None, description="The origin of images to list." categories: Optional[list[ImageCategory]] = Query(default=None, description="The categories of image to include."),
), is_intermediate: Optional[bool] = Query(default=None, description="Whether to list intermediate images."),
categories: Optional[list[ImageCategory]] = Query(
default=None, description="The categories of image to include."
),
is_intermediate: Optional[bool] = Query(
default=None, description="Whether to list intermediate images."
),
board_id: Optional[str] = Query( board_id: Optional[str] = Query(
default=None, default=None,
description="The board id to filter by. Use 'none' to find images without a board.", description="The board id to filter by. Use 'none' to find images without a board.",

View File

@ -28,49 +28,52 @@ ConvertModelResponse = Union[tuple(OPENAPI_MODEL_CONFIGS)]
MergeModelResponse = Union[tuple(OPENAPI_MODEL_CONFIGS)] MergeModelResponse = Union[tuple(OPENAPI_MODEL_CONFIGS)]
ImportModelAttributes = Union[tuple(OPENAPI_MODEL_CONFIGS)] ImportModelAttributes = Union[tuple(OPENAPI_MODEL_CONFIGS)]
class ModelsList(BaseModel): class ModelsList(BaseModel):
models: list[Union[tuple(OPENAPI_MODEL_CONFIGS)]] models: list[Union[tuple(OPENAPI_MODEL_CONFIGS)]]
@models_router.get( @models_router.get(
"/", "/",
operation_id="list_models", operation_id="list_models",
responses={200: {"model": ModelsList }}, responses={200: {"model": ModelsList}},
) )
async def list_models( async def list_models(
base_models: Optional[List[BaseModelType]] = Query(default=None, description="Base models to include"), base_models: Optional[List[BaseModelType]] = Query(default=None, description="Base models to include"),
model_type: Optional[ModelType] = Query(default=None, description="The type of model to get"), model_type: Optional[ModelType] = Query(default=None, description="The type of model to get"),
) -> ModelsList: ) -> ModelsList:
"""Gets a list of models""" """Gets a list of models"""
if base_models and len(base_models)>0: if base_models and len(base_models) > 0:
models_raw = list() models_raw = list()
for base_model in base_models: for base_model in base_models:
models_raw.extend(ApiDependencies.invoker.services.model_manager.list_models(base_model, model_type)) models_raw.extend(ApiDependencies.invoker.services.model_manager.list_models(base_model, model_type))
else: else:
models_raw = ApiDependencies.invoker.services.model_manager.list_models(None, model_type) models_raw = ApiDependencies.invoker.services.model_manager.list_models(None, model_type)
models = parse_obj_as(ModelsList, { "models": models_raw }) models = parse_obj_as(ModelsList, {"models": models_raw})
return models return models
@models_router.patch( @models_router.patch(
"/{base_model}/{model_type}/{model_name}", "/{base_model}/{model_type}/{model_name}",
operation_id="update_model", operation_id="update_model",
responses={200: {"description" : "The model was updated successfully"}, responses={
400: {"description" : "Bad request"}, 200: {"description": "The model was updated successfully"},
404: {"description" : "The model could not be found"}, 400: {"description": "Bad request"},
409: {"description" : "There is already a model corresponding to the new name"}, 404: {"description": "The model could not be found"},
}, 409: {"description": "There is already a model corresponding to the new name"},
status_code = 200, },
response_model = UpdateModelResponse, status_code=200,
response_model=UpdateModelResponse,
) )
async def update_model( async def update_model(
base_model: BaseModelType = Path(description="Base model"), base_model: BaseModelType = Path(description="Base model"),
model_type: ModelType = Path(description="The type of model"), model_type: ModelType = Path(description="The type of model"),
model_name: str = Path(description="model name"), model_name: str = Path(description="model name"),
info: Union[tuple(OPENAPI_MODEL_CONFIGS)] = Body(description="Model configuration"), info: Union[tuple(OPENAPI_MODEL_CONFIGS)] = Body(description="Model configuration"),
) -> UpdateModelResponse: ) -> UpdateModelResponse:
""" Update model contents with a new config. If the model name or base fields are changed, then the model is renamed. """ """Update model contents with a new config. If the model name or base fields are changed, then the model is renamed."""
logger = ApiDependencies.invoker.services.logger logger = ApiDependencies.invoker.services.logger
try: try:
previous_info = ApiDependencies.invoker.services.model_manager.list_model( previous_info = ApiDependencies.invoker.services.model_manager.list_model(
model_name=model_name, model_name=model_name,
@ -81,13 +84,13 @@ async def update_model(
# rename operation requested # rename operation requested
if info.model_name != model_name or info.base_model != base_model: if info.model_name != model_name or info.base_model != base_model:
ApiDependencies.invoker.services.model_manager.rename_model( ApiDependencies.invoker.services.model_manager.rename_model(
base_model = base_model, base_model=base_model,
model_type = model_type, model_type=model_type,
model_name = model_name, model_name=model_name,
new_name = info.model_name, new_name=info.model_name,
new_base = info.base_model, new_base=info.base_model,
) )
logger.info(f'Successfully renamed {base_model}/{model_name}=>{info.base_model}/{info.model_name}') logger.info(f"Successfully renamed {base_model}/{model_name}=>{info.base_model}/{info.model_name}")
# update information to support an update of attributes # update information to support an update of attributes
model_name = info.model_name model_name = info.model_name
base_model = info.base_model base_model = info.base_model
@ -96,16 +99,15 @@ async def update_model(
base_model=base_model, base_model=base_model,
model_type=model_type, model_type=model_type,
) )
if new_info.get('path') != previous_info.get('path'): # model manager moved model path during rename - don't overwrite it if new_info.get("path") != previous_info.get(
info.path = new_info.get('path') "path"
): # model manager moved model path during rename - don't overwrite it
info.path = new_info.get("path")
ApiDependencies.invoker.services.model_manager.update_model( ApiDependencies.invoker.services.model_manager.update_model(
model_name=model_name, model_name=model_name, base_model=base_model, model_type=model_type, model_attributes=info.dict()
base_model=base_model,
model_type=model_type,
model_attributes=info.dict()
) )
model_raw = ApiDependencies.invoker.services.model_manager.list_model( model_raw = ApiDependencies.invoker.services.model_manager.list_model(
model_name=model_name, model_name=model_name,
base_model=base_model, base_model=base_model,
@ -123,49 +125,48 @@ async def update_model(
return model_response return model_response
@models_router.post( @models_router.post(
"/import", "/import",
operation_id="import_model", operation_id="import_model",
responses= { responses={
201: {"description" : "The model imported successfully"}, 201: {"description": "The model imported successfully"},
404: {"description" : "The model could not be found"}, 404: {"description": "The model could not be found"},
415: {"description" : "Unrecognized file/folder format"}, 415: {"description": "Unrecognized file/folder format"},
424: {"description" : "The model appeared to import successfully, but could not be found in the model manager"}, 424: {"description": "The model appeared to import successfully, but could not be found in the model manager"},
409: {"description" : "There is already a model corresponding to this path or repo_id"}, 409: {"description": "There is already a model corresponding to this path or repo_id"},
}, },
status_code=201, status_code=201,
response_model=ImportModelResponse response_model=ImportModelResponse,
) )
async def import_model( async def import_model(
location: str = Body(description="A model path, repo_id or URL to import"), location: str = Body(description="A model path, repo_id or URL to import"),
prediction_type: Optional[Literal['v_prediction','epsilon','sample']] = \ prediction_type: Optional[Literal["v_prediction", "epsilon", "sample"]] = Body(
Body(description='Prediction type for SDv2 checkpoint files', default="v_prediction"), description="Prediction type for SDv2 checkpoint files", default="v_prediction"
),
) -> ImportModelResponse: ) -> ImportModelResponse:
""" Add a model using its local path, repo_id, or remote URL. Model characteristics will be probed and configured automatically """ """Add a model using its local path, repo_id, or remote URL. Model characteristics will be probed and configured automatically"""
items_to_import = {location} items_to_import = {location}
prediction_types = { x.value: x for x in SchedulerPredictionType } prediction_types = {x.value: x for x in SchedulerPredictionType}
logger = ApiDependencies.invoker.services.logger logger = ApiDependencies.invoker.services.logger
try: try:
installed_models = ApiDependencies.invoker.services.model_manager.heuristic_import( installed_models = ApiDependencies.invoker.services.model_manager.heuristic_import(
items_to_import = items_to_import, items_to_import=items_to_import, prediction_type_helper=lambda x: prediction_types.get(prediction_type)
prediction_type_helper = lambda x: prediction_types.get(prediction_type)
) )
info = installed_models.get(location) info = installed_models.get(location)
if not info: if not info:
logger.error("Import failed") logger.error("Import failed")
raise HTTPException(status_code=415) raise HTTPException(status_code=415)
logger.info(f'Successfully imported {location}, got {info}') logger.info(f"Successfully imported {location}, got {info}")
model_raw = ApiDependencies.invoker.services.model_manager.list_model( model_raw = ApiDependencies.invoker.services.model_manager.list_model(
model_name=info.name, model_name=info.name, base_model=info.base_model, model_type=info.model_type
base_model=info.base_model,
model_type=info.model_type
) )
return parse_obj_as(ImportModelResponse, model_raw) return parse_obj_as(ImportModelResponse, model_raw)
except ModelNotFoundException as e: except ModelNotFoundException as e:
logger.error(str(e)) logger.error(str(e))
raise HTTPException(status_code=404, detail=str(e)) raise HTTPException(status_code=404, detail=str(e))
@ -175,38 +176,34 @@ async def import_model(
except ValueError as e: except ValueError as e:
logger.error(str(e)) logger.error(str(e))
raise HTTPException(status_code=409, detail=str(e)) raise HTTPException(status_code=409, detail=str(e))
@models_router.post( @models_router.post(
"/add", "/add",
operation_id="add_model", operation_id="add_model",
responses= { responses={
201: {"description" : "The model added successfully"}, 201: {"description": "The model added successfully"},
404: {"description" : "The model could not be found"}, 404: {"description": "The model could not be found"},
424: {"description" : "The model appeared to add successfully, but could not be found in the model manager"}, 424: {"description": "The model appeared to add successfully, but could not be found in the model manager"},
409: {"description" : "There is already a model corresponding to this path or repo_id"}, 409: {"description": "There is already a model corresponding to this path or repo_id"},
}, },
status_code=201, status_code=201,
response_model=ImportModelResponse response_model=ImportModelResponse,
) )
async def add_model( async def add_model(
info: Union[tuple(OPENAPI_MODEL_CONFIGS)] = Body(description="Model configuration"), info: Union[tuple(OPENAPI_MODEL_CONFIGS)] = Body(description="Model configuration"),
) -> ImportModelResponse: ) -> ImportModelResponse:
""" Add a model using the configuration information appropriate for its type. Only local models can be added by path""" """Add a model using the configuration information appropriate for its type. Only local models can be added by path"""
logger = ApiDependencies.invoker.services.logger logger = ApiDependencies.invoker.services.logger
try: try:
ApiDependencies.invoker.services.model_manager.add_model( ApiDependencies.invoker.services.model_manager.add_model(
info.model_name, info.model_name, info.base_model, info.model_type, model_attributes=info.dict()
info.base_model,
info.model_type,
model_attributes = info.dict()
) )
logger.info(f'Successfully added {info.model_name}') logger.info(f"Successfully added {info.model_name}")
model_raw = ApiDependencies.invoker.services.model_manager.list_model( model_raw = ApiDependencies.invoker.services.model_manager.list_model(
model_name=info.model_name, model_name=info.model_name, base_model=info.base_model, model_type=info.model_type
base_model=info.base_model,
model_type=info.model_type
) )
return parse_obj_as(ImportModelResponse, model_raw) return parse_obj_as(ImportModelResponse, model_raw)
except ModelNotFoundException as e: except ModelNotFoundException as e:
@ -216,66 +213,66 @@ async def add_model(
logger.error(str(e)) logger.error(str(e))
raise HTTPException(status_code=409, detail=str(e)) raise HTTPException(status_code=409, detail=str(e))
@models_router.delete( @models_router.delete(
"/{base_model}/{model_type}/{model_name}", "/{base_model}/{model_type}/{model_name}",
operation_id="del_model", operation_id="del_model",
responses={ responses={204: {"description": "Model deleted successfully"}, 404: {"description": "Model not found"}},
204: { "description": "Model deleted successfully" }, status_code=204,
404: { "description": "Model not found" } response_model=None,
},
status_code = 204,
response_model = None,
) )
async def delete_model( async def delete_model(
base_model: BaseModelType = Path(description="Base model"), base_model: BaseModelType = Path(description="Base model"),
model_type: ModelType = Path(description="The type of model"), model_type: ModelType = Path(description="The type of model"),
model_name: str = Path(description="model name"), model_name: str = Path(description="model name"),
) -> Response: ) -> Response:
"""Delete Model""" """Delete Model"""
logger = ApiDependencies.invoker.services.logger logger = ApiDependencies.invoker.services.logger
try: try:
ApiDependencies.invoker.services.model_manager.del_model(model_name, ApiDependencies.invoker.services.model_manager.del_model(
base_model = base_model, model_name, base_model=base_model, model_type=model_type
model_type = model_type )
)
logger.info(f"Deleted model: {model_name}") logger.info(f"Deleted model: {model_name}")
return Response(status_code=204) return Response(status_code=204)
except ModelNotFoundException as e: except ModelNotFoundException as e:
logger.error(str(e)) logger.error(str(e))
raise HTTPException(status_code=404, detail=str(e)) raise HTTPException(status_code=404, detail=str(e))
@models_router.put( @models_router.put(
"/convert/{base_model}/{model_type}/{model_name}", "/convert/{base_model}/{model_type}/{model_name}",
operation_id="convert_model", operation_id="convert_model",
responses={ responses={
200: { "description": "Model converted successfully" }, 200: {"description": "Model converted successfully"},
400: {"description" : "Bad request" }, 400: {"description": "Bad request"},
404: { "description": "Model not found" }, 404: {"description": "Model not found"},
}, },
status_code = 200, status_code=200,
response_model = ConvertModelResponse, response_model=ConvertModelResponse,
) )
async def convert_model( async def convert_model(
base_model: BaseModelType = Path(description="Base model"), base_model: BaseModelType = Path(description="Base model"),
model_type: ModelType = Path(description="The type of model"), model_type: ModelType = Path(description="The type of model"),
model_name: str = Path(description="model name"), model_name: str = Path(description="model name"),
convert_dest_directory: Optional[str] = Query(default=None, description="Save the converted model to the designated directory"), convert_dest_directory: Optional[str] = Query(
default=None, description="Save the converted model to the designated directory"
),
) -> ConvertModelResponse: ) -> ConvertModelResponse:
"""Convert a checkpoint model into a diffusers model, optionally saving to the indicated destination directory, or `models` if none.""" """Convert a checkpoint model into a diffusers model, optionally saving to the indicated destination directory, or `models` if none."""
logger = ApiDependencies.invoker.services.logger logger = ApiDependencies.invoker.services.logger
try: try:
logger.info(f"Converting model: {model_name}") logger.info(f"Converting model: {model_name}")
dest = pathlib.Path(convert_dest_directory) if convert_dest_directory else None dest = pathlib.Path(convert_dest_directory) if convert_dest_directory else None
ApiDependencies.invoker.services.model_manager.convert_model(model_name, ApiDependencies.invoker.services.model_manager.convert_model(
base_model = base_model, model_name,
model_type = model_type, base_model=base_model,
convert_dest_directory = dest, model_type=model_type,
) convert_dest_directory=dest,
model_raw = ApiDependencies.invoker.services.model_manager.list_model(model_name, )
base_model = base_model, model_raw = ApiDependencies.invoker.services.model_manager.list_model(
model_type = model_type) model_name, base_model=base_model, model_type=model_type
)
response = parse_obj_as(ConvertModelResponse, model_raw) response = parse_obj_as(ConvertModelResponse, model_raw)
except ModelNotFoundException as e: except ModelNotFoundException as e:
raise HTTPException(status_code=404, detail=f"Model '{model_name}' not found: {str(e)}") raise HTTPException(status_code=404, detail=f"Model '{model_name}' not found: {str(e)}")
@ -283,91 +280,101 @@ async def convert_model(
raise HTTPException(status_code=400, detail=str(e)) raise HTTPException(status_code=400, detail=str(e))
return response return response
@models_router.get( @models_router.get(
"/search", "/search",
operation_id="search_for_models", operation_id="search_for_models",
responses={ responses={
200: { "description": "Directory searched successfully" }, 200: {"description": "Directory searched successfully"},
404: { "description": "Invalid directory path" }, 404: {"description": "Invalid directory path"},
}, },
status_code = 200, status_code=200,
response_model = List[pathlib.Path] response_model=List[pathlib.Path],
) )
async def search_for_models( async def search_for_models(
search_path: pathlib.Path = Query(description="Directory path to search for models") search_path: pathlib.Path = Query(description="Directory path to search for models"),
)->List[pathlib.Path]: ) -> List[pathlib.Path]:
if not search_path.is_dir(): if not search_path.is_dir():
raise HTTPException(status_code=404, detail=f"The search path '{search_path}' does not exist or is not directory") raise HTTPException(
status_code=404, detail=f"The search path '{search_path}' does not exist or is not directory"
)
return ApiDependencies.invoker.services.model_manager.search_for_models(search_path) return ApiDependencies.invoker.services.model_manager.search_for_models(search_path)
@models_router.get( @models_router.get(
"/ckpt_confs", "/ckpt_confs",
operation_id="list_ckpt_configs", operation_id="list_ckpt_configs",
responses={ responses={
200: { "description" : "paths retrieved successfully" }, 200: {"description": "paths retrieved successfully"},
}, },
status_code = 200, status_code=200,
response_model = List[pathlib.Path] response_model=List[pathlib.Path],
) )
async def list_ckpt_configs( async def list_ckpt_configs() -> List[pathlib.Path]:
)->List[pathlib.Path]:
"""Return a list of the legacy checkpoint configuration files stored in `ROOT/configs/stable-diffusion`, relative to ROOT.""" """Return a list of the legacy checkpoint configuration files stored in `ROOT/configs/stable-diffusion`, relative to ROOT."""
return ApiDependencies.invoker.services.model_manager.list_checkpoint_configs() return ApiDependencies.invoker.services.model_manager.list_checkpoint_configs()
@models_router.post( @models_router.post(
"/sync", "/sync",
operation_id="sync_to_config", operation_id="sync_to_config",
responses={ responses={
201: { "description": "synchronization successful" }, 201: {"description": "synchronization successful"},
}, },
status_code = 201, status_code=201,
response_model = bool response_model=bool,
) )
async def sync_to_config( async def sync_to_config() -> bool:
)->bool:
"""Call after making changes to models.yaml, autoimport directories or models directory to synchronize """Call after making changes to models.yaml, autoimport directories or models directory to synchronize
in-memory data structures with disk data structures.""" in-memory data structures with disk data structures."""
ApiDependencies.invoker.services.model_manager.sync_to_config() ApiDependencies.invoker.services.model_manager.sync_to_config()
return True return True
@models_router.put( @models_router.put(
"/merge/{base_model}", "/merge/{base_model}",
operation_id="merge_models", operation_id="merge_models",
responses={ responses={
200: { "description": "Model converted successfully" }, 200: {"description": "Model converted successfully"},
400: { "description": "Incompatible models" }, 400: {"description": "Incompatible models"},
404: { "description": "One or more models not found" }, 404: {"description": "One or more models not found"},
}, },
status_code = 200, status_code=200,
response_model = MergeModelResponse, response_model=MergeModelResponse,
) )
async def merge_models( async def merge_models(
base_model: BaseModelType = Path(description="Base model"), base_model: BaseModelType = Path(description="Base model"),
model_names: List[str] = Body(description="model name", min_items=2, max_items=3), model_names: List[str] = Body(description="model name", min_items=2, max_items=3),
merged_model_name: Optional[str] = Body(description="Name of destination model"), merged_model_name: Optional[str] = Body(description="Name of destination model"),
alpha: Optional[float] = Body(description="Alpha weighting strength to apply to 2d and 3d models", default=0.5), alpha: Optional[float] = Body(description="Alpha weighting strength to apply to 2d and 3d models", default=0.5),
interp: Optional[MergeInterpolationMethod] = Body(description="Interpolation method"), interp: Optional[MergeInterpolationMethod] = Body(description="Interpolation method"),
force: Optional[bool] = Body(description="Force merging of models created with different versions of diffusers", default=False), force: Optional[bool] = Body(
merge_dest_directory: Optional[str] = Body(description="Save the merged model to the designated directory (with 'merged_model_name' appended)", default=None) description="Force merging of models created with different versions of diffusers", default=False
),
merge_dest_directory: Optional[str] = Body(
description="Save the merged model to the designated directory (with 'merged_model_name' appended)",
default=None,
),
) -> MergeModelResponse: ) -> MergeModelResponse:
"""Convert a checkpoint model into a diffusers model""" """Convert a checkpoint model into a diffusers model"""
logger = ApiDependencies.invoker.services.logger logger = ApiDependencies.invoker.services.logger
try: try:
logger.info(f"Merging models: {model_names} into {merge_dest_directory or '<MODELS>'}/{merged_model_name}") logger.info(f"Merging models: {model_names} into {merge_dest_directory or '<MODELS>'}/{merged_model_name}")
dest = pathlib.Path(merge_dest_directory) if merge_dest_directory else None dest = pathlib.Path(merge_dest_directory) if merge_dest_directory else None
result = ApiDependencies.invoker.services.model_manager.merge_models(model_names, result = ApiDependencies.invoker.services.model_manager.merge_models(
base_model, model_names,
merged_model_name=merged_model_name or "+".join(model_names), base_model,
alpha=alpha, merged_model_name=merged_model_name or "+".join(model_names),
interp=interp, alpha=alpha,
force=force, interp=interp,
merge_dest_directory = dest force=force,
) merge_dest_directory=dest,
model_raw = ApiDependencies.invoker.services.model_manager.list_model(result.name, )
base_model = base_model, model_raw = ApiDependencies.invoker.services.model_manager.list_model(
model_type = ModelType.Main, result.name,
) base_model=base_model,
model_type=ModelType.Main,
)
response = parse_obj_as(ConvertModelResponse, model_raw) response = parse_obj_as(ConvertModelResponse, model_raw)
except ModelNotFoundException: except ModelNotFoundException:
raise HTTPException(status_code=404, detail=f"One or more of the models '{model_names}' not found") raise HTTPException(status_code=404, detail=f"One or more of the models '{model_names}' not found")

View File

@ -30,9 +30,7 @@ session_router = APIRouter(prefix="/v1/sessions", tags=["sessions"])
}, },
) )
async def create_session( async def create_session(
graph: Optional[Graph] = Body( graph: Optional[Graph] = Body(default=None, description="The graph to initialize the session with")
default=None, description="The graph to initialize the session with"
)
) -> GraphExecutionState: ) -> GraphExecutionState:
"""Creates a new session, optionally initializing it with an invocation graph""" """Creates a new session, optionally initializing it with an invocation graph"""
session = ApiDependencies.invoker.create_execution_state(graph) session = ApiDependencies.invoker.create_execution_state(graph)
@ -51,13 +49,9 @@ async def list_sessions(
) -> PaginatedResults[GraphExecutionState]: ) -> PaginatedResults[GraphExecutionState]:
"""Gets a list of sessions, optionally searching""" """Gets a list of sessions, optionally searching"""
if query == "": if query == "":
result = ApiDependencies.invoker.services.graph_execution_manager.list( result = ApiDependencies.invoker.services.graph_execution_manager.list(page, per_page)
page, per_page
)
else: else:
result = ApiDependencies.invoker.services.graph_execution_manager.search( result = ApiDependencies.invoker.services.graph_execution_manager.search(query, page, per_page)
query, page, per_page
)
return result return result
@ -91,9 +85,9 @@ async def get_session(
) )
async def add_node( async def add_node(
session_id: str = Path(description="The id of the session"), session_id: str = Path(description="The id of the session"),
node: Annotated[ node: Annotated[Union[BaseInvocation.get_invocations()], Field(discriminator="type")] = Body( # type: ignore
Union[BaseInvocation.get_invocations()], Field(discriminator="type") # type: ignore description="The node to add"
] = Body(description="The node to add"), ),
) -> str: ) -> str:
"""Adds a node to the graph""" """Adds a node to the graph"""
session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id) session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
@ -124,9 +118,9 @@ async def add_node(
async def update_node( async def update_node(
session_id: str = Path(description="The id of the session"), session_id: str = Path(description="The id of the session"),
node_path: str = Path(description="The path to the node in the graph"), node_path: str = Path(description="The path to the node in the graph"),
node: Annotated[ node: Annotated[Union[BaseInvocation.get_invocations()], Field(discriminator="type")] = Body( # type: ignore
Union[BaseInvocation.get_invocations()], Field(discriminator="type") # type: ignore description="The new node"
] = Body(description="The new node"), ),
) -> GraphExecutionState: ) -> GraphExecutionState:
"""Updates a node in the graph and removes all linked edges""" """Updates a node in the graph and removes all linked edges"""
session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id) session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
@ -230,7 +224,7 @@ async def delete_edge(
try: try:
edge = Edge( edge = Edge(
source=EdgeConnection(node_id=from_node_id, field=from_field), source=EdgeConnection(node_id=from_node_id, field=from_field),
destination=EdgeConnection(node_id=to_node_id, field=to_field) destination=EdgeConnection(node_id=to_node_id, field=to_field),
) )
session.delete_edge(edge) session.delete_edge(edge)
ApiDependencies.invoker.services.graph_execution_manager.set( ApiDependencies.invoker.services.graph_execution_manager.set(
@ -255,9 +249,7 @@ async def delete_edge(
) )
async def invoke_session( async def invoke_session(
session_id: str = Path(description="The id of the session to invoke"), session_id: str = Path(description="The id of the session to invoke"),
all: bool = Query( all: bool = Query(default=False, description="Whether or not to invoke all remaining invocations"),
default=False, description="Whether or not to invoke all remaining invocations"
),
) -> Response: ) -> Response:
"""Invokes a session""" """Invokes a session"""
session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id) session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
@ -274,9 +266,7 @@ async def invoke_session(
@session_router.delete( @session_router.delete(
"/{session_id}/invoke", "/{session_id}/invoke",
operation_id="cancel_session_invoke", operation_id="cancel_session_invoke",
responses={ responses={202: {"description": "The invocation is canceled"}},
202: {"description": "The invocation is canceled"}
},
) )
async def cancel_session_invoke( async def cancel_session_invoke(
session_id: str = Path(description="The id of the session to cancel"), session_id: str = Path(description="The id of the session to cancel"),

View File

@ -16,9 +16,7 @@ class SocketIO:
self.__sio.on("subscribe", handler=self._handle_sub) self.__sio.on("subscribe", handler=self._handle_sub)
self.__sio.on("unsubscribe", handler=self._handle_unsub) self.__sio.on("unsubscribe", handler=self._handle_unsub)
local_handler.register( local_handler.register(event_name=EventServiceBase.session_event, _func=self._handle_session_event)
event_name=EventServiceBase.session_event, _func=self._handle_session_event
)
async def _handle_session_event(self, event: Event): async def _handle_session_event(self, event: Event):
await self.__sio.emit( await self.__sio.emit(

View File

@ -16,9 +16,10 @@ from fastapi_events.middleware import EventHandlerASGIMiddleware
from pathlib import Path from pathlib import Path
from pydantic.schema import schema from pydantic.schema import schema
#This should come early so that modules can log their initialization properly # This should come early so that modules can log their initialization properly
from .services.config import InvokeAIAppConfig from .services.config import InvokeAIAppConfig
from ..backend.util.logging import InvokeAILogger from ..backend.util.logging import InvokeAILogger
app_config = InvokeAIAppConfig.get_config() app_config = InvokeAIAppConfig.get_config()
app_config.parse_args() app_config.parse_args()
logger = InvokeAILogger.getLogger(config=app_config) logger = InvokeAILogger.getLogger(config=app_config)
@ -27,7 +28,7 @@ from invokeai.version.invokeai_version import __version__
# we call this early so that the message appears before # we call this early so that the message appears before
# other invokeai initialization messages # other invokeai initialization messages
if app_config.version: if app_config.version:
print(f'InvokeAI version {__version__}') print(f"InvokeAI version {__version__}")
sys.exit(0) sys.exit(0)
import invokeai.frontend.web as web_dir import invokeai.frontend.web as web_dir
@ -37,17 +38,18 @@ from .api.dependencies import ApiDependencies
from .api.routers import sessions, models, images, boards, board_images, app_info from .api.routers import sessions, models, images, boards, board_images, app_info
from .api.sockets import SocketIO from .api.sockets import SocketIO
from .invocations.baseinvocation import BaseInvocation from .invocations.baseinvocation import BaseInvocation
import torch import torch
import invokeai.backend.util.hotfixes import invokeai.backend.util.hotfixes
if torch.backends.mps.is_available(): if torch.backends.mps.is_available():
import invokeai.backend.util.mps_fixes import invokeai.backend.util.mps_fixes
# fix for windows mimetypes registry entries being borked # fix for windows mimetypes registry entries being borked
# see https://github.com/invoke-ai/InvokeAI/discussions/3684#discussioncomment-6391352 # see https://github.com/invoke-ai/InvokeAI/discussions/3684#discussioncomment-6391352
mimetypes.add_type('application/javascript', '.js') mimetypes.add_type("application/javascript", ".js")
mimetypes.add_type('text/css', '.css') mimetypes.add_type("text/css", ".css")
# Create the app # Create the app
# TODO: create this all in a method so configuration/etc. can be passed in? # TODO: create this all in a method so configuration/etc. can be passed in?
@ -57,14 +59,13 @@ app = FastAPI(title="Invoke AI", docs_url=None, redoc_url=None)
event_handler_id: int = id(app) event_handler_id: int = id(app)
app.add_middleware( app.add_middleware(
EventHandlerASGIMiddleware, EventHandlerASGIMiddleware,
handlers=[ handlers=[local_handler], # TODO: consider doing this in services to support different configurations
local_handler
], # TODO: consider doing this in services to support different configurations
middleware_id=event_handler_id, middleware_id=event_handler_id,
) )
socket_io = SocketIO(app) socket_io = SocketIO(app)
# Add startup event to load dependencies # Add startup event to load dependencies
@app.on_event("startup") @app.on_event("startup")
async def startup_event(): async def startup_event():
@ -76,9 +77,7 @@ async def startup_event():
allow_headers=app_config.allow_headers, allow_headers=app_config.allow_headers,
) )
ApiDependencies.initialize( ApiDependencies.initialize(config=app_config, event_handler_id=event_handler_id, logger=logger)
config=app_config, event_handler_id=event_handler_id, logger=logger
)
# Shut down threads # Shut down threads
@ -103,7 +102,8 @@ app.include_router(boards.boards_router, prefix="/api")
app.include_router(board_images.board_images_router, prefix="/api") app.include_router(board_images.board_images_router, prefix="/api")
app.include_router(app_info.app_router, prefix='/api') app.include_router(app_info.app_router, prefix="/api")
# Build a custom OpenAPI to include all outputs # Build a custom OpenAPI to include all outputs
# TODO: can outputs be included on metadata of invocation schemas somehow? # TODO: can outputs be included on metadata of invocation schemas somehow?
@ -144,6 +144,7 @@ def custom_openapi():
invoker_schema["output"] = outputs_ref invoker_schema["output"] = outputs_ref
from invokeai.backend.model_management.models import get_model_config_enums from invokeai.backend.model_management.models import get_model_config_enums
for model_config_format_enum in set(get_model_config_enums()): for model_config_format_enum in set(get_model_config_enums()):
name = model_config_format_enum.__qualname__ name = model_config_format_enum.__qualname__
@ -166,7 +167,8 @@ def custom_openapi():
app.openapi = custom_openapi app.openapi = custom_openapi
# Override API doc favicons # Override API doc favicons
app.mount("/static", StaticFiles(directory=Path(web_dir.__path__[0], 'static/dream_web')), name="static") app.mount("/static", StaticFiles(directory=Path(web_dir.__path__[0], "static/dream_web")), name="static")
@app.get("/docs", include_in_schema=False) @app.get("/docs", include_in_schema=False)
def overridden_swagger(): def overridden_swagger():
@ -187,11 +189,8 @@ def overridden_redoc():
# Must mount *after* the other routes else it borks em # Must mount *after* the other routes else it borks em
app.mount("/", app.mount("/", StaticFiles(directory=Path(web_dir.__path__[0], "dist"), html=True), name="ui")
StaticFiles(directory=Path(web_dir.__path__[0],"dist"),
html=True
), name="ui"
)
def invoke_api(): def invoke_api():
def find_port(port: int): def find_port(port: int):
@ -203,10 +202,11 @@ def invoke_api():
return find_port(port=port + 1) return find_port(port=port + 1)
else: else:
return port return port
from invokeai.backend.install.check_root import check_invokeai_root from invokeai.backend.install.check_root import check_invokeai_root
check_invokeai_root(app_config) # note, may exit with an exception if root not set up check_invokeai_root(app_config) # note, may exit with an exception if root not set up
port = find_port(app_config.port) port = find_port(app_config.port)
if port != app_config.port: if port != app_config.port:
logger.warn(f"Port {app_config.port} in use, using port {port}") logger.warn(f"Port {app_config.port} in use, using port {port}")
@ -217,5 +217,6 @@ def invoke_api():
server = uvicorn.Server(config) server = uvicorn.Server(config)
loop.run_until_complete(server.serve()) loop.run_until_complete(server.serve())
if __name__ == "__main__": if __name__ == "__main__":
invoke_api() invoke_api()

View File

@ -14,8 +14,14 @@ from ..services.graph import GraphExecutionState, LibraryGraph, Edge
from ..services.invoker import Invoker from ..services.invoker import Invoker
def add_field_argument(command_parser, name: str, field, default_override = None): def add_field_argument(command_parser, name: str, field, default_override=None):
default = default_override if default_override is not None else field.default if field.default_factory is None else field.default_factory() default = (
default_override
if default_override is not None
else field.default
if field.default_factory is None
else field.default_factory()
)
if get_origin(field.type_) == Literal: if get_origin(field.type_) == Literal:
allowed_values = get_args(field.type_) allowed_values = get_args(field.type_)
allowed_types = set() allowed_types = set()
@ -47,8 +53,8 @@ def add_parsers(
commands: list[type], commands: list[type],
command_field: str = "type", command_field: str = "type",
exclude_fields: list[str] = ["id", "type"], exclude_fields: list[str] = ["id", "type"],
add_arguments: Union[Callable[[argparse.ArgumentParser], None],None] = None add_arguments: Union[Callable[[argparse.ArgumentParser], None], None] = None,
): ):
"""Adds parsers for each command to the subparsers""" """Adds parsers for each command to the subparsers"""
# Create subparsers for each command # Create subparsers for each command
@ -61,7 +67,7 @@ def add_parsers(
add_arguments(command_parser) add_arguments(command_parser)
# Convert all fields to arguments # Convert all fields to arguments
fields = command.__fields__ # type: ignore fields = command.__fields__ # type: ignore
for name, field in fields.items(): for name, field in fields.items():
if name in exclude_fields: if name in exclude_fields:
continue continue
@ -70,13 +76,11 @@ def add_parsers(
def add_graph_parsers( def add_graph_parsers(
subparsers, subparsers, graphs: list[LibraryGraph], add_arguments: Union[Callable[[argparse.ArgumentParser], None], None] = None
graphs: list[LibraryGraph],
add_arguments: Union[Callable[[argparse.ArgumentParser], None], None] = None
): ):
for graph in graphs: for graph in graphs:
command_parser = subparsers.add_parser(graph.name, help=graph.description) command_parser = subparsers.add_parser(graph.name, help=graph.description)
if add_arguments is not None: if add_arguments is not None:
add_arguments(command_parser) add_arguments(command_parser)
@ -128,6 +132,7 @@ class CliContext:
class ExitCli(Exception): class ExitCli(Exception):
"""Exception to exit the CLI""" """Exception to exit the CLI"""
pass pass
@ -155,7 +160,7 @@ class BaseCommand(ABC, BaseModel):
@classmethod @classmethod
def get_commands_map(cls): def get_commands_map(cls):
# Get the type strings out of the literals and into a dictionary # Get the type strings out of the literals and into a dictionary
return dict(map(lambda t: (get_args(get_type_hints(t)['type'])[0], t),BaseCommand.get_all_subclasses())) return dict(map(lambda t: (get_args(get_type_hints(t)["type"])[0], t), BaseCommand.get_all_subclasses()))
@abstractmethod @abstractmethod
def run(self, context: CliContext) -> None: def run(self, context: CliContext) -> None:
@ -165,7 +170,8 @@ class BaseCommand(ABC, BaseModel):
class ExitCommand(BaseCommand): class ExitCommand(BaseCommand):
"""Exits the CLI""" """Exits the CLI"""
type: Literal['exit'] = 'exit'
type: Literal["exit"] = "exit"
def run(self, context: CliContext) -> None: def run(self, context: CliContext) -> None:
raise ExitCli() raise ExitCli()
@ -173,7 +179,8 @@ class ExitCommand(BaseCommand):
class HelpCommand(BaseCommand): class HelpCommand(BaseCommand):
"""Shows help""" """Shows help"""
type: Literal['help'] = 'help'
type: Literal["help"] = "help"
def run(self, context: CliContext) -> None: def run(self, context: CliContext) -> None:
context.parser.print_help() context.parser.print_help()
@ -183,11 +190,7 @@ def get_graph_execution_history(
graph_execution_state: GraphExecutionState, graph_execution_state: GraphExecutionState,
) -> Iterable[str]: ) -> Iterable[str]:
"""Gets the history of fully-executed invocations for a graph execution""" """Gets the history of fully-executed invocations for a graph execution"""
return ( return (n for n in reversed(graph_execution_state.executed_history) if n in graph_execution_state.graph.nodes)
n
for n in reversed(graph_execution_state.executed_history)
if n in graph_execution_state.graph.nodes
)
def get_invocation_command(invocation) -> str: def get_invocation_command(invocation) -> str:
@ -218,7 +221,8 @@ def get_invocation_command(invocation) -> str:
class HistoryCommand(BaseCommand): class HistoryCommand(BaseCommand):
"""Shows the invocation history""" """Shows the invocation history"""
type: Literal['history'] = 'history'
type: Literal["history"] = "history"
# Inputs # Inputs
# fmt: off # fmt: off
@ -235,7 +239,8 @@ class HistoryCommand(BaseCommand):
class SetDefaultCommand(BaseCommand): class SetDefaultCommand(BaseCommand):
"""Sets a default value for a field""" """Sets a default value for a field"""
type: Literal['default'] = 'default'
type: Literal["default"] = "default"
# Inputs # Inputs
# fmt: off # fmt: off
@ -253,7 +258,8 @@ class SetDefaultCommand(BaseCommand):
class DrawGraphCommand(BaseCommand): class DrawGraphCommand(BaseCommand):
"""Debugs a graph""" """Debugs a graph"""
type: Literal['draw_graph'] = 'draw_graph'
type: Literal["draw_graph"] = "draw_graph"
def run(self, context: CliContext) -> None: def run(self, context: CliContext) -> None:
session: GraphExecutionState = context.invoker.services.graph_execution_manager.get(context.session.id) session: GraphExecutionState = context.invoker.services.graph_execution_manager.get(context.session.id)
@ -271,7 +277,8 @@ class DrawGraphCommand(BaseCommand):
class DrawExecutionGraphCommand(BaseCommand): class DrawExecutionGraphCommand(BaseCommand):
"""Debugs an execution graph""" """Debugs an execution graph"""
type: Literal['draw_xgraph'] = 'draw_xgraph'
type: Literal["draw_xgraph"] = "draw_xgraph"
def run(self, context: CliContext) -> None: def run(self, context: CliContext) -> None:
session: GraphExecutionState = context.invoker.services.graph_execution_manager.get(context.session.id) session: GraphExecutionState = context.invoker.services.graph_execution_manager.get(context.session.id)
@ -286,6 +293,7 @@ class DrawExecutionGraphCommand(BaseCommand):
plt.axis("off") plt.axis("off")
plt.show() plt.show()
class SortedHelpFormatter(argparse.HelpFormatter): class SortedHelpFormatter(argparse.HelpFormatter):
def _iter_indented_subactions(self, action): def _iter_indented_subactions(self, action):
try: try:

View File

@ -19,8 +19,8 @@ from ..services.invocation_services import InvocationServices
# singleton object, class variable # singleton object, class variable
completer = None completer = None
class Completer(object): class Completer(object):
def __init__(self, model_manager: ModelManager): def __init__(self, model_manager: ModelManager):
self.commands = self.get_commands() self.commands = self.get_commands()
self.matches = None self.matches = None
@ -43,7 +43,7 @@ class Completer(object):
except IndexError: except IndexError:
pass pass
options = options or list(self.parse_commands().keys()) options = options or list(self.parse_commands().keys())
if not text: # first time if not text: # first time
self.matches = options self.matches = options
else: else:
@ -56,17 +56,17 @@ class Completer(object):
return match return match
@classmethod @classmethod
def get_commands(self)->List[object]: def get_commands(self) -> List[object]:
""" """
Return a list of all the client commands and invocations. Return a list of all the client commands and invocations.
""" """
return BaseCommand.get_commands() + BaseInvocation.get_invocations() return BaseCommand.get_commands() + BaseInvocation.get_invocations()
def get_current_command(self, buffer: str)->tuple[str, str]: def get_current_command(self, buffer: str) -> tuple[str, str]:
""" """
Parse the readline buffer to find the most recent command and its switch. Parse the readline buffer to find the most recent command and its switch.
""" """
if len(buffer)==0: if len(buffer) == 0:
return None, None return None, None
tokens = shlex.split(buffer) tokens = shlex.split(buffer)
command = None command = None
@ -78,11 +78,11 @@ class Completer(object):
else: else:
switch = t switch = t
# don't try to autocomplete switches that are already complete # don't try to autocomplete switches that are already complete
if switch and buffer.endswith(' '): if switch and buffer.endswith(" "):
switch=None switch = None
return command or '', switch or '' return command or "", switch or ""
def parse_commands(self)->Dict[str, List[str]]: def parse_commands(self) -> Dict[str, List[str]]:
""" """
Return a dict in which the keys are the command name Return a dict in which the keys are the command name
and the values are the parameters the command takes. and the values are the parameters the command takes.
@ -90,11 +90,11 @@ class Completer(object):
result = dict() result = dict()
for command in self.commands: for command in self.commands:
hints = get_type_hints(command) hints = get_type_hints(command)
name = get_args(hints['type'])[0] name = get_args(hints["type"])[0]
result.update({name:hints}) result.update({name: hints})
return result return result
def get_command_options(self, command: str, switch: str)->List[str]: def get_command_options(self, command: str, switch: str) -> List[str]:
""" """
Return all the parameters that can be passed to the command as Return all the parameters that can be passed to the command as
command-line switches. Returns None if the command is unrecognized. command-line switches. Returns None if the command is unrecognized.
@ -102,42 +102,46 @@ class Completer(object):
parsed_commands = self.parse_commands() parsed_commands = self.parse_commands()
if command not in parsed_commands: if command not in parsed_commands:
return None return None
# handle switches in the format "-foo=bar" # handle switches in the format "-foo=bar"
argument = None argument = None
if switch and '=' in switch: if switch and "=" in switch:
switch, argument = switch.split('=') switch, argument = switch.split("=")
parameter = switch.strip('-') parameter = switch.strip("-")
if parameter in parsed_commands[command]: if parameter in parsed_commands[command]:
if argument is None: if argument is None:
return self.get_parameter_options(parameter, parsed_commands[command][parameter]) return self.get_parameter_options(parameter, parsed_commands[command][parameter])
else: else:
return [f"--{parameter}={x}" for x in self.get_parameter_options(parameter, parsed_commands[command][parameter])] return [
f"--{parameter}={x}"
for x in self.get_parameter_options(parameter, parsed_commands[command][parameter])
]
else: else:
return [f"--{x}" for x in parsed_commands[command].keys()] return [f"--{x}" for x in parsed_commands[command].keys()]
def get_parameter_options(self, parameter: str, typehint)->List[str]: def get_parameter_options(self, parameter: str, typehint) -> List[str]:
""" """
Given a parameter type (such as Literal), offers autocompletions. Given a parameter type (such as Literal), offers autocompletions.
""" """
if get_origin(typehint) == Literal: if get_origin(typehint) == Literal:
return get_args(typehint) return get_args(typehint)
if parameter == 'model': if parameter == "model":
return self.manager.model_names() return self.manager.model_names()
def _pre_input_hook(self): def _pre_input_hook(self):
if self.linebuffer: if self.linebuffer:
readline.insert_text(self.linebuffer) readline.insert_text(self.linebuffer)
readline.redisplay() readline.redisplay()
self.linebuffer = None self.linebuffer = None
def set_autocompleter(services: InvocationServices) -> Completer: def set_autocompleter(services: InvocationServices) -> Completer:
global completer global completer
if completer: if completer:
return completer return completer
completer = Completer(services.model_manager) completer = Completer(services.model_manager)
readline.set_completer(completer.complete) readline.set_completer(completer.complete)
@ -162,8 +166,6 @@ def set_autocompleter(services: InvocationServices) -> Completer:
pass pass
except OSError: # file likely corrupted except OSError: # file likely corrupted
newname = f"{histfile}.old" newname = f"{histfile}.old"
logger.error( logger.error(f"Your history file {histfile} couldn't be loaded and may be corrupted. Renaming it to {newname}")
f"Your history file {histfile} couldn't be loaded and may be corrupted. Renaming it to {newname}"
)
histfile.replace(Path(newname)) histfile.replace(Path(newname))
atexit.register(readline.write_history_file, histfile) atexit.register(readline.write_history_file, histfile)

View File

@ -13,6 +13,7 @@ from pydantic.fields import Field
# This should come early so that the logger can pick up its configuration options # This should come early so that the logger can pick up its configuration options
from .services.config import InvokeAIAppConfig from .services.config import InvokeAIAppConfig
from invokeai.backend.util.logging import InvokeAILogger from invokeai.backend.util.logging import InvokeAILogger
config = InvokeAIAppConfig.get_config() config = InvokeAIAppConfig.get_config()
config.parse_args() config.parse_args()
logger = InvokeAILogger().getLogger(config=config) logger = InvokeAILogger().getLogger(config=config)
@ -20,7 +21,7 @@ from invokeai.version.invokeai_version import __version__
# we call this early so that the message appears before other invokeai initialization messages # we call this early so that the message appears before other invokeai initialization messages
if config.version: if config.version:
print(f'InvokeAI version {__version__}') print(f"InvokeAI version {__version__}")
sys.exit(0) sys.exit(0)
from invokeai.app.services.board_image_record_storage import ( from invokeai.app.services.board_image_record_storage import (
@ -36,18 +37,21 @@ from invokeai.app.services.image_record_storage import SqliteImageRecordStorage
from invokeai.app.services.images import ImageService, ImageServiceDependencies from invokeai.app.services.images import ImageService, ImageServiceDependencies
from invokeai.app.services.resource_name import SimpleNameService from invokeai.app.services.resource_name import SimpleNameService
from invokeai.app.services.urls import LocalUrlService from invokeai.app.services.urls import LocalUrlService
from .services.default_graphs import (default_text_to_image_graph_id, from .services.default_graphs import default_text_to_image_graph_id, create_system_graphs
create_system_graphs)
from .services.latent_storage import DiskLatentsStorage, ForwardCacheLatentsStorage from .services.latent_storage import DiskLatentsStorage, ForwardCacheLatentsStorage
from .cli.commands import (BaseCommand, CliContext, ExitCli, from .cli.commands import BaseCommand, CliContext, ExitCli, SortedHelpFormatter, add_graph_parsers, add_parsers
SortedHelpFormatter, add_graph_parsers, add_parsers)
from .cli.completer import set_autocompleter from .cli.completer import set_autocompleter
from .invocations.baseinvocation import BaseInvocation from .invocations.baseinvocation import BaseInvocation
from .services.events import EventServiceBase from .services.events import EventServiceBase
from .services.graph import (Edge, EdgeConnection, GraphExecutionState, from .services.graph import (
GraphInvocation, LibraryGraph, Edge,
are_connection_types_compatible) EdgeConnection,
GraphExecutionState,
GraphInvocation,
LibraryGraph,
are_connection_types_compatible,
)
from .services.image_file_storage import DiskImageFileStorage from .services.image_file_storage import DiskImageFileStorage
from .services.invocation_queue import MemoryInvocationQueue from .services.invocation_queue import MemoryInvocationQueue
from .services.invocation_services import InvocationServices from .services.invocation_services import InvocationServices
@ -58,6 +62,7 @@ from .services.sqlite import SqliteItemStorage
import torch import torch
import invokeai.backend.util.hotfixes import invokeai.backend.util.hotfixes
if torch.backends.mps.is_available(): if torch.backends.mps.is_available():
import invokeai.backend.util.mps_fixes import invokeai.backend.util.mps_fixes
@ -69,6 +74,7 @@ class CliCommand(BaseModel):
class InvalidArgs(Exception): class InvalidArgs(Exception):
pass pass
def add_invocation_args(command_parser): def add_invocation_args(command_parser):
# Add linking capability # Add linking capability
command_parser.add_argument( command_parser.add_argument(
@ -113,7 +119,7 @@ def get_command_parser(services: InvocationServices) -> argparse.ArgumentParser:
return parser return parser
class NodeField(): class NodeField:
alias: str alias: str
node_path: str node_path: str
field: str field: str
@ -126,15 +132,20 @@ class NodeField():
self.field_type = field_type self.field_type = field_type
def fields_from_type_hints(hints: dict[str, type], node_path: str) -> dict[str,NodeField]: def fields_from_type_hints(hints: dict[str, type], node_path: str) -> dict[str, NodeField]:
return {k:NodeField(alias=k, node_path=node_path, field=k, field_type=v) for k, v in hints.items()} return {k: NodeField(alias=k, node_path=node_path, field=k, field_type=v) for k, v in hints.items()}
def get_node_input_field(graph: LibraryGraph, field_alias: str, node_id: str) -> NodeField: def get_node_input_field(graph: LibraryGraph, field_alias: str, node_id: str) -> NodeField:
"""Gets the node field for the specified field alias""" """Gets the node field for the specified field alias"""
exposed_input = next(e for e in graph.exposed_inputs if e.alias == field_alias) exposed_input = next(e for e in graph.exposed_inputs if e.alias == field_alias)
node_type = type(graph.graph.get_node(exposed_input.node_path)) node_type = type(graph.graph.get_node(exposed_input.node_path))
return NodeField(alias=exposed_input.alias, node_path=f'{node_id}.{exposed_input.node_path}', field=exposed_input.field, field_type=get_type_hints(node_type)[exposed_input.field]) return NodeField(
alias=exposed_input.alias,
node_path=f"{node_id}.{exposed_input.node_path}",
field=exposed_input.field,
field_type=get_type_hints(node_type)[exposed_input.field],
)
def get_node_output_field(graph: LibraryGraph, field_alias: str, node_id: str) -> NodeField: def get_node_output_field(graph: LibraryGraph, field_alias: str, node_id: str) -> NodeField:
@ -142,7 +153,12 @@ def get_node_output_field(graph: LibraryGraph, field_alias: str, node_id: str) -
exposed_output = next(e for e in graph.exposed_outputs if e.alias == field_alias) exposed_output = next(e for e in graph.exposed_outputs if e.alias == field_alias)
node_type = type(graph.graph.get_node(exposed_output.node_path)) node_type = type(graph.graph.get_node(exposed_output.node_path))
node_output_type = node_type.get_output_type() node_output_type = node_type.get_output_type()
return NodeField(alias=exposed_output.alias, node_path=f'{node_id}.{exposed_output.node_path}', field=exposed_output.field, field_type=get_type_hints(node_output_type)[exposed_output.field]) return NodeField(
alias=exposed_output.alias,
node_path=f"{node_id}.{exposed_output.node_path}",
field=exposed_output.field,
field_type=get_type_hints(node_output_type)[exposed_output.field],
)
def get_node_inputs(invocation: BaseInvocation, context: CliContext) -> dict[str, NodeField]: def get_node_inputs(invocation: BaseInvocation, context: CliContext) -> dict[str, NodeField]:
@ -165,9 +181,7 @@ def get_node_outputs(invocation: BaseInvocation, context: CliContext) -> dict[st
return {e.alias: get_node_output_field(graph, e.alias, invocation.id) for e in graph.exposed_outputs} return {e.alias: get_node_output_field(graph, e.alias, invocation.id) for e in graph.exposed_outputs}
def generate_matching_edges( def generate_matching_edges(a: BaseInvocation, b: BaseInvocation, context: CliContext) -> list[Edge]:
a: BaseInvocation, b: BaseInvocation, context: CliContext
) -> list[Edge]:
"""Generates all possible edges between two invocations""" """Generates all possible edges between two invocations"""
afields = get_node_outputs(a, context) afields = get_node_outputs(a, context)
bfields = get_node_inputs(b, context) bfields = get_node_inputs(b, context)
@ -179,12 +193,14 @@ def generate_matching_edges(
matching_fields = matching_fields.difference(invalid_fields) matching_fields = matching_fields.difference(invalid_fields)
# Validate types # Validate types
matching_fields = [f for f in matching_fields if are_connection_types_compatible(afields[f].field_type, bfields[f].field_type)] matching_fields = [
f for f in matching_fields if are_connection_types_compatible(afields[f].field_type, bfields[f].field_type)
]
edges = [ edges = [
Edge( Edge(
source=EdgeConnection(node_id=afields[alias].node_path, field=afields[alias].field), source=EdgeConnection(node_id=afields[alias].node_path, field=afields[alias].field),
destination=EdgeConnection(node_id=bfields[alias].node_path, field=bfields[alias].field) destination=EdgeConnection(node_id=bfields[alias].node_path, field=bfields[alias].field),
) )
for alias in matching_fields for alias in matching_fields
] ]
@ -193,6 +209,7 @@ def generate_matching_edges(
class SessionError(Exception): class SessionError(Exception):
"""Raised when a session error has occurred""" """Raised when a session error has occurred"""
pass pass
@ -209,22 +226,23 @@ def invoke_all(context: CliContext):
context.invoker.services.logger.error( context.invoker.services.logger.error(
f"Error in node {n} (source node {context.session.prepared_source_mapping[n]}): {context.session.errors[n]}" f"Error in node {n} (source node {context.session.prepared_source_mapping[n]}): {context.session.errors[n]}"
) )
raise SessionError() raise SessionError()
def invoke_cli(): def invoke_cli():
logger.info(f'InvokeAI version {__version__}') logger.info(f"InvokeAI version {__version__}")
# get the optional list of invocations to execute on the command line # get the optional list of invocations to execute on the command line
parser = config.get_parser() parser = config.get_parser()
parser.add_argument('commands',nargs='*') parser.add_argument("commands", nargs="*")
invocation_commands = parser.parse_args().commands invocation_commands = parser.parse_args().commands
# get the optional file to read commands from. # get the optional file to read commands from.
# Simplest is to use it for STDIN # Simplest is to use it for STDIN
if infile := config.from_file: if infile := config.from_file:
sys.stdin = open(infile,"r") sys.stdin = open(infile, "r")
model_manager = ModelManagerService(config,logger) model_manager = ModelManagerService(config, logger)
events = EventServiceBase() events = EventServiceBase()
output_folder = config.output_path output_folder = config.output_path
@ -234,13 +252,13 @@ def invoke_cli():
db_location = ":memory:" db_location = ":memory:"
else: else:
db_location = config.db_path db_location = config.db_path
db_location.parent.mkdir(parents=True,exist_ok=True) db_location.parent.mkdir(parents=True, exist_ok=True)
logger.info(f'InvokeAI database location is "{db_location}"') logger.info(f'InvokeAI database location is "{db_location}"')
graph_execution_manager = SqliteItemStorage[GraphExecutionState]( graph_execution_manager = SqliteItemStorage[GraphExecutionState](
filename=db_location, table_name="graph_executions" filename=db_location, table_name="graph_executions"
) )
urls = LocalUrlService() urls = LocalUrlService()
image_record_storage = SqliteImageRecordStorage(db_location) image_record_storage = SqliteImageRecordStorage(db_location)
@ -281,24 +299,21 @@ def invoke_cli():
graph_execution_manager=graph_execution_manager, graph_execution_manager=graph_execution_manager,
) )
) )
services = InvocationServices( services = InvocationServices(
model_manager=model_manager, model_manager=model_manager,
events=events, events=events,
latents = ForwardCacheLatentsStorage(DiskLatentsStorage(f'{output_folder}/latents')), latents=ForwardCacheLatentsStorage(DiskLatentsStorage(f"{output_folder}/latents")),
images=images, images=images,
boards=boards, boards=boards,
board_images=board_images, board_images=board_images,
queue=MemoryInvocationQueue(), queue=MemoryInvocationQueue(),
graph_library=SqliteItemStorage[LibraryGraph]( graph_library=SqliteItemStorage[LibraryGraph](filename=db_location, table_name="graphs"),
filename=db_location, table_name="graphs"
),
graph_execution_manager=graph_execution_manager, graph_execution_manager=graph_execution_manager,
processor=DefaultInvocationProcessor(), processor=DefaultInvocationProcessor(),
logger=logger, logger=logger,
configuration=config, configuration=config,
) )
system_graphs = create_system_graphs(services.graph_library) system_graphs = create_system_graphs(services.graph_library)
system_graph_names = set([g.name for g in system_graphs]) system_graph_names = set([g.name for g in system_graphs])
@ -308,7 +323,7 @@ def invoke_cli():
session: GraphExecutionState = invoker.create_execution_state() session: GraphExecutionState = invoker.create_execution_state()
parser = get_command_parser(services) parser = get_command_parser(services)
re_negid = re.compile('^-[0-9]+$') re_negid = re.compile("^-[0-9]+$")
# Uncomment to print out previous sessions at startup # Uncomment to print out previous sessions at startup
# print(services.session_manager.list()) # print(services.session_manager.list())
@ -318,7 +333,7 @@ def invoke_cli():
command_line_args_exist = len(invocation_commands) > 0 command_line_args_exist = len(invocation_commands) > 0
done = False done = False
while not done: while not done:
try: try:
if command_line_args_exist: if command_line_args_exist:
@ -332,7 +347,7 @@ def invoke_cli():
try: try:
# Refresh the state of the session # Refresh the state of the session
#history = list(get_graph_execution_history(context.session)) # history = list(get_graph_execution_history(context.session))
history = list(reversed(context.nodes_added)) history = list(reversed(context.nodes_added))
# Split the command for piping # Split the command for piping
@ -353,17 +368,17 @@ def invoke_cli():
args[field_name] = field_default args[field_name] = field_default
# Parse invocation # Parse invocation
command: CliCommand = None # type:ignore command: CliCommand = None # type:ignore
system_graph: Optional[LibraryGraph] = None system_graph: Optional[LibraryGraph] = None
if args['type'] in system_graph_names: if args["type"] in system_graph_names:
system_graph = next(filter(lambda g: g.name == args['type'], system_graphs)) system_graph = next(filter(lambda g: g.name == args["type"], system_graphs))
invocation = GraphInvocation(graph=system_graph.graph, id=str(current_id)) invocation = GraphInvocation(graph=system_graph.graph, id=str(current_id))
for exposed_input in system_graph.exposed_inputs: for exposed_input in system_graph.exposed_inputs:
if exposed_input.alias in args: if exposed_input.alias in args:
node = invocation.graph.get_node(exposed_input.node_path) node = invocation.graph.get_node(exposed_input.node_path)
field = exposed_input.field field = exposed_input.field
setattr(node, field, args[exposed_input.alias]) setattr(node, field, args[exposed_input.alias])
command = CliCommand(command = invocation) command = CliCommand(command=invocation)
context.graph_nodes[invocation.id] = system_graph.id context.graph_nodes[invocation.id] = system_graph.id
else: else:
args["id"] = current_id args["id"] = current_id
@ -385,17 +400,13 @@ def invoke_cli():
# Pipe previous command output (if there was a previous command) # Pipe previous command output (if there was a previous command)
edges: list[Edge] = list() edges: list[Edge] = list()
if len(history) > 0 or current_id != start_id: if len(history) > 0 or current_id != start_id:
from_id = ( from_id = history[0] if current_id == start_id else str(current_id - 1)
history[0] if current_id == start_id else str(current_id - 1)
)
from_node = ( from_node = (
next(filter(lambda n: n[0].id == from_id, new_invocations))[0] next(filter(lambda n: n[0].id == from_id, new_invocations))[0]
if current_id != start_id if current_id != start_id
else context.session.graph.get_node(from_id) else context.session.graph.get_node(from_id)
) )
matching_edges = generate_matching_edges( matching_edges = generate_matching_edges(from_node, command.command, context)
from_node, command.command, context
)
edges.extend(matching_edges) edges.extend(matching_edges)
# Parse provided links # Parse provided links
@ -406,16 +417,18 @@ def invoke_cli():
node_id = str(current_id + int(node_id)) node_id = str(current_id + int(node_id))
link_node = context.session.graph.get_node(node_id) link_node = context.session.graph.get_node(node_id)
matching_edges = generate_matching_edges( matching_edges = generate_matching_edges(link_node, command.command, context)
link_node, command.command, context
)
matching_destinations = [e.destination for e in matching_edges] matching_destinations = [e.destination for e in matching_edges]
edges = [e for e in edges if e.destination not in matching_destinations] edges = [e for e in edges if e.destination not in matching_destinations]
edges.extend(matching_edges) edges.extend(matching_edges)
if "link" in args and args["link"]: if "link" in args and args["link"]:
for link in args["link"]: for link in args["link"]:
edges = [e for e in edges if e.destination.node_id != command.command.id or e.destination.field != link[2]] edges = [
e
for e in edges
if e.destination.node_id != command.command.id or e.destination.field != link[2]
]
node_id = link[0] node_id = link[0]
if re_negid.match(node_id): if re_negid.match(node_id):
@ -428,7 +441,7 @@ def invoke_cli():
edges.append( edges.append(
Edge( Edge(
source=EdgeConnection(node_id=node_output.node_path, field=node_output.field), source=EdgeConnection(node_id=node_output.node_path, field=node_output.field),
destination=EdgeConnection(node_id=node_input.node_path, field=node_input.field) destination=EdgeConnection(node_id=node_input.node_path, field=node_input.field),
) )
) )

View File

@ -4,9 +4,5 @@ __all__ = []
dirname = os.path.dirname(os.path.abspath(__file__)) dirname = os.path.dirname(os.path.abspath(__file__))
for f in os.listdir(dirname): for f in os.listdir(dirname):
if ( if f != "__init__.py" and os.path.isfile("%s/%s" % (dirname, f)) and f[-3:] == ".py":
f != "__init__.py"
and os.path.isfile("%s/%s" % (dirname, f))
and f[-3:] == ".py"
):
__all__.append(f[:-3]) __all__.append(f[:-3])

View File

@ -4,8 +4,7 @@ from __future__ import annotations
from abc import ABC, abstractmethod from abc import ABC, abstractmethod
from inspect import signature from inspect import signature
from typing import (TYPE_CHECKING, Dict, List, Literal, TypedDict, get_args, from typing import TYPE_CHECKING, Dict, List, Literal, TypedDict, get_args, get_type_hints
get_type_hints)
from pydantic import BaseConfig, BaseModel, Field from pydantic import BaseConfig, BaseModel, Field

View File

@ -8,8 +8,7 @@ from pydantic import Field, validator
from invokeai.app.models.image import ImageField from invokeai.app.models.image import ImageField
from invokeai.app.util.misc import SEED_MAX, get_random_seed from invokeai.app.util.misc import SEED_MAX, get_random_seed
from .baseinvocation import (BaseInvocation, BaseInvocationOutput, from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationConfig, InvocationContext, UIConfig
InvocationConfig, InvocationContext, UIConfig)
class IntCollectionOutput(BaseInvocationOutput): class IntCollectionOutput(BaseInvocationOutput):
@ -27,8 +26,7 @@ class FloatCollectionOutput(BaseInvocationOutput):
type: Literal["float_collection"] = "float_collection" type: Literal["float_collection"] = "float_collection"
# Outputs # Outputs
collection: list[float] = Field( collection: list[float] = Field(default=[], description="The float collection")
default=[], description="The float collection")
class ImageCollectionOutput(BaseInvocationOutput): class ImageCollectionOutput(BaseInvocationOutput):
@ -37,8 +35,7 @@ class ImageCollectionOutput(BaseInvocationOutput):
type: Literal["image_collection"] = "image_collection" type: Literal["image_collection"] = "image_collection"
# Outputs # Outputs
collection: list[ImageField] = Field( collection: list[ImageField] = Field(default=[], description="The output images")
default=[], description="The output images")
class Config: class Config:
schema_extra = {"required": ["type", "collection"]} schema_extra = {"required": ["type", "collection"]}
@ -56,10 +53,7 @@ class RangeInvocation(BaseInvocation):
class Config(InvocationConfig): class Config(InvocationConfig):
schema_extra = { schema_extra = {
"ui": { "ui": {"title": "Range", "tags": ["range", "integer", "collection"]},
"title": "Range",
"tags": ["range", "integer", "collection"]
},
} }
@validator("stop") @validator("stop")
@ -69,9 +63,7 @@ class RangeInvocation(BaseInvocation):
return v return v
def invoke(self, context: InvocationContext) -> IntCollectionOutput: def invoke(self, context: InvocationContext) -> IntCollectionOutput:
return IntCollectionOutput( return IntCollectionOutput(collection=list(range(self.start, self.stop, self.step)))
collection=list(range(self.start, self.stop, self.step))
)
class RangeOfSizeInvocation(BaseInvocation): class RangeOfSizeInvocation(BaseInvocation):
@ -86,18 +78,11 @@ class RangeOfSizeInvocation(BaseInvocation):
class Config(InvocationConfig): class Config(InvocationConfig):
schema_extra = { schema_extra = {
"ui": { "ui": {"title": "Sized Range", "tags": ["range", "integer", "size", "collection"]},
"title": "Sized Range",
"tags": ["range", "integer", "size", "collection"]
},
} }
def invoke(self, context: InvocationContext) -> IntCollectionOutput: def invoke(self, context: InvocationContext) -> IntCollectionOutput:
return IntCollectionOutput( return IntCollectionOutput(collection=list(range(self.start, self.start + self.size, self.step)))
collection=list(
range(
self.start, self.start + self.size,
self.step)))
class RandomRangeInvocation(BaseInvocation): class RandomRangeInvocation(BaseInvocation):
@ -107,9 +92,7 @@ class RandomRangeInvocation(BaseInvocation):
# Inputs # Inputs
low: int = Field(default=0, description="The inclusive low value") low: int = Field(default=0, description="The inclusive low value")
high: int = Field( high: int = Field(default=np.iinfo(np.int32).max, description="The exclusive high value")
default=np.iinfo(np.int32).max, description="The exclusive high value"
)
size: int = Field(default=1, description="The number of values to generate") size: int = Field(default=1, description="The number of values to generate")
seed: int = Field( seed: int = Field(
ge=0, ge=0,
@ -120,19 +103,12 @@ class RandomRangeInvocation(BaseInvocation):
class Config(InvocationConfig): class Config(InvocationConfig):
schema_extra = { schema_extra = {
"ui": { "ui": {"title": "Random Range", "tags": ["range", "integer", "random", "collection"]},
"title": "Random Range",
"tags": ["range", "integer", "random", "collection"]
},
} }
def invoke(self, context: InvocationContext) -> IntCollectionOutput: def invoke(self, context: InvocationContext) -> IntCollectionOutput:
rng = np.random.default_rng(self.seed) rng = np.random.default_rng(self.seed)
return IntCollectionOutput( return IntCollectionOutput(collection=list(rng.integers(low=self.low, high=self.high, size=self.size)))
collection=list(
rng.integers(
low=self.low, high=self.high,
size=self.size)))
class ImageCollectionInvocation(BaseInvocation): class ImageCollectionInvocation(BaseInvocation):

View File

@ -3,64 +3,63 @@ from pydantic import BaseModel, Field
import re import re
import torch import torch
from compel import Compel, ReturnedEmbeddingsType from compel import Compel, ReturnedEmbeddingsType
from compel.prompt_parser import (Blend, Conjunction, from compel.prompt_parser import Blend, Conjunction, CrossAttentionControlSubstitute, FlattenedPrompt, Fragment
CrossAttentionControlSubstitute,
FlattenedPrompt, Fragment)
from ...backend.util.devices import torch_dtype from ...backend.util.devices import torch_dtype
from ...backend.model_management import ModelType from ...backend.model_management import ModelType
from ...backend.model_management.models import ModelNotFoundException from ...backend.model_management.models import ModelNotFoundException
from ...backend.model_management.lora import ModelPatcher from ...backend.model_management.lora import ModelPatcher
from ...backend.stable_diffusion.diffusion import InvokeAIDiffuserComponent from ...backend.stable_diffusion.diffusion import InvokeAIDiffuserComponent
from .baseinvocation import (BaseInvocation, BaseInvocationOutput, from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationConfig, InvocationContext
InvocationConfig, InvocationContext)
from .model import ClipField from .model import ClipField
from dataclasses import dataclass from dataclasses import dataclass
class ConditioningField(BaseModel): class ConditioningField(BaseModel):
conditioning_name: Optional[str] = Field( conditioning_name: Optional[str] = Field(default=None, description="The name of conditioning data")
default=None, description="The name of conditioning data")
class Config: class Config:
schema_extra = {"required": ["conditioning_name"]} schema_extra = {"required": ["conditioning_name"]}
@dataclass @dataclass
class BasicConditioningInfo: class BasicConditioningInfo:
#type: Literal["basic_conditioning"] = "basic_conditioning" # type: Literal["basic_conditioning"] = "basic_conditioning"
embeds: torch.Tensor embeds: torch.Tensor
extra_conditioning: Optional[InvokeAIDiffuserComponent.ExtraConditioningInfo] extra_conditioning: Optional[InvokeAIDiffuserComponent.ExtraConditioningInfo]
# weight: float # weight: float
# mode: ConditioningAlgo # mode: ConditioningAlgo
@dataclass @dataclass
class SDXLConditioningInfo(BasicConditioningInfo): class SDXLConditioningInfo(BasicConditioningInfo):
#type: Literal["sdxl_conditioning"] = "sdxl_conditioning" # type: Literal["sdxl_conditioning"] = "sdxl_conditioning"
pooled_embeds: torch.Tensor pooled_embeds: torch.Tensor
add_time_ids: torch.Tensor add_time_ids: torch.Tensor
ConditioningInfoType = Annotated[
Union[BasicConditioningInfo, SDXLConditioningInfo], ConditioningInfoType = Annotated[Union[BasicConditioningInfo, SDXLConditioningInfo], Field(discriminator="type")]
Field(discriminator="type")
]
@dataclass @dataclass
class ConditioningFieldData: class ConditioningFieldData:
conditionings: List[Union[BasicConditioningInfo, SDXLConditioningInfo]] conditionings: List[Union[BasicConditioningInfo, SDXLConditioningInfo]]
#unconditioned: Optional[torch.Tensor] # unconditioned: Optional[torch.Tensor]
#class ConditioningAlgo(str, Enum):
# class ConditioningAlgo(str, Enum):
# Compose = "compose" # Compose = "compose"
# ComposeEx = "compose_ex" # ComposeEx = "compose_ex"
# PerpNeg = "perp_neg" # PerpNeg = "perp_neg"
class CompelOutput(BaseInvocationOutput): class CompelOutput(BaseInvocationOutput):
"""Compel parser output""" """Compel parser output"""
#fmt: off # fmt: off
type: Literal["compel_output"] = "compel_output" type: Literal["compel_output"] = "compel_output"
conditioning: ConditioningField = Field(default=None, description="Conditioning") conditioning: ConditioningField = Field(default=None, description="Conditioning")
#fmt: on # fmt: on
class CompelInvocation(BaseInvocation): class CompelInvocation(BaseInvocation):
@ -74,33 +73,28 @@ class CompelInvocation(BaseInvocation):
# Schema customisation # Schema customisation
class Config(InvocationConfig): class Config(InvocationConfig):
schema_extra = { schema_extra = {
"ui": { "ui": {"title": "Prompt (Compel)", "tags": ["prompt", "compel"], "type_hints": {"model": "model"}},
"title": "Prompt (Compel)",
"tags": ["prompt", "compel"],
"type_hints": {
"model": "model"
}
},
} }
@torch.no_grad() @torch.no_grad()
def invoke(self, context: InvocationContext) -> CompelOutput: def invoke(self, context: InvocationContext) -> CompelOutput:
tokenizer_info = context.services.model_manager.get_model( tokenizer_info = context.services.model_manager.get_model(
**self.clip.tokenizer.dict(), context=context, **self.clip.tokenizer.dict(),
context=context,
) )
text_encoder_info = context.services.model_manager.get_model( text_encoder_info = context.services.model_manager.get_model(
**self.clip.text_encoder.dict(), context=context, **self.clip.text_encoder.dict(),
context=context,
) )
def _lora_loader(): def _lora_loader():
for lora in self.clip.loras: for lora in self.clip.loras:
lora_info = context.services.model_manager.get_model( lora_info = context.services.model_manager.get_model(**lora.dict(exclude={"weight"}), context=context)
**lora.dict(exclude={"weight"}), context=context)
yield (lora_info.context.model, lora.weight) yield (lora_info.context.model, lora.weight)
del lora_info del lora_info
return return
#loras = [(context.services.model_manager.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras] # loras = [(context.services.model_manager.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras]
ti_list = [] ti_list = []
for trigger in re.findall(r"<[a-zA-Z0-9., _-]+>", self.prompt): for trigger in re.findall(r"<[a-zA-Z0-9., _-]+>", self.prompt):
@ -116,15 +110,18 @@ class CompelInvocation(BaseInvocation):
) )
except ModelNotFoundException: except ModelNotFoundException:
# print(e) # print(e)
#import traceback # import traceback
#print(traceback.format_exc()) # print(traceback.format_exc())
print(f"Warn: trigger: \"{trigger}\" not found") print(f'Warn: trigger: "{trigger}" not found')
with ModelPatcher.apply_lora_text_encoder(text_encoder_info.context.model, _lora_loader()),\
ModelPatcher.apply_ti(tokenizer_info.context.model, text_encoder_info.context.model, ti_list) as (tokenizer, ti_manager),\
ModelPatcher.apply_clip_skip(text_encoder_info.context.model, self.clip.skipped_layers),\
text_encoder_info as text_encoder:
with ModelPatcher.apply_lora_text_encoder(
text_encoder_info.context.model, _lora_loader()
), ModelPatcher.apply_ti(tokenizer_info.context.model, text_encoder_info.context.model, ti_list) as (
tokenizer,
ti_manager,
), ModelPatcher.apply_clip_skip(
text_encoder_info.context.model, self.clip.skipped_layers
), text_encoder_info as text_encoder:
compel = Compel( compel = Compel(
tokenizer=tokenizer, tokenizer=tokenizer,
text_encoder=text_encoder, text_encoder=text_encoder,
@ -139,14 +136,12 @@ class CompelInvocation(BaseInvocation):
if context.services.configuration.log_tokenization: if context.services.configuration.log_tokenization:
log_tokenization_for_prompt_object(prompt, tokenizer) log_tokenization_for_prompt_object(prompt, tokenizer)
c, options = compel.build_conditioning_tensor_for_prompt_object( c, options = compel.build_conditioning_tensor_for_prompt_object(prompt)
prompt)
ec = InvokeAIDiffuserComponent.ExtraConditioningInfo( ec = InvokeAIDiffuserComponent.ExtraConditioningInfo(
tokens_count_including_eos_bos=get_max_token_count( tokens_count_including_eos_bos=get_max_token_count(tokenizer, conjunction),
tokenizer, conjunction), cross_attention_control_args=options.get("cross_attention_control", None),
cross_attention_control_args=options.get( )
"cross_attention_control", None),)
c = c.detach().to("cpu") c = c.detach().to("cpu")
@ -168,24 +163,26 @@ class CompelInvocation(BaseInvocation):
), ),
) )
class SDXLPromptInvocationBase: class SDXLPromptInvocationBase:
def run_clip_raw(self, context, clip_field, prompt, get_pooled): def run_clip_raw(self, context, clip_field, prompt, get_pooled):
tokenizer_info = context.services.model_manager.get_model( tokenizer_info = context.services.model_manager.get_model(
**clip_field.tokenizer.dict(), context=context, **clip_field.tokenizer.dict(),
context=context,
) )
text_encoder_info = context.services.model_manager.get_model( text_encoder_info = context.services.model_manager.get_model(
**clip_field.text_encoder.dict(), context=context, **clip_field.text_encoder.dict(),
context=context,
) )
def _lora_loader(): def _lora_loader():
for lora in clip_field.loras: for lora in clip_field.loras:
lora_info = context.services.model_manager.get_model( lora_info = context.services.model_manager.get_model(**lora.dict(exclude={"weight"}), context=context)
**lora.dict(exclude={"weight"}), context=context)
yield (lora_info.context.model, lora.weight) yield (lora_info.context.model, lora.weight)
del lora_info del lora_info
return return
#loras = [(context.services.model_manager.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras] # loras = [(context.services.model_manager.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras]
ti_list = [] ti_list = []
for trigger in re.findall(r"<[a-zA-Z0-9., _-]+>", prompt): for trigger in re.findall(r"<[a-zA-Z0-9., _-]+>", prompt):
@ -201,15 +198,18 @@ class SDXLPromptInvocationBase:
) )
except ModelNotFoundException: except ModelNotFoundException:
# print(e) # print(e)
#import traceback # import traceback
#print(traceback.format_exc()) # print(traceback.format_exc())
print(f"Warn: trigger: \"{trigger}\" not found") print(f'Warn: trigger: "{trigger}" not found')
with ModelPatcher.apply_lora_text_encoder(text_encoder_info.context.model, _lora_loader()),\
ModelPatcher.apply_ti(tokenizer_info.context.model, text_encoder_info.context.model, ti_list) as (tokenizer, ti_manager),\
ModelPatcher.apply_clip_skip(text_encoder_info.context.model, clip_field.skipped_layers),\
text_encoder_info as text_encoder:
with ModelPatcher.apply_lora_text_encoder(
text_encoder_info.context.model, _lora_loader()
), ModelPatcher.apply_ti(tokenizer_info.context.model, text_encoder_info.context.model, ti_list) as (
tokenizer,
ti_manager,
), ModelPatcher.apply_clip_skip(
text_encoder_info.context.model, clip_field.skipped_layers
), text_encoder_info as text_encoder:
text_inputs = tokenizer( text_inputs = tokenizer(
prompt, prompt,
padding="max_length", padding="max_length",
@ -241,21 +241,22 @@ class SDXLPromptInvocationBase:
def run_clip_compel(self, context, clip_field, prompt, get_pooled): def run_clip_compel(self, context, clip_field, prompt, get_pooled):
tokenizer_info = context.services.model_manager.get_model( tokenizer_info = context.services.model_manager.get_model(
**clip_field.tokenizer.dict(), context=context, **clip_field.tokenizer.dict(),
context=context,
) )
text_encoder_info = context.services.model_manager.get_model( text_encoder_info = context.services.model_manager.get_model(
**clip_field.text_encoder.dict(), context=context, **clip_field.text_encoder.dict(),
context=context,
) )
def _lora_loader(): def _lora_loader():
for lora in clip_field.loras: for lora in clip_field.loras:
lora_info = context.services.model_manager.get_model( lora_info = context.services.model_manager.get_model(**lora.dict(exclude={"weight"}), context=context)
**lora.dict(exclude={"weight"}), context=context)
yield (lora_info.context.model, lora.weight) yield (lora_info.context.model, lora.weight)
del lora_info del lora_info
return return
#loras = [(context.services.model_manager.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras] # loras = [(context.services.model_manager.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras]
ti_list = [] ti_list = []
for trigger in re.findall(r"<[a-zA-Z0-9., _-]+>", prompt): for trigger in re.findall(r"<[a-zA-Z0-9., _-]+>", prompt):
@ -271,22 +272,25 @@ class SDXLPromptInvocationBase:
) )
except ModelNotFoundException: except ModelNotFoundException:
# print(e) # print(e)
#import traceback # import traceback
#print(traceback.format_exc()) # print(traceback.format_exc())
print(f"Warn: trigger: \"{trigger}\" not found") print(f'Warn: trigger: "{trigger}" not found')
with ModelPatcher.apply_lora_text_encoder(text_encoder_info.context.model, _lora_loader()),\
ModelPatcher.apply_ti(tokenizer_info.context.model, text_encoder_info.context.model, ti_list) as (tokenizer, ti_manager),\
ModelPatcher.apply_clip_skip(text_encoder_info.context.model, clip_field.skipped_layers),\
text_encoder_info as text_encoder:
with ModelPatcher.apply_lora_text_encoder(
text_encoder_info.context.model, _lora_loader()
), ModelPatcher.apply_ti(tokenizer_info.context.model, text_encoder_info.context.model, ti_list) as (
tokenizer,
ti_manager,
), ModelPatcher.apply_clip_skip(
text_encoder_info.context.model, clip_field.skipped_layers
), text_encoder_info as text_encoder:
compel = Compel( compel = Compel(
tokenizer=tokenizer, tokenizer=tokenizer,
text_encoder=text_encoder, text_encoder=text_encoder,
textual_inversion_manager=ti_manager, textual_inversion_manager=ti_manager,
dtype_for_device_getter=torch_dtype, dtype_for_device_getter=torch_dtype,
truncate_long_prompts=True, # TODO: truncate_long_prompts=True, # TODO:
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, # TODO: clip skip returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, # TODO: clip skip
requires_pooled=True, requires_pooled=True,
) )
@ -320,6 +324,7 @@ class SDXLPromptInvocationBase:
return c, c_pooled, ec return c, c_pooled, ec
class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase): class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
"""Parse prompt using compel package to conditioning.""" """Parse prompt using compel package to conditioning."""
@ -339,13 +344,7 @@ class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
# Schema customisation # Schema customisation
class Config(InvocationConfig): class Config(InvocationConfig):
schema_extra = { schema_extra = {
"ui": { "ui": {"title": "SDXL Prompt (Compel)", "tags": ["prompt", "compel"], "type_hints": {"model": "model"}},
"title": "SDXL Prompt (Compel)",
"tags": ["prompt", "compel"],
"type_hints": {
"model": "model"
}
},
} }
@torch.no_grad() @torch.no_grad()
@ -360,9 +359,7 @@ class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
crop_coords = (self.crop_top, self.crop_left) crop_coords = (self.crop_top, self.crop_left)
target_size = (self.target_height, self.target_width) target_size = (self.target_height, self.target_width)
add_time_ids = torch.tensor([ add_time_ids = torch.tensor([original_size + crop_coords + target_size])
original_size + crop_coords + target_size
])
conditioning_data = ConditioningFieldData( conditioning_data = ConditioningFieldData(
conditionings=[ conditionings=[
@ -384,12 +381,13 @@ class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
), ),
) )
class SDXLRefinerCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase): class SDXLRefinerCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
"""Parse prompt using compel package to conditioning.""" """Parse prompt using compel package to conditioning."""
type: Literal["sdxl_refiner_compel_prompt"] = "sdxl_refiner_compel_prompt" type: Literal["sdxl_refiner_compel_prompt"] = "sdxl_refiner_compel_prompt"
style: str = Field(default="", description="Style prompt") # TODO: ? style: str = Field(default="", description="Style prompt") # TODO: ?
original_width: int = Field(1024, description="") original_width: int = Field(1024, description="")
original_height: int = Field(1024, description="") original_height: int = Field(1024, description="")
crop_top: int = Field(0, description="") crop_top: int = Field(0, description="")
@ -403,9 +401,7 @@ class SDXLRefinerCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase
"ui": { "ui": {
"title": "SDXL Refiner Prompt (Compel)", "title": "SDXL Refiner Prompt (Compel)",
"tags": ["prompt", "compel"], "tags": ["prompt", "compel"],
"type_hints": { "type_hints": {"model": "model"},
"model": "model"
}
}, },
} }
@ -416,9 +412,7 @@ class SDXLRefinerCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase
original_size = (self.original_height, self.original_width) original_size = (self.original_height, self.original_width)
crop_coords = (self.crop_top, self.crop_left) crop_coords = (self.crop_top, self.crop_left)
add_time_ids = torch.tensor([ add_time_ids = torch.tensor([original_size + crop_coords + (self.aesthetic_score,)])
original_size + crop_coords + (self.aesthetic_score,)
])
conditioning_data = ConditioningFieldData( conditioning_data = ConditioningFieldData(
conditionings=[ conditionings=[
@ -426,7 +420,7 @@ class SDXLRefinerCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase
embeds=c2, embeds=c2,
pooled_embeds=c2_pooled, pooled_embeds=c2_pooled,
add_time_ids=add_time_ids, add_time_ids=add_time_ids,
extra_conditioning=ec2, # or None extra_conditioning=ec2, # or None
) )
] ]
) )
@ -440,6 +434,7 @@ class SDXLRefinerCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase
), ),
) )
class SDXLRawPromptInvocation(BaseInvocation, SDXLPromptInvocationBase): class SDXLRawPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
"""Pass unmodified prompt to conditioning without compel processing.""" """Pass unmodified prompt to conditioning without compel processing."""
@ -459,13 +454,7 @@ class SDXLRawPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
# Schema customisation # Schema customisation
class Config(InvocationConfig): class Config(InvocationConfig):
schema_extra = { schema_extra = {
"ui": { "ui": {"title": "SDXL Prompt (Raw)", "tags": ["prompt", "compel"], "type_hints": {"model": "model"}},
"title": "SDXL Prompt (Raw)",
"tags": ["prompt", "compel"],
"type_hints": {
"model": "model"
}
},
} }
@torch.no_grad() @torch.no_grad()
@ -480,9 +469,7 @@ class SDXLRawPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
crop_coords = (self.crop_top, self.crop_left) crop_coords = (self.crop_top, self.crop_left)
target_size = (self.target_height, self.target_width) target_size = (self.target_height, self.target_width)
add_time_ids = torch.tensor([ add_time_ids = torch.tensor([original_size + crop_coords + target_size])
original_size + crop_coords + target_size
])
conditioning_data = ConditioningFieldData( conditioning_data = ConditioningFieldData(
conditionings=[ conditionings=[
@ -504,12 +491,13 @@ class SDXLRawPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
), ),
) )
class SDXLRefinerRawPromptInvocation(BaseInvocation, SDXLPromptInvocationBase): class SDXLRefinerRawPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
"""Parse prompt using compel package to conditioning.""" """Parse prompt using compel package to conditioning."""
type: Literal["sdxl_refiner_raw_prompt"] = "sdxl_refiner_raw_prompt" type: Literal["sdxl_refiner_raw_prompt"] = "sdxl_refiner_raw_prompt"
style: str = Field(default="", description="Style prompt") # TODO: ? style: str = Field(default="", description="Style prompt") # TODO: ?
original_width: int = Field(1024, description="") original_width: int = Field(1024, description="")
original_height: int = Field(1024, description="") original_height: int = Field(1024, description="")
crop_top: int = Field(0, description="") crop_top: int = Field(0, description="")
@ -523,9 +511,7 @@ class SDXLRefinerRawPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
"ui": { "ui": {
"title": "SDXL Refiner Prompt (Raw)", "title": "SDXL Refiner Prompt (Raw)",
"tags": ["prompt", "compel"], "tags": ["prompt", "compel"],
"type_hints": { "type_hints": {"model": "model"},
"model": "model"
}
}, },
} }
@ -536,9 +522,7 @@ class SDXLRefinerRawPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
original_size = (self.original_height, self.original_width) original_size = (self.original_height, self.original_width)
crop_coords = (self.crop_top, self.crop_left) crop_coords = (self.crop_top, self.crop_left)
add_time_ids = torch.tensor([ add_time_ids = torch.tensor([original_size + crop_coords + (self.aesthetic_score,)])
original_size + crop_coords + (self.aesthetic_score,)
])
conditioning_data = ConditioningFieldData( conditioning_data = ConditioningFieldData(
conditionings=[ conditionings=[
@ -546,7 +530,7 @@ class SDXLRefinerRawPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
embeds=c2, embeds=c2,
pooled_embeds=c2_pooled, pooled_embeds=c2_pooled,
add_time_ids=add_time_ids, add_time_ids=add_time_ids,
extra_conditioning=ec2, # or None extra_conditioning=ec2, # or None
) )
] ]
) )
@ -563,11 +547,14 @@ class SDXLRefinerRawPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
class ClipSkipInvocationOutput(BaseInvocationOutput): class ClipSkipInvocationOutput(BaseInvocationOutput):
"""Clip skip node output""" """Clip skip node output"""
type: Literal["clip_skip_output"] = "clip_skip_output" type: Literal["clip_skip_output"] = "clip_skip_output"
clip: ClipField = Field(None, description="Clip with skipped layers") clip: ClipField = Field(None, description="Clip with skipped layers")
class ClipSkipInvocation(BaseInvocation): class ClipSkipInvocation(BaseInvocation):
"""Skip layers in clip text_encoder model.""" """Skip layers in clip text_encoder model."""
type: Literal["clip_skip"] = "clip_skip" type: Literal["clip_skip"] = "clip_skip"
clip: ClipField = Field(None, description="Clip to use") clip: ClipField = Field(None, description="Clip to use")
@ -575,10 +562,7 @@ class ClipSkipInvocation(BaseInvocation):
class Config(InvocationConfig): class Config(InvocationConfig):
schema_extra = { schema_extra = {
"ui": { "ui": {"title": "CLIP Skip", "tags": ["clip", "skip"]},
"title": "CLIP Skip",
"tags": ["clip", "skip"]
},
} }
def invoke(self, context: InvocationContext) -> ClipSkipInvocationOutput: def invoke(self, context: InvocationContext) -> ClipSkipInvocationOutput:
@ -589,46 +573,26 @@ class ClipSkipInvocation(BaseInvocation):
def get_max_token_count( def get_max_token_count(
tokenizer, prompt: Union[FlattenedPrompt, Blend, Conjunction], tokenizer, prompt: Union[FlattenedPrompt, Blend, Conjunction], truncate_if_too_long=False
truncate_if_too_long=False) -> int: ) -> int:
if type(prompt) is Blend: if type(prompt) is Blend:
blend: Blend = prompt blend: Blend = prompt
return max( return max([get_max_token_count(tokenizer, p, truncate_if_too_long) for p in blend.prompts])
[
get_max_token_count(tokenizer, p, truncate_if_too_long)
for p in blend.prompts
]
)
elif type(prompt) is Conjunction: elif type(prompt) is Conjunction:
conjunction: Conjunction = prompt conjunction: Conjunction = prompt
return sum( return sum([get_max_token_count(tokenizer, p, truncate_if_too_long) for p in conjunction.prompts])
[
get_max_token_count(tokenizer, p, truncate_if_too_long)
for p in conjunction.prompts
]
)
else: else:
return len( return len(get_tokens_for_prompt_object(tokenizer, prompt, truncate_if_too_long))
get_tokens_for_prompt_object(
tokenizer, prompt, truncate_if_too_long))
def get_tokens_for_prompt_object( def get_tokens_for_prompt_object(tokenizer, parsed_prompt: FlattenedPrompt, truncate_if_too_long=True) -> List[str]:
tokenizer, parsed_prompt: FlattenedPrompt, truncate_if_too_long=True
) -> List[str]:
if type(parsed_prompt) is Blend: if type(parsed_prompt) is Blend:
raise ValueError( raise ValueError("Blend is not supported here - you need to get tokens for each of its .children")
"Blend is not supported here - you need to get tokens for each of its .children"
)
text_fragments = [ text_fragments = [
x.text x.text
if type(x) is Fragment if type(x) is Fragment
else ( else (" ".join([f.text for f in x.original]) if type(x) is CrossAttentionControlSubstitute else str(x))
" ".join([f.text for f in x.original])
if type(x) is CrossAttentionControlSubstitute
else str(x)
)
for x in parsed_prompt.children for x in parsed_prompt.children
] ]
text = " ".join(text_fragments) text = " ".join(text_fragments)
@ -639,25 +603,17 @@ def get_tokens_for_prompt_object(
return tokens return tokens
def log_tokenization_for_conjunction( def log_tokenization_for_conjunction(c: Conjunction, tokenizer, display_label_prefix=None):
c: Conjunction, tokenizer, display_label_prefix=None
):
display_label_prefix = display_label_prefix or "" display_label_prefix = display_label_prefix or ""
for i, p in enumerate(c.prompts): for i, p in enumerate(c.prompts):
if len(c.prompts) > 1: if len(c.prompts) > 1:
this_display_label_prefix = f"{display_label_prefix}(conjunction part {i + 1}, weight={c.weights[i]})" this_display_label_prefix = f"{display_label_prefix}(conjunction part {i + 1}, weight={c.weights[i]})"
else: else:
this_display_label_prefix = display_label_prefix this_display_label_prefix = display_label_prefix
log_tokenization_for_prompt_object( log_tokenization_for_prompt_object(p, tokenizer, display_label_prefix=this_display_label_prefix)
p,
tokenizer,
display_label_prefix=this_display_label_prefix
)
def log_tokenization_for_prompt_object( def log_tokenization_for_prompt_object(p: Union[Blend, FlattenedPrompt], tokenizer, display_label_prefix=None):
p: Union[Blend, FlattenedPrompt], tokenizer, display_label_prefix=None
):
display_label_prefix = display_label_prefix or "" display_label_prefix = display_label_prefix or ""
if type(p) is Blend: if type(p) is Blend:
blend: Blend = p blend: Blend = p
@ -694,13 +650,10 @@ def log_tokenization_for_prompt_object(
) )
else: else:
text = " ".join([x.text for x in flattened_prompt.children]) text = " ".join([x.text for x in flattened_prompt.children])
log_tokenization_for_text( log_tokenization_for_text(text, tokenizer, display_label=display_label_prefix)
text, tokenizer, display_label=display_label_prefix
)
def log_tokenization_for_text( def log_tokenization_for_text(text, tokenizer, display_label=None, truncate_if_too_long=False):
text, tokenizer, display_label=None, truncate_if_too_long=False):
"""shows how the prompt is tokenized """shows how the prompt is tokenized
# usually tokens have '</w>' to indicate end-of-word, # usually tokens have '</w>' to indicate end-of-word,
# but for readability it has been replaced with ' ' # but for readability it has been replaced with ' '

View File

@ -6,20 +6,29 @@ from typing import Dict, List, Literal, Optional, Union
import cv2 import cv2
import numpy as np import numpy as np
from controlnet_aux import (CannyDetector, ContentShuffleDetector, HEDdetector, from controlnet_aux import (
LeresDetector, LineartAnimeDetector, CannyDetector,
LineartDetector, MediapipeFaceDetector, ContentShuffleDetector,
MidasDetector, MLSDdetector, NormalBaeDetector, HEDdetector,
OpenposeDetector, PidiNetDetector, SamDetector, LeresDetector,
ZoeDetector) LineartAnimeDetector,
LineartDetector,
MediapipeFaceDetector,
MidasDetector,
MLSDdetector,
NormalBaeDetector,
OpenposeDetector,
PidiNetDetector,
SamDetector,
ZoeDetector,
)
from controlnet_aux.util import HWC3, ade_palette from controlnet_aux.util import HWC3, ade_palette
from PIL import Image from PIL import Image
from pydantic import BaseModel, Field, validator from pydantic import BaseModel, Field, validator
from ...backend.model_management import BaseModelType, ModelType from ...backend.model_management import BaseModelType, ModelType
from ..models.image import ImageCategory, ImageField, ResourceOrigin from ..models.image import ImageCategory, ImageField, ResourceOrigin
from .baseinvocation import (BaseInvocation, BaseInvocationOutput, from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationConfig, InvocationContext
InvocationConfig, InvocationContext)
from ..models.image import ImageOutput, PILInvocationConfig from ..models.image import ImageOutput, PILInvocationConfig
CONTROLNET_DEFAULT_MODELS = [ CONTROLNET_DEFAULT_MODELS = [
@ -34,7 +43,6 @@ CONTROLNET_DEFAULT_MODELS = [
"lllyasviel/sd-controlnet-scribble", "lllyasviel/sd-controlnet-scribble",
"lllyasviel/sd-controlnet-normal", "lllyasviel/sd-controlnet-normal",
"lllyasviel/sd-controlnet-mlsd", "lllyasviel/sd-controlnet-mlsd",
############################################# #############################################
# lllyasviel sd v1.5, ControlNet v1.1 models # lllyasviel sd v1.5, ControlNet v1.1 models
############################################# #############################################
@ -56,7 +64,6 @@ CONTROLNET_DEFAULT_MODELS = [
"lllyasviel/control_v11e_sd15_shuffle", "lllyasviel/control_v11e_sd15_shuffle",
"lllyasviel/control_v11e_sd15_ip2p", "lllyasviel/control_v11e_sd15_ip2p",
"lllyasviel/control_v11f1e_sd15_tile", "lllyasviel/control_v11f1e_sd15_tile",
################################################# #################################################
# thibaud sd v2.1 models (ControlNet v1.0? or v1.1? # thibaud sd v2.1 models (ControlNet v1.0? or v1.1?
################################################## ##################################################
@ -71,7 +78,6 @@ CONTROLNET_DEFAULT_MODELS = [
"thibaud/controlnet-sd21-lineart-diffusers", "thibaud/controlnet-sd21-lineart-diffusers",
"thibaud/controlnet-sd21-normalbae-diffusers", "thibaud/controlnet-sd21-normalbae-diffusers",
"thibaud/controlnet-sd21-ade20k-diffusers", "thibaud/controlnet-sd21-ade20k-diffusers",
############################################## ##############################################
# ControlNetMediaPipeface, ControlNet v1.1 # ControlNetMediaPipeface, ControlNet v1.1
############################################## ##############################################
@ -83,10 +89,17 @@ CONTROLNET_DEFAULT_MODELS = [
] ]
CONTROLNET_NAME_VALUES = Literal[tuple(CONTROLNET_DEFAULT_MODELS)] CONTROLNET_NAME_VALUES = Literal[tuple(CONTROLNET_DEFAULT_MODELS)]
CONTROLNET_MODE_VALUES = Literal[tuple( CONTROLNET_MODE_VALUES = Literal[tuple(["balanced", "more_prompt", "more_control", "unbalanced"])]
["balanced", "more_prompt", "more_control", "unbalanced"])] CONTROLNET_RESIZE_VALUES = Literal[
CONTROLNET_RESIZE_VALUES = Literal[tuple( tuple(
["just_resize", "crop_resize", "fill_resize", "just_resize_simple",])] [
"just_resize",
"crop_resize",
"fill_resize",
"just_resize_simple",
]
)
]
class ControlNetModelField(BaseModel): class ControlNetModelField(BaseModel):
@ -98,21 +111,17 @@ class ControlNetModelField(BaseModel):
class ControlField(BaseModel): class ControlField(BaseModel):
image: ImageField = Field(default=None, description="The control image") image: ImageField = Field(default=None, description="The control image")
control_model: Optional[ControlNetModelField] = Field( control_model: Optional[ControlNetModelField] = Field(default=None, description="The ControlNet model to use")
default=None, description="The ControlNet model to use")
# control_weight: Optional[float] = Field(default=1, description="weight given to controlnet") # control_weight: Optional[float] = Field(default=1, description="weight given to controlnet")
control_weight: Union[float, List[float]] = Field( control_weight: Union[float, List[float]] = Field(default=1, description="The weight given to the ControlNet")
default=1, description="The weight given to the ControlNet")
begin_step_percent: float = Field( begin_step_percent: float = Field(
default=0, ge=0, le=1, default=0, ge=0, le=1, description="When the ControlNet is first applied (% of total steps)"
description="When the ControlNet is first applied (% of total steps)") )
end_step_percent: float = Field( end_step_percent: float = Field(
default=1, ge=0, le=1, default=1, ge=0, le=1, description="When the ControlNet is last applied (% of total steps)"
description="When the ControlNet is last applied (% of total steps)") )
control_mode: CONTROLNET_MODE_VALUES = Field( control_mode: CONTROLNET_MODE_VALUES = Field(default="balanced", description="The control mode to use")
default="balanced", description="The control mode to use") resize_mode: CONTROLNET_RESIZE_VALUES = Field(default="just_resize", description="The resize mode to use")
resize_mode: CONTROLNET_RESIZE_VALUES = Field(
default="just_resize", description="The resize mode to use")
@validator("control_weight") @validator("control_weight")
def validate_control_weight(cls, v): def validate_control_weight(cls, v):
@ -120,11 +129,10 @@ class ControlField(BaseModel):
if isinstance(v, list): if isinstance(v, list):
for i in v: for i in v:
if i < -1 or i > 2: if i < -1 or i > 2:
raise ValueError( raise ValueError("Control weights must be within -1 to 2 range")
'Control weights must be within -1 to 2 range')
else: else:
if v < -1 or v > 2: if v < -1 or v > 2:
raise ValueError('Control weights must be within -1 to 2 range') raise ValueError("Control weights must be within -1 to 2 range")
return v return v
class Config: class Config:
@ -136,12 +144,13 @@ class ControlField(BaseModel):
"control_model": "controlnet_model", "control_model": "controlnet_model",
# "control_weight": "number", # "control_weight": "number",
} }
} },
} }
class ControlOutput(BaseInvocationOutput): class ControlOutput(BaseInvocationOutput):
"""node output for ControlNet info""" """node output for ControlNet info"""
# fmt: off # fmt: off
type: Literal["control_output"] = "control_output" type: Literal["control_output"] = "control_output"
control: ControlField = Field(default=None, description="The control info") control: ControlField = Field(default=None, description="The control info")
@ -150,6 +159,7 @@ class ControlOutput(BaseInvocationOutput):
class ControlNetInvocation(BaseInvocation): class ControlNetInvocation(BaseInvocation):
"""Collects ControlNet info to pass to other nodes""" """Collects ControlNet info to pass to other nodes"""
# fmt: off # fmt: off
type: Literal["controlnet"] = "controlnet" type: Literal["controlnet"] = "controlnet"
# Inputs # Inputs
@ -176,7 +186,7 @@ class ControlNetInvocation(BaseInvocation):
# "cfg_scale": "float", # "cfg_scale": "float",
"cfg_scale": "number", "cfg_scale": "number",
"control_weight": "float", "control_weight": "float",
} },
}, },
} }
@ -205,10 +215,7 @@ class ImageProcessorInvocation(BaseInvocation, PILInvocationConfig):
class Config(InvocationConfig): class Config(InvocationConfig):
schema_extra = { schema_extra = {
"ui": { "ui": {"title": "Image Processor", "tags": ["image", "processor"]},
"title": "Image Processor",
"tags": ["image", "processor"]
},
} }
def run_processor(self, image): def run_processor(self, image):
@ -233,7 +240,7 @@ class ImageProcessorInvocation(BaseInvocation, PILInvocationConfig):
image_category=ImageCategory.CONTROL, image_category=ImageCategory.CONTROL,
session_id=context.graph_execution_state_id, session_id=context.graph_execution_state_id,
node_id=self.id, node_id=self.id,
is_intermediate=self.is_intermediate is_intermediate=self.is_intermediate,
) )
"""Builds an ImageOutput and its ImageField""" """Builds an ImageOutput and its ImageField"""
@ -248,9 +255,9 @@ class ImageProcessorInvocation(BaseInvocation, PILInvocationConfig):
) )
class CannyImageProcessorInvocation( class CannyImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
ImageProcessorInvocation, PILInvocationConfig):
"""Canny edge detection for ControlNet""" """Canny edge detection for ControlNet"""
# fmt: off # fmt: off
type: Literal["canny_image_processor"] = "canny_image_processor" type: Literal["canny_image_processor"] = "canny_image_processor"
# Input # Input
@ -260,22 +267,18 @@ class CannyImageProcessorInvocation(
class Config(InvocationConfig): class Config(InvocationConfig):
schema_extra = { schema_extra = {
"ui": { "ui": {"title": "Canny Processor", "tags": ["controlnet", "canny", "image", "processor"]},
"title": "Canny Processor",
"tags": ["controlnet", "canny", "image", "processor"]
},
} }
def run_processor(self, image): def run_processor(self, image):
canny_processor = CannyDetector() canny_processor = CannyDetector()
processed_image = canny_processor( processed_image = canny_processor(image, self.low_threshold, self.high_threshold)
image, self.low_threshold, self.high_threshold)
return processed_image return processed_image
class HedImageProcessorInvocation( class HedImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
ImageProcessorInvocation, PILInvocationConfig):
"""Applies HED edge detection to image""" """Applies HED edge detection to image"""
# fmt: off # fmt: off
type: Literal["hed_image_processor"] = "hed_image_processor" type: Literal["hed_image_processor"] = "hed_image_processor"
# Inputs # Inputs
@ -288,27 +291,25 @@ class HedImageProcessorInvocation(
class Config(InvocationConfig): class Config(InvocationConfig):
schema_extra = { schema_extra = {
"ui": { "ui": {"title": "Softedge(HED) Processor", "tags": ["controlnet", "softedge", "hed", "image", "processor"]},
"title": "Softedge(HED) Processor",
"tags": ["controlnet", "softedge", "hed", "image", "processor"]
},
} }
def run_processor(self, image): def run_processor(self, image):
hed_processor = HEDdetector.from_pretrained("lllyasviel/Annotators") hed_processor = HEDdetector.from_pretrained("lllyasviel/Annotators")
processed_image = hed_processor(image, processed_image = hed_processor(
detect_resolution=self.detect_resolution, image,
image_resolution=self.image_resolution, detect_resolution=self.detect_resolution,
# safe not supported in controlnet_aux v0.0.3 image_resolution=self.image_resolution,
# safe=self.safe, # safe not supported in controlnet_aux v0.0.3
scribble=self.scribble, # safe=self.safe,
) scribble=self.scribble,
)
return processed_image return processed_image
class LineartImageProcessorInvocation( class LineartImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
ImageProcessorInvocation, PILInvocationConfig):
"""Applies line art processing to image""" """Applies line art processing to image"""
# fmt: off # fmt: off
type: Literal["lineart_image_processor"] = "lineart_image_processor" type: Literal["lineart_image_processor"] = "lineart_image_processor"
# Inputs # Inputs
@ -319,24 +320,20 @@ class LineartImageProcessorInvocation(
class Config(InvocationConfig): class Config(InvocationConfig):
schema_extra = { schema_extra = {
"ui": { "ui": {"title": "Lineart Processor", "tags": ["controlnet", "lineart", "image", "processor"]},
"title": "Lineart Processor",
"tags": ["controlnet", "lineart", "image", "processor"]
},
} }
def run_processor(self, image): def run_processor(self, image):
lineart_processor = LineartDetector.from_pretrained( lineart_processor = LineartDetector.from_pretrained("lllyasviel/Annotators")
"lllyasviel/Annotators")
processed_image = lineart_processor( processed_image = lineart_processor(
image, detect_resolution=self.detect_resolution, image, detect_resolution=self.detect_resolution, image_resolution=self.image_resolution, coarse=self.coarse
image_resolution=self.image_resolution, coarse=self.coarse) )
return processed_image return processed_image
class LineartAnimeImageProcessorInvocation( class LineartAnimeImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
ImageProcessorInvocation, PILInvocationConfig):
"""Applies line art anime processing to image""" """Applies line art anime processing to image"""
# fmt: off # fmt: off
type: Literal["lineart_anime_image_processor"] = "lineart_anime_image_processor" type: Literal["lineart_anime_image_processor"] = "lineart_anime_image_processor"
# Inputs # Inputs
@ -348,23 +345,23 @@ class LineartAnimeImageProcessorInvocation(
schema_extra = { schema_extra = {
"ui": { "ui": {
"title": "Lineart Anime Processor", "title": "Lineart Anime Processor",
"tags": ["controlnet", "lineart", "anime", "image", "processor"] "tags": ["controlnet", "lineart", "anime", "image", "processor"],
}, },
} }
def run_processor(self, image): def run_processor(self, image):
processor = LineartAnimeDetector.from_pretrained( processor = LineartAnimeDetector.from_pretrained("lllyasviel/Annotators")
"lllyasviel/Annotators") processed_image = processor(
processed_image = processor(image, image,
detect_resolution=self.detect_resolution, detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution, image_resolution=self.image_resolution,
) )
return processed_image return processed_image
class OpenposeImageProcessorInvocation( class OpenposeImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
ImageProcessorInvocation, PILInvocationConfig):
"""Applies Openpose processing to image""" """Applies Openpose processing to image"""
# fmt: off # fmt: off
type: Literal["openpose_image_processor"] = "openpose_image_processor" type: Literal["openpose_image_processor"] = "openpose_image_processor"
# Inputs # Inputs
@ -375,25 +372,23 @@ class OpenposeImageProcessorInvocation(
class Config(InvocationConfig): class Config(InvocationConfig):
schema_extra = { schema_extra = {
"ui": { "ui": {"title": "Openpose Processor", "tags": ["controlnet", "openpose", "image", "processor"]},
"title": "Openpose Processor",
"tags": ["controlnet", "openpose", "image", "processor"]
},
} }
def run_processor(self, image): def run_processor(self, image):
openpose_processor = OpenposeDetector.from_pretrained( openpose_processor = OpenposeDetector.from_pretrained("lllyasviel/Annotators")
"lllyasviel/Annotators")
processed_image = openpose_processor( processed_image = openpose_processor(
image, detect_resolution=self.detect_resolution, image,
detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution, image_resolution=self.image_resolution,
hand_and_face=self.hand_and_face,) hand_and_face=self.hand_and_face,
)
return processed_image return processed_image
class MidasDepthImageProcessorInvocation( class MidasDepthImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
ImageProcessorInvocation, PILInvocationConfig):
"""Applies Midas depth processing to image""" """Applies Midas depth processing to image"""
# fmt: off # fmt: off
type: Literal["midas_depth_image_processor"] = "midas_depth_image_processor" type: Literal["midas_depth_image_processor"] = "midas_depth_image_processor"
# Inputs # Inputs
@ -405,26 +400,24 @@ class MidasDepthImageProcessorInvocation(
class Config(InvocationConfig): class Config(InvocationConfig):
schema_extra = { schema_extra = {
"ui": { "ui": {"title": "Midas (Depth) Processor", "tags": ["controlnet", "midas", "depth", "image", "processor"]},
"title": "Midas (Depth) Processor",
"tags": ["controlnet", "midas", "depth", "image", "processor"]
},
} }
def run_processor(self, image): def run_processor(self, image):
midas_processor = MidasDetector.from_pretrained("lllyasviel/Annotators") midas_processor = MidasDetector.from_pretrained("lllyasviel/Annotators")
processed_image = midas_processor(image, processed_image = midas_processor(
a=np.pi * self.a_mult, image,
bg_th=self.bg_th, a=np.pi * self.a_mult,
# dept_and_normal not supported in controlnet_aux v0.0.3 bg_th=self.bg_th,
# depth_and_normal=self.depth_and_normal, # dept_and_normal not supported in controlnet_aux v0.0.3
) # depth_and_normal=self.depth_and_normal,
)
return processed_image return processed_image
class NormalbaeImageProcessorInvocation( class NormalbaeImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
ImageProcessorInvocation, PILInvocationConfig):
"""Applies NormalBae processing to image""" """Applies NormalBae processing to image"""
# fmt: off # fmt: off
type: Literal["normalbae_image_processor"] = "normalbae_image_processor" type: Literal["normalbae_image_processor"] = "normalbae_image_processor"
# Inputs # Inputs
@ -434,24 +427,20 @@ class NormalbaeImageProcessorInvocation(
class Config(InvocationConfig): class Config(InvocationConfig):
schema_extra = { schema_extra = {
"ui": { "ui": {"title": "Normal BAE Processor", "tags": ["controlnet", "normal", "bae", "image", "processor"]},
"title": "Normal BAE Processor",
"tags": ["controlnet", "normal", "bae", "image", "processor"]
},
} }
def run_processor(self, image): def run_processor(self, image):
normalbae_processor = NormalBaeDetector.from_pretrained( normalbae_processor = NormalBaeDetector.from_pretrained("lllyasviel/Annotators")
"lllyasviel/Annotators")
processed_image = normalbae_processor( processed_image = normalbae_processor(
image, detect_resolution=self.detect_resolution, image, detect_resolution=self.detect_resolution, image_resolution=self.image_resolution
image_resolution=self.image_resolution) )
return processed_image return processed_image
class MlsdImageProcessorInvocation( class MlsdImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
ImageProcessorInvocation, PILInvocationConfig):
"""Applies MLSD processing to image""" """Applies MLSD processing to image"""
# fmt: off # fmt: off
type: Literal["mlsd_image_processor"] = "mlsd_image_processor" type: Literal["mlsd_image_processor"] = "mlsd_image_processor"
# Inputs # Inputs
@ -463,24 +452,24 @@ class MlsdImageProcessorInvocation(
class Config(InvocationConfig): class Config(InvocationConfig):
schema_extra = { schema_extra = {
"ui": { "ui": {"title": "MLSD Processor", "tags": ["controlnet", "mlsd", "image", "processor"]},
"title": "MLSD Processor",
"tags": ["controlnet", "mlsd", "image", "processor"]
},
} }
def run_processor(self, image): def run_processor(self, image):
mlsd_processor = MLSDdetector.from_pretrained("lllyasviel/Annotators") mlsd_processor = MLSDdetector.from_pretrained("lllyasviel/Annotators")
processed_image = mlsd_processor( processed_image = mlsd_processor(
image, detect_resolution=self.detect_resolution, image,
image_resolution=self.image_resolution, thr_v=self.thr_v, detect_resolution=self.detect_resolution,
thr_d=self.thr_d) image_resolution=self.image_resolution,
thr_v=self.thr_v,
thr_d=self.thr_d,
)
return processed_image return processed_image
class PidiImageProcessorInvocation( class PidiImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
ImageProcessorInvocation, PILInvocationConfig):
"""Applies PIDI processing to image""" """Applies PIDI processing to image"""
# fmt: off # fmt: off
type: Literal["pidi_image_processor"] = "pidi_image_processor" type: Literal["pidi_image_processor"] = "pidi_image_processor"
# Inputs # Inputs
@ -492,25 +481,24 @@ class PidiImageProcessorInvocation(
class Config(InvocationConfig): class Config(InvocationConfig):
schema_extra = { schema_extra = {
"ui": { "ui": {"title": "PIDI Processor", "tags": ["controlnet", "pidi", "image", "processor"]},
"title": "PIDI Processor",
"tags": ["controlnet", "pidi", "image", "processor"]
},
} }
def run_processor(self, image): def run_processor(self, image):
pidi_processor = PidiNetDetector.from_pretrained( pidi_processor = PidiNetDetector.from_pretrained("lllyasviel/Annotators")
"lllyasviel/Annotators")
processed_image = pidi_processor( processed_image = pidi_processor(
image, detect_resolution=self.detect_resolution, image,
image_resolution=self.image_resolution, safe=self.safe, detect_resolution=self.detect_resolution,
scribble=self.scribble) image_resolution=self.image_resolution,
safe=self.safe,
scribble=self.scribble,
)
return processed_image return processed_image
class ContentShuffleImageProcessorInvocation( class ContentShuffleImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
ImageProcessorInvocation, PILInvocationConfig):
"""Applies content shuffle processing to image""" """Applies content shuffle processing to image"""
# fmt: off # fmt: off
type: Literal["content_shuffle_image_processor"] = "content_shuffle_image_processor" type: Literal["content_shuffle_image_processor"] = "content_shuffle_image_processor"
# Inputs # Inputs
@ -525,48 +513,45 @@ class ContentShuffleImageProcessorInvocation(
schema_extra = { schema_extra = {
"ui": { "ui": {
"title": "Content Shuffle Processor", "title": "Content Shuffle Processor",
"tags": ["controlnet", "contentshuffle", "image", "processor"] "tags": ["controlnet", "contentshuffle", "image", "processor"],
}, },
} }
def run_processor(self, image): def run_processor(self, image):
content_shuffle_processor = ContentShuffleDetector() content_shuffle_processor = ContentShuffleDetector()
processed_image = content_shuffle_processor(image, processed_image = content_shuffle_processor(
detect_resolution=self.detect_resolution, image,
image_resolution=self.image_resolution, detect_resolution=self.detect_resolution,
h=self.h, image_resolution=self.image_resolution,
w=self.w, h=self.h,
f=self.f w=self.w,
) f=self.f,
)
return processed_image return processed_image
# should work with controlnet_aux >= 0.0.4 and timm <= 0.6.13 # should work with controlnet_aux >= 0.0.4 and timm <= 0.6.13
class ZoeDepthImageProcessorInvocation( class ZoeDepthImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
ImageProcessorInvocation, PILInvocationConfig):
"""Applies Zoe depth processing to image""" """Applies Zoe depth processing to image"""
# fmt: off # fmt: off
type: Literal["zoe_depth_image_processor"] = "zoe_depth_image_processor" type: Literal["zoe_depth_image_processor"] = "zoe_depth_image_processor"
# fmt: on # fmt: on
class Config(InvocationConfig): class Config(InvocationConfig):
schema_extra = { schema_extra = {
"ui": { "ui": {"title": "Zoe (Depth) Processor", "tags": ["controlnet", "zoe", "depth", "image", "processor"]},
"title": "Zoe (Depth) Processor",
"tags": ["controlnet", "zoe", "depth", "image", "processor"]
},
} }
def run_processor(self, image): def run_processor(self, image):
zoe_depth_processor = ZoeDetector.from_pretrained( zoe_depth_processor = ZoeDetector.from_pretrained("lllyasviel/Annotators")
"lllyasviel/Annotators")
processed_image = zoe_depth_processor(image) processed_image = zoe_depth_processor(image)
return processed_image return processed_image
class MediapipeFaceProcessorInvocation( class MediapipeFaceProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
ImageProcessorInvocation, PILInvocationConfig):
"""Applies mediapipe face processing to image""" """Applies mediapipe face processing to image"""
# fmt: off # fmt: off
type: Literal["mediapipe_face_processor"] = "mediapipe_face_processor" type: Literal["mediapipe_face_processor"] = "mediapipe_face_processor"
# Inputs # Inputs
@ -576,26 +561,22 @@ class MediapipeFaceProcessorInvocation(
class Config(InvocationConfig): class Config(InvocationConfig):
schema_extra = { schema_extra = {
"ui": { "ui": {"title": "Mediapipe Processor", "tags": ["controlnet", "mediapipe", "image", "processor"]},
"title": "Mediapipe Processor",
"tags": ["controlnet", "mediapipe", "image", "processor"]
},
} }
def run_processor(self, image): def run_processor(self, image):
# MediaPipeFaceDetector throws an error if image has alpha channel # MediaPipeFaceDetector throws an error if image has alpha channel
# so convert to RGB if needed # so convert to RGB if needed
if image.mode == 'RGBA': if image.mode == "RGBA":
image = image.convert('RGB') image = image.convert("RGB")
mediapipe_face_processor = MediapipeFaceDetector() mediapipe_face_processor = MediapipeFaceDetector()
processed_image = mediapipe_face_processor( processed_image = mediapipe_face_processor(image, max_faces=self.max_faces, min_confidence=self.min_confidence)
image, max_faces=self.max_faces, min_confidence=self.min_confidence)
return processed_image return processed_image
class LeresImageProcessorInvocation( class LeresImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
ImageProcessorInvocation, PILInvocationConfig):
"""Applies leres processing to image""" """Applies leres processing to image"""
# fmt: off # fmt: off
type: Literal["leres_image_processor"] = "leres_image_processor" type: Literal["leres_image_processor"] = "leres_image_processor"
# Inputs # Inputs
@ -608,24 +589,23 @@ class LeresImageProcessorInvocation(
class Config(InvocationConfig): class Config(InvocationConfig):
schema_extra = { schema_extra = {
"ui": { "ui": {"title": "Leres (Depth) Processor", "tags": ["controlnet", "leres", "depth", "image", "processor"]},
"title": "Leres (Depth) Processor",
"tags": ["controlnet", "leres", "depth", "image", "processor"]
},
} }
def run_processor(self, image): def run_processor(self, image):
leres_processor = LeresDetector.from_pretrained("lllyasviel/Annotators") leres_processor = LeresDetector.from_pretrained("lllyasviel/Annotators")
processed_image = leres_processor( processed_image = leres_processor(
image, thr_a=self.thr_a, thr_b=self.thr_b, boost=self.boost, image,
thr_a=self.thr_a,
thr_b=self.thr_b,
boost=self.boost,
detect_resolution=self.detect_resolution, detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution) image_resolution=self.image_resolution,
)
return processed_image return processed_image
class TileResamplerProcessorInvocation( class TileResamplerProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
ImageProcessorInvocation, PILInvocationConfig):
# fmt: off # fmt: off
type: Literal["tile_image_processor"] = "tile_image_processor" type: Literal["tile_image_processor"] = "tile_image_processor"
# Inputs # Inputs
@ -637,16 +617,17 @@ class TileResamplerProcessorInvocation(
schema_extra = { schema_extra = {
"ui": { "ui": {
"title": "Tile Resample Processor", "title": "Tile Resample Processor",
"tags": ["controlnet", "tile", "resample", "image", "processor"] "tags": ["controlnet", "tile", "resample", "image", "processor"],
}, },
} }
# tile_resample copied from sd-webui-controlnet/scripts/processor.py # tile_resample copied from sd-webui-controlnet/scripts/processor.py
def tile_resample(self, def tile_resample(
np_img: np.ndarray, self,
res=512, # never used? np_img: np.ndarray,
down_sampling_rate=1.0, res=512, # never used?
): down_sampling_rate=1.0,
):
np_img = HWC3(np_img) np_img = HWC3(np_img)
if down_sampling_rate < 1.1: if down_sampling_rate < 1.1:
return np_img return np_img
@ -658,36 +639,41 @@ class TileResamplerProcessorInvocation(
def run_processor(self, img): def run_processor(self, img):
np_img = np.array(img, dtype=np.uint8) np_img = np.array(img, dtype=np.uint8)
processed_np_image = self.tile_resample(np_img, processed_np_image = self.tile_resample(
# res=self.tile_size, np_img,
down_sampling_rate=self.down_sampling_rate # res=self.tile_size,
) down_sampling_rate=self.down_sampling_rate,
)
processed_image = Image.fromarray(processed_np_image) processed_image = Image.fromarray(processed_np_image)
return processed_image return processed_image
class SegmentAnythingProcessorInvocation( class SegmentAnythingProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
ImageProcessorInvocation, PILInvocationConfig):
"""Applies segment anything processing to image""" """Applies segment anything processing to image"""
# fmt: off # fmt: off
type: Literal["segment_anything_processor"] = "segment_anything_processor" type: Literal["segment_anything_processor"] = "segment_anything_processor"
# fmt: on # fmt: on
class Config(InvocationConfig): class Config(InvocationConfig):
schema_extra = {"ui": {"title": "Segment Anything Processor", "tags": [ schema_extra = {
"controlnet", "segment", "anything", "sam", "image", "processor"]}, } "ui": {
"title": "Segment Anything Processor",
"tags": ["controlnet", "segment", "anything", "sam", "image", "processor"],
},
}
def run_processor(self, image): def run_processor(self, image):
# segment_anything_processor = SamDetector.from_pretrained("ybelkada/segment-anything", subfolder="checkpoints") # segment_anything_processor = SamDetector.from_pretrained("ybelkada/segment-anything", subfolder="checkpoints")
segment_anything_processor = SamDetectorReproducibleColors.from_pretrained( segment_anything_processor = SamDetectorReproducibleColors.from_pretrained(
"ybelkada/segment-anything", subfolder="checkpoints") "ybelkada/segment-anything", subfolder="checkpoints"
)
np_img = np.array(image, dtype=np.uint8) np_img = np.array(image, dtype=np.uint8)
processed_image = segment_anything_processor(np_img) processed_image = segment_anything_processor(np_img)
return processed_image return processed_image
class SamDetectorReproducibleColors(SamDetector): class SamDetectorReproducibleColors(SamDetector):
# overriding SamDetector.show_anns() method to use reproducible colors for segmentation image # overriding SamDetector.show_anns() method to use reproducible colors for segmentation image
# base class show_anns() method randomizes colors, # base class show_anns() method randomizes colors,
# which seems to also lead to non-reproducible image generation # which seems to also lead to non-reproducible image generation
@ -695,19 +681,15 @@ class SamDetectorReproducibleColors(SamDetector):
def show_anns(self, anns: List[Dict]): def show_anns(self, anns: List[Dict]):
if len(anns) == 0: if len(anns) == 0:
return return
sorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=True) sorted_anns = sorted(anns, key=(lambda x: x["area"]), reverse=True)
h, w = anns[0]['segmentation'].shape h, w = anns[0]["segmentation"].shape
final_img = Image.fromarray( final_img = Image.fromarray(np.zeros((h, w, 3), dtype=np.uint8), mode="RGB")
np.zeros((h, w, 3), dtype=np.uint8), mode="RGB")
palette = ade_palette() palette = ade_palette()
for i, ann in enumerate(sorted_anns): for i, ann in enumerate(sorted_anns):
m = ann['segmentation'] m = ann["segmentation"]
img = np.empty((m.shape[0], m.shape[1], 3), dtype=np.uint8) img = np.empty((m.shape[0], m.shape[1], 3), dtype=np.uint8)
# doing modulo just in case number of annotated regions exceeds number of colors in palette # doing modulo just in case number of annotated regions exceeds number of colors in palette
ann_color = palette[i % len(palette)] ann_color = palette[i % len(palette)]
img[:, :] = ann_color img[:, :] = ann_color
final_img.paste( final_img.paste(Image.fromarray(img, mode="RGB"), (0, 0), Image.fromarray(np.uint8(m * 255)))
Image.fromarray(img, mode="RGB"),
(0, 0),
Image.fromarray(np.uint8(m * 255)))
return np.array(final_img, dtype=np.uint8) return np.array(final_img, dtype=np.uint8)

View File

@ -37,10 +37,7 @@ class CvInpaintInvocation(BaseInvocation, CvInvocationConfig):
class Config(InvocationConfig): class Config(InvocationConfig):
schema_extra = { schema_extra = {
"ui": { "ui": {"title": "OpenCV Inpaint", "tags": ["opencv", "inpaint"]},
"title": "OpenCV Inpaint",
"tags": ["opencv", "inpaint"]
},
} }
def invoke(self, context: InvocationContext) -> ImageOutput: def invoke(self, context: InvocationContext) -> ImageOutput:

View File

@ -6,8 +6,7 @@ from typing import Literal, Optional, get_args
import torch import torch
from pydantic import Field from pydantic import Field
from invokeai.app.models.image import (ColorField, ImageCategory, ImageField, from invokeai.app.models.image import ColorField, ImageCategory, ImageField, ResourceOrigin
ResourceOrigin)
from invokeai.app.util.misc import SEED_MAX, get_random_seed from invokeai.app.util.misc import SEED_MAX, get_random_seed
from invokeai.backend.generator.inpaint import infill_methods from invokeai.backend.generator.inpaint import infill_methods
@ -25,13 +24,12 @@ from contextlib import contextmanager, ExitStack, ContextDecorator
SAMPLER_NAME_VALUES = Literal[tuple(InvokeAIGenerator.schedulers())] SAMPLER_NAME_VALUES = Literal[tuple(InvokeAIGenerator.schedulers())]
INFILL_METHODS = Literal[tuple(infill_methods())] INFILL_METHODS = Literal[tuple(infill_methods())]
DEFAULT_INFILL_METHOD = ( DEFAULT_INFILL_METHOD = "patchmatch" if "patchmatch" in get_args(INFILL_METHODS) else "tile"
"patchmatch" if "patchmatch" in get_args(INFILL_METHODS) else "tile"
)
from .latent import get_scheduler from .latent import get_scheduler
class OldModelContext(ContextDecorator): class OldModelContext(ContextDecorator):
model: StableDiffusionGeneratorPipeline model: StableDiffusionGeneratorPipeline
@ -44,6 +42,7 @@ class OldModelContext(ContextDecorator):
def __exit__(self, *exc): def __exit__(self, *exc):
return False return False
class OldModelInfo: class OldModelInfo:
name: str name: str
hash: str hash: str
@ -64,20 +63,34 @@ class InpaintInvocation(BaseInvocation):
positive_conditioning: Optional[ConditioningField] = Field(description="Positive conditioning for generation") positive_conditioning: Optional[ConditioningField] = Field(description="Positive conditioning for generation")
negative_conditioning: Optional[ConditioningField] = Field(description="Negative conditioning for generation") negative_conditioning: Optional[ConditioningField] = Field(description="Negative conditioning for generation")
seed: int = Field(ge=0, le=SEED_MAX, description="The seed to use (omit for random)", default_factory=get_random_seed) seed: int = Field(
steps: int = Field(default=30, gt=0, description="The number of steps to use to generate the image") ge=0, le=SEED_MAX, description="The seed to use (omit for random)", default_factory=get_random_seed
width: int = Field(default=512, multiple_of=8, gt=0, description="The width of the resulting image", ) )
height: int = Field(default=512, multiple_of=8, gt=0, description="The height of the resulting image", ) steps: int = Field(default=30, gt=0, description="The number of steps to use to generate the image")
cfg_scale: float = Field(default=7.5, ge=1, description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt", ) width: int = Field(
scheduler: SAMPLER_NAME_VALUES = Field(default="euler", description="The scheduler to use" ) default=512,
multiple_of=8,
gt=0,
description="The width of the resulting image",
)
height: int = Field(
default=512,
multiple_of=8,
gt=0,
description="The height of the resulting image",
)
cfg_scale: float = Field(
default=7.5,
ge=1,
description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt",
)
scheduler: SAMPLER_NAME_VALUES = Field(default="euler", description="The scheduler to use")
unet: UNetField = Field(default=None, description="UNet model") unet: UNetField = Field(default=None, description="UNet model")
vae: VaeField = Field(default=None, description="Vae model") vae: VaeField = Field(default=None, description="Vae model")
# Inputs # Inputs
image: Optional[ImageField] = Field(description="The input image") image: Optional[ImageField] = Field(description="The input image")
strength: float = Field( strength: float = Field(default=0.75, gt=0, le=1, description="The strength of the original image")
default=0.75, gt=0, le=1, description="The strength of the original image"
)
fit: bool = Field( fit: bool = Field(
default=True, default=True,
description="Whether or not the result should be fit to the aspect ratio of the input image", description="Whether or not the result should be fit to the aspect ratio of the input image",
@ -86,18 +99,10 @@ class InpaintInvocation(BaseInvocation):
# Inputs # Inputs
mask: Optional[ImageField] = Field(description="The mask") mask: Optional[ImageField] = Field(description="The mask")
seam_size: int = Field(default=96, ge=1, description="The seam inpaint size (px)") seam_size: int = Field(default=96, ge=1, description="The seam inpaint size (px)")
seam_blur: int = Field( seam_blur: int = Field(default=16, ge=0, description="The seam inpaint blur radius (px)")
default=16, ge=0, description="The seam inpaint blur radius (px)" seam_strength: float = Field(default=0.75, gt=0, le=1, description="The seam inpaint strength")
) seam_steps: int = Field(default=30, ge=1, description="The number of steps to use for seam inpaint")
seam_strength: float = Field( tile_size: int = Field(default=32, ge=1, description="The tile infill method size (px)")
default=0.75, gt=0, le=1, description="The seam inpaint strength"
)
seam_steps: int = Field(
default=30, ge=1, description="The number of steps to use for seam inpaint"
)
tile_size: int = Field(
default=32, ge=1, description="The tile infill method size (px)"
)
infill_method: INFILL_METHODS = Field( infill_method: INFILL_METHODS = Field(
default=DEFAULT_INFILL_METHOD, default=DEFAULT_INFILL_METHOD,
description="The method used to infill empty regions (px)", description="The method used to infill empty regions (px)",
@ -128,10 +133,7 @@ class InpaintInvocation(BaseInvocation):
# Schema customisation # Schema customisation
class Config(InvocationConfig): class Config(InvocationConfig):
schema_extra = { schema_extra = {
"ui": { "ui": {"tags": ["stable-diffusion", "image"], "title": "Inpaint"},
"tags": ["stable-diffusion", "image"],
"title": "Inpaint"
},
} }
def dispatch_progress( def dispatch_progress(
@ -162,18 +164,23 @@ class InpaintInvocation(BaseInvocation):
def _lora_loader(): def _lora_loader():
for lora in self.unet.loras: for lora in self.unet.loras:
lora_info = context.services.model_manager.get_model( lora_info = context.services.model_manager.get_model(
**lora.dict(exclude={"weight"}), context=context,) **lora.dict(exclude={"weight"}),
context=context,
)
yield (lora_info.context.model, lora.weight) yield (lora_info.context.model, lora.weight)
del lora_info del lora_info
return return
unet_info = context.services.model_manager.get_model(**self.unet.unet.dict(), context=context,)
vae_info = context.services.model_manager.get_model(**self.vae.vae.dict(), context=context,)
with vae_info as vae,\ unet_info = context.services.model_manager.get_model(
ModelPatcher.apply_lora_unet(unet_info.context.model, _lora_loader()),\ **self.unet.unet.dict(),
unet_info as unet: context=context,
)
vae_info = context.services.model_manager.get_model(
**self.vae.vae.dict(),
context=context,
)
with vae_info as vae, ModelPatcher.apply_lora_unet(unet_info.context.model, _lora_loader()), unet_info as unet:
device = context.services.model_manager.mgr.cache.execution_device device = context.services.model_manager.mgr.cache.execution_device
dtype = context.services.model_manager.mgr.cache.precision dtype = context.services.model_manager.mgr.cache.precision
@ -197,21 +204,11 @@ class InpaintInvocation(BaseInvocation):
) )
def invoke(self, context: InvocationContext) -> ImageOutput: def invoke(self, context: InvocationContext) -> ImageOutput:
image = ( image = None if self.image is None else context.services.images.get_pil_image(self.image.image_name)
None mask = None if self.mask is None else context.services.images.get_pil_image(self.mask.image_name)
if self.image is None
else context.services.images.get_pil_image(self.image.image_name)
)
mask = (
None
if self.mask is None
else context.services.images.get_pil_image(self.mask.image_name)
)
# Get the source node id (we are invoking the prepared node) # Get the source node id (we are invoking the prepared node)
graph_execution_state = context.services.graph_execution_manager.get( graph_execution_state = context.services.graph_execution_manager.get(context.graph_execution_state_id)
context.graph_execution_state_id
)
source_node_id = graph_execution_state.prepared_source_mapping[self.id] source_node_id = graph_execution_state.prepared_source_mapping[self.id]
scheduler = get_scheduler( scheduler = get_scheduler(

View File

@ -9,9 +9,13 @@ from pathlib import Path
from typing import Union from typing import Union
from invokeai.app.invocations.metadata import CoreMetadata from invokeai.app.invocations.metadata import CoreMetadata
from ..models.image import ( from ..models.image import (
ImageCategory, ImageField, ResourceOrigin, ImageCategory,
PILInvocationConfig, ImageOutput, MaskOutput, ImageField,
) ResourceOrigin,
PILInvocationConfig,
ImageOutput,
MaskOutput,
)
from .baseinvocation import ( from .baseinvocation import (
BaseInvocation, BaseInvocation,
InvocationContext, InvocationContext,
@ -20,6 +24,7 @@ from .baseinvocation import (
from invokeai.backend.image_util.safety_checker import SafetyChecker from invokeai.backend.image_util.safety_checker import SafetyChecker
from invokeai.backend.image_util.invisible_watermark import InvisibleWatermark from invokeai.backend.image_util.invisible_watermark import InvisibleWatermark
class LoadImageInvocation(BaseInvocation): class LoadImageInvocation(BaseInvocation):
"""Load an image and provide it as output.""" """Load an image and provide it as output."""
@ -34,10 +39,7 @@ class LoadImageInvocation(BaseInvocation):
class Config(InvocationConfig): class Config(InvocationConfig):
schema_extra = { schema_extra = {
"ui": { "ui": {"title": "Load Image", "tags": ["image", "load"]},
"title": "Load Image",
"tags": ["image", "load"]
},
} }
def invoke(self, context: InvocationContext) -> ImageOutput: def invoke(self, context: InvocationContext) -> ImageOutput:
@ -56,16 +58,11 @@ class ShowImageInvocation(BaseInvocation):
type: Literal["show_image"] = "show_image" type: Literal["show_image"] = "show_image"
# Inputs # Inputs
image: Optional[ImageField] = Field( image: Optional[ImageField] = Field(default=None, description="The image to show")
default=None, description="The image to show"
)
class Config(InvocationConfig): class Config(InvocationConfig):
schema_extra = { schema_extra = {
"ui": { "ui": {"title": "Show Image", "tags": ["image", "show"]},
"title": "Show Image",
"tags": ["image", "show"]
},
} }
def invoke(self, context: InvocationContext) -> ImageOutput: def invoke(self, context: InvocationContext) -> ImageOutput:
@ -98,18 +95,13 @@ class ImageCropInvocation(BaseInvocation, PILInvocationConfig):
class Config(InvocationConfig): class Config(InvocationConfig):
schema_extra = { schema_extra = {
"ui": { "ui": {"title": "Crop Image", "tags": ["image", "crop"]},
"title": "Crop Image",
"tags": ["image", "crop"]
},
} }
def invoke(self, context: InvocationContext) -> ImageOutput: def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name) image = context.services.images.get_pil_image(self.image.image_name)
image_crop = Image.new( image_crop = Image.new(mode="RGBA", size=(self.width, self.height), color=(0, 0, 0, 0))
mode="RGBA", size=(self.width, self.height), color=(0, 0, 0, 0)
)
image_crop.paste(image, (-self.x, -self.y)) image_crop.paste(image, (-self.x, -self.y))
image_dto = context.services.images.create( image_dto = context.services.images.create(
@ -144,21 +136,14 @@ class ImagePasteInvocation(BaseInvocation, PILInvocationConfig):
class Config(InvocationConfig): class Config(InvocationConfig):
schema_extra = { schema_extra = {
"ui": { "ui": {"title": "Paste Image", "tags": ["image", "paste"]},
"title": "Paste Image",
"tags": ["image", "paste"]
},
} }
def invoke(self, context: InvocationContext) -> ImageOutput: def invoke(self, context: InvocationContext) -> ImageOutput:
base_image = context.services.images.get_pil_image(self.base_image.image_name) base_image = context.services.images.get_pil_image(self.base_image.image_name)
image = context.services.images.get_pil_image(self.image.image_name) image = context.services.images.get_pil_image(self.image.image_name)
mask = ( mask = (
None None if self.mask is None else ImageOps.invert(context.services.images.get_pil_image(self.mask.image_name))
if self.mask is None
else ImageOps.invert(
context.services.images.get_pil_image(self.mask.image_name)
)
) )
# TODO: probably shouldn't invert mask here... should user be required to do it? # TODO: probably shouldn't invert mask here... should user be required to do it?
@ -167,9 +152,7 @@ class ImagePasteInvocation(BaseInvocation, PILInvocationConfig):
max_x = max(base_image.width, image.width + self.x) max_x = max(base_image.width, image.width + self.x)
max_y = max(base_image.height, image.height + self.y) max_y = max(base_image.height, image.height + self.y)
new_image = Image.new( new_image = Image.new(mode="RGBA", size=(max_x - min_x, max_y - min_y), color=(0, 0, 0, 0))
mode="RGBA", size=(max_x - min_x, max_y - min_y), color=(0, 0, 0, 0)
)
new_image.paste(base_image, (abs(min_x), abs(min_y))) new_image.paste(base_image, (abs(min_x), abs(min_y)))
new_image.paste(image, (max(0, self.x), max(0, self.y)), mask=mask) new_image.paste(image, (max(0, self.x), max(0, self.y)), mask=mask)
@ -202,10 +185,7 @@ class MaskFromAlphaInvocation(BaseInvocation, PILInvocationConfig):
class Config(InvocationConfig): class Config(InvocationConfig):
schema_extra = { schema_extra = {
"ui": { "ui": {"title": "Mask From Alpha", "tags": ["image", "mask", "alpha"]},
"title": "Mask From Alpha",
"tags": ["image", "mask", "alpha"]
},
} }
def invoke(self, context: InvocationContext) -> MaskOutput: def invoke(self, context: InvocationContext) -> MaskOutput:
@ -244,10 +224,7 @@ class ImageMultiplyInvocation(BaseInvocation, PILInvocationConfig):
class Config(InvocationConfig): class Config(InvocationConfig):
schema_extra = { schema_extra = {
"ui": { "ui": {"title": "Multiply Images", "tags": ["image", "multiply"]},
"title": "Multiply Images",
"tags": ["image", "multiply"]
},
} }
def invoke(self, context: InvocationContext) -> ImageOutput: def invoke(self, context: InvocationContext) -> ImageOutput:
@ -288,10 +265,7 @@ class ImageChannelInvocation(BaseInvocation, PILInvocationConfig):
class Config(InvocationConfig): class Config(InvocationConfig):
schema_extra = { schema_extra = {
"ui": { "ui": {"title": "Image Channel", "tags": ["image", "channel"]},
"title": "Image Channel",
"tags": ["image", "channel"]
},
} }
def invoke(self, context: InvocationContext) -> ImageOutput: def invoke(self, context: InvocationContext) -> ImageOutput:
@ -331,10 +305,7 @@ class ImageConvertInvocation(BaseInvocation, PILInvocationConfig):
class Config(InvocationConfig): class Config(InvocationConfig):
schema_extra = { schema_extra = {
"ui": { "ui": {"title": "Convert Image", "tags": ["image", "convert"]},
"title": "Convert Image",
"tags": ["image", "convert"]
},
} }
def invoke(self, context: InvocationContext) -> ImageOutput: def invoke(self, context: InvocationContext) -> ImageOutput:
@ -357,6 +328,7 @@ class ImageConvertInvocation(BaseInvocation, PILInvocationConfig):
height=image_dto.height, height=image_dto.height,
) )
class ImageBlurInvocation(BaseInvocation, PILInvocationConfig): class ImageBlurInvocation(BaseInvocation, PILInvocationConfig):
"""Blurs an image""" """Blurs an image"""
@ -371,19 +343,14 @@ class ImageBlurInvocation(BaseInvocation, PILInvocationConfig):
class Config(InvocationConfig): class Config(InvocationConfig):
schema_extra = { schema_extra = {
"ui": { "ui": {"title": "Blur Image", "tags": ["image", "blur"]},
"title": "Blur Image",
"tags": ["image", "blur"]
},
} }
def invoke(self, context: InvocationContext) -> ImageOutput: def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name) image = context.services.images.get_pil_image(self.image.image_name)
blur = ( blur = (
ImageFilter.GaussianBlur(self.radius) ImageFilter.GaussianBlur(self.radius) if self.blur_type == "gaussian" else ImageFilter.BoxBlur(self.radius)
if self.blur_type == "gaussian"
else ImageFilter.BoxBlur(self.radius)
) )
blur_image = image.filter(blur) blur_image = image.filter(blur)
@ -438,10 +405,7 @@ class ImageResizeInvocation(BaseInvocation, PILInvocationConfig):
class Config(InvocationConfig): class Config(InvocationConfig):
schema_extra = { schema_extra = {
"ui": { "ui": {"title": "Resize Image", "tags": ["image", "resize"]},
"title": "Resize Image",
"tags": ["image", "resize"]
},
} }
def invoke(self, context: InvocationContext) -> ImageOutput: def invoke(self, context: InvocationContext) -> ImageOutput:
@ -484,10 +448,7 @@ class ImageScaleInvocation(BaseInvocation, PILInvocationConfig):
class Config(InvocationConfig): class Config(InvocationConfig):
schema_extra = { schema_extra = {
"ui": { "ui": {"title": "Scale Image", "tags": ["image", "scale"]},
"title": "Scale Image",
"tags": ["image", "scale"]
},
} }
def invoke(self, context: InvocationContext) -> ImageOutput: def invoke(self, context: InvocationContext) -> ImageOutput:
@ -532,10 +493,7 @@ class ImageLerpInvocation(BaseInvocation, PILInvocationConfig):
class Config(InvocationConfig): class Config(InvocationConfig):
schema_extra = { schema_extra = {
"ui": { "ui": {"title": "Image Linear Interpolation", "tags": ["image", "linear", "interpolation", "lerp"]},
"title": "Image Linear Interpolation",
"tags": ["image", "linear", "interpolation", "lerp"]
},
} }
def invoke(self, context: InvocationContext) -> ImageOutput: def invoke(self, context: InvocationContext) -> ImageOutput:
@ -561,6 +519,7 @@ class ImageLerpInvocation(BaseInvocation, PILInvocationConfig):
height=image_dto.height, height=image_dto.height,
) )
class ImageInverseLerpInvocation(BaseInvocation, PILInvocationConfig): class ImageInverseLerpInvocation(BaseInvocation, PILInvocationConfig):
"""Inverse linear interpolation of all pixels of an image""" """Inverse linear interpolation of all pixels of an image"""
@ -577,7 +536,7 @@ class ImageInverseLerpInvocation(BaseInvocation, PILInvocationConfig):
schema_extra = { schema_extra = {
"ui": { "ui": {
"title": "Image Inverse Linear Interpolation", "title": "Image Inverse Linear Interpolation",
"tags": ["image", "linear", "interpolation", "inverse"] "tags": ["image", "linear", "interpolation", "inverse"],
}, },
} }
@ -585,12 +544,7 @@ class ImageInverseLerpInvocation(BaseInvocation, PILInvocationConfig):
image = context.services.images.get_pil_image(self.image.image_name) image = context.services.images.get_pil_image(self.image.image_name)
image_arr = numpy.asarray(image, dtype=numpy.float32) image_arr = numpy.asarray(image, dtype=numpy.float32)
image_arr = ( image_arr = numpy.minimum(numpy.maximum(image_arr - self.min, 0) / float(self.max - self.min), 1) * 255
numpy.minimum(
numpy.maximum(image_arr - self.min, 0) / float(self.max - self.min), 1
)
* 255
)
ilerp_image = Image.fromarray(numpy.uint8(image_arr)) ilerp_image = Image.fromarray(numpy.uint8(image_arr))
@ -609,6 +563,7 @@ class ImageInverseLerpInvocation(BaseInvocation, PILInvocationConfig):
height=image_dto.height, height=image_dto.height,
) )
class ImageNSFWBlurInvocation(BaseInvocation, PILInvocationConfig): class ImageNSFWBlurInvocation(BaseInvocation, PILInvocationConfig):
"""Add blur to NSFW-flagged images""" """Add blur to NSFW-flagged images"""
@ -622,22 +577,19 @@ class ImageNSFWBlurInvocation(BaseInvocation, PILInvocationConfig):
class Config(InvocationConfig): class Config(InvocationConfig):
schema_extra = { schema_extra = {
"ui": { "ui": {"title": "Blur NSFW Images", "tags": ["image", "nsfw", "checker"]},
"title": "Blur NSFW Images",
"tags": ["image", "nsfw", "checker"]
},
} }
def invoke(self, context: InvocationContext) -> ImageOutput: def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name) image = context.services.images.get_pil_image(self.image.image_name)
logger = context.services.logger logger = context.services.logger
logger.debug("Running NSFW checker") logger.debug("Running NSFW checker")
if SafetyChecker.has_nsfw_concept(image): if SafetyChecker.has_nsfw_concept(image):
logger.info("A potentially NSFW image has been detected. Image will be blurred.") logger.info("A potentially NSFW image has been detected. Image will be blurred.")
blurry_image = image.filter(filter=ImageFilter.GaussianBlur(radius=32)) blurry_image = image.filter(filter=ImageFilter.GaussianBlur(radius=32))
caution = self._get_caution_img() caution = self._get_caution_img()
blurry_image.paste(caution,(0,0),caution) blurry_image.paste(caution, (0, 0), caution)
image = blurry_image image = blurry_image
image_dto = context.services.images.create( image_dto = context.services.images.create(
@ -649,20 +601,22 @@ class ImageNSFWBlurInvocation(BaseInvocation, PILInvocationConfig):
is_intermediate=self.is_intermediate, is_intermediate=self.is_intermediate,
metadata=self.metadata.dict() if self.metadata else None, metadata=self.metadata.dict() if self.metadata else None,
) )
return ImageOutput( return ImageOutput(
image=ImageField(image_name=image_dto.image_name), image=ImageField(image_name=image_dto.image_name),
width=image_dto.width, width=image_dto.width,
height=image_dto.height, height=image_dto.height,
) )
def _get_caution_img(self)->Image: def _get_caution_img(self) -> Image:
import invokeai.app.assets.images as image_assets import invokeai.app.assets.images as image_assets
caution = Image.open(Path(image_assets.__path__[0]) / 'caution.png')
return caution.resize((caution.width // 2, caution.height //2)) caution = Image.open(Path(image_assets.__path__[0]) / "caution.png")
return caution.resize((caution.width // 2, caution.height // 2))
class ImageWatermarkInvocation(BaseInvocation, PILInvocationConfig): class ImageWatermarkInvocation(BaseInvocation, PILInvocationConfig):
""" Add an invisible watermark to an image """ """Add an invisible watermark to an image"""
# fmt: off # fmt: off
type: Literal["img_watermark"] = "img_watermark" type: Literal["img_watermark"] = "img_watermark"
@ -675,10 +629,7 @@ class ImageWatermarkInvocation(BaseInvocation, PILInvocationConfig):
class Config(InvocationConfig): class Config(InvocationConfig):
schema_extra = { schema_extra = {
"ui": { "ui": {"title": "Add Invisible Watermark", "tags": ["image", "watermark", "invisible"]},
"title": "Add Invisible Watermark",
"tags": ["image", "watermark", "invisible"]
},
} }
def invoke(self, context: InvocationContext) -> ImageOutput: def invoke(self, context: InvocationContext) -> ImageOutput:
@ -699,6 +650,3 @@ class ImageWatermarkInvocation(BaseInvocation, PILInvocationConfig):
width=image_dto.width, width=image_dto.width,
height=image_dto.height, height=image_dto.height,
) )

View File

@ -30,9 +30,7 @@ def infill_methods() -> list[str]:
INFILL_METHODS = Literal[tuple(infill_methods())] INFILL_METHODS = Literal[tuple(infill_methods())]
DEFAULT_INFILL_METHOD = ( DEFAULT_INFILL_METHOD = "patchmatch" if "patchmatch" in get_args(INFILL_METHODS) else "tile"
"patchmatch" if "patchmatch" in get_args(INFILL_METHODS) else "tile"
)
def infill_patchmatch(im: Image.Image) -> Image.Image: def infill_patchmatch(im: Image.Image) -> Image.Image:
@ -44,9 +42,7 @@ def infill_patchmatch(im: Image.Image) -> Image.Image:
return im return im
# Patchmatch (note, we may want to expose patch_size? Increasing it significantly impacts performance though) # Patchmatch (note, we may want to expose patch_size? Increasing it significantly impacts performance though)
im_patched_np = PatchMatch.inpaint( im_patched_np = PatchMatch.inpaint(im.convert("RGB"), ImageOps.invert(im.split()[-1]), patch_size=3)
im.convert("RGB"), ImageOps.invert(im.split()[-1]), patch_size=3
)
im_patched = Image.fromarray(im_patched_np, mode="RGB") im_patched = Image.fromarray(im_patched_np, mode="RGB")
return im_patched return im_patched
@ -68,9 +64,7 @@ def get_tile_images(image: np.ndarray, width=8, height=8):
) )
def tile_fill_missing( def tile_fill_missing(im: Image.Image, tile_size: int = 16, seed: Optional[int] = None) -> Image.Image:
im: Image.Image, tile_size: int = 16, seed: Optional[int] = None
) -> Image.Image:
# Only fill if there's an alpha layer # Only fill if there's an alpha layer
if im.mode != "RGBA": if im.mode != "RGBA":
return im return im
@ -103,9 +97,7 @@ def tile_fill_missing(
# Find all invalid tiles and replace with a random valid tile # Find all invalid tiles and replace with a random valid tile
replace_count = (tiles_mask == False).sum() replace_count = (tiles_mask == False).sum()
rng = np.random.default_rng(seed=seed) rng = np.random.default_rng(seed=seed)
tiles_all[np.logical_not(tiles_mask)] = filtered_tiles[ tiles_all[np.logical_not(tiles_mask)] = filtered_tiles[rng.choice(filtered_tiles.shape[0], replace_count), :, :, :]
rng.choice(filtered_tiles.shape[0], replace_count), :, :, :
]
# Convert back to an image # Convert back to an image
tiles_all = tiles_all.reshape(tshape) tiles_all = tiles_all.reshape(tshape)
@ -126,9 +118,7 @@ class InfillColorInvocation(BaseInvocation):
"""Infills transparent areas of an image with a solid color""" """Infills transparent areas of an image with a solid color"""
type: Literal["infill_rgba"] = "infill_rgba" type: Literal["infill_rgba"] = "infill_rgba"
image: Optional[ImageField] = Field( image: Optional[ImageField] = Field(default=None, description="The image to infill")
default=None, description="The image to infill"
)
color: ColorField = Field( color: ColorField = Field(
default=ColorField(r=127, g=127, b=127, a=255), default=ColorField(r=127, g=127, b=127, a=255),
description="The color to use to infill", description="The color to use to infill",
@ -136,10 +126,7 @@ class InfillColorInvocation(BaseInvocation):
class Config(InvocationConfig): class Config(InvocationConfig):
schema_extra = { schema_extra = {
"ui": { "ui": {"title": "Color Infill", "tags": ["image", "inpaint", "color", "infill"]},
"title": "Color Infill",
"tags": ["image", "inpaint", "color", "infill"]
},
} }
def invoke(self, context: InvocationContext) -> ImageOutput: def invoke(self, context: InvocationContext) -> ImageOutput:
@ -171,9 +158,7 @@ class InfillTileInvocation(BaseInvocation):
type: Literal["infill_tile"] = "infill_tile" type: Literal["infill_tile"] = "infill_tile"
image: Optional[ImageField] = Field( image: Optional[ImageField] = Field(default=None, description="The image to infill")
default=None, description="The image to infill"
)
tile_size: int = Field(default=32, ge=1, description="The tile size (px)") tile_size: int = Field(default=32, ge=1, description="The tile size (px)")
seed: int = Field( seed: int = Field(
ge=0, ge=0,
@ -184,18 +169,13 @@ class InfillTileInvocation(BaseInvocation):
class Config(InvocationConfig): class Config(InvocationConfig):
schema_extra = { schema_extra = {
"ui": { "ui": {"title": "Tile Infill", "tags": ["image", "inpaint", "tile", "infill"]},
"title": "Tile Infill",
"tags": ["image", "inpaint", "tile", "infill"]
},
} }
def invoke(self, context: InvocationContext) -> ImageOutput: def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name) image = context.services.images.get_pil_image(self.image.image_name)
infilled = tile_fill_missing( infilled = tile_fill_missing(image.copy(), seed=self.seed, tile_size=self.tile_size)
image.copy(), seed=self.seed, tile_size=self.tile_size
)
infilled.paste(image, (0, 0), image.split()[-1]) infilled.paste(image, (0, 0), image.split()[-1])
image_dto = context.services.images.create( image_dto = context.services.images.create(
@ -219,16 +199,11 @@ class InfillPatchMatchInvocation(BaseInvocation):
type: Literal["infill_patchmatch"] = "infill_patchmatch" type: Literal["infill_patchmatch"] = "infill_patchmatch"
image: Optional[ImageField] = Field( image: Optional[ImageField] = Field(default=None, description="The image to infill")
default=None, description="The image to infill"
)
class Config(InvocationConfig): class Config(InvocationConfig):
schema_extra = { schema_extra = {
"ui": { "ui": {"title": "Patch Match Infill", "tags": ["image", "inpaint", "patchmatch", "infill"]},
"title": "Patch Match Infill",
"tags": ["image", "inpaint", "patchmatch", "infill"]
},
} }
def invoke(self, context: InvocationContext) -> ImageOutput: def invoke(self, context: InvocationContext) -> ImageOutput:

View File

@ -17,15 +17,16 @@ from invokeai.backend.model_management.models.base import ModelType
from ...backend.model_management.lora import ModelPatcher from ...backend.model_management.lora import ModelPatcher
from ...backend.stable_diffusion import PipelineIntermediateState from ...backend.stable_diffusion import PipelineIntermediateState
from ...backend.stable_diffusion.diffusers_pipeline import ( from ...backend.stable_diffusion.diffusers_pipeline import (
ConditioningData, ControlNetData, StableDiffusionGeneratorPipeline, ConditioningData,
image_resized_to_grid_as_tensor) ControlNetData,
from ...backend.stable_diffusion.diffusion.shared_invokeai_diffusion import \ StableDiffusionGeneratorPipeline,
PostprocessingSettings image_resized_to_grid_as_tensor,
)
from ...backend.stable_diffusion.diffusion.shared_invokeai_diffusion import PostprocessingSettings
from ...backend.stable_diffusion.schedulers import SCHEDULER_MAP from ...backend.stable_diffusion.schedulers import SCHEDULER_MAP
from ...backend.util.devices import choose_torch_device, torch_dtype, choose_precision from ...backend.util.devices import choose_torch_device, torch_dtype, choose_precision
from ..models.image import ImageCategory, ImageField, ResourceOrigin from ..models.image import ImageCategory, ImageField, ResourceOrigin
from .baseinvocation import (BaseInvocation, BaseInvocationOutput, from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationConfig, InvocationContext
InvocationConfig, InvocationContext)
from .compel import ConditioningField from .compel import ConditioningField
from .controlnet_image_processors import ControlField from .controlnet_image_processors import ControlField
from .image import ImageOutput from .image import ImageOutput
@ -46,8 +47,7 @@ DEFAULT_PRECISION = choose_precision(choose_torch_device())
class LatentsField(BaseModel): class LatentsField(BaseModel):
"""A latents field used for passing latents between invocations""" """A latents field used for passing latents between invocations"""
latents_name: Optional[str] = Field( latents_name: Optional[str] = Field(default=None, description="The name of the latents")
default=None, description="The name of the latents")
class Config: class Config:
schema_extra = {"required": ["latents_name"]} schema_extra = {"required": ["latents_name"]}
@ -55,14 +55,15 @@ class LatentsField(BaseModel):
class LatentsOutput(BaseInvocationOutput): class LatentsOutput(BaseInvocationOutput):
"""Base class for invocations that output latents""" """Base class for invocations that output latents"""
#fmt: off
# fmt: off
type: Literal["latents_output"] = "latents_output" type: Literal["latents_output"] = "latents_output"
# Inputs # Inputs
latents: LatentsField = Field(default=None, description="The output latents") latents: LatentsField = Field(default=None, description="The output latents")
width: int = Field(description="The width of the latents in pixels") width: int = Field(description="The width of the latents in pixels")
height: int = Field(description="The height of the latents in pixels") height: int = Field(description="The height of the latents in pixels")
#fmt: on # fmt: on
def build_latents_output(latents_name: str, latents: torch.Tensor): def build_latents_output(latents_name: str, latents: torch.Tensor):
@ -73,9 +74,7 @@ def build_latents_output(latents_name: str, latents: torch.Tensor):
) )
SAMPLER_NAME_VALUES = Literal[ SAMPLER_NAME_VALUES = Literal[tuple(list(SCHEDULER_MAP.keys()))]
tuple(list(SCHEDULER_MAP.keys()))
]
def get_scheduler( def get_scheduler(
@ -83,11 +82,10 @@ def get_scheduler(
scheduler_info: ModelInfo, scheduler_info: ModelInfo,
scheduler_name: str, scheduler_name: str,
) -> Scheduler: ) -> Scheduler:
scheduler_class, scheduler_extra_config = SCHEDULER_MAP.get( scheduler_class, scheduler_extra_config = SCHEDULER_MAP.get(scheduler_name, SCHEDULER_MAP["ddim"])
scheduler_name, SCHEDULER_MAP['ddim']
)
orig_scheduler_info = context.services.model_manager.get_model( orig_scheduler_info = context.services.model_manager.get_model(
**scheduler_info.dict(), context=context, **scheduler_info.dict(),
context=context,
) )
with orig_scheduler_info as orig_scheduler: with orig_scheduler_info as orig_scheduler:
scheduler_config = orig_scheduler.config scheduler_config = orig_scheduler.config
@ -102,7 +100,7 @@ def get_scheduler(
scheduler = scheduler_class.from_config(scheduler_config) scheduler = scheduler_class.from_config(scheduler_config)
# hack copied over from generate.py # hack copied over from generate.py
if not hasattr(scheduler, 'uses_inpainting_model'): if not hasattr(scheduler, "uses_inpainting_model"):
scheduler.uses_inpainting_model = lambda: False scheduler.uses_inpainting_model = lambda: False
return scheduler return scheduler
@ -123,8 +121,8 @@ class TextToLatentsInvocation(BaseInvocation):
scheduler: SAMPLER_NAME_VALUES = Field(default="euler", description="The scheduler to use" ) scheduler: SAMPLER_NAME_VALUES = Field(default="euler", description="The scheduler to use" )
unet: UNetField = Field(default=None, description="UNet submodel") unet: UNetField = Field(default=None, description="UNet submodel")
control: Union[ControlField, list[ControlField]] = Field(default=None, description="The control to use") control: Union[ControlField, list[ControlField]] = Field(default=None, description="The control to use")
#seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", ) # seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", )
#seamless_axes: str = Field(default="", description="The axes to tile the image on, 'x' and/or 'y'") # seamless_axes: str = Field(default="", description="The axes to tile the image on, 'x' and/or 'y'")
# fmt: on # fmt: on
@validator("cfg_scale") @validator("cfg_scale")
@ -133,10 +131,10 @@ class TextToLatentsInvocation(BaseInvocation):
if isinstance(v, list): if isinstance(v, list):
for i in v: for i in v:
if i < 1: if i < 1:
raise ValueError('cfg_scale must be greater than 1') raise ValueError("cfg_scale must be greater than 1")
else: else:
if v < 1: if v < 1:
raise ValueError('cfg_scale must be greater than 1') raise ValueError("cfg_scale must be greater than 1")
return v return v
# Schema customisation # Schema customisation
@ -149,8 +147,8 @@ class TextToLatentsInvocation(BaseInvocation):
"model": "model", "model": "model",
"control": "control", "control": "control",
# "cfg_scale": "float", # "cfg_scale": "float",
"cfg_scale": "number" "cfg_scale": "number",
} },
}, },
} }
@ -190,16 +188,14 @@ class TextToLatentsInvocation(BaseInvocation):
threshold=0.0, # threshold, threshold=0.0, # threshold,
warmup=0.2, # warmup, warmup=0.2, # warmup,
h_symmetry_time_pct=None, # h_symmetry_time_pct, h_symmetry_time_pct=None, # h_symmetry_time_pct,
v_symmetry_time_pct=None # v_symmetry_time_pct, v_symmetry_time_pct=None, # v_symmetry_time_pct,
), ),
) )
conditioning_data = conditioning_data.add_scheduler_args_if_applicable( conditioning_data = conditioning_data.add_scheduler_args_if_applicable(
scheduler, scheduler,
# for ddim scheduler # for ddim scheduler
eta=0.0, # ddim_eta eta=0.0, # ddim_eta
# for ancestral and sde schedulers # for ancestral and sde schedulers
generator=torch.Generator(device=unet.device).manual_seed(0), generator=torch.Generator(device=unet.device).manual_seed(0),
) )
@ -247,7 +243,6 @@ class TextToLatentsInvocation(BaseInvocation):
exit_stack: ExitStack, exit_stack: ExitStack,
do_classifier_free_guidance: bool = True, do_classifier_free_guidance: bool = True,
) -> List[ControlNetData]: ) -> List[ControlNetData]:
# assuming fixed dimensional scaling of 8:1 for image:latents # assuming fixed dimensional scaling of 8:1 for image:latents
control_height_resize = latents_shape[2] * 8 control_height_resize = latents_shape[2] * 8
control_width_resize = latents_shape[3] * 8 control_width_resize = latents_shape[3] * 8
@ -261,7 +256,7 @@ class TextToLatentsInvocation(BaseInvocation):
control_list = control_input control_list = control_input
else: else:
control_list = None control_list = None
if (control_list is None): if control_list is None:
control_data = None control_data = None
# from above handling, any control that is not None should now be of type list[ControlField] # from above handling, any control that is not None should now be of type list[ControlField]
else: else:
@ -281,9 +276,7 @@ class TextToLatentsInvocation(BaseInvocation):
control_models.append(control_model) control_models.append(control_model)
control_image_field = control_info.image control_image_field = control_info.image
input_image = context.services.images.get_pil_image( input_image = context.services.images.get_pil_image(control_image_field.image_name)
control_image_field.image_name
)
# self.image.image_type, self.image.image_name # self.image.image_type, self.image.image_name
# FIXME: still need to test with different widths, heights, devices, dtypes # FIXME: still need to test with different widths, heights, devices, dtypes
# and add in batch_size, num_images_per_prompt? # and add in batch_size, num_images_per_prompt?
@ -321,9 +314,7 @@ class TextToLatentsInvocation(BaseInvocation):
noise = context.services.latents.get(self.noise.latents_name) noise = context.services.latents.get(self.noise.latents_name)
# Get the source node id (we are invoking the prepared node) # Get the source node id (we are invoking the prepared node)
graph_execution_state = context.services.graph_execution_manager.get( graph_execution_state = context.services.graph_execution_manager.get(context.graph_execution_state_id)
context.graph_execution_state_id
)
source_node_id = graph_execution_state.prepared_source_mapping[self.id] source_node_id = graph_execution_state.prepared_source_mapping[self.id]
def step_callback(state: PipelineIntermediateState): def step_callback(state: PipelineIntermediateState):
@ -332,19 +323,20 @@ class TextToLatentsInvocation(BaseInvocation):
def _lora_loader(): def _lora_loader():
for lora in self.unet.loras: for lora in self.unet.loras:
lora_info = context.services.model_manager.get_model( lora_info = context.services.model_manager.get_model(
**lora.dict(exclude={"weight"}), context=context, **lora.dict(exclude={"weight"}),
context=context,
) )
yield (lora_info.context.model, lora.weight) yield (lora_info.context.model, lora.weight)
del lora_info del lora_info
return return
unet_info = context.services.model_manager.get_model( unet_info = context.services.model_manager.get_model(
**self.unet.unet.dict(), context=context, **self.unet.unet.dict(),
context=context,
) )
with ExitStack() as exit_stack,\ with ExitStack() as exit_stack, ModelPatcher.apply_lora_unet(
ModelPatcher.apply_lora_unet(unet_info.context.model, _lora_loader()),\ unet_info.context.model, _lora_loader()
unet_info as unet: ), unet_info as unet:
noise = noise.to(device=unet.device, dtype=unet.dtype) noise = noise.to(device=unet.device, dtype=unet.dtype)
scheduler = get_scheduler( scheduler = get_scheduler(
@ -357,7 +349,9 @@ class TextToLatentsInvocation(BaseInvocation):
conditioning_data = self.get_conditioning_data(context, scheduler, unet) conditioning_data = self.get_conditioning_data(context, scheduler, unet)
control_data = self.prep_control_data( control_data = self.prep_control_data(
model=pipeline, context=context, control_input=self.control, model=pipeline,
context=context,
control_input=self.control,
latents_shape=noise.shape, latents_shape=noise.shape,
# do_classifier_free_guidance=(self.cfg_scale >= 1.0)) # do_classifier_free_guidance=(self.cfg_scale >= 1.0))
do_classifier_free_guidance=True, do_classifier_free_guidance=True,
@ -378,7 +372,7 @@ class TextToLatentsInvocation(BaseInvocation):
result_latents = result_latents.to("cpu") result_latents = result_latents.to("cpu")
torch.cuda.empty_cache() torch.cuda.empty_cache()
name = f'{context.graph_execution_state_id}__{self.id}' name = f"{context.graph_execution_state_id}__{self.id}"
context.services.latents.save(name, result_latents) context.services.latents.save(name, result_latents)
return build_latents_output(latents_name=name, latents=result_latents) return build_latents_output(latents_name=name, latents=result_latents)
@ -389,11 +383,8 @@ class LatentsToLatentsInvocation(TextToLatentsInvocation):
type: Literal["l2l"] = "l2l" type: Literal["l2l"] = "l2l"
# Inputs # Inputs
latents: Optional[LatentsField] = Field( latents: Optional[LatentsField] = Field(description="The latents to use as a base image")
description="The latents to use as a base image") strength: float = Field(default=0.7, ge=0, le=1, description="The strength of the latents to use")
strength: float = Field(
default=0.7, ge=0, le=1,
description="The strength of the latents to use")
# Schema customisation # Schema customisation
class Config(InvocationConfig): class Config(InvocationConfig):
@ -405,7 +396,7 @@ class LatentsToLatentsInvocation(TextToLatentsInvocation):
"model": "model", "model": "model",
"control": "control", "control": "control",
"cfg_scale": "number", "cfg_scale": "number",
} },
}, },
} }
@ -415,9 +406,7 @@ class LatentsToLatentsInvocation(TextToLatentsInvocation):
latent = context.services.latents.get(self.latents.latents_name) latent = context.services.latents.get(self.latents.latents_name)
# Get the source node id (we are invoking the prepared node) # Get the source node id (we are invoking the prepared node)
graph_execution_state = context.services.graph_execution_manager.get( graph_execution_state = context.services.graph_execution_manager.get(context.graph_execution_state_id)
context.graph_execution_state_id
)
source_node_id = graph_execution_state.prepared_source_mapping[self.id] source_node_id = graph_execution_state.prepared_source_mapping[self.id]
def step_callback(state: PipelineIntermediateState): def step_callback(state: PipelineIntermediateState):
@ -426,19 +415,20 @@ class LatentsToLatentsInvocation(TextToLatentsInvocation):
def _lora_loader(): def _lora_loader():
for lora in self.unet.loras: for lora in self.unet.loras:
lora_info = context.services.model_manager.get_model( lora_info = context.services.model_manager.get_model(
**lora.dict(exclude={"weight"}), context=context, **lora.dict(exclude={"weight"}),
context=context,
) )
yield (lora_info.context.model, lora.weight) yield (lora_info.context.model, lora.weight)
del lora_info del lora_info
return return
unet_info = context.services.model_manager.get_model( unet_info = context.services.model_manager.get_model(
**self.unet.unet.dict(), context=context, **self.unet.unet.dict(),
context=context,
) )
with ExitStack() as exit_stack,\ with ExitStack() as exit_stack, ModelPatcher.apply_lora_unet(
ModelPatcher.apply_lora_unet(unet_info.context.model, _lora_loader()),\ unet_info.context.model, _lora_loader()
unet_info as unet: ), unet_info as unet:
noise = noise.to(device=unet.device, dtype=unet.dtype) noise = noise.to(device=unet.device, dtype=unet.dtype)
latent = latent.to(device=unet.device, dtype=unet.dtype) latent = latent.to(device=unet.device, dtype=unet.dtype)
@ -452,7 +442,9 @@ class LatentsToLatentsInvocation(TextToLatentsInvocation):
conditioning_data = self.get_conditioning_data(context, scheduler, unet) conditioning_data = self.get_conditioning_data(context, scheduler, unet)
control_data = self.prep_control_data( control_data = self.prep_control_data(
model=pipeline, context=context, control_input=self.control, model=pipeline,
context=context,
control_input=self.control,
latents_shape=noise.shape, latents_shape=noise.shape,
# do_classifier_free_guidance=(self.cfg_scale >= 1.0)) # do_classifier_free_guidance=(self.cfg_scale >= 1.0))
do_classifier_free_guidance=True, do_classifier_free_guidance=True,
@ -460,8 +452,8 @@ class LatentsToLatentsInvocation(TextToLatentsInvocation):
) )
# TODO: Verify the noise is the right size # TODO: Verify the noise is the right size
initial_latents = latent if self.strength < 1.0 else torch.zeros_like( initial_latents = (
latent, device=unet.device, dtype=latent.dtype latent if self.strength < 1.0 else torch.zeros_like(latent, device=unet.device, dtype=latent.dtype)
) )
timesteps, _ = pipeline.get_img2img_timesteps( timesteps, _ = pipeline.get_img2img_timesteps(
@ -477,14 +469,14 @@ class LatentsToLatentsInvocation(TextToLatentsInvocation):
num_inference_steps=self.steps, num_inference_steps=self.steps,
conditioning_data=conditioning_data, conditioning_data=conditioning_data,
control_data=control_data, # list[ControlNetData] control_data=control_data, # list[ControlNetData]
callback=step_callback callback=step_callback,
) )
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699 # https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
result_latents = result_latents.to("cpu") result_latents = result_latents.to("cpu")
torch.cuda.empty_cache() torch.cuda.empty_cache()
name = f'{context.graph_execution_state_id}__{self.id}' name = f"{context.graph_execution_state_id}__{self.id}"
context.services.latents.save(name, result_latents) context.services.latents.save(name, result_latents)
return build_latents_output(latents_name=name, latents=result_latents) return build_latents_output(latents_name=name, latents=result_latents)
@ -496,14 +488,13 @@ class LatentsToImageInvocation(BaseInvocation):
type: Literal["l2i"] = "l2i" type: Literal["l2i"] = "l2i"
# Inputs # Inputs
latents: Optional[LatentsField] = Field( latents: Optional[LatentsField] = Field(description="The latents to generate an image from")
description="The latents to generate an image from")
vae: VaeField = Field(default=None, description="Vae submodel") vae: VaeField = Field(default=None, description="Vae submodel")
tiled: bool = Field( tiled: bool = Field(default=False, description="Decode latents by overlapping tiles(less memory consumption)")
default=False, fp32: bool = Field(DEFAULT_PRECISION == "float32", description="Decode in full precision")
description="Decode latents by overlapping tiles(less memory consumption)") metadata: Optional[CoreMetadata] = Field(
fp32: bool = Field(DEFAULT_PRECISION=='float32', description="Decode in full precision") default=None, description="Optional core metadata to be written to the image"
metadata: Optional[CoreMetadata] = Field(default=None, description="Optional core metadata to be written to the image") )
# Schema customisation # Schema customisation
class Config(InvocationConfig): class Config(InvocationConfig):
@ -519,7 +510,8 @@ class LatentsToImageInvocation(BaseInvocation):
latents = context.services.latents.get(self.latents.latents_name) latents = context.services.latents.get(self.latents.latents_name)
vae_info = context.services.model_manager.get_model( vae_info = context.services.model_manager.get_model(
**self.vae.vae.dict(), context=context, **self.vae.vae.dict(),
context=context,
) )
with vae_info as vae: with vae_info as vae:
@ -586,8 +578,7 @@ class LatentsToImageInvocation(BaseInvocation):
) )
LATENTS_INTERPOLATION_MODE = Literal["nearest", "linear", LATENTS_INTERPOLATION_MODE = Literal["nearest", "linear", "bilinear", "bicubic", "trilinear", "area", "nearest-exact"]
"bilinear", "bicubic", "trilinear", "area", "nearest-exact"]
class ResizeLatentsInvocation(BaseInvocation): class ResizeLatentsInvocation(BaseInvocation):
@ -596,36 +587,30 @@ class ResizeLatentsInvocation(BaseInvocation):
type: Literal["lresize"] = "lresize" type: Literal["lresize"] = "lresize"
# Inputs # Inputs
latents: Optional[LatentsField] = Field( latents: Optional[LatentsField] = Field(description="The latents to resize")
description="The latents to resize") width: Union[int, None] = Field(default=512, ge=64, multiple_of=8, description="The width to resize to (px)")
width: Union[int, None] = Field(default=512, height: Union[int, None] = Field(default=512, ge=64, multiple_of=8, description="The height to resize to (px)")
ge=64, multiple_of=8, description="The width to resize to (px)") mode: LATENTS_INTERPOLATION_MODE = Field(default="bilinear", description="The interpolation mode")
height: Union[int, None] = Field(default=512,
ge=64, multiple_of=8, description="The height to resize to (px)")
mode: LATENTS_INTERPOLATION_MODE = Field(
default="bilinear", description="The interpolation mode")
antialias: bool = Field( antialias: bool = Field(
default=False, default=False, description="Whether or not to antialias (applied in bilinear and bicubic modes only)"
description="Whether or not to antialias (applied in bilinear and bicubic modes only)") )
class Config(InvocationConfig): class Config(InvocationConfig):
schema_extra = { schema_extra = {
"ui": { "ui": {"title": "Resize Latents", "tags": ["latents", "resize"]},
"title": "Resize Latents",
"tags": ["latents", "resize"]
},
} }
def invoke(self, context: InvocationContext) -> LatentsOutput: def invoke(self, context: InvocationContext) -> LatentsOutput:
latents = context.services.latents.get(self.latents.latents_name) latents = context.services.latents.get(self.latents.latents_name)
# TODO: # TODO:
device=choose_torch_device() device = choose_torch_device()
resized_latents = torch.nn.functional.interpolate( resized_latents = torch.nn.functional.interpolate(
latents.to(device), size=(self.height // 8, self.width // 8), latents.to(device),
mode=self.mode, antialias=self.antialias size=(self.height // 8, self.width // 8),
if self.mode in ["bilinear", "bicubic"] else False, mode=self.mode,
antialias=self.antialias if self.mode in ["bilinear", "bicubic"] else False,
) )
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699 # https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
@ -644,35 +629,30 @@ class ScaleLatentsInvocation(BaseInvocation):
type: Literal["lscale"] = "lscale" type: Literal["lscale"] = "lscale"
# Inputs # Inputs
latents: Optional[LatentsField] = Field( latents: Optional[LatentsField] = Field(description="The latents to scale")
description="The latents to scale") scale_factor: float = Field(gt=0, description="The factor by which to scale the latents")
scale_factor: float = Field( mode: LATENTS_INTERPOLATION_MODE = Field(default="bilinear", description="The interpolation mode")
gt=0, description="The factor by which to scale the latents")
mode: LATENTS_INTERPOLATION_MODE = Field(
default="bilinear", description="The interpolation mode")
antialias: bool = Field( antialias: bool = Field(
default=False, default=False, description="Whether or not to antialias (applied in bilinear and bicubic modes only)"
description="Whether or not to antialias (applied in bilinear and bicubic modes only)") )
class Config(InvocationConfig): class Config(InvocationConfig):
schema_extra = { schema_extra = {
"ui": { "ui": {"title": "Scale Latents", "tags": ["latents", "scale"]},
"title": "Scale Latents",
"tags": ["latents", "scale"]
},
} }
def invoke(self, context: InvocationContext) -> LatentsOutput: def invoke(self, context: InvocationContext) -> LatentsOutput:
latents = context.services.latents.get(self.latents.latents_name) latents = context.services.latents.get(self.latents.latents_name)
# TODO: # TODO:
device=choose_torch_device() device = choose_torch_device()
# resizing # resizing
resized_latents = torch.nn.functional.interpolate( resized_latents = torch.nn.functional.interpolate(
latents.to(device), scale_factor=self.scale_factor, mode=self.mode, latents.to(device),
antialias=self.antialias scale_factor=self.scale_factor,
if self.mode in ["bilinear", "bicubic"] else False, mode=self.mode,
antialias=self.antialias if self.mode in ["bilinear", "bicubic"] else False,
) )
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699 # https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
@ -693,19 +673,13 @@ class ImageToLatentsInvocation(BaseInvocation):
# Inputs # Inputs
image: Optional[ImageField] = Field(description="The image to encode") image: Optional[ImageField] = Field(description="The image to encode")
vae: VaeField = Field(default=None, description="Vae submodel") vae: VaeField = Field(default=None, description="Vae submodel")
tiled: bool = Field( tiled: bool = Field(default=False, description="Encode latents by overlaping tiles(less memory consumption)")
default=False, fp32: bool = Field(DEFAULT_PRECISION == "float32", description="Decode in full precision")
description="Encode latents by overlaping tiles(less memory consumption)")
fp32: bool = Field(DEFAULT_PRECISION=='float32', description="Decode in full precision")
# Schema customisation # Schema customisation
class Config(InvocationConfig): class Config(InvocationConfig):
schema_extra = { schema_extra = {
"ui": { "ui": {"title": "Image To Latents", "tags": ["latents", "image"]},
"title": "Image To Latents",
"tags": ["latents", "image"]
},
} }
@torch.no_grad() @torch.no_grad()
@ -715,9 +689,10 @@ class ImageToLatentsInvocation(BaseInvocation):
# ) # )
image = context.services.images.get_pil_image(self.image.image_name) image = context.services.images.get_pil_image(self.image.image_name)
#vae_info = context.services.model_manager.get_model(**self.vae.vae.dict()) # vae_info = context.services.model_manager.get_model(**self.vae.vae.dict())
vae_info = context.services.model_manager.get_model( vae_info = context.services.model_manager.get_model(
**self.vae.vae.dict(), context=context, **self.vae.vae.dict(),
context=context,
) )
image_tensor = image_resized_to_grid_as_tensor(image.convert("RGB")) image_tensor = image_resized_to_grid_as_tensor(image.convert("RGB"))
@ -744,12 +719,12 @@ class ImageToLatentsInvocation(BaseInvocation):
vae.post_quant_conv.to(orig_dtype) vae.post_quant_conv.to(orig_dtype)
vae.decoder.conv_in.to(orig_dtype) vae.decoder.conv_in.to(orig_dtype)
vae.decoder.mid_block.to(orig_dtype) vae.decoder.mid_block.to(orig_dtype)
#else: # else:
# latents = latents.float() # latents = latents.float()
else: else:
vae.to(dtype=torch.float16) vae.to(dtype=torch.float16)
#latents = latents.half() # latents = latents.half()
if self.tiled: if self.tiled:
vae.enable_tiling() vae.enable_tiling()
@ -760,9 +735,7 @@ class ImageToLatentsInvocation(BaseInvocation):
image_tensor = image_tensor.to(device=vae.device, dtype=vae.dtype) image_tensor = image_tensor.to(device=vae.device, dtype=vae.dtype)
with torch.inference_mode(): with torch.inference_mode():
image_tensor_dist = vae.encode(image_tensor).latent_dist image_tensor_dist = vae.encode(image_tensor).latent_dist
latents = image_tensor_dist.sample().to( latents = image_tensor_dist.sample().to(dtype=vae.dtype) # FIXME: uses torch.randn. make reproducible!
dtype=vae.dtype
) # FIXME: uses torch.randn. make reproducible!
latents = vae.config.scaling_factor * latents latents = vae.config.scaling_factor * latents
latents = latents.to(dtype=orig_dtype) latents = latents.to(dtype=orig_dtype)

View File

@ -54,10 +54,7 @@ class AddInvocation(BaseInvocation, MathInvocationConfig):
class Config(InvocationConfig): class Config(InvocationConfig):
schema_extra = { schema_extra = {
"ui": { "ui": {"title": "Add", "tags": ["math", "add"]},
"title": "Add",
"tags": ["math", "add"]
},
} }
def invoke(self, context: InvocationContext) -> IntOutput: def invoke(self, context: InvocationContext) -> IntOutput:
@ -75,10 +72,7 @@ class SubtractInvocation(BaseInvocation, MathInvocationConfig):
class Config(InvocationConfig): class Config(InvocationConfig):
schema_extra = { schema_extra = {
"ui": { "ui": {"title": "Subtract", "tags": ["math", "subtract"]},
"title": "Subtract",
"tags": ["math", "subtract"]
},
} }
def invoke(self, context: InvocationContext) -> IntOutput: def invoke(self, context: InvocationContext) -> IntOutput:
@ -96,10 +90,7 @@ class MultiplyInvocation(BaseInvocation, MathInvocationConfig):
class Config(InvocationConfig): class Config(InvocationConfig):
schema_extra = { schema_extra = {
"ui": { "ui": {"title": "Multiply", "tags": ["math", "multiply"]},
"title": "Multiply",
"tags": ["math", "multiply"]
},
} }
def invoke(self, context: InvocationContext) -> IntOutput: def invoke(self, context: InvocationContext) -> IntOutput:
@ -117,10 +108,7 @@ class DivideInvocation(BaseInvocation, MathInvocationConfig):
class Config(InvocationConfig): class Config(InvocationConfig):
schema_extra = { schema_extra = {
"ui": { "ui": {"title": "Divide", "tags": ["math", "divide"]},
"title": "Divide",
"tags": ["math", "divide"]
},
} }
def invoke(self, context: InvocationContext) -> IntOutput: def invoke(self, context: InvocationContext) -> IntOutput:
@ -140,10 +128,7 @@ class RandomIntInvocation(BaseInvocation):
class Config(InvocationConfig): class Config(InvocationConfig):
schema_extra = { schema_extra = {
"ui": { "ui": {"title": "Random Integer", "tags": ["math", "random", "integer"]},
"title": "Random Integer",
"tags": ["math", "random", "integer"]
},
} }
def invoke(self, context: InvocationContext) -> IntOutput: def invoke(self, context: InvocationContext) -> IntOutput:

View File

@ -11,6 +11,7 @@ from invokeai.app.invocations.baseinvocation import (
from invokeai.app.invocations.controlnet_image_processors import ControlField from invokeai.app.invocations.controlnet_image_processors import ControlField
from invokeai.app.invocations.model import LoRAModelField, MainModelField, VAEModelField from invokeai.app.invocations.model import LoRAModelField, MainModelField, VAEModelField
class LoRAMetadataField(BaseModel): class LoRAMetadataField(BaseModel):
"""LoRA metadata for an image generated in InvokeAI.""" """LoRA metadata for an image generated in InvokeAI."""
@ -37,9 +38,7 @@ class CoreMetadata(BaseModel):
description="The number of skipped CLIP layers", description="The number of skipped CLIP layers",
) )
model: MainModelField = Field(description="The main model used for inference") model: MainModelField = Field(description="The main model used for inference")
controlnets: list[ControlField] = Field( controlnets: list[ControlField] = Field(description="The ControlNets used for inference")
description="The ControlNets used for inference"
)
loras: list[LoRAMetadataField] = Field(description="The LoRAs used for inference") loras: list[LoRAMetadataField] = Field(description="The LoRAs used for inference")
vae: Union[VAEModelField, None] = Field( vae: Union[VAEModelField, None] = Field(
default=None, default=None,
@ -51,38 +50,24 @@ class CoreMetadata(BaseModel):
default=None, default=None,
description="The strength used for latents-to-latents", description="The strength used for latents-to-latents",
) )
init_image: Union[str, None] = Field( init_image: Union[str, None] = Field(default=None, description="The name of the initial image")
default=None, description="The name of the initial image"
)
# SDXL # SDXL
positive_style_prompt: Union[str, None] = Field( positive_style_prompt: Union[str, None] = Field(default=None, description="The positive style prompt parameter")
default=None, description="The positive style prompt parameter" negative_style_prompt: Union[str, None] = Field(default=None, description="The negative style prompt parameter")
)
negative_style_prompt: Union[str, None] = Field(
default=None, description="The negative style prompt parameter"
)
# SDXL Refiner # SDXL Refiner
refiner_model: Union[MainModelField, None] = Field( refiner_model: Union[MainModelField, None] = Field(default=None, description="The SDXL Refiner model used")
default=None, description="The SDXL Refiner model used"
)
refiner_cfg_scale: Union[float, None] = Field( refiner_cfg_scale: Union[float, None] = Field(
default=None, default=None,
description="The classifier-free guidance scale parameter used for the refiner", description="The classifier-free guidance scale parameter used for the refiner",
) )
refiner_steps: Union[int, None] = Field( refiner_steps: Union[int, None] = Field(default=None, description="The number of steps used for the refiner")
default=None, description="The number of steps used for the refiner" refiner_scheduler: Union[str, None] = Field(default=None, description="The scheduler used for the refiner")
)
refiner_scheduler: Union[str, None] = Field(
default=None, description="The scheduler used for the refiner"
)
refiner_aesthetic_store: Union[float, None] = Field( refiner_aesthetic_store: Union[float, None] = Field(
default=None, description="The aesthetic score used for the refiner" default=None, description="The aesthetic score used for the refiner"
) )
refiner_start: Union[float, None] = Field( refiner_start: Union[float, None] = Field(default=None, description="The start value used for refiner denoising")
default=None, description="The start value used for refiner denoising"
)
class ImageMetadata(BaseModel): class ImageMetadata(BaseModel):
@ -92,9 +77,7 @@ class ImageMetadata(BaseModel):
default=None, default=None,
description="The image's core metadata, if it was created in the Linear or Canvas UI", description="The image's core metadata, if it was created in the Linear or Canvas UI",
) )
graph: Optional[dict] = Field( graph: Optional[dict] = Field(default=None, description="The graph that created the image")
default=None, description="The graph that created the image"
)
class MetadataAccumulatorOutput(BaseInvocationOutput): class MetadataAccumulatorOutput(BaseInvocationOutput):
@ -126,50 +109,34 @@ class MetadataAccumulatorInvocation(BaseInvocation):
description="The number of skipped CLIP layers", description="The number of skipped CLIP layers",
) )
model: MainModelField = Field(description="The main model used for inference") model: MainModelField = Field(description="The main model used for inference")
controlnets: list[ControlField] = Field( controlnets: list[ControlField] = Field(description="The ControlNets used for inference")
description="The ControlNets used for inference"
)
loras: list[LoRAMetadataField] = Field(description="The LoRAs used for inference") loras: list[LoRAMetadataField] = Field(description="The LoRAs used for inference")
strength: Union[float, None] = Field( strength: Union[float, None] = Field(
default=None, default=None,
description="The strength used for latents-to-latents", description="The strength used for latents-to-latents",
) )
init_image: Union[str, None] = Field( init_image: Union[str, None] = Field(default=None, description="The name of the initial image")
default=None, description="The name of the initial image"
)
vae: Union[VAEModelField, None] = Field( vae: Union[VAEModelField, None] = Field(
default=None, default=None,
description="The VAE used for decoding, if the main model's default was not used", description="The VAE used for decoding, if the main model's default was not used",
) )
# SDXL # SDXL
positive_style_prompt: Union[str, None] = Field( positive_style_prompt: Union[str, None] = Field(default=None, description="The positive style prompt parameter")
default=None, description="The positive style prompt parameter" negative_style_prompt: Union[str, None] = Field(default=None, description="The negative style prompt parameter")
)
negative_style_prompt: Union[str, None] = Field(
default=None, description="The negative style prompt parameter"
)
# SDXL Refiner # SDXL Refiner
refiner_model: Union[MainModelField, None] = Field( refiner_model: Union[MainModelField, None] = Field(default=None, description="The SDXL Refiner model used")
default=None, description="The SDXL Refiner model used"
)
refiner_cfg_scale: Union[float, None] = Field( refiner_cfg_scale: Union[float, None] = Field(
default=None, default=None,
description="The classifier-free guidance scale parameter used for the refiner", description="The classifier-free guidance scale parameter used for the refiner",
) )
refiner_steps: Union[int, None] = Field( refiner_steps: Union[int, None] = Field(default=None, description="The number of steps used for the refiner")
default=None, description="The number of steps used for the refiner" refiner_scheduler: Union[str, None] = Field(default=None, description="The scheduler used for the refiner")
)
refiner_scheduler: Union[str, None] = Field(
default=None, description="The scheduler used for the refiner"
)
refiner_aesthetic_store: Union[float, None] = Field( refiner_aesthetic_store: Union[float, None] = Field(
default=None, description="The aesthetic score used for the refiner" default=None, description="The aesthetic score used for the refiner"
) )
refiner_start: Union[float, None] = Field( refiner_start: Union[float, None] = Field(default=None, description="The start value used for refiner denoising")
default=None, description="The start value used for refiner denoising"
)
class Config(InvocationConfig): class Config(InvocationConfig):
schema_extra = { schema_extra = {

View File

@ -4,17 +4,14 @@ from typing import List, Literal, Optional, Union
from pydantic import BaseModel, Field from pydantic import BaseModel, Field
from ...backend.model_management import BaseModelType, ModelType, SubModelType from ...backend.model_management import BaseModelType, ModelType, SubModelType
from .baseinvocation import (BaseInvocation, BaseInvocationOutput, from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationConfig, InvocationContext
InvocationConfig, InvocationContext)
class ModelInfo(BaseModel): class ModelInfo(BaseModel):
model_name: str = Field(description="Info to load submodel") model_name: str = Field(description="Info to load submodel")
base_model: BaseModelType = Field(description="Base model") base_model: BaseModelType = Field(description="Base model")
model_type: ModelType = Field(description="Info to load submodel") model_type: ModelType = Field(description="Info to load submodel")
submodel: Optional[SubModelType] = Field( submodel: Optional[SubModelType] = Field(default=None, description="Info to load submodel")
default=None, description="Info to load submodel"
)
class LoraInfo(ModelInfo): class LoraInfo(ModelInfo):
@ -33,6 +30,7 @@ class ClipField(BaseModel):
skipped_layers: int = Field(description="Number of skipped layers in text_encoder") skipped_layers: int = Field(description="Number of skipped layers in text_encoder")
loras: List[LoraInfo] = Field(description="Loras to apply on model loading") loras: List[LoraInfo] = Field(description="Loras to apply on model loading")
class VaeField(BaseModel): class VaeField(BaseModel):
# TODO: better naming? # TODO: better naming?
vae: ModelInfo = Field(description="Info to load vae submodel") vae: ModelInfo = Field(description="Info to load vae submodel")
@ -49,6 +47,7 @@ class ModelLoaderOutput(BaseInvocationOutput):
vae: VaeField = Field(default=None, description="Vae submodel") vae: VaeField = Field(default=None, description="Vae submodel")
# fmt: on # fmt: on
class MainModelField(BaseModel): class MainModelField(BaseModel):
"""Main model field""" """Main model field"""
@ -62,6 +61,7 @@ class LoRAModelField(BaseModel):
model_name: str = Field(description="Name of the LoRA model") model_name: str = Field(description="Name of the LoRA model")
base_model: BaseModelType = Field(description="Base model") base_model: BaseModelType = Field(description="Base model")
class MainModelLoaderInvocation(BaseInvocation): class MainModelLoaderInvocation(BaseInvocation):
"""Loads a main model, outputting its submodels.""" """Loads a main model, outputting its submodels."""
@ -180,7 +180,7 @@ class MainModelLoaderInvocation(BaseInvocation):
), ),
) )
class LoraLoaderOutput(BaseInvocationOutput): class LoraLoaderOutput(BaseInvocationOutput):
"""Model loader output""" """Model loader output"""
@ -197,9 +197,7 @@ class LoraLoaderInvocation(BaseInvocation):
type: Literal["lora_loader"] = "lora_loader" type: Literal["lora_loader"] = "lora_loader"
lora: Union[LoRAModelField, None] = Field( lora: Union[LoRAModelField, None] = Field(default=None, description="Lora model name")
default=None, description="Lora model name"
)
weight: float = Field(default=0.75, description="With what weight to apply lora") weight: float = Field(default=0.75, description="With what weight to apply lora")
unet: Optional[UNetField] = Field(description="UNet model for applying lora") unet: Optional[UNetField] = Field(description="UNet model for applying lora")
@ -228,14 +226,10 @@ class LoraLoaderInvocation(BaseInvocation):
): ):
raise Exception(f"Unkown lora name: {lora_name}!") raise Exception(f"Unkown lora name: {lora_name}!")
if self.unet is not None and any( if self.unet is not None and any(lora.model_name == lora_name for lora in self.unet.loras):
lora.model_name == lora_name for lora in self.unet.loras
):
raise Exception(f'Lora "{lora_name}" already applied to unet') raise Exception(f'Lora "{lora_name}" already applied to unet')
if self.clip is not None and any( if self.clip is not None and any(lora.model_name == lora_name for lora in self.clip.loras):
lora.model_name == lora_name for lora in self.clip.loras
):
raise Exception(f'Lora "{lora_name}" already applied to clip') raise Exception(f'Lora "{lora_name}" already applied to clip')
output = LoraLoaderOutput() output = LoraLoaderOutput()

View File

@ -12,16 +12,37 @@ import matplotlib.pyplot as plt
from easing_functions import ( from easing_functions import (
LinearInOut, LinearInOut,
QuadEaseInOut, QuadEaseIn, QuadEaseOut, QuadEaseInOut,
CubicEaseInOut, CubicEaseIn, CubicEaseOut, QuadEaseIn,
QuarticEaseInOut, QuarticEaseIn, QuarticEaseOut, QuadEaseOut,
QuinticEaseInOut, QuinticEaseIn, QuinticEaseOut, CubicEaseInOut,
SineEaseInOut, SineEaseIn, SineEaseOut, CubicEaseIn,
CircularEaseIn, CircularEaseInOut, CircularEaseOut, CubicEaseOut,
ExponentialEaseInOut, ExponentialEaseIn, ExponentialEaseOut, QuarticEaseInOut,
ElasticEaseIn, ElasticEaseInOut, ElasticEaseOut, QuarticEaseIn,
BackEaseIn, BackEaseInOut, BackEaseOut, QuarticEaseOut,
BounceEaseIn, BounceEaseInOut, BounceEaseOut) QuinticEaseInOut,
QuinticEaseIn,
QuinticEaseOut,
SineEaseInOut,
SineEaseIn,
SineEaseOut,
CircularEaseIn,
CircularEaseInOut,
CircularEaseOut,
ExponentialEaseInOut,
ExponentialEaseIn,
ExponentialEaseOut,
ElasticEaseIn,
ElasticEaseInOut,
ElasticEaseOut,
BackEaseIn,
BackEaseInOut,
BackEaseOut,
BounceEaseIn,
BounceEaseInOut,
BounceEaseOut,
)
from .baseinvocation import ( from .baseinvocation import (
BaseInvocation, BaseInvocation,
@ -45,17 +66,12 @@ class FloatLinearRangeInvocation(BaseInvocation):
class Config(InvocationConfig): class Config(InvocationConfig):
schema_extra = { schema_extra = {
"ui": { "ui": {"title": "Linear Range (Float)", "tags": ["math", "float", "linear", "range"]},
"title": "Linear Range (Float)",
"tags": ["math", "float", "linear", "range"]
},
} }
def invoke(self, context: InvocationContext) -> FloatCollectionOutput: def invoke(self, context: InvocationContext) -> FloatCollectionOutput:
param_list = list(np.linspace(self.start, self.stop, self.steps)) param_list = list(np.linspace(self.start, self.stop, self.steps))
return FloatCollectionOutput( return FloatCollectionOutput(collection=param_list)
collection=param_list
)
EASING_FUNCTIONS_MAP = { EASING_FUNCTIONS_MAP = {
@ -92,9 +108,7 @@ EASING_FUNCTIONS_MAP = {
"BounceInOut": BounceEaseInOut, "BounceInOut": BounceEaseInOut,
} }
EASING_FUNCTION_KEYS: Any = Literal[ EASING_FUNCTION_KEYS: Any = Literal[tuple(list(EASING_FUNCTIONS_MAP.keys()))]
tuple(list(EASING_FUNCTIONS_MAP.keys()))
]
# actually I think for now could just use CollectionOutput (which is list[Any] # actually I think for now could just use CollectionOutput (which is list[Any]
@ -123,13 +137,9 @@ class StepParamEasingInvocation(BaseInvocation):
class Config(InvocationConfig): class Config(InvocationConfig):
schema_extra = { schema_extra = {
"ui": { "ui": {"title": "Param Easing By Step", "tags": ["param", "step", "easing"]},
"title": "Param Easing By Step",
"tags": ["param", "step", "easing"]
},
} }
def invoke(self, context: InvocationContext) -> FloatCollectionOutput: def invoke(self, context: InvocationContext) -> FloatCollectionOutput:
log_diagnostics = False log_diagnostics = False
# convert from start_step_percent to nearest step <= (steps * start_step_percent) # convert from start_step_percent to nearest step <= (steps * start_step_percent)
@ -170,12 +180,13 @@ class StepParamEasingInvocation(BaseInvocation):
# and create reverse copy of list[1:end-1] # and create reverse copy of list[1:end-1]
# but if even then number_of_steps/2 === ceil(number_of_steps/2), so can just use ceil always # but if even then number_of_steps/2 === ceil(number_of_steps/2), so can just use ceil always
base_easing_duration = int(np.ceil(num_easing_steps/2.0)) base_easing_duration = int(np.ceil(num_easing_steps / 2.0))
if log_diagnostics: context.services.logger.debug("base easing duration: " + str(base_easing_duration)) if log_diagnostics:
even_num_steps = (num_easing_steps % 2 == 0) # even number of steps context.services.logger.debug("base easing duration: " + str(base_easing_duration))
easing_function = easing_class(start=self.start_value, even_num_steps = num_easing_steps % 2 == 0 # even number of steps
end=self.end_value, easing_function = easing_class(
duration=base_easing_duration - 1) start=self.start_value, end=self.end_value, duration=base_easing_duration - 1
)
base_easing_vals = list() base_easing_vals = list()
for step_index in range(base_easing_duration): for step_index in range(base_easing_duration):
easing_val = easing_function.ease(step_index) easing_val = easing_function.ease(step_index)
@ -214,9 +225,7 @@ class StepParamEasingInvocation(BaseInvocation):
# #
else: # no mirroring (default) else: # no mirroring (default)
easing_function = easing_class(start=self.start_value, easing_function = easing_class(start=self.start_value, end=self.end_value, duration=num_easing_steps - 1)
end=self.end_value,
duration=num_easing_steps - 1)
for step_index in range(num_easing_steps): for step_index in range(num_easing_steps):
step_val = easing_function.ease(step_index) step_val = easing_function.ease(step_index)
easing_list.append(step_val) easing_list.append(step_val)
@ -240,13 +249,11 @@ class StepParamEasingInvocation(BaseInvocation):
ax = plt.gca() ax = plt.gca()
ax.xaxis.set_major_locator(MaxNLocator(integer=True)) ax.xaxis.set_major_locator(MaxNLocator(integer=True))
buf = io.BytesIO() buf = io.BytesIO()
plt.savefig(buf, format='png') plt.savefig(buf, format="png")
buf.seek(0) buf.seek(0)
im = PIL.Image.open(buf) im = PIL.Image.open(buf)
im.show() im.show()
buf.close() buf.close()
# output array of size steps, each entry list[i] is param value for step i # output array of size steps, each entry list[i] is param value for step i
return FloatCollectionOutput( return FloatCollectionOutput(collection=param_list)
collection=param_list
)

View File

@ -4,67 +4,63 @@ from typing import Literal
from pydantic import Field from pydantic import Field
from .baseinvocation import (BaseInvocation, BaseInvocationOutput, from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationConfig, InvocationContext
InvocationConfig, InvocationContext)
from .math import FloatOutput, IntOutput from .math import FloatOutput, IntOutput
# Pass-through parameter nodes - used by subgraphs # Pass-through parameter nodes - used by subgraphs
class ParamIntInvocation(BaseInvocation): class ParamIntInvocation(BaseInvocation):
"""An integer parameter""" """An integer parameter"""
#fmt: off
# fmt: off
type: Literal["param_int"] = "param_int" type: Literal["param_int"] = "param_int"
a: int = Field(default=0, description="The integer value") a: int = Field(default=0, description="The integer value")
#fmt: on # fmt: on
class Config(InvocationConfig): class Config(InvocationConfig):
schema_extra = { schema_extra = {
"ui": { "ui": {"tags": ["param", "integer"], "title": "Integer Parameter"},
"tags": ["param", "integer"], }
"title": "Integer Parameter"
},
}
def invoke(self, context: InvocationContext) -> IntOutput: def invoke(self, context: InvocationContext) -> IntOutput:
return IntOutput(a=self.a) return IntOutput(a=self.a)
class ParamFloatInvocation(BaseInvocation): class ParamFloatInvocation(BaseInvocation):
"""A float parameter""" """A float parameter"""
#fmt: off
# fmt: off
type: Literal["param_float"] = "param_float" type: Literal["param_float"] = "param_float"
param: float = Field(default=0.0, description="The float value") param: float = Field(default=0.0, description="The float value")
#fmt: on # fmt: on
class Config(InvocationConfig): class Config(InvocationConfig):
schema_extra = { schema_extra = {
"ui": { "ui": {"tags": ["param", "float"], "title": "Float Parameter"},
"tags": ["param", "float"], }
"title": "Float Parameter"
},
}
def invoke(self, context: InvocationContext) -> FloatOutput: def invoke(self, context: InvocationContext) -> FloatOutput:
return FloatOutput(param=self.param) return FloatOutput(param=self.param)
class StringOutput(BaseInvocationOutput): class StringOutput(BaseInvocationOutput):
"""A string output""" """A string output"""
type: Literal["string_output"] = "string_output" type: Literal["string_output"] = "string_output"
text: str = Field(default=None, description="The output string") text: str = Field(default=None, description="The output string")
class ParamStringInvocation(BaseInvocation): class ParamStringInvocation(BaseInvocation):
"""A string parameter""" """A string parameter"""
type: Literal['param_string'] = 'param_string'
text: str = Field(default='', description='The string value') type: Literal["param_string"] = "param_string"
text: str = Field(default="", description="The string value")
class Config(InvocationConfig): class Config(InvocationConfig):
schema_extra = { schema_extra = {
"ui": { "ui": {"tags": ["param", "string"], "title": "String Parameter"},
"tags": ["param", "string"], }
"title": "String Parameter"
},
}
def invoke(self, context: InvocationContext) -> StringOutput: def invoke(self, context: InvocationContext) -> StringOutput:
return StringOutput(text=self.text) return StringOutput(text=self.text)

View File

@ -7,19 +7,21 @@ from pydantic import Field, validator
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationConfig, InvocationContext from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationConfig, InvocationContext
from dynamicprompts.generators import RandomPromptGenerator, CombinatorialPromptGenerator from dynamicprompts.generators import RandomPromptGenerator, CombinatorialPromptGenerator
class PromptOutput(BaseInvocationOutput): class PromptOutput(BaseInvocationOutput):
"""Base class for invocations that output a prompt""" """Base class for invocations that output a prompt"""
#fmt: off
# fmt: off
type: Literal["prompt"] = "prompt" type: Literal["prompt"] = "prompt"
prompt: str = Field(default=None, description="The output prompt") prompt: str = Field(default=None, description="The output prompt")
#fmt: on # fmt: on
class Config: class Config:
schema_extra = { schema_extra = {
'required': [ "required": [
'type', "type",
'prompt', "prompt",
] ]
} }
@ -44,16 +46,11 @@ class DynamicPromptInvocation(BaseInvocation):
type: Literal["dynamic_prompt"] = "dynamic_prompt" type: Literal["dynamic_prompt"] = "dynamic_prompt"
prompt: str = Field(description="The prompt to parse with dynamicprompts") prompt: str = Field(description="The prompt to parse with dynamicprompts")
max_prompts: int = Field(default=1, description="The number of prompts to generate") max_prompts: int = Field(default=1, description="The number of prompts to generate")
combinatorial: bool = Field( combinatorial: bool = Field(default=False, description="Whether to use the combinatorial generator")
default=False, description="Whether to use the combinatorial generator"
)
class Config(InvocationConfig): class Config(InvocationConfig):
schema_extra = { schema_extra = {
"ui": { "ui": {"title": "Dynamic Prompt", "tags": ["prompt", "dynamic"]},
"title": "Dynamic Prompt",
"tags": ["prompt", "dynamic"]
},
} }
def invoke(self, context: InvocationContext) -> PromptCollectionOutput: def invoke(self, context: InvocationContext) -> PromptCollectionOutput:
@ -65,10 +62,11 @@ class DynamicPromptInvocation(BaseInvocation):
prompts = generator.generate(self.prompt, num_images=self.max_prompts) prompts = generator.generate(self.prompt, num_images=self.max_prompts)
return PromptCollectionOutput(prompt_collection=prompts, count=len(prompts)) return PromptCollectionOutput(prompt_collection=prompts, count=len(prompts))
class PromptsFromFileInvocation(BaseInvocation): class PromptsFromFileInvocation(BaseInvocation):
'''Loads prompts from a text file''' """Loads prompts from a text file"""
# fmt: off # fmt: off
type: Literal['prompt_from_file'] = 'prompt_from_file' type: Literal['prompt_from_file'] = 'prompt_from_file'
@ -78,14 +76,11 @@ class PromptsFromFileInvocation(BaseInvocation):
post_prompt: Optional[str] = Field(description="String to append to each prompt") post_prompt: Optional[str] = Field(description="String to append to each prompt")
start_line: int = Field(default=1, ge=1, description="Line in the file to start start from") start_line: int = Field(default=1, ge=1, description="Line in the file to start start from")
max_prompts: int = Field(default=1, ge=0, description="Max lines to read from file (0=all)") max_prompts: int = Field(default=1, ge=0, description="Max lines to read from file (0=all)")
#fmt: on # fmt: on
class Config(InvocationConfig): class Config(InvocationConfig):
schema_extra = { schema_extra = {
"ui": { "ui": {"title": "Prompts From File", "tags": ["prompt", "file"]},
"title": "Prompts From File",
"tags": ["prompt", "file"]
},
} }
@validator("file_path") @validator("file_path")
@ -103,11 +98,13 @@ class PromptsFromFileInvocation(BaseInvocation):
with open(file_path) as f: with open(file_path) as f:
for i, line in enumerate(f): for i, line in enumerate(f):
if i >= start_line and i < end_line: if i >= start_line and i < end_line:
prompts.append((pre_prompt or '') + line.strip() + (post_prompt or '')) prompts.append((pre_prompt or "") + line.strip() + (post_prompt or ""))
if i >= end_line: if i >= end_line:
break break
return prompts return prompts
def invoke(self, context: InvocationContext) -> PromptCollectionOutput: def invoke(self, context: InvocationContext) -> PromptCollectionOutput:
prompts = self.promptsFromFile(self.file_path, self.pre_prompt, self.post_prompt, self.start_line, self.max_prompts) prompts = self.promptsFromFile(
self.file_path, self.pre_prompt, self.post_prompt, self.start_line, self.max_prompts
)
return PromptCollectionOutput(prompt_collection=prompts, count=len(prompts)) return PromptCollectionOutput(prompt_collection=prompts, count=len(prompts))

View File

@ -7,13 +7,13 @@ from pydantic import Field, validator
from ...backend.model_management import ModelType, SubModelType from ...backend.model_management import ModelType, SubModelType
from invokeai.app.util.step_callback import stable_diffusion_xl_step_callback from invokeai.app.util.step_callback import stable_diffusion_xl_step_callback
from .baseinvocation import (BaseInvocation, BaseInvocationOutput, from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationConfig, InvocationContext
InvocationConfig, InvocationContext)
from .model import UNetField, ClipField, VaeField, MainModelField, ModelInfo from .model import UNetField, ClipField, VaeField, MainModelField, ModelInfo
from .compel import ConditioningField from .compel import ConditioningField
from .latent import LatentsField, SAMPLER_NAME_VALUES, LatentsOutput, get_scheduler, build_latents_output from .latent import LatentsField, SAMPLER_NAME_VALUES, LatentsOutput, get_scheduler, build_latents_output
class SDXLModelLoaderOutput(BaseInvocationOutput): class SDXLModelLoaderOutput(BaseInvocationOutput):
"""SDXL base model loader output""" """SDXL base model loader output"""
@ -26,16 +26,19 @@ class SDXLModelLoaderOutput(BaseInvocationOutput):
vae: VaeField = Field(default=None, description="Vae submodel") vae: VaeField = Field(default=None, description="Vae submodel")
# fmt: on # fmt: on
class SDXLRefinerModelLoaderOutput(BaseInvocationOutput): class SDXLRefinerModelLoaderOutput(BaseInvocationOutput):
"""SDXL refiner model loader output""" """SDXL refiner model loader output"""
# fmt: off # fmt: off
type: Literal["sdxl_refiner_model_loader_output"] = "sdxl_refiner_model_loader_output" type: Literal["sdxl_refiner_model_loader_output"] = "sdxl_refiner_model_loader_output"
unet: UNetField = Field(default=None, description="UNet submodel") unet: UNetField = Field(default=None, description="UNet submodel")
clip2: ClipField = Field(default=None, description="Tokenizer and text_encoder submodels") clip2: ClipField = Field(default=None, description="Tokenizer and text_encoder submodels")
vae: VaeField = Field(default=None, description="Vae submodel") vae: VaeField = Field(default=None, description="Vae submodel")
# fmt: on # fmt: on
#fmt: on # fmt: on
class SDXLModelLoaderInvocation(BaseInvocation): class SDXLModelLoaderInvocation(BaseInvocation):
"""Loads an sdxl base model, outputting its submodels.""" """Loads an sdxl base model, outputting its submodels."""
@ -125,8 +128,10 @@ class SDXLModelLoaderInvocation(BaseInvocation):
), ),
) )
class SDXLRefinerModelLoaderInvocation(BaseInvocation): class SDXLRefinerModelLoaderInvocation(BaseInvocation):
"""Loads an sdxl refiner model, outputting its submodels.""" """Loads an sdxl refiner model, outputting its submodels."""
type: Literal["sdxl_refiner_model_loader"] = "sdxl_refiner_model_loader" type: Literal["sdxl_refiner_model_loader"] = "sdxl_refiner_model_loader"
model: MainModelField = Field(description="The model to load") model: MainModelField = Field(description="The model to load")
@ -196,7 +201,8 @@ class SDXLRefinerModelLoaderInvocation(BaseInvocation):
), ),
), ),
) )
# Text to image # Text to image
class SDXLTextToLatentsInvocation(BaseInvocation): class SDXLTextToLatentsInvocation(BaseInvocation):
"""Generates latents from conditionings.""" """Generates latents from conditionings."""
@ -213,9 +219,9 @@ class SDXLTextToLatentsInvocation(BaseInvocation):
scheduler: SAMPLER_NAME_VALUES = Field(default="euler", description="The scheduler to use" ) scheduler: SAMPLER_NAME_VALUES = Field(default="euler", description="The scheduler to use" )
unet: UNetField = Field(default=None, description="UNet submodel") unet: UNetField = Field(default=None, description="UNet submodel")
denoising_end: float = Field(default=1.0, gt=0, le=1, description="") denoising_end: float = Field(default=1.0, gt=0, le=1, description="")
#control: Union[ControlField, list[ControlField]] = Field(default=None, description="The control to use") # control: Union[ControlField, list[ControlField]] = Field(default=None, description="The control to use")
#seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", ) # seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", )
#seamless_axes: str = Field(default="", description="The axes to tile the image on, 'x' and/or 'y'") # seamless_axes: str = Field(default="", description="The axes to tile the image on, 'x' and/or 'y'")
# fmt: on # fmt: on
@validator("cfg_scale") @validator("cfg_scale")
@ -224,10 +230,10 @@ class SDXLTextToLatentsInvocation(BaseInvocation):
if isinstance(v, list): if isinstance(v, list):
for i in v: for i in v:
if i < 1: if i < 1:
raise ValueError('cfg_scale must be greater than 1') raise ValueError("cfg_scale must be greater than 1")
else: else:
if v < 1: if v < 1:
raise ValueError('cfg_scale must be greater than 1') raise ValueError("cfg_scale must be greater than 1")
return v return v
# Schema customisation # Schema customisation
@ -237,10 +243,10 @@ class SDXLTextToLatentsInvocation(BaseInvocation):
"title": "SDXL Text To Latents", "title": "SDXL Text To Latents",
"tags": ["latents"], "tags": ["latents"],
"type_hints": { "type_hints": {
"model": "model", "model": "model",
# "cfg_scale": "float", # "cfg_scale": "float",
"cfg_scale": "number" "cfg_scale": "number",
} },
}, },
} }
@ -265,9 +271,7 @@ class SDXLTextToLatentsInvocation(BaseInvocation):
# https://github.com/huggingface/diffusers/blob/3ebbaf7c96801271f9e6c21400033b6aa5ffcf29/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py#L375 # https://github.com/huggingface/diffusers/blob/3ebbaf7c96801271f9e6c21400033b6aa5ffcf29/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py#L375
@torch.no_grad() @torch.no_grad()
def invoke(self, context: InvocationContext) -> LatentsOutput: def invoke(self, context: InvocationContext) -> LatentsOutput:
graph_execution_state = context.services.graph_execution_manager.get( graph_execution_state = context.services.graph_execution_manager.get(context.graph_execution_state_id)
context.graph_execution_state_id
)
source_node_id = graph_execution_state.prepared_source_mapping[self.id] source_node_id = graph_execution_state.prepared_source_mapping[self.id]
latents = context.services.latents.get(self.noise.latents_name) latents = context.services.latents.get(self.noise.latents_name)
@ -293,14 +297,10 @@ class SDXLTextToLatentsInvocation(BaseInvocation):
latents = latents * scheduler.init_noise_sigma latents = latents * scheduler.init_noise_sigma
unet_info = context.services.model_manager.get_model(**self.unet.unet.dict(), context=context)
unet_info = context.services.model_manager.get_model(
**self.unet.unet.dict(), context=context
)
do_classifier_free_guidance = True do_classifier_free_guidance = True
cross_attention_kwargs = None cross_attention_kwargs = None
with unet_info as unet: with unet_info as unet:
extra_step_kwargs = dict() extra_step_kwargs = dict()
if "eta" in set(inspect.signature(scheduler.step).parameters.keys()): if "eta" in set(inspect.signature(scheduler.step).parameters.keys()):
extra_step_kwargs.update( extra_step_kwargs.update(
@ -350,10 +350,10 @@ class SDXLTextToLatentsInvocation(BaseInvocation):
if do_classifier_free_guidance: if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + self.cfg_scale * (noise_pred_text - noise_pred_uncond) noise_pred = noise_pred_uncond + self.cfg_scale * (noise_pred_text - noise_pred_uncond)
#del noise_pred_uncond # del noise_pred_uncond
#del noise_pred_text # del noise_pred_text
#if do_classifier_free_guidance and guidance_rescale > 0.0: # if do_classifier_free_guidance and guidance_rescale > 0.0:
# # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf # # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
# noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale) # noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
@ -364,7 +364,7 @@ class SDXLTextToLatentsInvocation(BaseInvocation):
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % scheduler.order == 0): if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % scheduler.order == 0):
progress_bar.update() progress_bar.update()
self.dispatch_progress(context, source_node_id, latents, i, num_inference_steps) self.dispatch_progress(context, source_node_id, latents, i, num_inference_steps)
#if callback is not None and i % callback_steps == 0: # if callback is not None and i % callback_steps == 0:
# callback(i, t, latents) # callback(i, t, latents)
else: else:
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.to(device=unet.device, dtype=unet.dtype) negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.to(device=unet.device, dtype=unet.dtype)
@ -378,13 +378,13 @@ class SDXLTextToLatentsInvocation(BaseInvocation):
with tqdm(total=num_inference_steps) as progress_bar: with tqdm(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps): for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance # expand the latents if we are doing classifier free guidance
#latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents # latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = scheduler.scale_model_input(latents, t) latent_model_input = scheduler.scale_model_input(latents, t)
#import gc # import gc
#gc.collect() # gc.collect()
#torch.cuda.empty_cache() # torch.cuda.empty_cache()
# predict the noise residual # predict the noise residual
@ -411,42 +411,41 @@ class SDXLTextToLatentsInvocation(BaseInvocation):
# perform guidance # perform guidance
noise_pred = noise_pred_uncond + self.cfg_scale * (noise_pred_text - noise_pred_uncond) noise_pred = noise_pred_uncond + self.cfg_scale * (noise_pred_text - noise_pred_uncond)
#del noise_pred_text # del noise_pred_text
#del noise_pred_uncond # del noise_pred_uncond
#import gc # import gc
#gc.collect() # gc.collect()
#torch.cuda.empty_cache() # torch.cuda.empty_cache()
#if do_classifier_free_guidance and guidance_rescale > 0.0: # if do_classifier_free_guidance and guidance_rescale > 0.0:
# # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf # # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
# noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale) # noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
# compute the previous noisy sample x_t -> x_t-1 # compute the previous noisy sample x_t -> x_t-1
latents = scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] latents = scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
#del noise_pred # del noise_pred
#import gc # import gc
#gc.collect() # gc.collect()
#torch.cuda.empty_cache() # torch.cuda.empty_cache()
# call the callback, if provided # call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % scheduler.order == 0): if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % scheduler.order == 0):
progress_bar.update() progress_bar.update()
self.dispatch_progress(context, source_node_id, latents, i, num_inference_steps) self.dispatch_progress(context, source_node_id, latents, i, num_inference_steps)
#if callback is not None and i % callback_steps == 0: # if callback is not None and i % callback_steps == 0:
# callback(i, t, latents) # callback(i, t, latents)
################# #################
latents = latents.to("cpu") latents = latents.to("cpu")
torch.cuda.empty_cache() torch.cuda.empty_cache()
name = f'{context.graph_execution_state_id}__{self.id}' name = f"{context.graph_execution_state_id}__{self.id}"
context.services.latents.save(name, latents) context.services.latents.save(name, latents)
return build_latents_output(latents_name=name, latents=latents) return build_latents_output(latents_name=name, latents=latents)
class SDXLLatentsToLatentsInvocation(BaseInvocation): class SDXLLatentsToLatentsInvocation(BaseInvocation):
"""Generates latents from conditionings.""" """Generates latents from conditionings."""
@ -466,9 +465,9 @@ class SDXLLatentsToLatentsInvocation(BaseInvocation):
denoising_start: float = Field(default=0.0, ge=0, le=1, description="") denoising_start: float = Field(default=0.0, ge=0, le=1, description="")
denoising_end: float = Field(default=1.0, ge=0, le=1, description="") denoising_end: float = Field(default=1.0, ge=0, le=1, description="")
#control: Union[ControlField, list[ControlField]] = Field(default=None, description="The control to use") # control: Union[ControlField, list[ControlField]] = Field(default=None, description="The control to use")
#seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", ) # seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", )
#seamless_axes: str = Field(default="", description="The axes to tile the image on, 'x' and/or 'y'") # seamless_axes: str = Field(default="", description="The axes to tile the image on, 'x' and/or 'y'")
# fmt: on # fmt: on
@validator("cfg_scale") @validator("cfg_scale")
@ -477,10 +476,10 @@ class SDXLLatentsToLatentsInvocation(BaseInvocation):
if isinstance(v, list): if isinstance(v, list):
for i in v: for i in v:
if i < 1: if i < 1:
raise ValueError('cfg_scale must be greater than 1') raise ValueError("cfg_scale must be greater than 1")
else: else:
if v < 1: if v < 1:
raise ValueError('cfg_scale must be greater than 1') raise ValueError("cfg_scale must be greater than 1")
return v return v
# Schema customisation # Schema customisation
@ -490,10 +489,10 @@ class SDXLLatentsToLatentsInvocation(BaseInvocation):
"title": "SDXL Latents to Latents", "title": "SDXL Latents to Latents",
"tags": ["latents"], "tags": ["latents"],
"type_hints": { "type_hints": {
"model": "model", "model": "model",
# "cfg_scale": "float", # "cfg_scale": "float",
"cfg_scale": "number" "cfg_scale": "number",
} },
}, },
} }
@ -518,9 +517,7 @@ class SDXLLatentsToLatentsInvocation(BaseInvocation):
# https://github.com/huggingface/diffusers/blob/3ebbaf7c96801271f9e6c21400033b6aa5ffcf29/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py#L375 # https://github.com/huggingface/diffusers/blob/3ebbaf7c96801271f9e6c21400033b6aa5ffcf29/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py#L375
@torch.no_grad() @torch.no_grad()
def invoke(self, context: InvocationContext) -> LatentsOutput: def invoke(self, context: InvocationContext) -> LatentsOutput:
graph_execution_state = context.services.graph_execution_manager.get( graph_execution_state = context.services.graph_execution_manager.get(context.graph_execution_state_id)
context.graph_execution_state_id
)
source_node_id = graph_execution_state.prepared_source_mapping[self.id] source_node_id = graph_execution_state.prepared_source_mapping[self.id]
latents = context.services.latents.get(self.latents.latents_name) latents = context.services.latents.get(self.latents.latents_name)
@ -545,7 +542,7 @@ class SDXLLatentsToLatentsInvocation(BaseInvocation):
scheduler.set_timesteps(num_inference_steps) scheduler.set_timesteps(num_inference_steps)
t_start = int(round(self.denoising_start * num_inference_steps)) t_start = int(round(self.denoising_start * num_inference_steps))
timesteps = scheduler.timesteps[t_start * scheduler.order:] timesteps = scheduler.timesteps[t_start * scheduler.order :]
num_inference_steps = num_inference_steps - t_start num_inference_steps = num_inference_steps - t_start
# apply noise(if provided) # apply noise(if provided)
@ -555,12 +552,12 @@ class SDXLLatentsToLatentsInvocation(BaseInvocation):
del noise del noise
unet_info = context.services.model_manager.get_model( unet_info = context.services.model_manager.get_model(
**self.unet.unet.dict(), context=context, **self.unet.unet.dict(),
context=context,
) )
do_classifier_free_guidance = True do_classifier_free_guidance = True
cross_attention_kwargs = None cross_attention_kwargs = None
with unet_info as unet: with unet_info as unet:
# apply scheduler extra args # apply scheduler extra args
extra_step_kwargs = dict() extra_step_kwargs = dict()
if "eta" in set(inspect.signature(scheduler.step).parameters.keys()): if "eta" in set(inspect.signature(scheduler.step).parameters.keys()):
@ -611,10 +608,10 @@ class SDXLLatentsToLatentsInvocation(BaseInvocation):
if do_classifier_free_guidance: if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + self.cfg_scale * (noise_pred_text - noise_pred_uncond) noise_pred = noise_pred_uncond + self.cfg_scale * (noise_pred_text - noise_pred_uncond)
#del noise_pred_uncond # del noise_pred_uncond
#del noise_pred_text # del noise_pred_text
#if do_classifier_free_guidance and guidance_rescale > 0.0: # if do_classifier_free_guidance and guidance_rescale > 0.0:
# # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf # # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
# noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale) # noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
@ -625,7 +622,7 @@ class SDXLLatentsToLatentsInvocation(BaseInvocation):
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % scheduler.order == 0): if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % scheduler.order == 0):
progress_bar.update() progress_bar.update()
self.dispatch_progress(context, source_node_id, latents, i, num_inference_steps) self.dispatch_progress(context, source_node_id, latents, i, num_inference_steps)
#if callback is not None and i % callback_steps == 0: # if callback is not None and i % callback_steps == 0:
# callback(i, t, latents) # callback(i, t, latents)
else: else:
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.to(device=unet.device, dtype=unet.dtype) negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.to(device=unet.device, dtype=unet.dtype)
@ -639,13 +636,13 @@ class SDXLLatentsToLatentsInvocation(BaseInvocation):
with tqdm(total=num_inference_steps) as progress_bar: with tqdm(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps): for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance # expand the latents if we are doing classifier free guidance
#latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents # latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = scheduler.scale_model_input(latents, t) latent_model_input = scheduler.scale_model_input(latents, t)
#import gc # import gc
#gc.collect() # gc.collect()
#torch.cuda.empty_cache() # torch.cuda.empty_cache()
# predict the noise residual # predict the noise residual
@ -672,38 +669,36 @@ class SDXLLatentsToLatentsInvocation(BaseInvocation):
# perform guidance # perform guidance
noise_pred = noise_pred_uncond + self.cfg_scale * (noise_pred_text - noise_pred_uncond) noise_pred = noise_pred_uncond + self.cfg_scale * (noise_pred_text - noise_pred_uncond)
#del noise_pred_text # del noise_pred_text
#del noise_pred_uncond # del noise_pred_uncond
#import gc # import gc
#gc.collect() # gc.collect()
#torch.cuda.empty_cache() # torch.cuda.empty_cache()
#if do_classifier_free_guidance and guidance_rescale > 0.0: # if do_classifier_free_guidance and guidance_rescale > 0.0:
# # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf # # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
# noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale) # noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
# compute the previous noisy sample x_t -> x_t-1 # compute the previous noisy sample x_t -> x_t-1
latents = scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] latents = scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
#del noise_pred # del noise_pred
#import gc # import gc
#gc.collect() # gc.collect()
#torch.cuda.empty_cache() # torch.cuda.empty_cache()
# call the callback, if provided # call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % scheduler.order == 0): if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % scheduler.order == 0):
progress_bar.update() progress_bar.update()
self.dispatch_progress(context, source_node_id, latents, i, num_inference_steps) self.dispatch_progress(context, source_node_id, latents, i, num_inference_steps)
#if callback is not None and i % callback_steps == 0: # if callback is not None and i % callback_steps == 0:
# callback(i, t, latents) # callback(i, t, latents)
################# #################
latents = latents.to("cpu") latents = latents.to("cpu")
torch.cuda.empty_cache() torch.cuda.empty_cache()
name = f'{context.graph_execution_state_id}__{self.id}' name = f"{context.graph_execution_state_id}__{self.id}"
context.services.latents.save(name, latents) context.services.latents.save(name, latents)
return build_latents_output(latents_name=name, latents=latents) return build_latents_output(latents_name=name, latents=latents)

View File

@ -29,16 +29,11 @@ class ESRGANInvocation(BaseInvocation):
type: Literal["esrgan"] = "esrgan" type: Literal["esrgan"] = "esrgan"
image: Union[ImageField, None] = Field(default=None, description="The input image") image: Union[ImageField, None] = Field(default=None, description="The input image")
model_name: ESRGAN_MODELS = Field( model_name: ESRGAN_MODELS = Field(default="RealESRGAN_x4plus.pth", description="The Real-ESRGAN model to use")
default="RealESRGAN_x4plus.pth", description="The Real-ESRGAN model to use"
)
class Config(InvocationConfig): class Config(InvocationConfig):
schema_extra = { schema_extra = {
"ui": { "ui": {"title": "Upscale (RealESRGAN)", "tags": ["image", "upscale", "realesrgan"]},
"title": "Upscale (RealESRGAN)",
"tags": ["image", "upscale", "realesrgan"]
},
} }
def invoke(self, context: InvocationContext) -> ImageOutput: def invoke(self, context: InvocationContext) -> ImageOutput:
@ -108,9 +103,7 @@ class ESRGANInvocation(BaseInvocation):
upscaled_image, img_mode = upsampler.enhance(cv_image) upscaled_image, img_mode = upsampler.enhance(cv_image)
# back to PIL # back to PIL
pil_image = Image.fromarray( pil_image = Image.fromarray(cv.cvtColor(upscaled_image, cv.COLOR_BGR2RGB)).convert("RGBA")
cv.cvtColor(upscaled_image, cv.COLOR_BGR2RGB)
).convert("RGBA")
image_dto = context.services.images.create( image_dto = context.services.images.create(
image=pil_image, image=pil_image,

View File

@ -1,3 +1,4 @@
class CanceledException(Exception): class CanceledException(Exception):
"""Execution canceled by user.""" """Execution canceled by user."""
pass pass

View File

@ -8,6 +8,7 @@ from ..invocations.baseinvocation import (
InvocationConfig, InvocationConfig,
) )
class ImageField(BaseModel): class ImageField(BaseModel):
"""An image field used for passing image objects between invocations""" """An image field used for passing image objects between invocations"""
@ -34,6 +35,7 @@ class ProgressImage(BaseModel):
height: int = Field(description="The effective height of the image in pixels") height: int = Field(description="The effective height of the image in pixels")
dataURL: str = Field(description="The image data as a b64 data URL") dataURL: str = Field(description="The image data as a b64 data URL")
class PILInvocationConfig(BaseModel): class PILInvocationConfig(BaseModel):
"""Helper class to provide all PIL invocations with additional config""" """Helper class to provide all PIL invocations with additional config"""
@ -44,6 +46,7 @@ class PILInvocationConfig(BaseModel):
}, },
} }
class ImageOutput(BaseInvocationOutput): class ImageOutput(BaseInvocationOutput):
"""Base class for invocations that output an image""" """Base class for invocations that output an image"""
@ -76,6 +79,7 @@ class MaskOutput(BaseInvocationOutput):
] ]
} }
class ResourceOrigin(str, Enum, metaclass=MetaEnum): class ResourceOrigin(str, Enum, metaclass=MetaEnum):
"""The origin of a resource (eg image). """The origin of a resource (eg image).
@ -132,5 +136,3 @@ class InvalidImageCategoryException(ValueError):
def __init__(self, message="Invalid image category."): def __init__(self, message="Invalid image category."):
super().__init__(message) super().__init__(message)

View File

@ -207,9 +207,7 @@ class SqliteBoardImageRecordStorage(BoardImageRecordStorageBase):
raise e raise e
finally: finally:
self._lock.release() self._lock.release()
return OffsetPaginatedResults( return OffsetPaginatedResults(items=images, offset=offset, limit=limit, total=count)
items=images, offset=offset, limit=limit, total=count
)
def get_all_board_image_names_for_board(self, board_id: str) -> list[str]: def get_all_board_image_names_for_board(self, board_id: str) -> list[str]:
try: try:

View File

@ -102,9 +102,7 @@ class BoardImagesService(BoardImagesServiceABC):
self, self,
board_id: str, board_id: str,
) -> list[str]: ) -> list[str]:
return self._services.board_image_records.get_all_board_image_names_for_board( return self._services.board_image_records.get_all_board_image_names_for_board(board_id)
board_id
)
def get_board_for_image( def get_board_for_image(
self, self,
@ -114,9 +112,7 @@ class BoardImagesService(BoardImagesServiceABC):
return board_id return board_id
def board_record_to_dto( def board_record_to_dto(board_record: BoardRecord, cover_image_name: Optional[str], image_count: int) -> BoardDTO:
board_record: BoardRecord, cover_image_name: Optional[str], image_count: int
) -> BoardDTO:
"""Converts a board record to a board DTO.""" """Converts a board record to a board DTO."""
return BoardDTO( return BoardDTO(
**board_record.dict(exclude={"cover_image_name"}), **board_record.dict(exclude={"cover_image_name"}),

View File

@ -15,9 +15,7 @@ from pydantic import BaseModel, Field, Extra
class BoardChanges(BaseModel, extra=Extra.forbid): class BoardChanges(BaseModel, extra=Extra.forbid):
board_name: Optional[str] = Field(description="The board's new name.") board_name: Optional[str] = Field(description="The board's new name.")
cover_image_name: Optional[str] = Field( cover_image_name: Optional[str] = Field(description="The name of the board's new cover image.")
description="The name of the board's new cover image."
)
class BoardRecordNotFoundException(Exception): class BoardRecordNotFoundException(Exception):
@ -292,9 +290,7 @@ class SqliteBoardRecordStorage(BoardRecordStorageBase):
count = cast(int, self._cursor.fetchone()[0]) count = cast(int, self._cursor.fetchone()[0])
return OffsetPaginatedResults[BoardRecord]( return OffsetPaginatedResults[BoardRecord](items=boards, offset=offset, limit=limit, total=count)
items=boards, offset=offset, limit=limit, total=count
)
except sqlite3.Error as e: except sqlite3.Error as e:
self._conn.rollback() self._conn.rollback()

View File

@ -108,16 +108,12 @@ class BoardService(BoardServiceABC):
def get_dto(self, board_id: str) -> BoardDTO: def get_dto(self, board_id: str) -> BoardDTO:
board_record = self._services.board_records.get(board_id) board_record = self._services.board_records.get(board_id)
cover_image = self._services.image_records.get_most_recent_image_for_board( cover_image = self._services.image_records.get_most_recent_image_for_board(board_record.board_id)
board_record.board_id
)
if cover_image: if cover_image:
cover_image_name = cover_image.image_name cover_image_name = cover_image.image_name
else: else:
cover_image_name = None cover_image_name = None
image_count = self._services.board_image_records.get_image_count_for_board( image_count = self._services.board_image_records.get_image_count_for_board(board_id)
board_id
)
return board_record_to_dto(board_record, cover_image_name, image_count) return board_record_to_dto(board_record, cover_image_name, image_count)
def update( def update(
@ -126,60 +122,44 @@ class BoardService(BoardServiceABC):
changes: BoardChanges, changes: BoardChanges,
) -> BoardDTO: ) -> BoardDTO:
board_record = self._services.board_records.update(board_id, changes) board_record = self._services.board_records.update(board_id, changes)
cover_image = self._services.image_records.get_most_recent_image_for_board( cover_image = self._services.image_records.get_most_recent_image_for_board(board_record.board_id)
board_record.board_id
)
if cover_image: if cover_image:
cover_image_name = cover_image.image_name cover_image_name = cover_image.image_name
else: else:
cover_image_name = None cover_image_name = None
image_count = self._services.board_image_records.get_image_count_for_board( image_count = self._services.board_image_records.get_image_count_for_board(board_id)
board_id
)
return board_record_to_dto(board_record, cover_image_name, image_count) return board_record_to_dto(board_record, cover_image_name, image_count)
def delete(self, board_id: str) -> None: def delete(self, board_id: str) -> None:
self._services.board_records.delete(board_id) self._services.board_records.delete(board_id)
def get_many( def get_many(self, offset: int = 0, limit: int = 10) -> OffsetPaginatedResults[BoardDTO]:
self, offset: int = 0, limit: int = 10
) -> OffsetPaginatedResults[BoardDTO]:
board_records = self._services.board_records.get_many(offset, limit) board_records = self._services.board_records.get_many(offset, limit)
board_dtos = [] board_dtos = []
for r in board_records.items: for r in board_records.items:
cover_image = self._services.image_records.get_most_recent_image_for_board( cover_image = self._services.image_records.get_most_recent_image_for_board(r.board_id)
r.board_id
)
if cover_image: if cover_image:
cover_image_name = cover_image.image_name cover_image_name = cover_image.image_name
else: else:
cover_image_name = None cover_image_name = None
image_count = self._services.board_image_records.get_image_count_for_board( image_count = self._services.board_image_records.get_image_count_for_board(r.board_id)
r.board_id
)
board_dtos.append(board_record_to_dto(r, cover_image_name, image_count)) board_dtos.append(board_record_to_dto(r, cover_image_name, image_count))
return OffsetPaginatedResults[BoardDTO]( return OffsetPaginatedResults[BoardDTO](items=board_dtos, offset=offset, limit=limit, total=len(board_dtos))
items=board_dtos, offset=offset, limit=limit, total=len(board_dtos)
)
def get_all(self) -> list[BoardDTO]: def get_all(self) -> list[BoardDTO]:
board_records = self._services.board_records.get_all() board_records = self._services.board_records.get_all()
board_dtos = [] board_dtos = []
for r in board_records: for r in board_records:
cover_image = self._services.image_records.get_most_recent_image_for_board( cover_image = self._services.image_records.get_most_recent_image_for_board(r.board_id)
r.board_id
)
if cover_image: if cover_image:
cover_image_name = cover_image.image_name cover_image_name = cover_image.image_name
else: else:
cover_image_name = None cover_image_name = None
image_count = self._services.board_image_records.get_image_count_for_board( image_count = self._services.board_image_records.get_image_count_for_board(r.board_id)
r.board_id
)
board_dtos.append(board_record_to_dto(r, cover_image_name, image_count)) board_dtos.append(board_record_to_dto(r, cover_image_name, image_count))
return board_dtos return board_dtos

View File

@ -1,6 +1,6 @@
# Copyright (c) 2023 Lincoln Stein (https://github.com/lstein) and the InvokeAI Development Team # Copyright (c) 2023 Lincoln Stein (https://github.com/lstein) and the InvokeAI Development Team
'''Invokeai configuration system. """Invokeai configuration system.
Arguments and fields are taken from the pydantic definition of the Arguments and fields are taken from the pydantic definition of the
model. Defaults can be set by creating a yaml configuration file that model. Defaults can be set by creating a yaml configuration file that
@ -158,7 +158,7 @@ two configs are kept in separate sections of the config file:
outdir: outputs outdir: outputs
... ...
''' """
from __future__ import annotations from __future__ import annotations
import argparse import argparse
import pydoc import pydoc
@ -170,64 +170,68 @@ from pathlib import Path
from pydantic import BaseSettings, Field, parse_obj_as from pydantic import BaseSettings, Field, parse_obj_as
from typing import ClassVar, Dict, List, Set, Literal, Union, get_origin, get_type_hints, get_args from typing import ClassVar, Dict, List, Set, Literal, Union, get_origin, get_type_hints, get_args
INIT_FILE = Path('invokeai.yaml') INIT_FILE = Path("invokeai.yaml")
MODEL_CORE = Path('models/core') MODEL_CORE = Path("models/core")
DB_FILE = Path('invokeai.db') DB_FILE = Path("invokeai.db")
LEGACY_INIT_FILE = Path('invokeai.init') LEGACY_INIT_FILE = Path("invokeai.init")
class InvokeAISettings(BaseSettings): class InvokeAISettings(BaseSettings):
''' """
Runtime configuration settings in which default values are Runtime configuration settings in which default values are
read from an omegaconf .yaml file. read from an omegaconf .yaml file.
''' """
initconf : ClassVar[DictConfig] = None
argparse_groups : ClassVar[Dict] = {}
def parse_args(self, argv: list=sys.argv[1:]): initconf: ClassVar[DictConfig] = None
argparse_groups: ClassVar[Dict] = {}
def parse_args(self, argv: list = sys.argv[1:]):
parser = self.get_parser() parser = self.get_parser()
opt = parser.parse_args(argv) opt = parser.parse_args(argv)
for name in self.__fields__: for name in self.__fields__:
if name not in self._excluded(): if name not in self._excluded():
setattr(self, name, getattr(opt,name)) setattr(self, name, getattr(opt, name))
def to_yaml(self)->str: def to_yaml(self) -> str:
""" """
Return a YAML string representing our settings. This can be used Return a YAML string representing our settings. This can be used
as the contents of `invokeai.yaml` to restore settings later. as the contents of `invokeai.yaml` to restore settings later.
""" """
cls = self.__class__ cls = self.__class__
type = get_args(get_type_hints(cls)['type'])[0] type = get_args(get_type_hints(cls)["type"])[0]
field_dict = dict({type:dict()}) field_dict = dict({type: dict()})
for name,field in self.__fields__.items(): for name, field in self.__fields__.items():
if name in cls._excluded_from_yaml(): if name in cls._excluded_from_yaml():
continue continue
category = field.field_info.extra.get("category") or "Uncategorized" category = field.field_info.extra.get("category") or "Uncategorized"
value = getattr(self,name) value = getattr(self, name)
if category not in field_dict[type]: if category not in field_dict[type]:
field_dict[type][category] = dict() field_dict[type][category] = dict()
# keep paths as strings to make it easier to read # keep paths as strings to make it easier to read
field_dict[type][category][name] = str(value) if isinstance(value,Path) else value field_dict[type][category][name] = str(value) if isinstance(value, Path) else value
conf = OmegaConf.create(field_dict) conf = OmegaConf.create(field_dict)
return OmegaConf.to_yaml(conf) return OmegaConf.to_yaml(conf)
@classmethod @classmethod
def add_parser_arguments(cls, parser): def add_parser_arguments(cls, parser):
if 'type' in get_type_hints(cls): if "type" in get_type_hints(cls):
settings_stanza = get_args(get_type_hints(cls)['type'])[0] settings_stanza = get_args(get_type_hints(cls)["type"])[0]
else: else:
settings_stanza = "Uncategorized" settings_stanza = "Uncategorized"
env_prefix = cls.Config.env_prefix if hasattr(cls.Config,'env_prefix') else settings_stanza.upper() env_prefix = cls.Config.env_prefix if hasattr(cls.Config, "env_prefix") else settings_stanza.upper()
initconf = cls.initconf.get(settings_stanza) \ initconf = (
if cls.initconf and settings_stanza in cls.initconf \ cls.initconf.get(settings_stanza)
else OmegaConf.create() if cls.initconf and settings_stanza in cls.initconf
else OmegaConf.create()
)
# create an upcase version of the environment in # create an upcase version of the environment in
# order to achieve case-insensitive environment # order to achieve case-insensitive environment
# variables (the way Windows does) # variables (the way Windows does)
upcase_environ = dict() upcase_environ = dict()
for key,value in os.environ.items(): for key, value in os.environ.items():
upcase_environ[key.upper()] = value upcase_environ[key.upper()] = value
fields = cls.__fields__ fields = cls.__fields__
@ -237,8 +241,8 @@ class InvokeAISettings(BaseSettings):
if name not in cls._excluded(): if name not in cls._excluded():
current_default = field.default current_default = field.default
category = field.field_info.extra.get("category","Uncategorized") category = field.field_info.extra.get("category", "Uncategorized")
env_name = env_prefix + '_' + name env_name = env_prefix + "_" + name
if category in initconf and name in initconf.get(category): if category in initconf and name in initconf.get(category):
field.default = initconf.get(category).get(name) field.default = initconf.get(category).get(name)
if env_name.upper() in upcase_environ: if env_name.upper() in upcase_environ:
@ -248,15 +252,15 @@ class InvokeAISettings(BaseSettings):
field.default = current_default field.default = current_default
@classmethod @classmethod
def cmd_name(self, command_field: str='type')->str: def cmd_name(self, command_field: str = "type") -> str:
hints = get_type_hints(self) hints = get_type_hints(self)
if command_field in hints: if command_field in hints:
return get_args(hints[command_field])[0] return get_args(hints[command_field])[0]
else: else:
return 'Uncategorized' return "Uncategorized"
@classmethod @classmethod
def get_parser(cls)->ArgumentParser: def get_parser(cls) -> ArgumentParser:
parser = PagingArgumentParser( parser = PagingArgumentParser(
prog=cls.cmd_name(), prog=cls.cmd_name(),
description=cls.__doc__, description=cls.__doc__,
@ -269,24 +273,41 @@ class InvokeAISettings(BaseSettings):
parser.add_parser(cls.cmd_name(), help=cls.__doc__) parser.add_parser(cls.cmd_name(), help=cls.__doc__)
@classmethod @classmethod
def _excluded(self)->List[str]: def _excluded(self) -> List[str]:
# internal fields that shouldn't be exposed as command line options # internal fields that shouldn't be exposed as command line options
return ['type','initconf'] return ["type", "initconf"]
@classmethod @classmethod
def _excluded_from_yaml(self)->List[str]: def _excluded_from_yaml(self) -> List[str]:
# combination of deprecated parameters and internal ones that shouldn't be exposed as invokeai.yaml options # combination of deprecated parameters and internal ones that shouldn't be exposed as invokeai.yaml options
return ['type','initconf', 'gpu_mem_reserved', 'max_loaded_models', 'version', 'from_file', 'model', 'restore', 'root', 'nsfw_checker'] return [
"type",
"initconf",
"gpu_mem_reserved",
"max_loaded_models",
"version",
"from_file",
"model",
"restore",
"root",
"nsfw_checker",
]
class Config: class Config:
env_file_encoding = 'utf-8' env_file_encoding = "utf-8"
arbitrary_types_allowed = True arbitrary_types_allowed = True
case_sensitive = True case_sensitive = True
@classmethod @classmethod
def add_field_argument(cls, command_parser, name: str, field, default_override = None): def add_field_argument(cls, command_parser, name: str, field, default_override=None):
field_type = get_type_hints(cls).get(name) field_type = get_type_hints(cls).get(name)
default = default_override if default_override is not None else field.default if field.default_factory is None else field.default_factory() default = (
default_override
if default_override is not None
else field.default
if field.default_factory is None
else field.default_factory()
)
if category := field.field_info.extra.get("category"): if category := field.field_info.extra.get("category"):
if category not in cls.argparse_groups: if category not in cls.argparse_groups:
cls.argparse_groups[category] = command_parser.add_argument_group(category) cls.argparse_groups[category] = command_parser.add_argument_group(category)
@ -315,10 +336,10 @@ class InvokeAISettings(BaseSettings):
argparse_group.add_argument( argparse_group.add_argument(
f"--{name}", f"--{name}",
dest=name, dest=name,
nargs='*', nargs="*",
type=field.type_, type=field.type_,
default=default, default=default,
action=argparse.BooleanOptionalAction if field.type_==bool else 'store', action=argparse.BooleanOptionalAction if field.type_ == bool else "store",
help=field.field_info.description, help=field.field_info.description,
) )
else: else:
@ -327,31 +348,35 @@ class InvokeAISettings(BaseSettings):
dest=name, dest=name,
type=field.type_, type=field.type_,
default=default, default=default,
action=argparse.BooleanOptionalAction if field.type_==bool else 'store', action=argparse.BooleanOptionalAction if field.type_ == bool else "store",
help=field.field_info.description, help=field.field_info.description,
) )
def _find_root()->Path:
def _find_root() -> Path:
venv = Path(os.environ.get("VIRTUAL_ENV") or ".") venv = Path(os.environ.get("VIRTUAL_ENV") or ".")
if os.environ.get("INVOKEAI_ROOT"): if os.environ.get("INVOKEAI_ROOT"):
root = Path(os.environ.get("INVOKEAI_ROOT")).resolve() root = Path(os.environ.get("INVOKEAI_ROOT")).resolve()
elif any([(venv.parent/x).exists() for x in [INIT_FILE, LEGACY_INIT_FILE, MODEL_CORE]]): elif any([(venv.parent / x).exists() for x in [INIT_FILE, LEGACY_INIT_FILE, MODEL_CORE]]):
root = (venv.parent).resolve() root = (venv.parent).resolve()
else: else:
root = Path("~/invokeai").expanduser().resolve() root = Path("~/invokeai").expanduser().resolve()
return root return root
class InvokeAIAppConfig(InvokeAISettings): class InvokeAIAppConfig(InvokeAISettings):
''' """
Generate images using Stable Diffusion. Use "invokeai" to launch Generate images using Stable Diffusion. Use "invokeai" to launch
the command-line client (recommended for experts only), or the command-line client (recommended for experts only), or
"invokeai-web" to launch the web server. Global options "invokeai-web" to launch the web server. Global options
can be changed by editing the file "INVOKEAI_ROOT/invokeai.yaml" or by can be changed by editing the file "INVOKEAI_ROOT/invokeai.yaml" or by
setting environment variables INVOKEAI_<setting>. setting environment variables INVOKEAI_<setting>.
''' """
singleton_config: ClassVar[InvokeAIAppConfig] = None singleton_config: ClassVar[InvokeAIAppConfig] = None
singleton_init: ClassVar[Dict] = None singleton_init: ClassVar[Dict] = None
#fmt: off # fmt: off
type: Literal["InvokeAI"] = "InvokeAI" type: Literal["InvokeAI"] = "InvokeAI"
host : str = Field(default="127.0.0.1", description="IP address to bind to", category='Web Server') host : str = Field(default="127.0.0.1", description="IP address to bind to", category='Web Server')
port : int = Field(default=9090, description="Port to bind to", category='Web Server') port : int = Field(default=9090, description="Port to bind to", category='Web Server')
@ -399,16 +424,16 @@ setting environment variables INVOKEAI_<setting>.
log_level : Literal[tuple(["debug","info","warning","error","critical"])] = Field(default="info", description="Emit logging messages at this level or higher", category="Logging") log_level : Literal[tuple(["debug","info","warning","error","critical"])] = Field(default="info", description="Emit logging messages at this level or higher", category="Logging")
version : bool = Field(default=False, description="Show InvokeAI version and exit", category="Other") version : bool = Field(default=False, description="Show InvokeAI version and exit", category="Other")
#fmt: on # fmt: on
def parse_args(self, argv: List[str]=None, conf: DictConfig = None, clobber=False): def parse_args(self, argv: List[str] = None, conf: DictConfig = None, clobber=False):
''' """
Update settings with contents of init file, environment, and Update settings with contents of init file, environment, and
command-line settings. command-line settings.
:param conf: alternate Omegaconf dictionary object :param conf: alternate Omegaconf dictionary object
:param argv: aternate sys.argv list :param argv: aternate sys.argv list
:param clobber: ovewrite any initialization parameters passed during initialization :param clobber: ovewrite any initialization parameters passed during initialization
''' """
# Set the runtime root directory. We parse command-line switches here # Set the runtime root directory. We parse command-line switches here
# in order to pick up the --root_dir option. # in order to pick up the --root_dir option.
super().parse_args(argv) super().parse_args(argv)
@ -425,135 +450,139 @@ setting environment variables INVOKEAI_<setting>.
if self.singleton_init and not clobber: if self.singleton_init and not clobber:
hints = get_type_hints(self.__class__) hints = get_type_hints(self.__class__)
for k in self.singleton_init: for k in self.singleton_init:
setattr(self,k,parse_obj_as(hints[k],self.singleton_init[k])) setattr(self, k, parse_obj_as(hints[k], self.singleton_init[k]))
@classmethod @classmethod
def get_config(cls,**kwargs)->InvokeAIAppConfig: def get_config(cls, **kwargs) -> InvokeAIAppConfig:
''' """
This returns a singleton InvokeAIAppConfig configuration object. This returns a singleton InvokeAIAppConfig configuration object.
''' """
if cls.singleton_config is None \ if (
or type(cls.singleton_config)!=cls \ cls.singleton_config is None
or (kwargs and cls.singleton_init != kwargs): or type(cls.singleton_config) != cls
or (kwargs and cls.singleton_init != kwargs)
):
cls.singleton_config = cls(**kwargs) cls.singleton_config = cls(**kwargs)
cls.singleton_init = kwargs cls.singleton_init = kwargs
return cls.singleton_config return cls.singleton_config
@property @property
def root_path(self)->Path: def root_path(self) -> Path:
''' """
Path to the runtime root directory Path to the runtime root directory
''' """
if self.root: if self.root:
return Path(self.root).expanduser().absolute() return Path(self.root).expanduser().absolute()
else: else:
return self.find_root() return self.find_root()
@property @property
def root_dir(self)->Path: def root_dir(self) -> Path:
''' """
Alias for above. Alias for above.
''' """
return self.root_path return self.root_path
def _resolve(self,partial_path:Path)->Path: def _resolve(self, partial_path: Path) -> Path:
return (self.root_path / partial_path).resolve() return (self.root_path / partial_path).resolve()
@property @property
def init_file_path(self)->Path: def init_file_path(self) -> Path:
''' """
Path to invokeai.yaml Path to invokeai.yaml
''' """
return self._resolve(INIT_FILE) return self._resolve(INIT_FILE)
@property @property
def output_path(self)->Path: def output_path(self) -> Path:
''' """
Path to defaults outputs directory. Path to defaults outputs directory.
''' """
return self._resolve(self.outdir) return self._resolve(self.outdir)
@property @property
def db_path(self)->Path: def db_path(self) -> Path:
''' """
Path to the invokeai.db file. Path to the invokeai.db file.
''' """
return self._resolve(self.db_dir) / DB_FILE return self._resolve(self.db_dir) / DB_FILE
@property @property
def model_conf_path(self)->Path: def model_conf_path(self) -> Path:
''' """
Path to models configuration file. Path to models configuration file.
''' """
return self._resolve(self.conf_path) return self._resolve(self.conf_path)
@property @property
def legacy_conf_path(self)->Path: def legacy_conf_path(self) -> Path:
''' """
Path to directory of legacy configuration files (e.g. v1-inference.yaml) Path to directory of legacy configuration files (e.g. v1-inference.yaml)
''' """
return self._resolve(self.legacy_conf_dir) return self._resolve(self.legacy_conf_dir)
@property @property
def models_path(self)->Path: def models_path(self) -> Path:
''' """
Path to the models directory Path to the models directory
''' """
return self._resolve(self.models_dir) return self._resolve(self.models_dir)
@property @property
def autoconvert_path(self)->Path: def autoconvert_path(self) -> Path:
''' """
Path to the directory containing models to be imported automatically at startup. Path to the directory containing models to be imported automatically at startup.
''' """
return self._resolve(self.autoconvert_dir) if self.autoconvert_dir else None return self._resolve(self.autoconvert_dir) if self.autoconvert_dir else None
# the following methods support legacy calls leftover from the Globals era # the following methods support legacy calls leftover from the Globals era
@property @property
def full_precision(self)->bool: def full_precision(self) -> bool:
"""Return true if precision set to float32""" """Return true if precision set to float32"""
return self.precision=='float32' return self.precision == "float32"
@property @property
def disable_xformers(self)->bool: def disable_xformers(self) -> bool:
"""Return true if xformers_enabled is false""" """Return true if xformers_enabled is false"""
return not self.xformers_enabled return not self.xformers_enabled
@property @property
def try_patchmatch(self)->bool: def try_patchmatch(self) -> bool:
"""Return true if patchmatch true""" """Return true if patchmatch true"""
return self.patchmatch return self.patchmatch
@property @property
def nsfw_checker(self)->bool: def nsfw_checker(self) -> bool:
""" NSFW node is always active and disabled from Web UIe""" """NSFW node is always active and disabled from Web UIe"""
return True return True
@property @property
def invisible_watermark(self)->bool: def invisible_watermark(self) -> bool:
""" invisible watermark node is always active and disabled from Web UIe""" """invisible watermark node is always active and disabled from Web UIe"""
return True return True
@staticmethod @staticmethod
def find_root()->Path: def find_root() -> Path:
''' """
Choose the runtime root directory when not specified on command line or Choose the runtime root directory when not specified on command line or
init file. init file.
''' """
return _find_root() return _find_root()
class PagingArgumentParser(argparse.ArgumentParser): class PagingArgumentParser(argparse.ArgumentParser):
''' """
A custom ArgumentParser that uses pydoc to page its output. A custom ArgumentParser that uses pydoc to page its output.
It also supports reading defaults from an init file. It also supports reading defaults from an init file.
''' """
def print_help(self, file=None): def print_help(self, file=None):
text = self.format_help() text = self.format_help()
pydoc.pager(text) pydoc.pager(text)
def get_invokeai_config(**kwargs)->InvokeAIAppConfig:
''' def get_invokeai_config(**kwargs) -> InvokeAIAppConfig:
"""
Legacy function which returns InvokeAIAppConfig.get_config() Legacy function which returns InvokeAIAppConfig.get_config()
''' """
return InvokeAIAppConfig.get_config(**kwargs) return InvokeAIAppConfig.get_config(**kwargs)

View File

@ -7,57 +7,80 @@ from .graph import Edge, EdgeConnection, ExposedNodeInput, ExposedNodeOutput, Gr
from .item_storage import ItemStorageABC from .item_storage import ItemStorageABC
default_text_to_image_graph_id = '539b2af5-2b4d-4d8c-8071-e54a3255fc74' default_text_to_image_graph_id = "539b2af5-2b4d-4d8c-8071-e54a3255fc74"
def create_text_to_image() -> LibraryGraph: def create_text_to_image() -> LibraryGraph:
return LibraryGraph( return LibraryGraph(
id=default_text_to_image_graph_id, id=default_text_to_image_graph_id,
name='t2i', name="t2i",
description='Converts text to an image', description="Converts text to an image",
graph=Graph( graph=Graph(
nodes={ nodes={
'width': ParamIntInvocation(id='width', a=512), "width": ParamIntInvocation(id="width", a=512),
'height': ParamIntInvocation(id='height', a=512), "height": ParamIntInvocation(id="height", a=512),
'seed': ParamIntInvocation(id='seed', a=-1), "seed": ParamIntInvocation(id="seed", a=-1),
'3': NoiseInvocation(id='3'), "3": NoiseInvocation(id="3"),
'4': CompelInvocation(id='4'), "4": CompelInvocation(id="4"),
'5': CompelInvocation(id='5'), "5": CompelInvocation(id="5"),
'6': TextToLatentsInvocation(id='6'), "6": TextToLatentsInvocation(id="6"),
'7': LatentsToImageInvocation(id='7'), "7": LatentsToImageInvocation(id="7"),
'8': ImageNSFWBlurInvocation(id='8'), "8": ImageNSFWBlurInvocation(id="8"),
}, },
edges=[ edges=[
Edge(source=EdgeConnection(node_id='width', field='a'), destination=EdgeConnection(node_id='3', field='width')), Edge(
Edge(source=EdgeConnection(node_id='height', field='a'), destination=EdgeConnection(node_id='3', field='height')), source=EdgeConnection(node_id="width", field="a"),
Edge(source=EdgeConnection(node_id='seed', field='a'), destination=EdgeConnection(node_id='3', field='seed')), destination=EdgeConnection(node_id="3", field="width"),
Edge(source=EdgeConnection(node_id='3', field='noise'), destination=EdgeConnection(node_id='6', field='noise')), ),
Edge(source=EdgeConnection(node_id='6', field='latents'), destination=EdgeConnection(node_id='7', field='latents')), Edge(
Edge(source=EdgeConnection(node_id='4', field='conditioning'), destination=EdgeConnection(node_id='6', field='positive_conditioning')), source=EdgeConnection(node_id="height", field="a"),
Edge(source=EdgeConnection(node_id='5', field='conditioning'), destination=EdgeConnection(node_id='6', field='negative_conditioning')), destination=EdgeConnection(node_id="3", field="height"),
Edge(source=EdgeConnection(node_id='7', field='image'), destination=EdgeConnection(node_id='8', field='image')), ),
] Edge(
source=EdgeConnection(node_id="seed", field="a"),
destination=EdgeConnection(node_id="3", field="seed"),
),
Edge(
source=EdgeConnection(node_id="3", field="noise"),
destination=EdgeConnection(node_id="6", field="noise"),
),
Edge(
source=EdgeConnection(node_id="6", field="latents"),
destination=EdgeConnection(node_id="7", field="latents"),
),
Edge(
source=EdgeConnection(node_id="4", field="conditioning"),
destination=EdgeConnection(node_id="6", field="positive_conditioning"),
),
Edge(
source=EdgeConnection(node_id="5", field="conditioning"),
destination=EdgeConnection(node_id="6", field="negative_conditioning"),
),
Edge(
source=EdgeConnection(node_id="7", field="image"),
destination=EdgeConnection(node_id="8", field="image"),
),
],
), ),
exposed_inputs=[ exposed_inputs=[
ExposedNodeInput(node_path='4', field='prompt', alias='positive_prompt'), ExposedNodeInput(node_path="4", field="prompt", alias="positive_prompt"),
ExposedNodeInput(node_path='5', field='prompt', alias='negative_prompt'), ExposedNodeInput(node_path="5", field="prompt", alias="negative_prompt"),
ExposedNodeInput(node_path='width', field='a', alias='width'), ExposedNodeInput(node_path="width", field="a", alias="width"),
ExposedNodeInput(node_path='height', field='a', alias='height'), ExposedNodeInput(node_path="height", field="a", alias="height"),
ExposedNodeInput(node_path='seed', field='a', alias='seed'), ExposedNodeInput(node_path="seed", field="a", alias="seed"),
], ],
exposed_outputs=[ exposed_outputs=[ExposedNodeOutput(node_path="8", field="image", alias="image")],
ExposedNodeOutput(node_path='8', field='image', alias='image') )
])
def create_system_graphs(graph_library: ItemStorageABC[LibraryGraph]) -> list[LibraryGraph]: def create_system_graphs(graph_library: ItemStorageABC[LibraryGraph]) -> list[LibraryGraph]:
"""Creates the default system graphs, or adds new versions if the old ones don't match""" """Creates the default system graphs, or adds new versions if the old ones don't match"""
# TODO: Uncomment this when we are ready to fix this up to prevent breaking changes # TODO: Uncomment this when we are ready to fix this up to prevent breaking changes
graphs: list[LibraryGraph] = list() graphs: list[LibraryGraph] = list()
# text_to_image = graph_library.get(default_text_to_image_graph_id) # text_to_image = graph_library.get(default_text_to_image_graph_id)
# # TODO: Check if the graph is the same as the default one, and if not, update it # # TODO: Check if the graph is the same as the default one, and if not, update it
# #if text_to_image is None: # #if text_to_image is None:
text_to_image = create_text_to_image() text_to_image = create_text_to_image()

View File

@ -44,9 +44,7 @@ class EventServiceBase:
graph_execution_state_id=graph_execution_state_id, graph_execution_state_id=graph_execution_state_id,
node=node, node=node,
source_node_id=source_node_id, source_node_id=source_node_id,
progress_image=progress_image.dict() progress_image=progress_image.dict() if progress_image is not None else None,
if progress_image is not None
else None,
step=step, step=step,
total_steps=total_steps, total_steps=total_steps,
), ),
@ -90,9 +88,7 @@ class EventServiceBase:
), ),
) )
def emit_invocation_started( def emit_invocation_started(self, graph_execution_state_id: str, node: dict, source_node_id: str) -> None:
self, graph_execution_state_id: str, node: dict, source_node_id: str
) -> None:
"""Emitted when an invocation has started""" """Emitted when an invocation has started"""
self.__emit_session_event( self.__emit_session_event(
event_name="invocation_started", event_name="invocation_started",

View File

@ -28,6 +28,7 @@ from ..invocations.baseinvocation import (
# in 3.10 this would be "from types import NoneType" # in 3.10 this would be "from types import NoneType"
NoneType = type(None) NoneType = type(None)
class EdgeConnection(BaseModel): class EdgeConnection(BaseModel):
node_id: str = Field(description="The id of the node for this edge connection") node_id: str = Field(description="The id of the node for this edge connection")
field: str = Field(description="The field for this connection") field: str = Field(description="The field for this connection")
@ -61,6 +62,7 @@ def get_input_field(node: BaseInvocation, field: str) -> Any:
node_input_field = node_inputs.get(field) or None node_input_field = node_inputs.get(field) or None
return node_input_field return node_input_field
def is_union_subtype(t1, t2): def is_union_subtype(t1, t2):
t1_args = get_args(t1) t1_args = get_args(t1)
t2_args = get_args(t2) t2_args = get_args(t2)
@ -71,6 +73,7 @@ def is_union_subtype(t1, t2):
# t1 is a Union, check that all of its types are in t2_args # t1 is a Union, check that all of its types are in t2_args
return all(arg in t2_args for arg in t1_args) return all(arg in t2_args for arg in t1_args)
def is_list_or_contains_list(t): def is_list_or_contains_list(t):
t_args = get_args(t) t_args = get_args(t)
@ -154,15 +157,17 @@ class GraphInvocationOutput(BaseInvocationOutput):
class Config: class Config:
schema_extra = { schema_extra = {
'required': [ "required": [
'type', "type",
'image', "image",
] ]
} }
# TODO: Fill this out and move to invocations # TODO: Fill this out and move to invocations
class GraphInvocation(BaseInvocation): class GraphInvocation(BaseInvocation):
"""Execute a graph""" """Execute a graph"""
type: Literal["graph"] = "graph" type: Literal["graph"] = "graph"
# TODO: figure out how to create a default here # TODO: figure out how to create a default here
@ -182,23 +187,21 @@ class IterateInvocationOutput(BaseInvocationOutput):
class Config: class Config:
schema_extra = { schema_extra = {
'required': [ "required": [
'type', "type",
'item', "item",
] ]
} }
# TODO: Fill this out and move to invocations # TODO: Fill this out and move to invocations
class IterateInvocation(BaseInvocation): class IterateInvocation(BaseInvocation):
"""Iterates over a list of items""" """Iterates over a list of items"""
type: Literal["iterate"] = "iterate" type: Literal["iterate"] = "iterate"
collection: list[Any] = Field( collection: list[Any] = Field(description="The list of items to iterate over", default_factory=list)
description="The list of items to iterate over", default_factory=list index: int = Field(description="The index, will be provided on executed iterators", default=0)
)
index: int = Field(
description="The index, will be provided on executed iterators", default=0
)
def invoke(self, context: InvocationContext) -> IterateInvocationOutput: def invoke(self, context: InvocationContext) -> IterateInvocationOutput:
"""Produces the outputs as values""" """Produces the outputs as values"""
@ -212,12 +215,13 @@ class CollectInvocationOutput(BaseInvocationOutput):
class Config: class Config:
schema_extra = { schema_extra = {
'required': [ "required": [
'type', "type",
'collection', "collection",
] ]
} }
class CollectInvocation(BaseInvocation): class CollectInvocation(BaseInvocation):
"""Collects values into a collection""" """Collects values into a collection"""
@ -269,9 +273,7 @@ class Graph(BaseModel):
if node_path in self.nodes: if node_path in self.nodes:
return (self, node_path) return (self, node_path)
node_id = ( node_id = node_path if "." not in node_path else node_path[: node_path.index(".")]
node_path if "." not in node_path else node_path[: node_path.index(".")]
)
if node_id not in self.nodes: if node_id not in self.nodes:
raise NodeNotFoundError(f"Node {node_path} not found in graph") raise NodeNotFoundError(f"Node {node_path} not found in graph")
@ -333,9 +335,7 @@ class Graph(BaseModel):
return False return False
# Validate all edges reference nodes in the graph # Validate all edges reference nodes in the graph
node_ids = set( node_ids = set([e.source.node_id for e in self.edges] + [e.destination.node_id for e in self.edges])
[e.source.node_id for e in self.edges] + [e.destination.node_id for e in self.edges]
)
if not all((self.has_node(node_id) for node_id in node_ids)): if not all((self.has_node(node_id) for node_id in node_ids)):
return False return False
@ -361,22 +361,14 @@ class Graph(BaseModel):
# Validate all iterators # Validate all iterators
# TODO: may need to validate all iterators in subgraphs so edge connections in parent graphs will be available # TODO: may need to validate all iterators in subgraphs so edge connections in parent graphs will be available
if not all( if not all(
( (self._is_iterator_connection_valid(n.id) for n in self.nodes.values() if isinstance(n, IterateInvocation))
self._is_iterator_connection_valid(n.id)
for n in self.nodes.values()
if isinstance(n, IterateInvocation)
)
): ):
return False return False
# Validate all collectors # Validate all collectors
# TODO: may need to validate all collectors in subgraphs so edge connections in parent graphs will be available # TODO: may need to validate all collectors in subgraphs so edge connections in parent graphs will be available
if not all( if not all(
( (self._is_collector_connection_valid(n.id) for n in self.nodes.values() if isinstance(n, CollectInvocation))
self._is_collector_connection_valid(n.id)
for n in self.nodes.values()
if isinstance(n, CollectInvocation)
)
): ):
return False return False
@ -395,48 +387,51 @@ class Graph(BaseModel):
# Validate that an edge to this node+field doesn't already exist # Validate that an edge to this node+field doesn't already exist
input_edges = self._get_input_edges(edge.destination.node_id, edge.destination.field) input_edges = self._get_input_edges(edge.destination.node_id, edge.destination.field)
if len(input_edges) > 0 and not isinstance(to_node, CollectInvocation): if len(input_edges) > 0 and not isinstance(to_node, CollectInvocation):
raise InvalidEdgeError(f'Edge to node {edge.destination.node_id} field {edge.destination.field} already exists') raise InvalidEdgeError(
f"Edge to node {edge.destination.node_id} field {edge.destination.field} already exists"
)
# Validate that no cycles would be created # Validate that no cycles would be created
g = self.nx_graph_flat() g = self.nx_graph_flat()
g.add_edge(edge.source.node_id, edge.destination.node_id) g.add_edge(edge.source.node_id, edge.destination.node_id)
if not nx.is_directed_acyclic_graph(g): if not nx.is_directed_acyclic_graph(g):
raise InvalidEdgeError(f'Edge creates a cycle in the graph: {edge.source.node_id} -> {edge.destination.node_id}') raise InvalidEdgeError(
f"Edge creates a cycle in the graph: {edge.source.node_id} -> {edge.destination.node_id}"
)
# Validate that the field types are compatible # Validate that the field types are compatible
if not are_connections_compatible( if not are_connections_compatible(from_node, edge.source.field, to_node, edge.destination.field):
from_node, edge.source.field, to_node, edge.destination.field raise InvalidEdgeError(
): f"Fields are incompatible: cannot connect {edge.source.node_id}.{edge.source.field} to {edge.destination.node_id}.{edge.destination.field}"
raise InvalidEdgeError(f'Fields are incompatible: cannot connect {edge.source.node_id}.{edge.source.field} to {edge.destination.node_id}.{edge.destination.field}') )
# Validate if iterator output type matches iterator input type (if this edge results in both being set) # Validate if iterator output type matches iterator input type (if this edge results in both being set)
if isinstance(to_node, IterateInvocation) and edge.destination.field == "collection": if isinstance(to_node, IterateInvocation) and edge.destination.field == "collection":
if not self._is_iterator_connection_valid( if not self._is_iterator_connection_valid(edge.destination.node_id, new_input=edge.source):
edge.destination.node_id, new_input=edge.source raise InvalidEdgeError(
): f"Iterator input type does not match iterator output type: {edge.source.node_id}.{edge.source.field} to {edge.destination.node_id}.{edge.destination.field}"
raise InvalidEdgeError(f'Iterator input type does not match iterator output type: {edge.source.node_id}.{edge.source.field} to {edge.destination.node_id}.{edge.destination.field}') )
# Validate if iterator input type matches output type (if this edge results in both being set) # Validate if iterator input type matches output type (if this edge results in both being set)
if isinstance(from_node, IterateInvocation) and edge.source.field == "item": if isinstance(from_node, IterateInvocation) and edge.source.field == "item":
if not self._is_iterator_connection_valid( if not self._is_iterator_connection_valid(edge.source.node_id, new_output=edge.destination):
edge.source.node_id, new_output=edge.destination raise InvalidEdgeError(
): f"Iterator output type does not match iterator input type:, {edge.source.node_id}.{edge.source.field} to {edge.destination.node_id}.{edge.destination.field}"
raise InvalidEdgeError(f'Iterator output type does not match iterator input type:, {edge.source.node_id}.{edge.source.field} to {edge.destination.node_id}.{edge.destination.field}') )
# Validate if collector input type matches output type (if this edge results in both being set) # Validate if collector input type matches output type (if this edge results in both being set)
if isinstance(to_node, CollectInvocation) and edge.destination.field == "item": if isinstance(to_node, CollectInvocation) and edge.destination.field == "item":
if not self._is_collector_connection_valid( if not self._is_collector_connection_valid(edge.destination.node_id, new_input=edge.source):
edge.destination.node_id, new_input=edge.source raise InvalidEdgeError(
): f"Collector output type does not match collector input type: {edge.source.node_id}.{edge.source.field} to {edge.destination.node_id}.{edge.destination.field}"
raise InvalidEdgeError(f'Collector output type does not match collector input type: {edge.source.node_id}.{edge.source.field} to {edge.destination.node_id}.{edge.destination.field}') )
# Validate if collector output type matches input type (if this edge results in both being set) # Validate if collector output type matches input type (if this edge results in both being set)
if isinstance(from_node, CollectInvocation) and edge.source.field == "collection": if isinstance(from_node, CollectInvocation) and edge.source.field == "collection":
if not self._is_collector_connection_valid( if not self._is_collector_connection_valid(edge.source.node_id, new_output=edge.destination):
edge.source.node_id, new_output=edge.destination raise InvalidEdgeError(
): f"Collector input type does not match collector output type: {edge.source.node_id}.{edge.source.field} to {edge.destination.node_id}.{edge.destination.field}"
raise InvalidEdgeError(f'Collector input type does not match collector output type: {edge.source.node_id}.{edge.source.field} to {edge.destination.node_id}.{edge.destination.field}') )
def has_node(self, node_path: str) -> bool: def has_node(self, node_path: str) -> bool:
"""Determines whether or not a node exists in the graph.""" """Determines whether or not a node exists in the graph."""
@ -465,17 +460,13 @@ class Graph(BaseModel):
# Ensure the node type matches the new node # Ensure the node type matches the new node
if type(node) != type(new_node): if type(node) != type(new_node):
raise TypeError( raise TypeError(f"Node {node_path} is type {type(node)} but new node is type {type(new_node)}")
f"Node {node_path} is type {type(node)} but new node is type {type(new_node)}"
)
# Ensure the new id is either the same or is not in the graph # Ensure the new id is either the same or is not in the graph
prefix = None if "." not in node_path else node_path[: node_path.rindex(".")] prefix = None if "." not in node_path else node_path[: node_path.rindex(".")]
new_path = self._get_node_path(new_node.id, prefix=prefix) new_path = self._get_node_path(new_node.id, prefix=prefix)
if new_node.id != node.id and self.has_node(new_path): if new_node.id != node.id and self.has_node(new_path):
raise NodeAlreadyInGraphError( raise NodeAlreadyInGraphError("Node with id {new_node.id} already exists in graph")
"Node with id {new_node.id} already exists in graph"
)
# Set the new node in the graph # Set the new node in the graph
graph.nodes[new_node.id] = new_node graph.nodes[new_node.id] = new_node
@ -497,9 +488,7 @@ class Graph(BaseModel):
graph.add_edge( graph.add_edge(
Edge( Edge(
source=edge.source, source=edge.source,
destination=EdgeConnection( destination=EdgeConnection(node_id=new_graph_node_path, field=edge.destination.field),
node_id=new_graph_node_path, field=edge.destination.field
)
) )
) )
@ -512,16 +501,12 @@ class Graph(BaseModel):
) )
graph.add_edge( graph.add_edge(
Edge( Edge(
source=EdgeConnection( source=EdgeConnection(node_id=new_graph_node_path, field=edge.source.field),
node_id=new_graph_node_path, field=edge.source.field destination=edge.destination,
),
destination=edge.destination
) )
) )
def _get_input_edges( def _get_input_edges(self, node_path: str, field: Optional[str] = None) -> list[Edge]:
self, node_path: str, field: Optional[str] = None
) -> list[Edge]:
"""Gets all input edges for a node""" """Gets all input edges for a node"""
edges = self._get_input_edges_and_graphs(node_path) edges = self._get_input_edges_and_graphs(node_path)
@ -538,7 +523,7 @@ class Graph(BaseModel):
destination=EdgeConnection( destination=EdgeConnection(
node_id=self._get_node_path(e.destination.node_id, prefix=prefix), node_id=self._get_node_path(e.destination.node_id, prefix=prefix),
field=e.destination.field, field=e.destination.field,
) ),
) )
for _, prefix, e in filtered_edges for _, prefix, e in filtered_edges
] ]
@ -550,32 +535,20 @@ class Graph(BaseModel):
edges = list() edges = list()
# Return any input edges that appear in this graph # Return any input edges that appear in this graph
edges.extend( edges.extend([(self, prefix, e) for e in self.edges if e.destination.node_id == node_path])
[(self, prefix, e) for e in self.edges if e.destination.node_id == node_path]
)
node_id = ( node_id = node_path if "." not in node_path else node_path[: node_path.index(".")]
node_path if "." not in node_path else node_path[: node_path.index(".")]
)
node = self.nodes[node_id] node = self.nodes[node_id]
if isinstance(node, GraphInvocation): if isinstance(node, GraphInvocation):
graph = node.graph graph = node.graph
graph_path = ( graph_path = node.id if prefix is None or prefix == "" else self._get_node_path(node.id, prefix=prefix)
node.id graph_edges = graph._get_input_edges_and_graphs(node_path[(len(node_id) + 1) :], prefix=graph_path)
if prefix is None or prefix == ""
else self._get_node_path(node.id, prefix=prefix)
)
graph_edges = graph._get_input_edges_and_graphs(
node_path[(len(node_id) + 1) :], prefix=graph_path
)
edges.extend(graph_edges) edges.extend(graph_edges)
return edges return edges
def _get_output_edges( def _get_output_edges(self, node_path: str, field: str) -> list[Edge]:
self, node_path: str, field: str
) -> list[Edge]:
"""Gets all output edges for a node""" """Gets all output edges for a node"""
edges = self._get_output_edges_and_graphs(node_path) edges = self._get_output_edges_and_graphs(node_path)
@ -592,7 +565,7 @@ class Graph(BaseModel):
destination=EdgeConnection( destination=EdgeConnection(
node_id=self._get_node_path(e.destination.node_id, prefix=prefix), node_id=self._get_node_path(e.destination.node_id, prefix=prefix),
field=e.destination.field, field=e.destination.field,
) ),
) )
for _, prefix, e in filtered_edges for _, prefix, e in filtered_edges
] ]
@ -604,25 +577,15 @@ class Graph(BaseModel):
edges = list() edges = list()
# Return any input edges that appear in this graph # Return any input edges that appear in this graph
edges.extend( edges.extend([(self, prefix, e) for e in self.edges if e.source.node_id == node_path])
[(self, prefix, e) for e in self.edges if e.source.node_id == node_path]
)
node_id = ( node_id = node_path if "." not in node_path else node_path[: node_path.index(".")]
node_path if "." not in node_path else node_path[: node_path.index(".")]
)
node = self.nodes[node_id] node = self.nodes[node_id]
if isinstance(node, GraphInvocation): if isinstance(node, GraphInvocation):
graph = node.graph graph = node.graph
graph_path = ( graph_path = node.id if prefix is None or prefix == "" else self._get_node_path(node.id, prefix=prefix)
node.id graph_edges = graph._get_output_edges_and_graphs(node_path[(len(node_id) + 1) :], prefix=graph_path)
if prefix is None or prefix == ""
else self._get_node_path(node.id, prefix=prefix)
)
graph_edges = graph._get_output_edges_and_graphs(
node_path[(len(node_id) + 1) :], prefix=graph_path
)
edges.extend(graph_edges) edges.extend(graph_edges)
return edges return edges
@ -646,12 +609,8 @@ class Graph(BaseModel):
return False return False
# Get input and output fields (the fields linked to the iterator's input/output) # Get input and output fields (the fields linked to the iterator's input/output)
input_field = get_output_field( input_field = get_output_field(self.get_node(inputs[0].node_id), inputs[0].field)
self.get_node(inputs[0].node_id), inputs[0].field output_fields = list([get_input_field(self.get_node(e.node_id), e.field) for e in outputs])
)
output_fields = list(
[get_input_field(self.get_node(e.node_id), e.field) for e in outputs]
)
# Input type must be a list # Input type must be a list
if get_origin(input_field) != list: if get_origin(input_field) != list:
@ -659,12 +618,7 @@ class Graph(BaseModel):
# Validate that all outputs match the input type # Validate that all outputs match the input type
input_field_item_type = get_args(input_field)[0] input_field_item_type = get_args(input_field)[0]
if not all( if not all((are_connection_types_compatible(input_field_item_type, f) for f in output_fields)):
(
are_connection_types_compatible(input_field_item_type, f)
for f in output_fields
)
):
return False return False
return True return True
@ -684,35 +638,21 @@ class Graph(BaseModel):
outputs.append(new_output) outputs.append(new_output)
# Get input and output fields (the fields linked to the iterator's input/output) # Get input and output fields (the fields linked to the iterator's input/output)
input_fields = list( input_fields = list([get_output_field(self.get_node(e.node_id), e.field) for e in inputs])
[get_output_field(self.get_node(e.node_id), e.field) for e in inputs] output_fields = list([get_input_field(self.get_node(e.node_id), e.field) for e in outputs])
)
output_fields = list(
[get_input_field(self.get_node(e.node_id), e.field) for e in outputs]
)
# Validate that all inputs are derived from or match a single type # Validate that all inputs are derived from or match a single type
input_field_types = set( input_field_types = set(
[ [
t t
for input_field in input_fields for input_field in input_fields
for t in ( for t in ([input_field] if get_origin(input_field) == None else get_args(input_field))
[input_field]
if get_origin(input_field) == None
else get_args(input_field)
)
if t != NoneType if t != NoneType
] ]
) # Get unique types ) # Get unique types
type_tree = nx.DiGraph() type_tree = nx.DiGraph()
type_tree.add_nodes_from(input_field_types) type_tree.add_nodes_from(input_field_types)
type_tree.add_edges_from( type_tree.add_edges_from([e for e in itertools.permutations(input_field_types, 2) if issubclass(e[1], e[0])])
[
e
for e in itertools.permutations(input_field_types, 2)
if issubclass(e[1], e[0])
]
)
type_degrees = type_tree.in_degree(type_tree.nodes) type_degrees = type_tree.in_degree(type_tree.nodes)
if sum((t[1] == 0 for t in type_degrees)) != 1: # type: ignore if sum((t[1] == 0 for t in type_degrees)) != 1: # type: ignore
return False # There is more than one root type return False # There is more than one root type
@ -729,9 +669,7 @@ class Graph(BaseModel):
return False return False
# Verify that all outputs match the input type (are a base class or the same class) # Verify that all outputs match the input type (are a base class or the same class)
if not all( if not all((issubclass(input_root_type, get_args(f)[0]) for f in output_fields)):
(issubclass(input_root_type, get_args(f)[0]) for f in output_fields)
):
return False return False
return True return True
@ -751,9 +689,7 @@ class Graph(BaseModel):
g.add_edges_from(set([(e.source.node_id, e.destination.node_id) for e in self.edges])) g.add_edges_from(set([(e.source.node_id, e.destination.node_id) for e in self.edges]))
return g return g
def nx_graph_flat( def nx_graph_flat(self, nx_graph: Optional[nx.DiGraph] = None, prefix: Optional[str] = None) -> nx.DiGraph:
self, nx_graph: Optional[nx.DiGraph] = None, prefix: Optional[str] = None
) -> nx.DiGraph:
"""Returns a flattened NetworkX DiGraph, including all subgraphs (but not with iterations expanded)""" """Returns a flattened NetworkX DiGraph, including all subgraphs (but not with iterations expanded)"""
g = nx_graph or nx.DiGraph() g = nx_graph or nx.DiGraph()
@ -762,26 +698,18 @@ class Graph(BaseModel):
[ [
self._get_node_path(n.id, prefix) self._get_node_path(n.id, prefix)
for n in self.nodes.values() for n in self.nodes.values()
if not isinstance(n, GraphInvocation) if not isinstance(n, GraphInvocation) and not isinstance(n, IterateInvocation)
and not isinstance(n, IterateInvocation)
] ]
) )
# Expand graph nodes # Expand graph nodes
for sgn in ( for sgn in (gn for gn in self.nodes.values() if isinstance(gn, GraphInvocation)):
gn for gn in self.nodes.values() if isinstance(gn, GraphInvocation)
):
g = sgn.graph.nx_graph_flat(g, self._get_node_path(sgn.id, prefix)) g = sgn.graph.nx_graph_flat(g, self._get_node_path(sgn.id, prefix))
# TODO: figure out if iteration nodes need to be expanded # TODO: figure out if iteration nodes need to be expanded
unique_edges = set([(e.source.node_id, e.destination.node_id) for e in self.edges]) unique_edges = set([(e.source.node_id, e.destination.node_id) for e in self.edges])
g.add_edges_from( g.add_edges_from([(self._get_node_path(e[0], prefix), self._get_node_path(e[1], prefix)) for e in unique_edges])
[
(self._get_node_path(e[0], prefix), self._get_node_path(e[1], prefix))
for e in unique_edges
]
)
return g return g
@ -800,23 +728,19 @@ class GraphExecutionState(BaseModel):
) )
# Nodes that have been executed # Nodes that have been executed
executed: set[str] = Field( executed: set[str] = Field(description="The set of node ids that have been executed", default_factory=set)
description="The set of node ids that have been executed", default_factory=set
)
executed_history: list[str] = Field( executed_history: list[str] = Field(
description="The list of node ids that have been executed, in order of execution", description="The list of node ids that have been executed, in order of execution",
default_factory=list, default_factory=list,
) )
# The results of executed nodes # The results of executed nodes
results: dict[ results: dict[str, Annotated[InvocationOutputsUnion, Field(discriminator="type")]] = Field(
str, Annotated[InvocationOutputsUnion, Field(discriminator="type")] description="The results of node executions", default_factory=dict
] = Field(description="The results of node executions", default_factory=dict) )
# Errors raised when executing nodes # Errors raised when executing nodes
errors: dict[str, str] = Field( errors: dict[str, str] = Field(description="Errors raised when executing nodes", default_factory=dict)
description="Errors raised when executing nodes", default_factory=dict
)
# Map of prepared/executed nodes to their original nodes # Map of prepared/executed nodes to their original nodes
prepared_source_mapping: dict[str, str] = Field( prepared_source_mapping: dict[str, str] = Field(
@ -832,16 +756,16 @@ class GraphExecutionState(BaseModel):
class Config: class Config:
schema_extra = { schema_extra = {
'required': [ "required": [
'id', "id",
'graph', "graph",
'execution_graph', "execution_graph",
'executed', "executed",
'executed_history', "executed_history",
'results', "results",
'errors', "errors",
'prepared_source_mapping', "prepared_source_mapping",
'source_prepared_mapping', "source_prepared_mapping",
] ]
} }
@ -899,9 +823,7 @@ class GraphExecutionState(BaseModel):
"""Returns true if the graph has any errors""" """Returns true if the graph has any errors"""
return len(self.errors) > 0 return len(self.errors) > 0
def _create_execution_node( def _create_execution_node(self, node_path: str, iteration_node_map: list[tuple[str, str]]) -> list[str]:
self, node_path: str, iteration_node_map: list[tuple[str, str]]
) -> list[str]:
"""Prepares an iteration node and connects all edges, returning the new node id""" """Prepares an iteration node and connects all edges, returning the new node id"""
node = self.graph.get_node(node_path) node = self.graph.get_node(node_path)
@ -911,20 +833,12 @@ class GraphExecutionState(BaseModel):
# If this is an iterator node, we must create a copy for each iteration # If this is an iterator node, we must create a copy for each iteration
if isinstance(node, IterateInvocation): if isinstance(node, IterateInvocation):
# Get input collection edge (should error if there are no inputs) # Get input collection edge (should error if there are no inputs)
input_collection_edge = next( input_collection_edge = next(iter(self.graph._get_input_edges(node_path, "collection")))
iter(self.graph._get_input_edges(node_path, "collection"))
)
input_collection_prepared_node_id = next( input_collection_prepared_node_id = next(
n[1] n[1] for n in iteration_node_map if n[0] == input_collection_edge.source.node_id
for n in iteration_node_map
if n[0] == input_collection_edge.source.node_id
)
input_collection_prepared_node_output = self.results[
input_collection_prepared_node_id
]
input_collection = getattr(
input_collection_prepared_node_output, input_collection_edge.source.field
) )
input_collection_prepared_node_output = self.results[input_collection_prepared_node_id]
input_collection = getattr(input_collection_prepared_node_output, input_collection_edge.source.field)
self_iteration_count = len(input_collection) self_iteration_count = len(input_collection)
new_nodes = list() new_nodes = list()
@ -939,9 +853,7 @@ class GraphExecutionState(BaseModel):
# For collect nodes, this may contain multiple inputs to the same field # For collect nodes, this may contain multiple inputs to the same field
new_edges = list() new_edges = list()
for edge in input_edges: for edge in input_edges:
for input_node_id in ( for input_node_id in (n[1] for n in iteration_node_map if n[0] == edge.source.node_id):
n[1] for n in iteration_node_map if n[0] == edge.source.node_id
):
new_edge = Edge( new_edge = Edge(
source=EdgeConnection(node_id=input_node_id, field=edge.source.field), source=EdgeConnection(node_id=input_node_id, field=edge.source.field),
destination=EdgeConnection(node_id="", field=edge.destination.field), destination=EdgeConnection(node_id="", field=edge.destination.field),
@ -982,11 +894,7 @@ class GraphExecutionState(BaseModel):
def _iterator_graph(self) -> nx.DiGraph: def _iterator_graph(self) -> nx.DiGraph:
"""Gets a DiGraph with edges to collectors removed so an ancestor search produces all active iterators for any node""" """Gets a DiGraph with edges to collectors removed so an ancestor search produces all active iterators for any node"""
g = self.graph.nx_graph_flat() g = self.graph.nx_graph_flat()
collectors = ( collectors = (n for n in self.graph.nodes if isinstance(self.graph.get_node(n), CollectInvocation))
n
for n in self.graph.nodes
if isinstance(self.graph.get_node(n), CollectInvocation)
)
for c in collectors: for c in collectors:
g.remove_edges_from(list(g.in_edges(c))) g.remove_edges_from(list(g.in_edges(c)))
return g return g
@ -994,11 +902,7 @@ class GraphExecutionState(BaseModel):
def _get_node_iterators(self, node_id: str) -> list[str]: def _get_node_iterators(self, node_id: str) -> list[str]:
"""Gets iterators for a node""" """Gets iterators for a node"""
g = self._iterator_graph() g = self._iterator_graph()
iterators = [ iterators = [n for n in nx.ancestors(g, node_id) if isinstance(self.graph.get_node(n), IterateInvocation)]
n
for n in nx.ancestors(g, node_id)
if isinstance(self.graph.get_node(n), IterateInvocation)
]
return iterators return iterators
def _prepare(self) -> Optional[str]: def _prepare(self) -> Optional[str]:
@ -1045,29 +949,18 @@ class GraphExecutionState(BaseModel):
if isinstance(next_node, CollectInvocation): if isinstance(next_node, CollectInvocation):
# Collapse all iterator input mappings and create a single execution node for the collect invocation # Collapse all iterator input mappings and create a single execution node for the collect invocation
all_iteration_mappings = list( all_iteration_mappings = list(
itertools.chain( itertools.chain(*(((s, p) for p in self.source_prepared_mapping[s]) for s in next_node_parents))
*(
((s, p) for p in self.source_prepared_mapping[s])
for s in next_node_parents
)
)
) )
# all_iteration_mappings = list(set(itertools.chain(*prepared_parent_mappings))) # all_iteration_mappings = list(set(itertools.chain(*prepared_parent_mappings)))
create_results = self._create_execution_node( create_results = self._create_execution_node(next_node_id, all_iteration_mappings)
next_node_id, all_iteration_mappings
)
if create_results is not None: if create_results is not None:
new_node_ids.extend(create_results) new_node_ids.extend(create_results)
else: # Iterators or normal nodes else: # Iterators or normal nodes
# Get all iterator combinations for this node # Get all iterator combinations for this node
# Will produce a list of lists of prepared iterator nodes, from which results can be iterated # Will produce a list of lists of prepared iterator nodes, from which results can be iterated
iterator_nodes = self._get_node_iterators(next_node_id) iterator_nodes = self._get_node_iterators(next_node_id)
iterator_nodes_prepared = [ iterator_nodes_prepared = [list(self.source_prepared_mapping[n]) for n in iterator_nodes]
list(self.source_prepared_mapping[n]) for n in iterator_nodes iterator_node_prepared_combinations = list(itertools.product(*iterator_nodes_prepared))
]
iterator_node_prepared_combinations = list(
itertools.product(*iterator_nodes_prepared)
)
# Select the correct prepared parents for each iteration # Select the correct prepared parents for each iteration
# For every iterator, the parent must either not be a child of that iterator, or must match the prepared iteration for that iterator # For every iterator, the parent must either not be a child of that iterator, or must match the prepared iteration for that iterator
@ -1096,31 +989,16 @@ class GraphExecutionState(BaseModel):
return next(iter(prepared_nodes)) return next(iter(prepared_nodes))
# Check if the requested node is an iterator # Check if the requested node is an iterator
prepared_iterator = next( prepared_iterator = next((n for n in prepared_nodes if n in prepared_iterator_nodes), None)
(n for n in prepared_nodes if n in prepared_iterator_nodes), None
)
if prepared_iterator is not None: if prepared_iterator is not None:
return prepared_iterator return prepared_iterator
# Filter to only iterator nodes that are a parent of the specified node, in tuple format (prepared, source) # Filter to only iterator nodes that are a parent of the specified node, in tuple format (prepared, source)
iterator_source_node_mapping = [ iterator_source_node_mapping = [(n, self.prepared_source_mapping[n]) for n in prepared_iterator_nodes]
(n, self.prepared_source_mapping[n]) for n in prepared_iterator_nodes parent_iterators = [itn for itn in iterator_source_node_mapping if nx.has_path(graph, itn[1], source_node_path)]
]
parent_iterators = [
itn
for itn in iterator_source_node_mapping
if nx.has_path(graph, itn[1], source_node_path)
]
return next( return next(
( (n for n in prepared_nodes if all(nx.has_path(execution_graph, pit[0], n) for pit in parent_iterators)),
n
for n in prepared_nodes
if all(
nx.has_path(execution_graph, pit[0], n)
for pit in parent_iterators
)
),
None, None,
) )
@ -1130,13 +1008,13 @@ class GraphExecutionState(BaseModel):
# Depth-first search with pre-order traversal is a depth-first topological sort # Depth-first search with pre-order traversal is a depth-first topological sort
sorted_nodes = nx.dfs_preorder_nodes(g) sorted_nodes = nx.dfs_preorder_nodes(g)
next_node = next( next_node = next(
( (
n n
for n in sorted_nodes for n in sorted_nodes
if n not in self.executed # the node must not already be executed... if n not in self.executed # the node must not already be executed...
and all((e[0] in self.executed for e in g.in_edges(n))) # ...and all its inputs must be executed and all((e[0] in self.executed for e in g.in_edges(n))) # ...and all its inputs must be executed
), ),
None, None,
) )
@ -1221,15 +1099,18 @@ class ExposedNodeOutput(BaseModel):
field: str = Field(description="The field name of the output") field: str = Field(description="The field name of the output")
alias: str = Field(description="The alias of the output") alias: str = Field(description="The alias of the output")
class LibraryGraph(BaseModel): class LibraryGraph(BaseModel):
id: str = Field(description="The unique identifier for this library graph", default_factory=uuid.uuid4) id: str = Field(description="The unique identifier for this library graph", default_factory=uuid.uuid4)
graph: Graph = Field(description="The graph") graph: Graph = Field(description="The graph")
name: str = Field(description="The name of the graph") name: str = Field(description="The name of the graph")
description: str = Field(description="The description of the graph") description: str = Field(description="The description of the graph")
exposed_inputs: list[ExposedNodeInput] = Field(description="The inputs exposed by this graph", default_factory=list) exposed_inputs: list[ExposedNodeInput] = Field(description="The inputs exposed by this graph", default_factory=list)
exposed_outputs: list[ExposedNodeOutput] = Field(description="The outputs exposed by this graph", default_factory=list) exposed_outputs: list[ExposedNodeOutput] = Field(
description="The outputs exposed by this graph", default_factory=list
)
@validator('exposed_inputs', 'exposed_outputs') @validator("exposed_inputs", "exposed_outputs")
def validate_exposed_aliases(cls, v): def validate_exposed_aliases(cls, v):
if len(v) != len(set(i.alias for i in v)): if len(v) != len(set(i.alias for i in v)):
raise ValueError("Duplicate exposed alias") raise ValueError("Duplicate exposed alias")
@ -1237,23 +1118,27 @@ class LibraryGraph(BaseModel):
@root_validator @root_validator
def validate_exposed_nodes(cls, values): def validate_exposed_nodes(cls, values):
graph = values['graph'] graph = values["graph"]
# Validate exposed inputs # Validate exposed inputs
for exposed_input in values['exposed_inputs']: for exposed_input in values["exposed_inputs"]:
if not graph.has_node(exposed_input.node_path): if not graph.has_node(exposed_input.node_path):
raise ValueError(f"Exposed input node {exposed_input.node_path} does not exist") raise ValueError(f"Exposed input node {exposed_input.node_path} does not exist")
node = graph.get_node(exposed_input.node_path) node = graph.get_node(exposed_input.node_path)
if get_input_field(node, exposed_input.field) is None: if get_input_field(node, exposed_input.field) is None:
raise ValueError(f"Exposed input field {exposed_input.field} does not exist on node {exposed_input.node_path}") raise ValueError(
f"Exposed input field {exposed_input.field} does not exist on node {exposed_input.node_path}"
)
# Validate exposed outputs # Validate exposed outputs
for exposed_output in values['exposed_outputs']: for exposed_output in values["exposed_outputs"]:
if not graph.has_node(exposed_output.node_path): if not graph.has_node(exposed_output.node_path):
raise ValueError(f"Exposed output node {exposed_output.node_path} does not exist") raise ValueError(f"Exposed output node {exposed_output.node_path} does not exist")
node = graph.get_node(exposed_output.node_path) node = graph.get_node(exposed_output.node_path)
if get_output_field(node, exposed_output.field) is None: if get_output_field(node, exposed_output.field) is None:
raise ValueError(f"Exposed output field {exposed_output.field} does not exist on node {exposed_output.node_path}") raise ValueError(
f"Exposed output field {exposed_output.field} does not exist on node {exposed_output.node_path}"
)
return values return values

View File

@ -85,9 +85,7 @@ class DiskImageFileStorage(ImageFileStorageBase):
self.__cache_ids = Queue() self.__cache_ids = Queue()
self.__max_cache_size = 10 # TODO: get this from config self.__max_cache_size = 10 # TODO: get this from config
self.__output_folder: Path = ( self.__output_folder: Path = output_folder if isinstance(output_folder, Path) else Path(output_folder)
output_folder if isinstance(output_folder, Path) else Path(output_folder)
)
self.__thumbnails_folder = self.__output_folder / "thumbnails" self.__thumbnails_folder = self.__output_folder / "thumbnails"
# Validate required output folders at launch # Validate required output folders at launch
@ -120,7 +118,7 @@ class DiskImageFileStorage(ImageFileStorageBase):
image_path = self.get_path(image_name) image_path = self.get_path(image_name)
pnginfo = PngImagePlugin.PngInfo() pnginfo = PngImagePlugin.PngInfo()
if metadata is not None: if metadata is not None:
pnginfo.add_text("invokeai_metadata", json.dumps(metadata)) pnginfo.add_text("invokeai_metadata", json.dumps(metadata))
if graph is not None: if graph is not None:
@ -183,9 +181,7 @@ class DiskImageFileStorage(ImageFileStorageBase):
def __set_cache(self, image_name: Path, image: PILImageType): def __set_cache(self, image_name: Path, image: PILImageType):
if not image_name in self.__cache: if not image_name in self.__cache:
self.__cache[image_name] = image self.__cache[image_name] = image
self.__cache_ids.put( self.__cache_ids.put(image_name) # TODO: this should refresh position for LRU cache
image_name
) # TODO: this should refresh position for LRU cache
if len(self.__cache) > self.__max_cache_size: if len(self.__cache) > self.__max_cache_size:
cache_id = self.__cache_ids.get() cache_id = self.__cache_ids.get()
if cache_id in self.__cache: if cache_id in self.__cache:

View File

@ -426,9 +426,7 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
finally: finally:
self._lock.release() self._lock.release()
return OffsetPaginatedResults( return OffsetPaginatedResults(items=images, offset=offset, limit=limit, total=count)
items=images, offset=offset, limit=limit, total=count
)
def delete(self, image_name: str) -> None: def delete(self, image_name: str) -> None:
try: try:
@ -466,7 +464,6 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
finally: finally:
self._lock.release() self._lock.release()
def delete_intermediates(self) -> list[str]: def delete_intermediates(self) -> list[str]:
try: try:
self._lock.acquire() self._lock.acquire()
@ -505,9 +502,7 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
is_intermediate: bool = False, is_intermediate: bool = False,
) -> datetime: ) -> datetime:
try: try:
metadata_json = ( metadata_json = None if metadata is None else json.dumps(metadata)
None if metadata is None else json.dumps(metadata)
)
self._lock.acquire() self._lock.acquire()
self._cursor.execute( self._cursor.execute(
"""--sql """--sql

View File

@ -217,12 +217,8 @@ class ImageService(ImageServiceABC):
session_id=session_id, session_id=session_id,
) )
if board_id is not None: if board_id is not None:
self._services.board_image_records.add_image_to_board( self._services.board_image_records.add_image_to_board(board_id=board_id, image_name=image_name)
board_id=board_id, image_name=image_name self._services.image_files.save(image_name=image_name, image=image, metadata=metadata, graph=graph)
)
self._services.image_files.save(
image_name=image_name, image=image, metadata=metadata, graph=graph
)
image_dto = self.get_dto(image_name) image_dto = self.get_dto(image_name)
return image_dto return image_dto
@ -297,9 +293,7 @@ class ImageService(ImageServiceABC):
if not image_record.session_id: if not image_record.session_id:
return ImageMetadata() return ImageMetadata()
session_raw = self._services.graph_execution_manager.get_raw( session_raw = self._services.graph_execution_manager.get_raw(image_record.session_id)
image_record.session_id
)
graph = None graph = None
if session_raw: if session_raw:
@ -364,9 +358,7 @@ class ImageService(ImageServiceABC):
r, r,
self._services.urls.get_image_url(r.image_name), self._services.urls.get_image_url(r.image_name),
self._services.urls.get_image_url(r.image_name, True), self._services.urls.get_image_url(r.image_name, True),
self._services.board_image_records.get_board_for_image( self._services.board_image_records.get_board_for_image(r.image_name),
r.image_name
),
), ),
results.items, results.items,
) )
@ -398,11 +390,7 @@ class ImageService(ImageServiceABC):
def delete_images_on_board(self, board_id: str): def delete_images_on_board(self, board_id: str):
try: try:
image_names = ( image_names = self._services.board_image_records.get_all_board_image_names_for_board(board_id)
self._services.board_image_records.get_all_board_image_names_for_board(
board_id
)
)
for image_name in image_names: for image_name in image_names:
self._services.image_files.delete(image_name) self._services.image_files.delete(image_name)
self._services.image_records.delete_many(image_names) self._services.image_records.delete_many(image_names)

View File

@ -7,6 +7,7 @@ from queue import Queue
from pydantic import BaseModel, Field from pydantic import BaseModel, Field
from typing import Optional from typing import Optional
class InvocationQueueItem(BaseModel): class InvocationQueueItem(BaseModel):
graph_execution_state_id: str = Field(description="The ID of the graph execution state") graph_execution_state_id: str = Field(description="The ID of the graph execution state")
invocation_id: str = Field(description="The ID of the node being invoked") invocation_id: str = Field(description="The ID of the node being invoked")
@ -45,9 +46,11 @@ class MemoryInvocationQueue(InvocationQueueABC):
def get(self) -> InvocationQueueItem: def get(self) -> InvocationQueueItem:
item = self.__queue.get() item = self.__queue.get()
while isinstance(item, InvocationQueueItem) \ while (
and item.graph_execution_state_id in self.__cancellations \ isinstance(item, InvocationQueueItem)
and self.__cancellations[item.graph_execution_state_id] > item.timestamp: and item.graph_execution_state_id in self.__cancellations
and self.__cancellations[item.graph_execution_state_id] > item.timestamp
):
item = self.__queue.get() item = self.__queue.get()
# Clear old items # Clear old items

View File

@ -7,6 +7,7 @@ from .graph import Graph, GraphExecutionState
from .invocation_queue import InvocationQueueItem from .invocation_queue import InvocationQueueItem
from .invocation_services import InvocationServices from .invocation_services import InvocationServices
class Invoker: class Invoker:
"""The invoker, used to execute invocations""" """The invoker, used to execute invocations"""
@ -16,9 +17,7 @@ class Invoker:
self.services = services self.services = services
self._start() self._start()
def invoke( def invoke(self, graph_execution_state: GraphExecutionState, invoke_all: bool = False) -> Optional[str]:
self, graph_execution_state: GraphExecutionState, invoke_all: bool = False
) -> Optional[str]:
"""Determines the next node to invoke and enqueues it, preparing if needed. """Determines the next node to invoke and enqueues it, preparing if needed.
Returns the id of the queued node, or `None` if there are no nodes left to enqueue.""" Returns the id of the queued node, or `None` if there are no nodes left to enqueue."""

View File

@ -9,13 +9,15 @@ T = TypeVar("T", bound=BaseModel)
class PaginatedResults(GenericModel, Generic[T]): class PaginatedResults(GenericModel, Generic[T]):
"""Paginated results""" """Paginated results"""
#fmt: off
# fmt: off
items: list[T] = Field(description="Items") items: list[T] = Field(description="Items")
page: int = Field(description="Current Page") page: int = Field(description="Current Page")
pages: int = Field(description="Total number of pages") pages: int = Field(description="Total number of pages")
per_page: int = Field(description="Number of items per page") per_page: int = Field(description="Number of items per page")
total: int = Field(description="Total number of items in result") total: int = Field(description="Total number of items in result")
#fmt: on # fmt: on
class ItemStorageABC(ABC, Generic[T]): class ItemStorageABC(ABC, Generic[T]):
_on_changed_callbacks: list[Callable[[T], None]] _on_changed_callbacks: list[Callable[[T], None]]
@ -48,9 +50,7 @@ class ItemStorageABC(ABC, Generic[T]):
pass pass
@abstractmethod @abstractmethod
def search( def search(self, query: str, page: int = 0, per_page: int = 10) -> PaginatedResults[T]:
self, query: str, page: int = 0, per_page: int = 10
) -> PaginatedResults[T]:
pass pass
def on_changed(self, on_changed: Callable[[T], None]) -> None: def on_changed(self, on_changed: Callable[[T], None]) -> None:

View File

@ -7,6 +7,7 @@ from typing import Dict, Union, Optional
import torch import torch
class LatentsStorageBase(ABC): class LatentsStorageBase(ABC):
"""Responsible for storing and retrieving latents.""" """Responsible for storing and retrieving latents."""
@ -25,7 +26,7 @@ class LatentsStorageBase(ABC):
class ForwardCacheLatentsStorage(LatentsStorageBase): class ForwardCacheLatentsStorage(LatentsStorageBase):
"""Caches the latest N latents in memory, writing-thorugh to and reading from underlying storage""" """Caches the latest N latents in memory, writing-thorugh to and reading from underlying storage"""
__cache: Dict[str, torch.Tensor] __cache: Dict[str, torch.Tensor]
__cache_ids: Queue __cache_ids: Queue
__max_cache_size: int __max_cache_size: int
@ -87,8 +88,6 @@ class DiskLatentsStorage(LatentsStorageBase):
def delete(self, name: str) -> None: def delete(self, name: str) -> None:
latent_path = self.get_path(name) latent_path = self.get_path(name)
latent_path.unlink() latent_path.unlink()
def get_path(self, name: str) -> Path: def get_path(self, name: str) -> Path:
return self.__output_folder / name return self.__output_folder / name

View File

@ -103,7 +103,7 @@ class ModelManagerServiceBase(ABC):
} }
""" """
pass pass
@abstractmethod @abstractmethod
def list_model(self, model_name: str, base_model: BaseModelType, model_type: ModelType) -> dict: def list_model(self, model_name: str, base_model: BaseModelType, model_type: ModelType) -> dict:
""" """
@ -125,7 +125,7 @@ class ModelManagerServiceBase(ABC):
base_model: BaseModelType, base_model: BaseModelType,
model_type: ModelType, model_type: ModelType,
model_attributes: dict, model_attributes: dict,
clobber: bool = False clobber: bool = False,
) -> AddModelResult: ) -> AddModelResult:
""" """
Update the named model with a dictionary of attributes. Will fail with an Update the named model with a dictionary of attributes. Will fail with an
@ -148,12 +148,12 @@ class ModelManagerServiceBase(ABC):
Update the named model with a dictionary of attributes. Will fail with a Update the named model with a dictionary of attributes. Will fail with a
ModelNotFoundException if the name does not already exist. ModelNotFoundException if the name does not already exist.
On a successful update, the config will be changed in memory. Will fail On a successful update, the config will be changed in memory. Will fail
with an assertion error if provided attributes are incorrect or with an assertion error if provided attributes are incorrect or
the model name is missing. Call commit() to write changes to disk. the model name is missing. Call commit() to write changes to disk.
""" """
pass pass
@abstractmethod @abstractmethod
def del_model( def del_model(
self, self,
@ -169,21 +169,20 @@ class ModelManagerServiceBase(ABC):
pass pass
@abstractmethod @abstractmethod
def rename_model(self, def rename_model(
model_name: str, self,
base_model: BaseModelType, model_name: str,
model_type: ModelType, base_model: BaseModelType,
new_name: str, model_type: ModelType,
): new_name: str,
):
""" """
Rename the indicated model. Rename the indicated model.
""" """
pass pass
@abstractmethod @abstractmethod
def list_checkpoint_configs( def list_checkpoint_configs(self) -> List[Path]:
self
)->List[Path]:
""" """
List the checkpoint config paths from ROOT/configs/stable-diffusion. List the checkpoint config paths from ROOT/configs/stable-diffusion.
""" """
@ -194,7 +193,7 @@ class ModelManagerServiceBase(ABC):
self, self,
model_name: str, model_name: str,
base_model: BaseModelType, base_model: BaseModelType,
model_type: Union[ModelType.Main,ModelType.Vae], model_type: Union[ModelType.Main, ModelType.Vae],
) -> AddModelResult: ) -> AddModelResult:
""" """
Convert a checkpoint file into a diffusers folder, deleting the cached Convert a checkpoint file into a diffusers folder, deleting the cached
@ -211,11 +210,12 @@ class ModelManagerServiceBase(ABC):
pass pass
@abstractmethod @abstractmethod
def heuristic_import(self, def heuristic_import(
items_to_import: set[str], self,
prediction_type_helper: Optional[Callable[[Path],SchedulerPredictionType]]=None, items_to_import: set[str],
)->dict[str, AddModelResult]: prediction_type_helper: Optional[Callable[[Path], SchedulerPredictionType]] = None,
'''Import a list of paths, repo_ids or URLs. Returns the set of ) -> dict[str, AddModelResult]:
"""Import a list of paths, repo_ids or URLs. Returns the set of
successfully imported items. successfully imported items.
:param items_to_import: Set of strings corresponding to models to be imported. :param items_to_import: Set of strings corresponding to models to be imported.
:param prediction_type_helper: A callback that receives the Path of a Stable Diffusion 2 checkpoint model and returns a SchedulerPredictionType. :param prediction_type_helper: A callback that receives the Path of a Stable Diffusion 2 checkpoint model and returns a SchedulerPredictionType.
@ -230,19 +230,23 @@ class ModelManagerServiceBase(ABC):
The result is a set of successfully installed models. Each element The result is a set of successfully installed models. Each element
of the set is a dict corresponding to the newly-created OmegaConf stanza for of the set is a dict corresponding to the newly-created OmegaConf stanza for
that model. that model.
''' """
pass pass
@abstractmethod @abstractmethod
def merge_models( def merge_models(
self, self,
model_names: List[str] = Field(default=None, min_items=2, max_items=3, description="List of model names to merge"), model_names: List[str] = Field(
base_model: Union[BaseModelType,str] = Field(default=None, description="Base model shared by all models to be merged"), default=None, min_items=2, max_items=3, description="List of model names to merge"
merged_model_name: str = Field(default=None, description="Name of destination model after merging"), ),
alpha: Optional[float] = 0.5, base_model: Union[BaseModelType, str] = Field(
interp: Optional[MergeInterpolationMethod] = None, default=None, description="Base model shared by all models to be merged"
force: Optional[bool] = False, ),
merge_dest_directory: Optional[Path] = None merged_model_name: str = Field(default=None, description="Name of destination model after merging"),
alpha: Optional[float] = 0.5,
interp: Optional[MergeInterpolationMethod] = None,
force: Optional[bool] = False,
merge_dest_directory: Optional[Path] = None,
) -> AddModelResult: ) -> AddModelResult:
""" """
Merge two to three diffusrs pipeline models and save as a new model. Merge two to three diffusrs pipeline models and save as a new model.
@ -250,27 +254,27 @@ class ModelManagerServiceBase(ABC):
:param base_model: Base model to use for all models :param base_model: Base model to use for all models
:param merged_model_name: Name of destination merged model :param merged_model_name: Name of destination merged model
:param alpha: Alpha strength to apply to 2d and 3d model :param alpha: Alpha strength to apply to 2d and 3d model
:param interp: Interpolation method. None (default) :param interp: Interpolation method. None (default)
:param merge_dest_directory: Save the merged model to the designated directory (with 'merged_model_name' appended) :param merge_dest_directory: Save the merged model to the designated directory (with 'merged_model_name' appended)
""" """
pass pass
@abstractmethod @abstractmethod
def search_for_models(self, directory: Path)->List[Path]: def search_for_models(self, directory: Path) -> List[Path]:
""" """
Return list of all models found in the designated directory. Return list of all models found in the designated directory.
""" """
pass pass
@abstractmethod @abstractmethod
def sync_to_config(self): def sync_to_config(self):
""" """
Re-read models.yaml, rescan the models directory, and reimport models Re-read models.yaml, rescan the models directory, and reimport models
in the autoimport directories. Call after making changes outside the in the autoimport directories. Call after making changes outside the
model manager API. model manager API.
""" """
pass pass
@abstractmethod @abstractmethod
def commit(self, conf_file: Optional[Path] = None) -> None: def commit(self, conf_file: Optional[Path] = None) -> None:
""" """
@ -280,9 +284,11 @@ class ModelManagerServiceBase(ABC):
""" """
pass pass
# simple implementation # simple implementation
class ModelManagerService(ModelManagerServiceBase): class ModelManagerService(ModelManagerServiceBase):
"""Responsible for managing models on disk and in memory""" """Responsible for managing models on disk and in memory"""
def __init__( def __init__(
self, self,
config: InvokeAIAppConfig, config: InvokeAIAppConfig,
@ -298,17 +304,17 @@ class ModelManagerService(ModelManagerServiceBase):
config_file = config.model_conf_path config_file = config.model_conf_path
else: else:
config_file = config.root_dir / "configs/models.yaml" config_file = config.root_dir / "configs/models.yaml"
logger.debug(f'Config file={config_file}') logger.debug(f"Config file={config_file}")
device = torch.device(choose_torch_device()) device = torch.device(choose_torch_device())
device_name = torch.cuda.get_device_name() if device==torch.device('cuda') else '' device_name = torch.cuda.get_device_name() if device == torch.device("cuda") else ""
logger.info(f'GPU device = {device} {device_name}') logger.info(f"GPU device = {device} {device_name}")
precision = config.precision precision = config.precision
if precision == "auto": if precision == "auto":
precision = choose_precision(device) precision = choose_precision(device)
dtype = torch.float32 if precision == 'float32' else torch.float16 dtype = torch.float32 if precision == "float32" else torch.float16
# this is transitional backward compatibility # this is transitional backward compatibility
# support for the deprecated `max_loaded_models` # support for the deprecated `max_loaded_models`
@ -316,9 +322,7 @@ class ModelManagerService(ModelManagerServiceBase):
# cache size is set to 2.5 GB times # cache size is set to 2.5 GB times
# the number of max_loaded_models. Otherwise # the number of max_loaded_models. Otherwise
# use new `max_cache_size` config setting # use new `max_cache_size` config setting
max_cache_size = config.max_cache_size \ max_cache_size = config.max_cache_size if hasattr(config, "max_cache_size") else config.max_loaded_models * 2.5
if hasattr(config,'max_cache_size') \
else config.max_loaded_models * 2.5
logger.debug(f"Maximum RAM cache size: {max_cache_size} GiB") logger.debug(f"Maximum RAM cache size: {max_cache_size} GiB")
@ -332,7 +336,7 @@ class ModelManagerService(ModelManagerServiceBase):
sequential_offload=sequential_offload, sequential_offload=sequential_offload,
logger=logger, logger=logger,
) )
logger.info('Model manager service initialized') logger.info("Model manager service initialized")
def get_model( def get_model(
self, self,
@ -371,7 +375,7 @@ class ModelManagerService(ModelManagerServiceBase):
base_model=base_model, base_model=base_model,
model_type=model_type, model_type=model_type,
submodel=submodel, submodel=submodel,
model_info=model_info model_info=model_info,
) )
return model_info return model_info
@ -405,9 +409,7 @@ class ModelManagerService(ModelManagerServiceBase):
return self.mgr.model_names() return self.mgr.model_names()
def list_models( def list_models(
self, self, base_model: Optional[BaseModelType] = None, model_type: Optional[ModelType] = None
base_model: Optional[BaseModelType] = None,
model_type: Optional[ModelType] = None
) -> list[dict]: ) -> list[dict]:
""" """
Return a list of models. Return a list of models.
@ -418,9 +420,7 @@ class ModelManagerService(ModelManagerServiceBase):
""" """
Return information about the model using the same format as list_models() Return information about the model using the same format as list_models()
""" """
return self.mgr.list_model(model_name=model_name, return self.mgr.list_model(model_name=model_name, base_model=base_model, model_type=model_type)
base_model=base_model,
model_type=model_type)
def add_model( def add_model(
self, self,
@ -429,7 +429,7 @@ class ModelManagerService(ModelManagerServiceBase):
model_type: ModelType, model_type: ModelType,
model_attributes: dict, model_attributes: dict,
clobber: bool = False, clobber: bool = False,
)->None: ) -> None:
""" """
Update the named model with a dictionary of attributes. Will fail with an Update the named model with a dictionary of attributes. Will fail with an
assertion error if the name already exists. Pass clobber=True to overwrite. assertion error if the name already exists. Pass clobber=True to overwrite.
@ -437,7 +437,7 @@ class ModelManagerService(ModelManagerServiceBase):
with an assertion error if provided attributes are incorrect or with an assertion error if provided attributes are incorrect or
the model name is missing. Call commit() to write changes to disk. the model name is missing. Call commit() to write changes to disk.
""" """
self.logger.debug(f'add/update model {model_name}') self.logger.debug(f"add/update model {model_name}")
return self.mgr.add_model(model_name, base_model, model_type, model_attributes, clobber) return self.mgr.add_model(model_name, base_model, model_type, model_attributes, clobber)
def update_model( def update_model(
@ -450,15 +450,15 @@ class ModelManagerService(ModelManagerServiceBase):
""" """
Update the named model with a dictionary of attributes. Will fail with a Update the named model with a dictionary of attributes. Will fail with a
ModelNotFoundException exception if the name does not already exist. ModelNotFoundException exception if the name does not already exist.
On a successful update, the config will be changed in memory. Will fail On a successful update, the config will be changed in memory. Will fail
with an assertion error if provided attributes are incorrect or with an assertion error if provided attributes are incorrect or
the model name is missing. Call commit() to write changes to disk. the model name is missing. Call commit() to write changes to disk.
""" """
self.logger.debug(f'update model {model_name}') self.logger.debug(f"update model {model_name}")
if not self.model_exists(model_name, base_model, model_type): if not self.model_exists(model_name, base_model, model_type):
raise ModelNotFoundException(f"Unknown model {model_name}") raise ModelNotFoundException(f"Unknown model {model_name}")
return self.add_model(model_name, base_model, model_type, model_attributes, clobber=True) return self.add_model(model_name, base_model, model_type, model_attributes, clobber=True)
def del_model( def del_model(
self, self,
model_name: str, model_name: str,
@ -470,7 +470,7 @@ class ModelManagerService(ModelManagerServiceBase):
then the underlying weight file or diffusers directory will be deleted then the underlying weight file or diffusers directory will be deleted
as well. as well.
""" """
self.logger.debug(f'delete model {model_name}') self.logger.debug(f"delete model {model_name}")
self.mgr.del_model(model_name, base_model, model_type) self.mgr.del_model(model_name, base_model, model_type)
self.mgr.commit() self.mgr.commit()
@ -478,8 +478,10 @@ class ModelManagerService(ModelManagerServiceBase):
self, self,
model_name: str, model_name: str,
base_model: BaseModelType, base_model: BaseModelType,
model_type: Union[ModelType.Main,ModelType.Vae], model_type: Union[ModelType.Main, ModelType.Vae],
convert_dest_directory: Optional[Path] = Field(default=None, description="Optional directory location for merged model"), convert_dest_directory: Optional[Path] = Field(
default=None, description="Optional directory location for merged model"
),
) -> AddModelResult: ) -> AddModelResult:
""" """
Convert a checkpoint file into a diffusers folder, deleting the cached Convert a checkpoint file into a diffusers folder, deleting the cached
@ -494,10 +496,10 @@ class ModelManagerService(ModelManagerServiceBase):
also raise a ValueError in the event that there is a similarly-named diffusers also raise a ValueError in the event that there is a similarly-named diffusers
directory already in place. directory already in place.
""" """
self.logger.debug(f'convert model {model_name}') self.logger.debug(f"convert model {model_name}")
return self.mgr.convert_model(model_name, base_model, model_type, convert_dest_directory) return self.mgr.convert_model(model_name, base_model, model_type, convert_dest_directory)
def commit(self, conf_file: Optional[Path]=None): def commit(self, conf_file: Optional[Path] = None):
""" """
Write current configuration out to the indicated file. Write current configuration out to the indicated file.
If no conf_file is provided, then replaces the If no conf_file is provided, then replaces the
@ -524,7 +526,7 @@ class ModelManagerService(ModelManagerServiceBase):
base_model=base_model, base_model=base_model,
model_type=model_type, model_type=model_type,
submodel=submodel, submodel=submodel,
model_info=model_info model_info=model_info,
) )
else: else:
context.services.events.emit_model_load_started( context.services.events.emit_model_load_started(
@ -535,16 +537,16 @@ class ModelManagerService(ModelManagerServiceBase):
submodel=submodel, submodel=submodel,
) )
@property @property
def logger(self): def logger(self):
return self.mgr.logger return self.mgr.logger
def heuristic_import(self, def heuristic_import(
items_to_import: set[str], self,
prediction_type_helper: Optional[Callable[[Path],SchedulerPredictionType]]=None, items_to_import: set[str],
)->dict[str, AddModelResult]: prediction_type_helper: Optional[Callable[[Path], SchedulerPredictionType]] = None,
'''Import a list of paths, repo_ids or URLs. Returns the set of ) -> dict[str, AddModelResult]:
"""Import a list of paths, repo_ids or URLs. Returns the set of
successfully imported items. successfully imported items.
:param items_to_import: Set of strings corresponding to models to be imported. :param items_to_import: Set of strings corresponding to models to be imported.
:param prediction_type_helper: A callback that receives the Path of a Stable Diffusion 2 checkpoint model and returns a SchedulerPredictionType. :param prediction_type_helper: A callback that receives the Path of a Stable Diffusion 2 checkpoint model and returns a SchedulerPredictionType.
@ -559,18 +561,24 @@ class ModelManagerService(ModelManagerServiceBase):
The result is a set of successfully installed models. Each element The result is a set of successfully installed models. Each element
of the set is a dict corresponding to the newly-created OmegaConf stanza for of the set is a dict corresponding to the newly-created OmegaConf stanza for
that model. that model.
''' """
return self.mgr.heuristic_import(items_to_import, prediction_type_helper) return self.mgr.heuristic_import(items_to_import, prediction_type_helper)
def merge_models( def merge_models(
self, self,
model_names: List[str] = Field(default=None, min_items=2, max_items=3, description="List of model names to merge"), model_names: List[str] = Field(
base_model: Union[BaseModelType,str] = Field(default=None, description="Base model shared by all models to be merged"), default=None, min_items=2, max_items=3, description="List of model names to merge"
merged_model_name: str = Field(default=None, description="Name of destination model after merging"), ),
alpha: Optional[float] = 0.5, base_model: Union[BaseModelType, str] = Field(
interp: Optional[MergeInterpolationMethod] = None, default=None, description="Base model shared by all models to be merged"
force: Optional[bool] = False, ),
merge_dest_directory: Optional[Path] = Field(default=None, description="Optional directory location for merged model"), merged_model_name: str = Field(default=None, description="Name of destination model after merging"),
alpha: Optional[float] = 0.5,
interp: Optional[MergeInterpolationMethod] = None,
force: Optional[bool] = False,
merge_dest_directory: Optional[Path] = Field(
default=None, description="Optional directory location for merged model"
),
) -> AddModelResult: ) -> AddModelResult:
""" """
Merge two to three diffusrs pipeline models and save as a new model. Merge two to three diffusrs pipeline models and save as a new model.
@ -578,25 +586,25 @@ class ModelManagerService(ModelManagerServiceBase):
:param base_model: Base model to use for all models :param base_model: Base model to use for all models
:param merged_model_name: Name of destination merged model :param merged_model_name: Name of destination merged model
:param alpha: Alpha strength to apply to 2d and 3d model :param alpha: Alpha strength to apply to 2d and 3d model
:param interp: Interpolation method. None (default) :param interp: Interpolation method. None (default)
:param merge_dest_directory: Save the merged model to the designated directory (with 'merged_model_name' appended) :param merge_dest_directory: Save the merged model to the designated directory (with 'merged_model_name' appended)
""" """
merger = ModelMerger(self.mgr) merger = ModelMerger(self.mgr)
try: try:
result = merger.merge_diffusion_models_and_save( result = merger.merge_diffusion_models_and_save(
model_names = model_names, model_names=model_names,
base_model = base_model, base_model=base_model,
merged_model_name = merged_model_name, merged_model_name=merged_model_name,
alpha = alpha, alpha=alpha,
interp = interp, interp=interp,
force = force, force=force,
merge_dest_directory=merge_dest_directory, merge_dest_directory=merge_dest_directory,
) )
except AssertionError as e: except AssertionError as e:
raise ValueError(e) raise ValueError(e)
return result return result
def search_for_models(self, directory: Path)->List[Path]: def search_for_models(self, directory: Path) -> List[Path]:
""" """
Return list of all models found in the designated directory. Return list of all models found in the designated directory.
""" """
@ -605,28 +613,29 @@ class ModelManagerService(ModelManagerServiceBase):
def sync_to_config(self): def sync_to_config(self):
""" """
Re-read models.yaml, rescan the models directory, and reimport models Re-read models.yaml, rescan the models directory, and reimport models
in the autoimport directories. Call after making changes outside the in the autoimport directories. Call after making changes outside the
model manager API. model manager API.
""" """
return self.mgr.sync_to_config() return self.mgr.sync_to_config()
def list_checkpoint_configs(self)->List[Path]: def list_checkpoint_configs(self) -> List[Path]:
""" """
List the checkpoint config paths from ROOT/configs/stable-diffusion. List the checkpoint config paths from ROOT/configs/stable-diffusion.
""" """
config = self.mgr.app_config config = self.mgr.app_config
conf_path = config.legacy_conf_path conf_path = config.legacy_conf_path
root_path = config.root_path root_path = config.root_path
return [(conf_path / x).relative_to(root_path) for x in conf_path.glob('**/*.yaml')] return [(conf_path / x).relative_to(root_path) for x in conf_path.glob("**/*.yaml")]
def rename_model(self, def rename_model(
model_name: str, self,
base_model: BaseModelType, model_name: str,
model_type: ModelType, base_model: BaseModelType,
new_name: str = None, model_type: ModelType,
new_base: BaseModelType = None, new_name: str = None,
): new_base: BaseModelType = None,
):
""" """
Rename the indicated model. Can provide a new name and/or a new base. Rename the indicated model. Can provide a new name and/or a new base.
:param model_name: Current name of the model :param model_name: Current name of the model
@ -635,10 +644,10 @@ class ModelManagerService(ModelManagerServiceBase):
:param new_name: New name for the model :param new_name: New name for the model
:param new_base: New base for the model :param new_base: New base for the model
""" """
self.mgr.rename_model(base_model = base_model, self.mgr.rename_model(
model_type = model_type, base_model=base_model,
model_name = model_name, model_type=model_type,
new_name = new_name, model_name=model_name,
new_base = new_base, new_name=new_name,
) new_base=new_base,
)

View File

@ -11,30 +11,20 @@ class BoardRecord(BaseModel):
"""The unique ID of the board.""" """The unique ID of the board."""
board_name: str = Field(description="The name of the board.") board_name: str = Field(description="The name of the board.")
"""The name of the board.""" """The name of the board."""
created_at: Union[datetime, str] = Field( created_at: Union[datetime, str] = Field(description="The created timestamp of the board.")
description="The created timestamp of the board."
)
"""The created timestamp of the image.""" """The created timestamp of the image."""
updated_at: Union[datetime, str] = Field( updated_at: Union[datetime, str] = Field(description="The updated timestamp of the board.")
description="The updated timestamp of the board."
)
"""The updated timestamp of the image.""" """The updated timestamp of the image."""
deleted_at: Union[datetime, str, None] = Field( deleted_at: Union[datetime, str, None] = Field(description="The deleted timestamp of the board.")
description="The deleted timestamp of the board."
)
"""The updated timestamp of the image.""" """The updated timestamp of the image."""
cover_image_name: Optional[str] = Field( cover_image_name: Optional[str] = Field(description="The name of the cover image of the board.")
description="The name of the cover image of the board."
)
"""The name of the cover image of the board.""" """The name of the cover image of the board."""
class BoardDTO(BoardRecord): class BoardDTO(BoardRecord):
"""Deserialized board record with cover image URL and image count.""" """Deserialized board record with cover image URL and image count."""
cover_image_name: Optional[str] = Field( cover_image_name: Optional[str] = Field(description="The name of the board's cover image.")
description="The name of the board's cover image."
)
"""The URL of the thumbnail of the most recent image in the board.""" """The URL of the thumbnail of the most recent image in the board."""
image_count: int = Field(description="The number of images in the board.") image_count: int = Field(description="The number of images in the board.")
"""The number of images in the board.""" """The number of images in the board."""

View File

@ -20,17 +20,11 @@ class ImageRecord(BaseModel):
"""The actual width of the image in px. This may be different from the width in metadata.""" """The actual width of the image in px. This may be different from the width in metadata."""
height: int = Field(description="The height of the image in px.") height: int = Field(description="The height of the image in px.")
"""The actual height of the image in px. This may be different from the height in metadata.""" """The actual height of the image in px. This may be different from the height in metadata."""
created_at: Union[datetime.datetime, str] = Field( created_at: Union[datetime.datetime, str] = Field(description="The created timestamp of the image.")
description="The created timestamp of the image."
)
"""The created timestamp of the image.""" """The created timestamp of the image."""
updated_at: Union[datetime.datetime, str] = Field( updated_at: Union[datetime.datetime, str] = Field(description="The updated timestamp of the image.")
description="The updated timestamp of the image."
)
"""The updated timestamp of the image.""" """The updated timestamp of the image."""
deleted_at: Union[datetime.datetime, str, None] = Field( deleted_at: Union[datetime.datetime, str, None] = Field(description="The deleted timestamp of the image.")
description="The deleted timestamp of the image."
)
"""The deleted timestamp of the image.""" """The deleted timestamp of the image."""
is_intermediate: bool = Field(description="Whether this is an intermediate image.") is_intermediate: bool = Field(description="Whether this is an intermediate image.")
"""Whether this is an intermediate image.""" """Whether this is an intermediate image."""
@ -55,18 +49,14 @@ class ImageRecordChanges(BaseModel, extra=Extra.forbid):
- `is_intermediate`: change the image's `is_intermediate` flag - `is_intermediate`: change the image's `is_intermediate` flag
""" """
image_category: Optional[ImageCategory] = Field( image_category: Optional[ImageCategory] = Field(description="The image's new category.")
description="The image's new category."
)
"""The image's new category.""" """The image's new category."""
session_id: Optional[StrictStr] = Field( session_id: Optional[StrictStr] = Field(
default=None, default=None,
description="The image's new session ID.", description="The image's new session ID.",
) )
"""The image's new session ID.""" """The image's new session ID."""
is_intermediate: Optional[StrictBool] = Field( is_intermediate: Optional[StrictBool] = Field(default=None, description="The image's new `is_intermediate` flag.")
default=None, description="The image's new `is_intermediate` flag."
)
"""The image's new `is_intermediate` flag.""" """The image's new `is_intermediate` flag."""
@ -84,9 +74,7 @@ class ImageUrlsDTO(BaseModel):
class ImageDTO(ImageRecord, ImageUrlsDTO): class ImageDTO(ImageRecord, ImageUrlsDTO):
"""Deserialized image record, enriched for the frontend.""" """Deserialized image record, enriched for the frontend."""
board_id: Optional[str] = Field( board_id: Optional[str] = Field(description="The id of the board the image belongs to, if one exists.")
description="The id of the board the image belongs to, if one exists."
)
"""The id of the board the image belongs to, if one exists.""" """The id of the board the image belongs to, if one exists."""
pass pass
@ -110,12 +98,8 @@ def deserialize_image_record(image_dict: dict) -> ImageRecord:
# TODO: do we really need to handle default values here? ideally the data is the correct shape... # TODO: do we really need to handle default values here? ideally the data is the correct shape...
image_name = image_dict.get("image_name", "unknown") image_name = image_dict.get("image_name", "unknown")
image_origin = ResourceOrigin( image_origin = ResourceOrigin(image_dict.get("image_origin", ResourceOrigin.INTERNAL.value))
image_dict.get("image_origin", ResourceOrigin.INTERNAL.value) image_category = ImageCategory(image_dict.get("image_category", ImageCategory.GENERAL.value))
)
image_category = ImageCategory(
image_dict.get("image_category", ImageCategory.GENERAL.value)
)
width = image_dict.get("width", 0) width = image_dict.get("width", 0)
height = image_dict.get("height", 0) height = image_dict.get("height", 0)
session_id = image_dict.get("session_id", None) session_id = image_dict.get("session_id", None)

View File

@ -8,6 +8,8 @@ from .invoker import InvocationProcessorABC, Invoker
from ..models.exceptions import CanceledException from ..models.exceptions import CanceledException
import invokeai.backend.util.logging as logger import invokeai.backend.util.logging as logger
class DefaultInvocationProcessor(InvocationProcessorABC): class DefaultInvocationProcessor(InvocationProcessorABC):
__invoker_thread: Thread __invoker_thread: Thread
__stop_event: Event __stop_event: Event
@ -24,9 +26,7 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
target=self.__process, target=self.__process,
kwargs=dict(stop_event=self.__stop_event), kwargs=dict(stop_event=self.__stop_event),
) )
self.__invoker_thread.daemon = ( self.__invoker_thread.daemon = True # TODO: make async and do not use threads
True # TODO: make async and do not use threads
)
self.__invoker_thread.start() self.__invoker_thread.start()
def stop(self, *args, **kwargs) -> None: def stop(self, *args, **kwargs) -> None:
@ -47,10 +47,8 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
continue continue
try: try:
graph_execution_state = ( graph_execution_state = self.__invoker.services.graph_execution_manager.get(
self.__invoker.services.graph_execution_manager.get( queue_item.graph_execution_state_id
queue_item.graph_execution_state_id
)
) )
except Exception as e: except Exception as e:
self.__invoker.services.logger.error("Exception while retrieving session:\n%s" % e) self.__invoker.services.logger.error("Exception while retrieving session:\n%s" % e)
@ -60,11 +58,9 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
error=traceback.format_exc(), error=traceback.format_exc(),
) )
continue continue
try: try:
invocation = graph_execution_state.execution_graph.get_node( invocation = graph_execution_state.execution_graph.get_node(queue_item.invocation_id)
queue_item.invocation_id
)
except Exception as e: except Exception as e:
self.__invoker.services.logger.error("Exception while retrieving invocation:\n%s" % e) self.__invoker.services.logger.error("Exception while retrieving invocation:\n%s" % e)
self.__invoker.services.events.emit_invocation_retrieval_error( self.__invoker.services.events.emit_invocation_retrieval_error(
@ -82,7 +78,7 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
self.__invoker.services.events.emit_invocation_started( self.__invoker.services.events.emit_invocation_started(
graph_execution_state_id=graph_execution_state.id, graph_execution_state_id=graph_execution_state.id,
node=invocation.dict(), node=invocation.dict(),
source_node_id=source_node_id source_node_id=source_node_id,
) )
# Invoke # Invoke
@ -95,18 +91,14 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
) )
# Check queue to see if this is canceled, and skip if so # Check queue to see if this is canceled, and skip if so
if self.__invoker.services.queue.is_canceled( if self.__invoker.services.queue.is_canceled(graph_execution_state.id):
graph_execution_state.id
):
continue continue
# Save outputs and history # Save outputs and history
graph_execution_state.complete(invocation.id, outputs) graph_execution_state.complete(invocation.id, outputs)
# Save the state changes # Save the state changes
self.__invoker.services.graph_execution_manager.set( self.__invoker.services.graph_execution_manager.set(graph_execution_state)
graph_execution_state
)
# Send complete event # Send complete event
self.__invoker.services.events.emit_invocation_complete( self.__invoker.services.events.emit_invocation_complete(
@ -130,9 +122,7 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
graph_execution_state.set_node_error(invocation.id, error) graph_execution_state.set_node_error(invocation.id, error)
# Save the state changes # Save the state changes
self.__invoker.services.graph_execution_manager.set( self.__invoker.services.graph_execution_manager.set(graph_execution_state)
graph_execution_state
)
self.__invoker.services.logger.error("Error while invoking:\n%s" % e) self.__invoker.services.logger.error("Error while invoking:\n%s" % e)
# Send error event # Send error event
@ -147,9 +137,7 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
pass pass
# Check queue to see if this is canceled, and skip if so # Check queue to see if this is canceled, and skip if so
if self.__invoker.services.queue.is_canceled( if self.__invoker.services.queue.is_canceled(graph_execution_state.id):
graph_execution_state.id
):
continue continue
# Queue any further commands if invoking all # Queue any further commands if invoking all
@ -164,12 +152,10 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
node=invocation.dict(), node=invocation.dict(),
source_node_id=source_node_id, source_node_id=source_node_id,
error_type=e.__class__.__name__, error_type=e.__class__.__name__,
error=traceback.format_exc() error=traceback.format_exc(),
) )
elif is_complete: elif is_complete:
self.__invoker.services.events.emit_graph_execution_complete( self.__invoker.services.events.emit_graph_execution_complete(graph_execution_state.id)
graph_execution_state.id
)
except KeyboardInterrupt: except KeyboardInterrupt:
pass # Log something? KeyboardInterrupt is probably not going to be seen by the processor pass # Log something? KeyboardInterrupt is probably not going to be seen by the processor

View File

@ -66,9 +66,7 @@ class SqliteItemStorage(ItemStorageABC, Generic[T]):
def get(self, id: str) -> Optional[T]: def get(self, id: str) -> Optional[T]:
try: try:
self._lock.acquire() self._lock.acquire()
self._cursor.execute( self._cursor.execute(f"""SELECT item FROM {self._table_name} WHERE id = ?;""", (str(id),))
f"""SELECT item FROM {self._table_name} WHERE id = ?;""", (str(id),)
)
result = self._cursor.fetchone() result = self._cursor.fetchone()
finally: finally:
self._lock.release() self._lock.release()
@ -81,9 +79,7 @@ class SqliteItemStorage(ItemStorageABC, Generic[T]):
def get_raw(self, id: str) -> Optional[str]: def get_raw(self, id: str) -> Optional[str]:
try: try:
self._lock.acquire() self._lock.acquire()
self._cursor.execute( self._cursor.execute(f"""SELECT item FROM {self._table_name} WHERE id = ?;""", (str(id),))
f"""SELECT item FROM {self._table_name} WHERE id = ?;""", (str(id),)
)
result = self._cursor.fetchone() result = self._cursor.fetchone()
finally: finally:
self._lock.release() self._lock.release()
@ -96,9 +92,7 @@ class SqliteItemStorage(ItemStorageABC, Generic[T]):
def delete(self, id: str): def delete(self, id: str):
try: try:
self._lock.acquire() self._lock.acquire()
self._cursor.execute( self._cursor.execute(f"""DELETE FROM {self._table_name} WHERE id = ?;""", (str(id),))
f"""DELETE FROM {self._table_name} WHERE id = ?;""", (str(id),)
)
self._conn.commit() self._conn.commit()
finally: finally:
self._lock.release() self._lock.release()
@ -122,13 +116,9 @@ class SqliteItemStorage(ItemStorageABC, Generic[T]):
pageCount = int(count / per_page) + 1 pageCount = int(count / per_page) + 1
return PaginatedResults[T]( return PaginatedResults[T](items=items, page=page, pages=pageCount, per_page=per_page, total=count)
items=items, page=page, pages=pageCount, per_page=per_page, total=count
)
def search( def search(self, query: str, page: int = 0, per_page: int = 10) -> PaginatedResults[T]:
self, query: str, page: int = 0, per_page: int = 10
) -> PaginatedResults[T]:
try: try:
self._lock.acquire() self._lock.acquire()
self._cursor.execute( self._cursor.execute(
@ -149,6 +139,4 @@ class SqliteItemStorage(ItemStorageABC, Generic[T]):
pageCount = int(count / per_page) + 1 pageCount = int(count / per_page) + 1
return PaginatedResults[T]( return PaginatedResults[T](items=items, page=page, pages=pageCount, per_page=per_page, total=count)
items=items, page=page, pages=pageCount, per_page=per_page, total=count
)

View File

@ -17,16 +17,8 @@ from controlnet_aux.util import HWC3, resize_image
# If you use this, please Cite "High Quality Edge Thinning using Pure Python", Lvmin Zhang, In Mikubill/sd-webui-controlnet. # If you use this, please Cite "High Quality Edge Thinning using Pure Python", Lvmin Zhang, In Mikubill/sd-webui-controlnet.
lvmin_kernels_raw = [ lvmin_kernels_raw = [
np.array([ np.array([[-1, -1, -1], [0, 1, 0], [1, 1, 1]], dtype=np.int32),
[-1, -1, -1], np.array([[0, -1, -1], [1, 1, -1], [0, 1, 0]], dtype=np.int32),
[0, 1, 0],
[1, 1, 1]
], dtype=np.int32),
np.array([
[0, -1, -1],
[1, 1, -1],
[0, 1, 0]
], dtype=np.int32)
] ]
lvmin_kernels = [] lvmin_kernels = []
@ -36,16 +28,8 @@ lvmin_kernels += [np.rot90(x, k=2, axes=(0, 1)) for x in lvmin_kernels_raw]
lvmin_kernels += [np.rot90(x, k=3, axes=(0, 1)) for x in lvmin_kernels_raw] lvmin_kernels += [np.rot90(x, k=3, axes=(0, 1)) for x in lvmin_kernels_raw]
lvmin_prunings_raw = [ lvmin_prunings_raw = [
np.array([ np.array([[-1, -1, -1], [-1, 1, -1], [0, 0, -1]], dtype=np.int32),
[-1, -1, -1], np.array([[-1, -1, -1], [-1, 1, -1], [-1, 0, 0]], dtype=np.int32),
[-1, 1, -1],
[0, 0, -1]
], dtype=np.int32),
np.array([
[-1, -1, -1],
[-1, 1, -1],
[-1, 0, 0]
], dtype=np.int32)
] ]
lvmin_prunings = [] lvmin_prunings = []
@ -99,10 +83,10 @@ def nake_nms(x):
################################################################################ ################################################################################
# FIXME: not using yet, if used in the future will most likely require modification of preprocessors # FIXME: not using yet, if used in the future will most likely require modification of preprocessors
def pixel_perfect_resolution( def pixel_perfect_resolution(
image: np.ndarray, image: np.ndarray,
target_H: int, target_H: int,
target_W: int, target_W: int,
resize_mode: str, resize_mode: str,
) -> int: ) -> int:
""" """
Calculate the estimated resolution for resizing an image while preserving aspect ratio. Calculate the estimated resolution for resizing an image while preserving aspect ratio.
@ -135,7 +119,7 @@ def pixel_perfect_resolution(
if resize_mode == "fill_resize": if resize_mode == "fill_resize":
estimation = min(k0, k1) * float(min(raw_H, raw_W)) estimation = min(k0, k1) * float(min(raw_H, raw_W))
else: # "crop_resize" or "just_resize" (or possibly "just_resize_simple"?) else: # "crop_resize" or "just_resize" (or possibly "just_resize_simple"?)
estimation = max(k0, k1) * float(min(raw_H, raw_W)) estimation = max(k0, k1) * float(min(raw_H, raw_W))
# print(f"Pixel Perfect Computation:") # print(f"Pixel Perfect Computation:")
@ -154,13 +138,7 @@ def pixel_perfect_resolution(
# modified for InvokeAI # modified for InvokeAI
########################################################################### ###########################################################################
# def detectmap_proc(detected_map, module, resize_mode, h, w): # def detectmap_proc(detected_map, module, resize_mode, h, w):
def np_img_resize( def np_img_resize(np_img: np.ndarray, resize_mode: str, h: int, w: int, device: torch.device = torch.device("cpu")):
np_img: np.ndarray,
resize_mode: str,
h: int,
w: int,
device: torch.device = torch.device('cpu')
):
# if 'inpaint' in module: # if 'inpaint' in module:
# np_img = np_img.astype(np.float32) # np_img = np_img.astype(np.float32)
# else: # else:
@ -184,15 +162,14 @@ def np_img_resize(
# below is very boring but do not change these. If you change these Apple or Mac may fail. # below is very boring but do not change these. If you change these Apple or Mac may fail.
y = torch.from_numpy(y) y = torch.from_numpy(y)
y = y.float() / 255.0 y = y.float() / 255.0
y = rearrange(y, 'h w c -> 1 c h w') y = rearrange(y, "h w c -> 1 c h w")
y = y.clone() y = y.clone()
# y = y.to(devices.get_device_for("controlnet")) # y = y.to(devices.get_device_for("controlnet"))
y = y.to(device) y = y.to(device)
y = y.clone() y = y.clone()
return y return y
def high_quality_resize(x: np.ndarray, def high_quality_resize(x: np.ndarray, size):
size):
# Written by lvmin # Written by lvmin
# Super high-quality control map up-scaling, considering binary, seg, and one-pixel edges # Super high-quality control map up-scaling, considering binary, seg, and one-pixel edges
inpaint_mask = None inpaint_mask = None
@ -244,7 +221,7 @@ def np_img_resize(
return y return y
# if resize_mode == external_code.ResizeMode.RESIZE: # if resize_mode == external_code.ResizeMode.RESIZE:
if resize_mode == "just_resize": # RESIZE if resize_mode == "just_resize": # RESIZE
np_img = high_quality_resize(np_img, (w, h)) np_img = high_quality_resize(np_img, (w, h))
np_img = safe_numpy(np_img) np_img = safe_numpy(np_img)
return get_pytorch_control(np_img), np_img return get_pytorch_control(np_img), np_img
@ -270,20 +247,21 @@ def np_img_resize(
new_h, new_w, _ = np_img.shape new_h, new_w, _ = np_img.shape
pad_h = max(0, (h - new_h) // 2) pad_h = max(0, (h - new_h) // 2)
pad_w = max(0, (w - new_w) // 2) pad_w = max(0, (w - new_w) // 2)
high_quality_background[pad_h:pad_h + new_h, pad_w:pad_w + new_w] = np_img high_quality_background[pad_h : pad_h + new_h, pad_w : pad_w + new_w] = np_img
np_img = high_quality_background np_img = high_quality_background
np_img = safe_numpy(np_img) np_img = safe_numpy(np_img)
return get_pytorch_control(np_img), np_img return get_pytorch_control(np_img), np_img
else: # resize_mode == "crop_resize" (INNER_FIT) else: # resize_mode == "crop_resize" (INNER_FIT)
k = max(k0, k1) k = max(k0, k1)
np_img = high_quality_resize(np_img, (safeint(old_w * k), safeint(old_h * k))) np_img = high_quality_resize(np_img, (safeint(old_w * k), safeint(old_h * k)))
new_h, new_w, _ = np_img.shape new_h, new_w, _ = np_img.shape
pad_h = max(0, (new_h - h) // 2) pad_h = max(0, (new_h - h) // 2)
pad_w = max(0, (new_w - w) // 2) pad_w = max(0, (new_w - w) // 2)
np_img = np_img[pad_h:pad_h + h, pad_w:pad_w + w] np_img = np_img[pad_h : pad_h + h, pad_w : pad_w + w]
np_img = safe_numpy(np_img) np_img = safe_numpy(np_img)
return get_pytorch_control(np_img), np_img return get_pytorch_control(np_img), np_img
def prepare_control_image( def prepare_control_image(
# image used to be Union[PIL.Image.Image, List[PIL.Image.Image], torch.Tensor, List[torch.Tensor]] # image used to be Union[PIL.Image.Image, List[PIL.Image.Image], torch.Tensor, List[torch.Tensor]]
# but now should be able to assume that image is a single PIL.Image, which simplifies things # but now should be able to assume that image is a single PIL.Image, which simplifies things
@ -301,15 +279,17 @@ def prepare_control_image(
resize_mode="just_resize_simple", resize_mode="just_resize_simple",
): ):
# FIXME: implement "crop_resize_simple" and "fill_resize_simple", or pull them out # FIXME: implement "crop_resize_simple" and "fill_resize_simple", or pull them out
if (resize_mode == "just_resize_simple" or if (
resize_mode == "crop_resize_simple" or resize_mode == "just_resize_simple"
resize_mode == "fill_resize_simple"): or resize_mode == "crop_resize_simple"
or resize_mode == "fill_resize_simple"
):
image = image.convert("RGB") image = image.convert("RGB")
if (resize_mode == "just_resize_simple"): if resize_mode == "just_resize_simple":
image = image.resize((width, height), resample=PIL_INTERPOLATION["lanczos"]) image = image.resize((width, height), resample=PIL_INTERPOLATION["lanczos"])
elif (resize_mode == "crop_resize_simple"): # not yet implemented elif resize_mode == "crop_resize_simple": # not yet implemented
pass pass
elif (resize_mode == "fill_resize_simple"): # not yet implemented elif resize_mode == "fill_resize_simple": # not yet implemented
pass pass
nimage = np.array(image) nimage = np.array(image)
nimage = nimage[None, :] nimage = nimage[None, :]
@ -320,7 +300,7 @@ def prepare_control_image(
timage = torch.from_numpy(nimage) timage = torch.from_numpy(nimage)
# use fancy lvmin controlnet resizing # use fancy lvmin controlnet resizing
elif (resize_mode == "just_resize" or resize_mode == "crop_resize" or resize_mode == "fill_resize"): elif resize_mode == "just_resize" or resize_mode == "crop_resize" or resize_mode == "fill_resize":
nimage = np.array(image) nimage = np.array(image)
timage, nimage = np_img_resize( timage, nimage = np_img_resize(
np_img=nimage, np_img=nimage,
@ -336,7 +316,7 @@ def prepare_control_image(
exit(1) exit(1)
timage = timage.to(device=device, dtype=dtype) timage = timage.to(device=device, dtype=dtype)
cfg_injection = (control_mode == "more_control" or control_mode == "unbalanced") cfg_injection = control_mode == "more_control" or control_mode == "unbalanced"
if do_classifier_free_guidance and not cfg_injection: if do_classifier_free_guidance and not cfg_injection:
timage = torch.cat([timage] * 2) timage = torch.cat([timage] * 2)
return timage return timage

View File

@ -9,19 +9,16 @@ from ...backend.stable_diffusion import PipelineIntermediateState
from invokeai.app.services.config import InvokeAIAppConfig from invokeai.app.services.config import InvokeAIAppConfig
def sample_to_lowres_estimated_image(samples, latent_rgb_factors, smooth_matrix = None): def sample_to_lowres_estimated_image(samples, latent_rgb_factors, smooth_matrix=None):
latent_image = samples[0].permute(1, 2, 0) @ latent_rgb_factors latent_image = samples[0].permute(1, 2, 0) @ latent_rgb_factors
if smooth_matrix is not None: if smooth_matrix is not None:
latent_image = latent_image.unsqueeze(0).permute(3, 0, 1, 2) latent_image = latent_image.unsqueeze(0).permute(3, 0, 1, 2)
latent_image = torch.nn.functional.conv2d(latent_image, smooth_matrix.reshape((1,1,3,3)), padding=1) latent_image = torch.nn.functional.conv2d(latent_image, smooth_matrix.reshape((1, 1, 3, 3)), padding=1)
latent_image = latent_image.permute(1, 2, 3, 0).squeeze(0) latent_image = latent_image.permute(1, 2, 3, 0).squeeze(0)
latents_ubyte = ( latents_ubyte = (
((latent_image + 1) / 2) ((latent_image + 1) / 2).clamp(0, 1).mul(0xFF).byte() # change scale from -1..1 to 0..1 # to 0..255
.clamp(0, 1) # change scale from -1..1 to 0..1
.mul(0xFF) # to 0..255
.byte()
).cpu() ).cpu()
return Image.fromarray(latents_ubyte.numpy()) return Image.fromarray(latents_ubyte.numpy())
@ -92,6 +89,7 @@ def stable_diffusion_step_callback(
total_steps=node["steps"], total_steps=node["steps"],
) )
def stable_diffusion_xl_step_callback( def stable_diffusion_xl_step_callback(
context: InvocationContext, context: InvocationContext,
node: dict, node: dict,
@ -106,9 +104,9 @@ def stable_diffusion_xl_step_callback(
sdxl_latent_rgb_factors = torch.tensor( sdxl_latent_rgb_factors = torch.tensor(
[ [
# R G B # R G B
[ 0.3816, 0.4930, 0.5320], [0.3816, 0.4930, 0.5320],
[-0.3753, 0.1631, 0.1739], [-0.3753, 0.1631, 0.1739],
[ 0.1770, 0.3588, -0.2048], [0.1770, 0.3588, -0.2048],
[-0.4350, -0.2644, -0.4289], [-0.4350, -0.2644, -0.4289],
], ],
dtype=sample.dtype, dtype=sample.dtype,
@ -117,9 +115,9 @@ def stable_diffusion_xl_step_callback(
sdxl_smooth_matrix = torch.tensor( sdxl_smooth_matrix = torch.tensor(
[ [
#[ 0.0478, 0.1285, 0.0478], # [ 0.0478, 0.1285, 0.0478],
#[ 0.1285, 0.2948, 0.1285], # [ 0.1285, 0.2948, 0.1285],
#[ 0.0478, 0.1285, 0.0478], # [ 0.0478, 0.1285, 0.0478],
[0.0358, 0.0964, 0.0358], [0.0358, 0.0964, 0.0358],
[0.0964, 0.4711, 0.0964], [0.0964, 0.4711, 0.0964],
[0.0358, 0.0964, 0.0358], [0.0358, 0.0964, 0.0358],
@ -143,4 +141,4 @@ def stable_diffusion_xl_step_callback(
progress_image=ProgressImage(width=width, height=height, dataURL=dataURL), progress_image=ProgressImage(width=width, height=height, dataURL=dataURL),
step=step, step=step,
total_steps=total_steps, total_steps=total_steps,
) )

View File

@ -1,15 +1,6 @@
""" """
Initialization file for invokeai.backend Initialization file for invokeai.backend
""" """
from .generator import ( from .generator import InvokeAIGeneratorBasicParams, InvokeAIGenerator, InvokeAIGeneratorOutput, Img2Img, Inpaint
InvokeAIGeneratorBasicParams, from .model_management import ModelManager, ModelCache, BaseModelType, ModelType, SubModelType, ModelInfo
InvokeAIGenerator,
InvokeAIGeneratorOutput,
Img2Img,
Inpaint
)
from .model_management import (
ModelManager, ModelCache, BaseModelType,
ModelType, SubModelType, ModelInfo
)
from .model_management.models import SilenceWarnings from .model_management.models import SilenceWarnings

View File

@ -33,61 +33,66 @@ from ..stable_diffusion.schedulers import SCHEDULER_MAP
downsampling = 8 downsampling = 8
@dataclass @dataclass
class InvokeAIGeneratorBasicParams: class InvokeAIGeneratorBasicParams:
seed: Optional[int]=None seed: Optional[int] = None
width: int=512 width: int = 512
height: int=512 height: int = 512
cfg_scale: float=7.5 cfg_scale: float = 7.5
steps: int=20 steps: int = 20
ddim_eta: float=0.0 ddim_eta: float = 0.0
scheduler: str='ddim' scheduler: str = "ddim"
precision: str='float16' precision: str = "float16"
perlin: float=0.0 perlin: float = 0.0
threshold: float=0.0 threshold: float = 0.0
seamless: bool=False seamless: bool = False
seamless_axes: List[str]=field(default_factory=lambda: ['x', 'y']) seamless_axes: List[str] = field(default_factory=lambda: ["x", "y"])
h_symmetry_time_pct: Optional[float]=None h_symmetry_time_pct: Optional[float] = None
v_symmetry_time_pct: Optional[float]=None v_symmetry_time_pct: Optional[float] = None
variation_amount: float = 0.0 variation_amount: float = 0.0
with_variations: list=field(default_factory=list) with_variations: list = field(default_factory=list)
@dataclass @dataclass
class InvokeAIGeneratorOutput: class InvokeAIGeneratorOutput:
''' """
InvokeAIGeneratorOutput is a dataclass that contains the outputs of a generation InvokeAIGeneratorOutput is a dataclass that contains the outputs of a generation
operation, including the image, its seed, the model name used to generate the image operation, including the image, its seed, the model name used to generate the image
and the model hash, as well as all the generate() parameters that went into and the model hash, as well as all the generate() parameters that went into
generating the image (in .params, also available as attributes) generating the image (in .params, also available as attributes)
''' """
image: Image.Image image: Image.Image
seed: int seed: int
model_hash: str model_hash: str
attention_maps_images: List[Image.Image] attention_maps_images: List[Image.Image]
params: Namespace params: Namespace
# we are interposing a wrapper around the original Generator classes so that # we are interposing a wrapper around the original Generator classes so that
# old code that calls Generate will continue to work. # old code that calls Generate will continue to work.
class InvokeAIGenerator(metaclass=ABCMeta): class InvokeAIGenerator(metaclass=ABCMeta):
def __init__(self, def __init__(
model_info: dict, self,
params: InvokeAIGeneratorBasicParams=InvokeAIGeneratorBasicParams(), model_info: dict,
**kwargs, params: InvokeAIGeneratorBasicParams = InvokeAIGeneratorBasicParams(),
): **kwargs,
self.model_info=model_info ):
self.params=params self.model_info = model_info
self.params = params
self.kwargs = kwargs self.kwargs = kwargs
def generate( def generate(
self, self,
conditioning: tuple, conditioning: tuple,
scheduler, scheduler,
callback: Optional[Callable]=None, callback: Optional[Callable] = None,
step_callback: Optional[Callable]=None, step_callback: Optional[Callable] = None,
iterations: int=1, iterations: int = 1,
**keyword_args, **keyword_args,
)->Iterator[InvokeAIGeneratorOutput]: ) -> Iterator[InvokeAIGeneratorOutput]:
''' """
Return an iterator across the indicated number of generations. Return an iterator across the indicated number of generations.
Each time the iterator is called it will return an InvokeAIGeneratorOutput Each time the iterator is called it will return an InvokeAIGeneratorOutput
object. Use like this: object. Use like this:
@ -107,7 +112,7 @@ class InvokeAIGenerator(metaclass=ABCMeta):
for o in outputs: for o in outputs:
print(o.image, o.seed) print(o.image, o.seed)
''' """
generator_args = dataclasses.asdict(self.params) generator_args = dataclasses.asdict(self.params)
generator_args.update(keyword_args) generator_args.update(keyword_args)
@ -118,22 +123,21 @@ class InvokeAIGenerator(metaclass=ABCMeta):
gen_class = self._generator_class() gen_class = self._generator_class()
generator = gen_class(model, self.params.precision, **self.kwargs) generator = gen_class(model, self.params.precision, **self.kwargs)
if self.params.variation_amount > 0: if self.params.variation_amount > 0:
generator.set_variation(generator_args.get('seed'), generator.set_variation(
generator_args.get('variation_amount'), generator_args.get("seed"),
generator_args.get('with_variations') generator_args.get("variation_amount"),
) generator_args.get("with_variations"),
)
if isinstance(model, DiffusionPipeline): if isinstance(model, DiffusionPipeline):
for component in [model.unet, model.vae]: for component in [model.unet, model.vae]:
configure_model_padding(component, configure_model_padding(
generator_args.get('seamless',False), component, generator_args.get("seamless", False), generator_args.get("seamless_axes")
generator_args.get('seamless_axes') )
)
else: else:
configure_model_padding(model, configure_model_padding(
generator_args.get('seamless',False), model, generator_args.get("seamless", False), generator_args.get("seamless_axes")
generator_args.get('seamless_axes') )
)
iteration_count = range(iterations) if iterations else itertools.count(start=0, step=1) iteration_count = range(iterations) if iterations else itertools.count(start=0, step=1)
for i in iteration_count: for i in iteration_count:
@ -147,66 +151,66 @@ class InvokeAIGenerator(metaclass=ABCMeta):
image=results[0][0], image=results[0][0],
seed=results[0][1], seed=results[0][1],
attention_maps_images=results[0][2], attention_maps_images=results[0][2],
model_hash = model_hash, model_hash=model_hash,
params=Namespace(model_name=model_name,**generator_args), params=Namespace(model_name=model_name, **generator_args),
) )
if callback: if callback:
callback(output) callback(output)
yield output yield output
@classmethod @classmethod
def schedulers(self)->List[str]: def schedulers(self) -> List[str]:
''' """
Return list of all the schedulers that we currently handle. Return list of all the schedulers that we currently handle.
''' """
return list(SCHEDULER_MAP.keys()) return list(SCHEDULER_MAP.keys())
def load_generator(self, model: StableDiffusionGeneratorPipeline, generator_class: Type[Generator]): def load_generator(self, model: StableDiffusionGeneratorPipeline, generator_class: Type[Generator]):
return generator_class(model, self.params.precision) return generator_class(model, self.params.precision)
@classmethod @classmethod
def _generator_class(cls)->Type[Generator]: def _generator_class(cls) -> Type[Generator]:
''' """
In derived classes return the name of the generator to apply. In derived classes return the name of the generator to apply.
If you don't override will return the name of the derived If you don't override will return the name of the derived
class, which nicely parallels the generator class names. class, which nicely parallels the generator class names.
''' """
return Generator return Generator
# ------------------------------------ # ------------------------------------
class Img2Img(InvokeAIGenerator): class Img2Img(InvokeAIGenerator):
def generate(self, def generate(
init_image: Union[Image.Image, torch.FloatTensor], self, init_image: Union[Image.Image, torch.FloatTensor], strength: float = 0.75, **keyword_args
strength: float=0.75, ) -> Iterator[InvokeAIGeneratorOutput]:
**keyword_args return super().generate(init_image=init_image, strength=strength, **keyword_args)
)->Iterator[InvokeAIGeneratorOutput]:
return super().generate(init_image=init_image,
strength=strength,
**keyword_args
)
@classmethod @classmethod
def _generator_class(cls): def _generator_class(cls):
from .img2img import Img2Img from .img2img import Img2Img
return Img2Img return Img2Img
# ------------------------------------ # ------------------------------------
# Takes all the arguments of Img2Img and adds the mask image and the seam/infill stuff # Takes all the arguments of Img2Img and adds the mask image and the seam/infill stuff
class Inpaint(Img2Img): class Inpaint(Img2Img):
def generate(self, def generate(
mask_image: Union[Image.Image, torch.FloatTensor], self,
# Seam settings - when 0, doesn't fill seam mask_image: Union[Image.Image, torch.FloatTensor],
seam_size: int = 96, # Seam settings - when 0, doesn't fill seam
seam_blur: int = 16, seam_size: int = 96,
seam_strength: float = 0.7, seam_blur: int = 16,
seam_steps: int = 30, seam_strength: float = 0.7,
tile_size: int = 32, seam_steps: int = 30,
inpaint_replace=False, tile_size: int = 32,
infill_method=None, inpaint_replace=False,
inpaint_width=None, infill_method=None,
inpaint_height=None, inpaint_width=None,
inpaint_fill: tuple(int) = (0x7F, 0x7F, 0x7F, 0xFF), inpaint_height=None,
**keyword_args inpaint_fill: tuple(int) = (0x7F, 0x7F, 0x7F, 0xFF),
)->Iterator[InvokeAIGeneratorOutput]: **keyword_args,
) -> Iterator[InvokeAIGeneratorOutput]:
return super().generate( return super().generate(
mask_image=mask_image, mask_image=mask_image,
seam_size=seam_size, seam_size=seam_size,
@ -219,13 +223,16 @@ class Inpaint(Img2Img):
inpaint_width=inpaint_width, inpaint_width=inpaint_width,
inpaint_height=inpaint_height, inpaint_height=inpaint_height,
inpaint_fill=inpaint_fill, inpaint_fill=inpaint_fill,
**keyword_args **keyword_args,
) )
@classmethod @classmethod
def _generator_class(cls): def _generator_class(cls):
from .inpaint import Inpaint from .inpaint import Inpaint
return Inpaint return Inpaint
class Generator: class Generator:
downsampling_factor: int downsampling_factor: int
latent_channels: int latent_channels: int
@ -251,9 +258,7 @@ class Generator:
Returns a function returning an image derived from the prompt and the initial image Returns a function returning an image derived from the prompt and the initial image
Return value depends on the seed at the time you call it Return value depends on the seed at the time you call it
""" """
raise NotImplementedError( raise NotImplementedError("image_iterator() must be implemented in a descendent class")
"image_iterator() must be implemented in a descendent class"
)
def set_variation(self, seed, variation_amount, with_variations): def set_variation(self, seed, variation_amount, with_variations):
self.seed = seed self.seed = seed
@ -280,9 +285,7 @@ class Generator:
scope = nullcontext scope = nullcontext
self.free_gpu_mem = free_gpu_mem self.free_gpu_mem = free_gpu_mem
attention_maps_images = [] attention_maps_images = []
attention_maps_callback = lambda saver: attention_maps_images.append( attention_maps_callback = lambda saver: attention_maps_images.append(saver.get_stacked_maps_image())
saver.get_stacked_maps_image()
)
make_image = self.get_make_image( make_image = self.get_make_image(
sampler=sampler, sampler=sampler,
init_image=init_image, init_image=init_image,
@ -327,11 +330,7 @@ class Generator:
results.append([image, seed, attention_maps_images]) results.append([image, seed, attention_maps_images])
if image_callback is not None: if image_callback is not None:
attention_maps_image = ( attention_maps_image = None if len(attention_maps_images) == 0 else attention_maps_images[-1]
None
if len(attention_maps_images) == 0
else attention_maps_images[-1]
)
image_callback( image_callback(
image, image,
seed, seed,
@ -342,9 +341,7 @@ class Generator:
seed = self.new_seed() seed = self.new_seed()
# Free up memory from the last generation. # Free up memory from the last generation.
clear_cuda_cache = ( clear_cuda_cache = kwargs["clear_cuda_cache"] if "clear_cuda_cache" in kwargs else None
kwargs["clear_cuda_cache"] if "clear_cuda_cache" in kwargs else None
)
if clear_cuda_cache is not None: if clear_cuda_cache is not None:
clear_cuda_cache() clear_cuda_cache()
@ -371,14 +368,8 @@ class Generator:
# Get the original alpha channel of the mask if there is one. # Get the original alpha channel of the mask if there is one.
# Otherwise it is some other black/white image format ('1', 'L' or 'RGB') # Otherwise it is some other black/white image format ('1', 'L' or 'RGB')
pil_init_mask = ( pil_init_mask = init_mask.getchannel("A") if init_mask.mode == "RGBA" else init_mask.convert("L")
init_mask.getchannel("A") pil_init_image = init_image.convert("RGBA") # Add an alpha channel if one doesn't exist
if init_mask.mode == "RGBA"
else init_mask.convert("L")
)
pil_init_image = init_image.convert(
"RGBA"
) # Add an alpha channel if one doesn't exist
# Build an image with only visible pixels from source to use as reference for color-matching. # Build an image with only visible pixels from source to use as reference for color-matching.
init_rgb_pixels = np.asarray(init_image.convert("RGB"), dtype=np.uint8) init_rgb_pixels = np.asarray(init_image.convert("RGB"), dtype=np.uint8)
@ -404,10 +395,7 @@ class Generator:
np_matched_result[:, :, :] = ( np_matched_result[:, :, :] = (
( (
( (
( (np_matched_result[:, :, :].astype(np.float32) - gen_means[None, None, :])
np_matched_result[:, :, :].astype(np.float32)
- gen_means[None, None, :]
)
/ gen_std[None, None, :] / gen_std[None, None, :]
) )
* init_std[None, None, :] * init_std[None, None, :]
@ -433,9 +421,7 @@ class Generator:
else: else:
blurred_init_mask = pil_init_mask blurred_init_mask = pil_init_mask
multiplied_blurred_init_mask = ImageChops.multiply( multiplied_blurred_init_mask = ImageChops.multiply(blurred_init_mask, self.pil_image.split()[-1])
blurred_init_mask, self.pil_image.split()[-1]
)
# Paste original on color-corrected generation (using blurred mask) # Paste original on color-corrected generation (using blurred mask)
matched_result.paste(init_image, (0, 0), mask=multiplied_blurred_init_mask) matched_result.paste(init_image, (0, 0), mask=multiplied_blurred_init_mask)
@ -461,10 +447,7 @@ class Generator:
latent_image = samples[0].permute(1, 2, 0) @ v1_5_latent_rgb_factors latent_image = samples[0].permute(1, 2, 0) @ v1_5_latent_rgb_factors
latents_ubyte = ( latents_ubyte = (
((latent_image + 1) / 2) ((latent_image + 1) / 2).clamp(0, 1).mul(0xFF).byte() # change scale from -1..1 to 0..1 # to 0..255
.clamp(0, 1) # change scale from -1..1 to 0..1
.mul(0xFF) # to 0..255
.byte()
).cpu() ).cpu()
return Image.fromarray(latents_ubyte.numpy()) return Image.fromarray(latents_ubyte.numpy())
@ -494,9 +477,7 @@ class Generator:
temp_height = int((height + 7) / 8) * 8 temp_height = int((height + 7) / 8) * 8
noise = torch.stack( noise = torch.stack(
[ [
rand_perlin_2d( rand_perlin_2d((temp_height, temp_width), (8, 8), device=self.model.device).to(fixdevice)
(temp_height, temp_width), (8, 8), device=self.model.device
).to(fixdevice)
for _ in range(input_channels) for _ in range(input_channels)
], ],
dim=0, dim=0,
@ -573,8 +554,6 @@ class Generator:
device=device, device=device,
) )
if self.perlin > 0.0: if self.perlin > 0.0:
perlin_noise = self.get_perlin_noise( perlin_noise = self.get_perlin_noise(width // self.downsampling_factor, height // self.downsampling_factor)
width // self.downsampling_factor, height // self.downsampling_factor
)
x = (1 - self.perlin) * x + self.perlin * perlin_noise x = (1 - self.perlin) * x + self.perlin * perlin_noise
return x return x

View File

@ -77,10 +77,7 @@ class Img2Img(Generator):
callback=step_callback, callback=step_callback,
seed=seed, seed=seed,
) )
if ( if pipeline_output.attention_map_saver is not None and attention_maps_callback is not None:
pipeline_output.attention_map_saver is not None
and attention_maps_callback is not None
):
attention_maps_callback(pipeline_output.attention_map_saver) attention_maps_callback(pipeline_output.attention_map_saver)
return pipeline.numpy_to_pil(pipeline_output.images)[0] return pipeline.numpy_to_pil(pipeline_output.images)[0]
@ -91,7 +88,5 @@ class Img2Img(Generator):
x = torch.randn_like(like, device=device) x = torch.randn_like(like, device=device)
if self.perlin > 0.0: if self.perlin > 0.0:
shape = like.shape shape = like.shape
x = (1 - self.perlin) * x + self.perlin * self.get_perlin_noise( x = (1 - self.perlin) * x + self.perlin * self.get_perlin_noise(shape[3], shape[2])
shape[3], shape[2]
)
return x return x

View File

@ -68,15 +68,11 @@ class Inpaint(Img2Img):
return im return im
# Patchmatch (note, we may want to expose patch_size? Increasing it significantly impacts performance though) # Patchmatch (note, we may want to expose patch_size? Increasing it significantly impacts performance though)
im_patched_np = PatchMatch.inpaint( im_patched_np = PatchMatch.inpaint(im.convert("RGB"), ImageOps.invert(im.split()[-1]), patch_size=3)
im.convert("RGB"), ImageOps.invert(im.split()[-1]), patch_size=3
)
im_patched = Image.fromarray(im_patched_np, mode="RGB") im_patched = Image.fromarray(im_patched_np, mode="RGB")
return im_patched return im_patched
def tile_fill_missing( def tile_fill_missing(self, im: Image.Image, tile_size: int = 16, seed: Optional[int] = None) -> Image.Image:
self, im: Image.Image, tile_size: int = 16, seed: Optional[int] = None
) -> Image.Image:
# Only fill if there's an alpha layer # Only fill if there's an alpha layer
if im.mode != "RGBA": if im.mode != "RGBA":
return im return im
@ -127,15 +123,11 @@ class Inpaint(Img2Img):
return si return si
def mask_edge( def mask_edge(self, mask: Image.Image, edge_size: int, edge_blur: int) -> Image.Image:
self, mask: Image.Image, edge_size: int, edge_blur: int
) -> Image.Image:
npimg = np.asarray(mask, dtype=np.uint8) npimg = np.asarray(mask, dtype=np.uint8)
# Detect any partially transparent regions # Detect any partially transparent regions
npgradient = np.uint8( npgradient = np.uint8(255 * (1.0 - np.floor(np.abs(0.5 - np.float32(npimg) / 255.0) * 2.0)))
255 * (1.0 - np.floor(np.abs(0.5 - np.float32(npimg) / 255.0) * 2.0))
)
# Detect hard edges # Detect hard edges
npedge = cv2.Canny(npimg, threshold1=100, threshold2=200) npedge = cv2.Canny(npimg, threshold1=100, threshold2=200)
@ -144,9 +136,7 @@ class Inpaint(Img2Img):
npmask = npgradient + npedge npmask = npgradient + npedge
# Expand # Expand
npmask = cv2.dilate( npmask = cv2.dilate(npmask, np.ones((3, 3), np.uint8), iterations=int(edge_size / 2))
npmask, np.ones((3, 3), np.uint8), iterations=int(edge_size / 2)
)
new_mask = Image.fromarray(npmask) new_mask = Image.fromarray(npmask)
@ -242,25 +232,19 @@ class Inpaint(Img2Img):
if infill_method == "patchmatch" and PatchMatch.patchmatch_available(): if infill_method == "patchmatch" and PatchMatch.patchmatch_available():
init_filled = self.infill_patchmatch(self.pil_image.copy()) init_filled = self.infill_patchmatch(self.pil_image.copy())
elif infill_method == "tile": elif infill_method == "tile":
init_filled = self.tile_fill_missing( init_filled = self.tile_fill_missing(self.pil_image.copy(), seed=self.seed, tile_size=tile_size)
self.pil_image.copy(), seed=self.seed, tile_size=tile_size
)
elif infill_method == "solid": elif infill_method == "solid":
solid_bg = Image.new("RGBA", init_image.size, inpaint_fill) solid_bg = Image.new("RGBA", init_image.size, inpaint_fill)
init_filled = Image.alpha_composite(solid_bg, init_image) init_filled = Image.alpha_composite(solid_bg, init_image)
else: else:
raise ValueError( raise ValueError(f"Non-supported infill type {infill_method}", infill_method)
f"Non-supported infill type {infill_method}", infill_method
)
init_filled.paste(init_image, (0, 0), init_image.split()[-1]) init_filled.paste(init_image, (0, 0), init_image.split()[-1])
# Resize if requested for inpainting # Resize if requested for inpainting
if inpaint_width and inpaint_height: if inpaint_width and inpaint_height:
init_filled = init_filled.resize((inpaint_width, inpaint_height)) init_filled = init_filled.resize((inpaint_width, inpaint_height))
debug_image( debug_image(init_filled, "init_filled", debug_status=self.enable_image_debugging)
init_filled, "init_filled", debug_status=self.enable_image_debugging
)
# Create init tensor # Create init tensor
init_image = image_resized_to_grid_as_tensor(init_filled.convert("RGB")) init_image = image_resized_to_grid_as_tensor(init_filled.convert("RGB"))
@ -289,9 +273,7 @@ class Inpaint(Img2Img):
"mask_image AFTER multiply with pil_image", "mask_image AFTER multiply with pil_image",
debug_status=self.enable_image_debugging, debug_status=self.enable_image_debugging,
) )
mask: torch.FloatTensor = image_resized_to_grid_as_tensor( mask: torch.FloatTensor = image_resized_to_grid_as_tensor(mask_image, normalize=False)
mask_image, normalize=False
)
else: else:
mask: torch.FloatTensor = mask_image mask: torch.FloatTensor = mask_image
@ -302,9 +284,9 @@ class Inpaint(Img2Img):
# todo: support cross-attention control # todo: support cross-attention control
uc, c, _ = conditioning uc, c, _ = conditioning
conditioning_data = ConditioningData( conditioning_data = ConditioningData(uc, c, cfg_scale).add_scheduler_args_if_applicable(
uc, c, cfg_scale pipeline.scheduler, eta=ddim_eta
).add_scheduler_args_if_applicable(pipeline.scheduler, eta=ddim_eta) )
def make_image(x_T: torch.Tensor, seed: int): def make_image(x_T: torch.Tensor, seed: int):
pipeline_output = pipeline.inpaint_from_embeddings( pipeline_output = pipeline.inpaint_from_embeddings(
@ -318,15 +300,10 @@ class Inpaint(Img2Img):
seed=seed, seed=seed,
) )
if ( if pipeline_output.attention_map_saver is not None and attention_maps_callback is not None:
pipeline_output.attention_map_saver is not None
and attention_maps_callback is not None
):
attention_maps_callback(pipeline_output.attention_map_saver) attention_maps_callback(pipeline_output.attention_map_saver)
result = self.postprocess_size_and_mask( result = self.postprocess_size_and_mask(pipeline.numpy_to_pil(pipeline_output.images)[0])
pipeline.numpy_to_pil(pipeline_output.images)[0]
)
# Seam paint if this is our first pass (seam_size set to 0 during seam painting) # Seam paint if this is our first pass (seam_size set to 0 during seam painting)
if seam_size > 0: if seam_size > 0:

View File

@ -8,9 +8,7 @@ from .txt2mask import Txt2Mask
from .util import InitImageResizer, make_grid from .util import InitImageResizer, make_grid
def debug_image( def debug_image(debug_image, debug_text, debug_show=True, debug_result=False, debug_status=False):
debug_image, debug_text, debug_show=True, debug_result=False, debug_status=False
):
if not debug_status: if not debug_status:
return return

View File

@ -9,26 +9,26 @@ from PIL import Image
from imwatermark import WatermarkEncoder from imwatermark import WatermarkEncoder
from invokeai.app.services.config import InvokeAIAppConfig from invokeai.app.services.config import InvokeAIAppConfig
import invokeai.backend.util.logging as logger import invokeai.backend.util.logging as logger
config = InvokeAIAppConfig.get_config() config = InvokeAIAppConfig.get_config()
class InvisibleWatermark: class InvisibleWatermark:
""" """
Wrapper around InvisibleWatermark module. Wrapper around InvisibleWatermark module.
""" """
@classmethod @classmethod
def invisible_watermark_available(self) -> bool: def invisible_watermark_available(self) -> bool:
return config.invisible_watermark return config.invisible_watermark
@classmethod @classmethod
def add_watermark(self, image: Image, watermark_text:str) -> Image: def add_watermark(self, image: Image, watermark_text: str) -> Image:
if not self.invisible_watermark_available(): if not self.invisible_watermark_available():
return image return image
logger.debug(f'Applying invisible watermark "{watermark_text}"') logger.debug(f'Applying invisible watermark "{watermark_text}"')
bgr = cv2.cvtColor(np.array(image.convert("RGB")), cv2.COLOR_RGB2BGR) bgr = cv2.cvtColor(np.array(image.convert("RGB")), cv2.COLOR_RGB2BGR)
encoder = WatermarkEncoder() encoder = WatermarkEncoder()
encoder.set_watermark('bytes', watermark_text.encode('utf-8')) encoder.set_watermark("bytes", watermark_text.encode("utf-8"))
bgr_encoded = encoder.encode(bgr, 'dwtDct') bgr_encoded = encoder.encode(bgr, "dwtDct")
return Image.fromarray( return Image.fromarray(cv2.cvtColor(bgr_encoded, cv2.COLOR_BGR2RGB)).convert("RGBA")
cv2.cvtColor(bgr_encoded, cv2.COLOR_BGR2RGB)
).convert("RGBA")

View File

@ -7,8 +7,10 @@ be suppressed or deferred
import numpy as np import numpy as np
import invokeai.backend.util.logging as logger import invokeai.backend.util.logging as logger
from invokeai.app.services.config import InvokeAIAppConfig from invokeai.app.services.config import InvokeAIAppConfig
config = InvokeAIAppConfig.get_config() config = InvokeAIAppConfig.get_config()
class PatchMatch: class PatchMatch:
""" """
Thin class wrapper around the patchmatch function. Thin class wrapper around the patchmatch function.

View File

@ -34,9 +34,7 @@ class PngWriter:
# saves image named _image_ to outdir/name, writing metadata from prompt # saves image named _image_ to outdir/name, writing metadata from prompt
# returns full path of output # returns full path of output
def save_image_and_prompt_to_png( def save_image_and_prompt_to_png(self, image, dream_prompt, name, metadata=None, compress_level=6):
self, image, dream_prompt, name, metadata=None, compress_level=6
):
path = os.path.join(self.outdir, name) path = os.path.join(self.outdir, name)
info = PngImagePlugin.PngInfo() info = PngImagePlugin.PngInfo()
info.add_text("Dream", dream_prompt) info.add_text("Dream", dream_prompt)
@ -114,8 +112,6 @@ class PromptFormatter:
if opt.variation_amount > 0: if opt.variation_amount > 0:
switches.append(f"-v{opt.variation_amount}") switches.append(f"-v{opt.variation_amount}")
if opt.with_variations: if opt.with_variations:
formatted_variations = ",".join( formatted_variations = ",".join(f"{seed}:{weight}" for seed, weight in opt.with_variations)
f"{seed}:{weight}" for seed, weight in opt.with_variations
)
switches.append(f"-V{formatted_variations}") switches.append(f"-V{formatted_variations}")
return " ".join(switches) return " ".join(switches)

View File

@ -9,14 +9,17 @@ from invokeai.backend import SilenceWarnings
from invokeai.app.services.config import InvokeAIAppConfig from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.backend.util.devices import choose_torch_device from invokeai.backend.util.devices import choose_torch_device
import invokeai.backend.util.logging as logger import invokeai.backend.util.logging as logger
config = InvokeAIAppConfig.get_config() config = InvokeAIAppConfig.get_config()
CHECKER_PATH = 'core/convert/stable-diffusion-safety-checker' CHECKER_PATH = "core/convert/stable-diffusion-safety-checker"
class SafetyChecker: class SafetyChecker:
""" """
Wrapper around SafetyChecker model. Wrapper around SafetyChecker model.
""" """
safety_checker = None safety_checker = None
feature_extractor = None feature_extractor = None
tried_load: bool = False tried_load: bool = False
@ -25,21 +28,19 @@ class SafetyChecker:
def _load_safety_checker(self): def _load_safety_checker(self):
if self.tried_load: if self.tried_load:
return return
if config.nsfw_checker: if config.nsfw_checker:
try: try:
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from transformers import AutoFeatureExtractor from transformers import AutoFeatureExtractor
self.safety_checker = StableDiffusionSafetyChecker.from_pretrained(
config.models_path / CHECKER_PATH self.safety_checker = StableDiffusionSafetyChecker.from_pretrained(config.models_path / CHECKER_PATH)
) self.feature_extractor = AutoFeatureExtractor.from_pretrained(config.models_path / CHECKER_PATH)
self.feature_extractor = AutoFeatureExtractor.from_pretrained( logger.info("NSFW checker initialized")
config.models_path / CHECKER_PATH)
logger.info('NSFW checker initialized')
except Exception as e: except Exception as e:
logger.warning(f'Could not load NSFW checker: {str(e)}') logger.warning(f"Could not load NSFW checker: {str(e)}")
else: else:
logger.info('NSFW checker loading disabled') logger.info("NSFW checker loading disabled")
self.tried_load = True self.tried_load = True
@classmethod @classmethod
@ -51,7 +52,7 @@ class SafetyChecker:
def has_nsfw_concept(self, image: Image) -> bool: def has_nsfw_concept(self, image: Image) -> bool:
if not self.safety_checker_available(): if not self.safety_checker_available():
return False return False
device = choose_torch_device() device = choose_torch_device()
features = self.feature_extractor([image], return_tensors="pt") features = self.feature_extractor([image], return_tensors="pt")
features.to(device) features.to(device)

View File

@ -5,12 +5,8 @@ def _conv_forward_asymmetric(self, input, weight, bias):
""" """
Patch for Conv2d._conv_forward that supports asymmetric padding Patch for Conv2d._conv_forward that supports asymmetric padding
""" """
working = nn.functional.pad( working = nn.functional.pad(input, self.asymmetric_padding["x"], mode=self.asymmetric_padding_mode["x"])
input, self.asymmetric_padding["x"], mode=self.asymmetric_padding_mode["x"] working = nn.functional.pad(working, self.asymmetric_padding["y"], mode=self.asymmetric_padding_mode["y"])
)
working = nn.functional.pad(
working, self.asymmetric_padding["y"], mode=self.asymmetric_padding_mode["y"]
)
return nn.functional.conv2d( return nn.functional.conv2d(
working, working,
weight, weight,
@ -32,18 +28,14 @@ def configure_model_padding(model, seamless, seamless_axes):
if seamless: if seamless:
m.asymmetric_padding_mode = {} m.asymmetric_padding_mode = {}
m.asymmetric_padding = {} m.asymmetric_padding = {}
m.asymmetric_padding_mode["x"] = ( m.asymmetric_padding_mode["x"] = "circular" if ("x" in seamless_axes) else "constant"
"circular" if ("x" in seamless_axes) else "constant"
)
m.asymmetric_padding["x"] = ( m.asymmetric_padding["x"] = (
m._reversed_padding_repeated_twice[0], m._reversed_padding_repeated_twice[0],
m._reversed_padding_repeated_twice[1], m._reversed_padding_repeated_twice[1],
0, 0,
0, 0,
) )
m.asymmetric_padding_mode["y"] = ( m.asymmetric_padding_mode["y"] = "circular" if ("y" in seamless_axes) else "constant"
"circular" if ("y" in seamless_axes) else "constant"
)
m.asymmetric_padding["y"] = ( m.asymmetric_padding["y"] = (
0, 0,
0, 0,

View File

@ -39,23 +39,18 @@ CLIPSEG_MODEL = "CIDAS/clipseg-rd64-refined"
CLIPSEG_SIZE = 352 CLIPSEG_SIZE = 352
config = InvokeAIAppConfig.get_config() config = InvokeAIAppConfig.get_config()
class SegmentedGrayscale(object): class SegmentedGrayscale(object):
def __init__(self, image: Image, heatmap: torch.Tensor): def __init__(self, image: Image, heatmap: torch.Tensor):
self.heatmap = heatmap self.heatmap = heatmap
self.image = image self.image = image
def to_grayscale(self, invert: bool = False) -> Image: def to_grayscale(self, invert: bool = False) -> Image:
return self._rescale( return self._rescale(Image.fromarray(np.uint8(255 - self.heatmap * 255 if invert else self.heatmap * 255)))
Image.fromarray(
np.uint8(255 - self.heatmap * 255 if invert else self.heatmap * 255)
)
)
def to_mask(self, threshold: float = 0.5) -> Image: def to_mask(self, threshold: float = 0.5) -> Image:
discrete_heatmap = self.heatmap.lt(threshold).int() discrete_heatmap = self.heatmap.lt(threshold).int()
return self._rescale( return self._rescale(Image.fromarray(np.uint8(discrete_heatmap * 255), mode="L"))
Image.fromarray(np.uint8(discrete_heatmap * 255), mode="L")
)
def to_transparent(self, invert: bool = False) -> Image: def to_transparent(self, invert: bool = False) -> Image:
transparent_image = self.image.copy() transparent_image = self.image.copy()
@ -67,11 +62,7 @@ class SegmentedGrayscale(object):
# unscales and uncrops the 352x352 heatmap so that it matches the image again # unscales and uncrops the 352x352 heatmap so that it matches the image again
def _rescale(self, heatmap: Image) -> Image: def _rescale(self, heatmap: Image) -> Image:
size = ( size = self.image.width if (self.image.width > self.image.height) else self.image.height
self.image.width
if (self.image.width > self.image.height)
else self.image.height
)
resized_image = heatmap.resize((size, size), resample=Image.Resampling.LANCZOS) resized_image = heatmap.resize((size, size), resample=Image.Resampling.LANCZOS)
return resized_image.crop((0, 0, self.image.width, self.image.height)) return resized_image.crop((0, 0, self.image.width, self.image.height))
@ -87,12 +78,8 @@ class Txt2Mask(object):
# BUG: we are not doing anything with the device option at this time # BUG: we are not doing anything with the device option at this time
self.device = device self.device = device
self.processor = AutoProcessor.from_pretrained( self.processor = AutoProcessor.from_pretrained(CLIPSEG_MODEL, cache_dir=config.cache_dir)
CLIPSEG_MODEL, cache_dir=config.cache_dir self.model = CLIPSegForImageSegmentation.from_pretrained(CLIPSEG_MODEL, cache_dir=config.cache_dir)
)
self.model = CLIPSegForImageSegmentation.from_pretrained(
CLIPSEG_MODEL, cache_dir=config.cache_dir
)
@torch.no_grad() @torch.no_grad()
def segment(self, image, prompt: str) -> SegmentedGrayscale: def segment(self, image, prompt: str) -> SegmentedGrayscale:
@ -107,9 +94,7 @@ class Txt2Mask(object):
image = ImageOps.exif_transpose(image) image = ImageOps.exif_transpose(image)
img = self._scale_and_crop(image) img = self._scale_and_crop(image)
inputs = self.processor( inputs = self.processor(text=[prompt], images=[img], padding=True, return_tensors="pt")
text=[prompt], images=[img], padding=True, return_tensors="pt"
)
outputs = self.model(**inputs) outputs = self.model(**inputs)
heatmap = torch.sigmoid(outputs.logits) heatmap = torch.sigmoid(outputs.logits)
return SegmentedGrayscale(image, heatmap) return SegmentedGrayscale(image, heatmap)

View File

@ -6,28 +6,31 @@ from invokeai.app.services.config import (
InvokeAIAppConfig, InvokeAIAppConfig,
) )
def check_invokeai_root(config: InvokeAIAppConfig): def check_invokeai_root(config: InvokeAIAppConfig):
try: try:
assert config.model_conf_path.exists(), f'{config.model_conf_path} not found' assert config.model_conf_path.exists(), f"{config.model_conf_path} not found"
assert config.db_path.parent.exists(), f'{config.db_path.parent} not found' assert config.db_path.parent.exists(), f"{config.db_path.parent} not found"
assert config.models_path.exists(), f'{config.models_path} not found' assert config.models_path.exists(), f"{config.models_path} not found"
for model in [ for model in [
'CLIP-ViT-bigG-14-laion2B-39B-b160k', "CLIP-ViT-bigG-14-laion2B-39B-b160k",
'bert-base-uncased', "bert-base-uncased",
'clip-vit-large-patch14', "clip-vit-large-patch14",
'sd-vae-ft-mse', "sd-vae-ft-mse",
'stable-diffusion-2-clip', "stable-diffusion-2-clip",
'stable-diffusion-safety-checker']: "stable-diffusion-safety-checker",
path = config.models_path / f'core/convert/{model}' ]:
assert path.exists(), f'{path} is missing' path = config.models_path / f"core/convert/{model}"
assert path.exists(), f"{path} is missing"
except Exception as e: except Exception as e:
print() print()
print(f'An exception has occurred: {str(e)}') print(f"An exception has occurred: {str(e)}")
print('== STARTUP ABORTED ==') print("== STARTUP ABORTED ==")
print('** One or more necessary files is missing from your InvokeAI root directory **') print("** One or more necessary files is missing from your InvokeAI root directory **")
print('** Please rerun the configuration script to fix this problem. **') print("** Please rerun the configuration script to fix this problem. **")
print('** From the launcher, selection option [7]. **') print("** From the launcher, selection option [7]. **")
print('** From the command line, activate the virtual environment and run "invokeai-configure --yes --skip-sd-weights" **') print(
input('Press any key to continue...') '** From the command line, activate the virtual environment and run "invokeai-configure --yes --skip-sd-weights" **'
)
input("Press any key to continue...")
sys.exit(0) sys.exit(0)

View File

@ -60,9 +60,7 @@ from invokeai.backend.install.model_install_backend import (
InstallSelections, InstallSelections,
ModelInstall, ModelInstall,
) )
from invokeai.backend.model_management.model_probe import ( from invokeai.backend.model_management.model_probe import ModelType, BaseModelType
ModelType, BaseModelType
)
warnings.filterwarnings("ignore") warnings.filterwarnings("ignore")
transformers.logging.set_verbosity_error() transformers.logging.set_verbosity_error()
@ -77,7 +75,7 @@ Model_dir = "models"
Default_config_file = config.model_conf_path Default_config_file = config.model_conf_path
SD_Configs = config.legacy_conf_path SD_Configs = config.legacy_conf_path
PRECISION_CHOICES = ['auto','float16','float32'] PRECISION_CHOICES = ["auto", "float16", "float32"]
INIT_FILE_PREAMBLE = """# InvokeAI initialization file INIT_FILE_PREAMBLE = """# InvokeAI initialization file
# This is the InvokeAI initialization file, which contains command-line default values. # This is the InvokeAI initialization file, which contains command-line default values.
@ -85,7 +83,8 @@ INIT_FILE_PREAMBLE = """# InvokeAI initialization file
# or renaming it and then running invokeai-configure again. # or renaming it and then running invokeai-configure again.
""" """
logger=InvokeAILogger.getLogger() logger = InvokeAILogger.getLogger()
# -------------------------------------------- # --------------------------------------------
def postscript(errors: None): def postscript(errors: None):
@ -108,7 +107,9 @@ Add the '--help' argument to see all of the command-line switches available for
""" """
else: else:
message = "\n** There were errors during installation. It is possible some of the models were not fully downloaded.\n" message = (
"\n** There were errors during installation. It is possible some of the models were not fully downloaded.\n"
)
for err in errors: for err in errors:
message += f"\t - {err}\n" message += f"\t - {err}\n"
message += "Please check the logs above and correct any issues." message += "Please check the logs above and correct any issues."
@ -169,9 +170,7 @@ def download_with_progress_bar(model_url: str, model_dest: str, label: str = "th
logger.info(f"Installing {label} model file {model_url}...") logger.info(f"Installing {label} model file {model_url}...")
if not os.path.exists(model_dest): if not os.path.exists(model_dest):
os.makedirs(os.path.dirname(model_dest), exist_ok=True) os.makedirs(os.path.dirname(model_dest), exist_ok=True)
request.urlretrieve( request.urlretrieve(model_url, model_dest, ProgressBar(os.path.basename(model_dest)))
model_url, model_dest, ProgressBar(os.path.basename(model_dest))
)
logger.info("...downloaded successfully") logger.info("...downloaded successfully")
else: else:
logger.info("...exists") logger.info("...exists")
@ -182,90 +181,93 @@ def download_with_progress_bar(model_url: str, model_dest: str, label: str = "th
def download_conversion_models(): def download_conversion_models():
target_dir = config.root_path / 'models/core/convert' target_dir = config.root_path / "models/core/convert"
kwargs = dict() # for future use kwargs = dict() # for future use
try: try:
logger.info('Downloading core tokenizers and text encoders') logger.info("Downloading core tokenizers and text encoders")
# bert # bert
with warnings.catch_warnings(): with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=DeprecationWarning) warnings.filterwarnings("ignore", category=DeprecationWarning)
bert = BertTokenizerFast.from_pretrained("bert-base-uncased", **kwargs) bert = BertTokenizerFast.from_pretrained("bert-base-uncased", **kwargs)
bert.save_pretrained(target_dir / 'bert-base-uncased', safe_serialization=True) bert.save_pretrained(target_dir / "bert-base-uncased", safe_serialization=True)
# sd-1 # sd-1
repo_id = 'openai/clip-vit-large-patch14' repo_id = "openai/clip-vit-large-patch14"
hf_download_from_pretrained(CLIPTokenizer, repo_id, target_dir / 'clip-vit-large-patch14') hf_download_from_pretrained(CLIPTokenizer, repo_id, target_dir / "clip-vit-large-patch14")
hf_download_from_pretrained(CLIPTextModel, repo_id, target_dir / 'clip-vit-large-patch14') hf_download_from_pretrained(CLIPTextModel, repo_id, target_dir / "clip-vit-large-patch14")
# sd-2 # sd-2
repo_id = "stabilityai/stable-diffusion-2" repo_id = "stabilityai/stable-diffusion-2"
pipeline = CLIPTokenizer.from_pretrained(repo_id, subfolder="tokenizer", **kwargs) pipeline = CLIPTokenizer.from_pretrained(repo_id, subfolder="tokenizer", **kwargs)
pipeline.save_pretrained(target_dir / 'stable-diffusion-2-clip' / 'tokenizer', safe_serialization=True) pipeline.save_pretrained(target_dir / "stable-diffusion-2-clip" / "tokenizer", safe_serialization=True)
pipeline = CLIPTextModel.from_pretrained(repo_id, subfolder="text_encoder", **kwargs) pipeline = CLIPTextModel.from_pretrained(repo_id, subfolder="text_encoder", **kwargs)
pipeline.save_pretrained(target_dir / 'stable-diffusion-2-clip' / 'text_encoder', safe_serialization=True) pipeline.save_pretrained(target_dir / "stable-diffusion-2-clip" / "text_encoder", safe_serialization=True)
# sd-xl - tokenizer_2 # sd-xl - tokenizer_2
repo_id = "laion/CLIP-ViT-bigG-14-laion2B-39B-b160k" repo_id = "laion/CLIP-ViT-bigG-14-laion2B-39B-b160k"
_, model_name = repo_id.split('/') _, model_name = repo_id.split("/")
pipeline = CLIPTokenizer.from_pretrained(repo_id, **kwargs) pipeline = CLIPTokenizer.from_pretrained(repo_id, **kwargs)
pipeline.save_pretrained(target_dir / model_name, safe_serialization=True) pipeline.save_pretrained(target_dir / model_name, safe_serialization=True)
pipeline = CLIPTextConfig.from_pretrained(repo_id, **kwargs) pipeline = CLIPTextConfig.from_pretrained(repo_id, **kwargs)
pipeline.save_pretrained(target_dir / model_name, safe_serialization=True) pipeline.save_pretrained(target_dir / model_name, safe_serialization=True)
# VAE # VAE
logger.info('Downloading stable diffusion VAE') logger.info("Downloading stable diffusion VAE")
vae = AutoencoderKL.from_pretrained('stabilityai/sd-vae-ft-mse', **kwargs) vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", **kwargs)
vae.save_pretrained(target_dir / 'sd-vae-ft-mse', safe_serialization=True) vae.save_pretrained(target_dir / "sd-vae-ft-mse", safe_serialization=True)
# safety checking # safety checking
logger.info('Downloading safety checker') logger.info("Downloading safety checker")
repo_id = "CompVis/stable-diffusion-safety-checker" repo_id = "CompVis/stable-diffusion-safety-checker"
pipeline = AutoFeatureExtractor.from_pretrained(repo_id,**kwargs) pipeline = AutoFeatureExtractor.from_pretrained(repo_id, **kwargs)
pipeline.save_pretrained(target_dir / 'stable-diffusion-safety-checker', safe_serialization=True) pipeline.save_pretrained(target_dir / "stable-diffusion-safety-checker", safe_serialization=True)
pipeline = StableDiffusionSafetyChecker.from_pretrained(repo_id,**kwargs) pipeline = StableDiffusionSafetyChecker.from_pretrained(repo_id, **kwargs)
pipeline.save_pretrained(target_dir / 'stable-diffusion-safety-checker', safe_serialization=True) pipeline.save_pretrained(target_dir / "stable-diffusion-safety-checker", safe_serialization=True)
except KeyboardInterrupt: except KeyboardInterrupt:
raise raise
except Exception as e: except Exception as e:
logger.error(str(e)) logger.error(str(e))
# --------------------------------------------- # ---------------------------------------------
def download_realesrgan(): def download_realesrgan():
logger.info("Installing ESRGAN Upscaling models...") logger.info("Installing ESRGAN Upscaling models...")
URLs = [ URLs = [
dict( dict(
url = "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth", url="https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth",
dest = "core/upscaling/realesrgan/RealESRGAN_x4plus.pth", dest="core/upscaling/realesrgan/RealESRGAN_x4plus.pth",
description = "RealESRGAN_x4plus.pth", description="RealESRGAN_x4plus.pth",
), ),
dict( dict(
url = "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth", url="https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth",
dest = "core/upscaling/realesrgan/RealESRGAN_x4plus_anime_6B.pth", dest="core/upscaling/realesrgan/RealESRGAN_x4plus_anime_6B.pth",
description = "RealESRGAN_x4plus_anime_6B.pth", description="RealESRGAN_x4plus_anime_6B.pth",
), ),
dict( dict(
url= "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/ESRGAN_SRx4_DF2KOST_official-ff704c30.pth", url="https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/ESRGAN_SRx4_DF2KOST_official-ff704c30.pth",
dest= "core/upscaling/realesrgan/ESRGAN_SRx4_DF2KOST_official-ff704c30.pth", dest="core/upscaling/realesrgan/ESRGAN_SRx4_DF2KOST_official-ff704c30.pth",
description = "ESRGAN_SRx4_DF2KOST_official.pth", description="ESRGAN_SRx4_DF2KOST_official.pth",
), ),
dict( dict(
url= "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth", url="https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth",
dest= "core/upscaling/realesrgan/RealESRGAN_x2plus.pth", dest="core/upscaling/realesrgan/RealESRGAN_x2plus.pth",
description = "RealESRGAN_x2plus.pth", description="RealESRGAN_x2plus.pth",
), ),
] ]
for model in URLs: for model in URLs:
download_with_progress_bar(model['url'], config.models_path / model['dest'], model['description']) download_with_progress_bar(model["url"], config.models_path / model["dest"], model["description"])
# --------------------------------------------- # ---------------------------------------------
def download_support_models(): def download_support_models():
download_realesrgan() download_realesrgan()
download_conversion_models() download_conversion_models()
# ------------------------------------- # -------------------------------------
def get_root(root: str = None) -> str: def get_root(root: str = None) -> str:
if root: if root:
@ -275,6 +277,7 @@ def get_root(root: str = None) -> str:
else: else:
return str(config.root_path) return str(config.root_path)
# ------------------------------------- # -------------------------------------
class editOptsForm(CyclingForm, npyscreen.FormMultiPage): class editOptsForm(CyclingForm, npyscreen.FormMultiPage):
# for responsive resizing - disabled # for responsive resizing - disabled
@ -283,14 +286,14 @@ class editOptsForm(CyclingForm, npyscreen.FormMultiPage):
def create(self): def create(self):
program_opts = self.parentApp.program_opts program_opts = self.parentApp.program_opts
old_opts = self.parentApp.invokeai_opts old_opts = self.parentApp.invokeai_opts
first_time = not (config.root_path / 'invokeai.yaml').exists() first_time = not (config.root_path / "invokeai.yaml").exists()
access_token = HfFolder.get_token() access_token = HfFolder.get_token()
window_width, window_height = get_terminal_size() window_width, window_height = get_terminal_size()
label = """Configure startup settings. You can come back and change these later. label = """Configure startup settings. You can come back and change these later.
Use ctrl-N and ctrl-P to move to the <N>ext and <P>revious fields. Use ctrl-N and ctrl-P to move to the <N>ext and <P>revious fields.
Use cursor arrows to make a checkbox selection, and space to toggle. Use cursor arrows to make a checkbox selection, and space to toggle.
""" """
for i in textwrap.wrap(label,width=window_width-6): for i in textwrap.wrap(label, width=window_width - 6):
self.add_widget_intelligent( self.add_widget_intelligent(
npyscreen.FixedText, npyscreen.FixedText,
value=i, value=i,
@ -300,7 +303,7 @@ Use cursor arrows to make a checkbox selection, and space to toggle.
self.nextrely += 1 self.nextrely += 1
label = """HuggingFace access token (OPTIONAL) for automatic model downloads. See https://huggingface.co/settings/tokens.""" label = """HuggingFace access token (OPTIONAL) for automatic model downloads. See https://huggingface.co/settings/tokens."""
for line in textwrap.wrap(label,width=window_width-6): for line in textwrap.wrap(label, width=window_width - 6):
self.add_widget_intelligent( self.add_widget_intelligent(
npyscreen.FixedText, npyscreen.FixedText,
value=line, value=line,
@ -343,7 +346,7 @@ Use cursor arrows to make a checkbox selection, and space to toggle.
relx=50, relx=50,
scroll_exit=True, scroll_exit=True,
) )
self.nextrely -=1 self.nextrely -= 1
self.always_use_cpu = self.add_widget_intelligent( self.always_use_cpu = self.add_widget_intelligent(
npyscreen.Checkbox, npyscreen.Checkbox,
name="Force CPU to be used on GPU systems", name="Force CPU to be used on GPU systems",
@ -351,10 +354,8 @@ Use cursor arrows to make a checkbox selection, and space to toggle.
relx=80, relx=80,
scroll_exit=True, scroll_exit=True,
) )
precision = old_opts.precision or ( precision = old_opts.precision or ("float32" if program_opts.full_precision else "auto")
"float32" if program_opts.full_precision else "auto" self.nextrely += 1
)
self.nextrely +=1
self.add_widget_intelligent( self.add_widget_intelligent(
npyscreen.TitleFixedText, npyscreen.TitleFixedText,
name="Floating Point Precision", name="Floating Point Precision",
@ -363,10 +364,10 @@ Use cursor arrows to make a checkbox selection, and space to toggle.
color="CONTROL", color="CONTROL",
scroll_exit=True, scroll_exit=True,
) )
self.nextrely -=1 self.nextrely -= 1
self.precision = self.add_widget_intelligent( self.precision = self.add_widget_intelligent(
SingleSelectColumns, SingleSelectColumns,
columns = 3, columns=3,
name="Precision", name="Precision",
values=PRECISION_CHOICES, values=PRECISION_CHOICES,
value=PRECISION_CHOICES.index(precision), value=PRECISION_CHOICES.index(precision),
@ -398,25 +399,25 @@ Use cursor arrows to make a checkbox selection, and space to toggle.
scroll_exit=True, scroll_exit=True,
) )
self.autoimport_dirs = {} self.autoimport_dirs = {}
self.autoimport_dirs['autoimport_dir'] = self.add_widget_intelligent( self.autoimport_dirs["autoimport_dir"] = self.add_widget_intelligent(
FileBox, FileBox,
name=f'Folder to recursively scan for new checkpoints, ControlNets, LoRAs and TI models', name=f"Folder to recursively scan for new checkpoints, ControlNets, LoRAs and TI models",
value=str(config.root_path / config.autoimport_dir), value=str(config.root_path / config.autoimport_dir),
select_dir=True, select_dir=True,
must_exist=False, must_exist=False,
use_two_lines=False, use_two_lines=False,
labelColor="GOOD", labelColor="GOOD",
begin_entry_at=32, begin_entry_at=32,
max_height = 3, max_height=3,
scroll_exit=True scroll_exit=True,
) )
self.nextrely += 1 self.nextrely += 1
label = """BY DOWNLOADING THE STABLE DIFFUSION WEIGHT FILES, YOU AGREE TO HAVE READ label = """BY DOWNLOADING THE STABLE DIFFUSION WEIGHT FILES, YOU AGREE TO HAVE READ
AND ACCEPTED THE CREATIVEML RESPONSIBLE AI LICENSES LOCATED AT AND ACCEPTED THE CREATIVEML RESPONSIBLE AI LICENSES LOCATED AT
https://huggingface.co/spaces/CompVis/stable-diffusion-license and https://huggingface.co/spaces/CompVis/stable-diffusion-license and
https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/LICENSE.md https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/LICENSE.md
""" """
for i in textwrap.wrap(label,width=window_width-6): for i in textwrap.wrap(label, width=window_width - 6):
self.add_widget_intelligent( self.add_widget_intelligent(
npyscreen.FixedText, npyscreen.FixedText,
value=i, value=i,
@ -431,11 +432,7 @@ https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/LICENS
scroll_exit=True, scroll_exit=True,
) )
self.nextrely += 1 self.nextrely += 1
label = ( label = "DONE" if program_opts.skip_sd_weights or program_opts.default_only else "NEXT"
"DONE"
if program_opts.skip_sd_weights or program_opts.default_only
else "NEXT"
)
self.ok_button = self.add_widget_intelligent( self.ok_button = self.add_widget_intelligent(
CenteredButtonPress, CenteredButtonPress,
name=label, name=label,
@ -454,13 +451,11 @@ https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/LICENS
self.editing = False self.editing = False
else: else:
self.editing = True self.editing = True
def validate_field_values(self, opt: Namespace) -> bool: def validate_field_values(self, opt: Namespace) -> bool:
bad_fields = [] bad_fields = []
if not opt.license_acceptance: if not opt.license_acceptance:
bad_fields.append( bad_fields.append("Please accept the license terms before proceeding to model downloads")
"Please accept the license terms before proceeding to model downloads"
)
if not Path(opt.outdir).parent.exists(): if not Path(opt.outdir).parent.exists():
bad_fields.append( bad_fields.append(
f"The output directory does not seem to be valid. Please check that {str(Path(opt.outdir).parent)} is an existing directory." f"The output directory does not seem to be valid. Please check that {str(Path(opt.outdir).parent)} is an existing directory."
@ -478,11 +473,11 @@ https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/LICENS
new_opts = Namespace() new_opts = Namespace()
for attr in [ for attr in [
"outdir", "outdir",
"free_gpu_mem", "free_gpu_mem",
"max_cache_size", "max_cache_size",
"xformers_enabled", "xformers_enabled",
"always_use_cpu", "always_use_cpu",
]: ]:
setattr(new_opts, attr, getattr(self, attr).value) setattr(new_opts, attr, getattr(self, attr).value)
@ -495,7 +490,7 @@ https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/LICENS
new_opts.hf_token = self.hf_token.value new_opts.hf_token = self.hf_token.value
new_opts.license_acceptance = self.license_acceptance.value new_opts.license_acceptance = self.license_acceptance.value
new_opts.precision = PRECISION_CHOICES[self.precision.value[0]] new_opts.precision = PRECISION_CHOICES[self.precision.value[0]]
return new_opts return new_opts
@ -534,19 +529,20 @@ def edit_opts(program_opts: Namespace, invokeai_opts: Namespace) -> argparse.Nam
editApp.run() editApp.run()
return editApp.new_opts() return editApp.new_opts()
def default_startup_options(init_file: Path) -> Namespace: def default_startup_options(init_file: Path) -> Namespace:
opts = InvokeAIAppConfig.get_config() opts = InvokeAIAppConfig.get_config()
return opts return opts
def default_user_selections(program_opts: Namespace) -> InstallSelections: def default_user_selections(program_opts: Namespace) -> InstallSelections:
try: try:
installer = ModelInstall(config) installer = ModelInstall(config)
except omegaconf.errors.ConfigKeyError: except omegaconf.errors.ConfigKeyError:
logger.warning('Your models.yaml file is corrupt or out of date. Reinitializing') logger.warning("Your models.yaml file is corrupt or out of date. Reinitializing")
initialize_rootdir(config.root_path, True) initialize_rootdir(config.root_path, True)
installer = ModelInstall(config) installer = ModelInstall(config)
models = installer.all_models() models = installer.all_models()
return InstallSelections( return InstallSelections(
install_models=[models[installer.default_model()].path or models[installer.default_model()].repo_id] install_models=[models[installer.default_model()].path or models[installer.default_model()].repo_id]
@ -556,55 +552,46 @@ def default_user_selections(program_opts: Namespace) -> InstallSelections:
else list(), else list(),
) )
# ------------------------------------- # -------------------------------------
def initialize_rootdir(root: Path, yes_to_all: bool = False): def initialize_rootdir(root: Path, yes_to_all: bool = False):
logger.info("Initializing InvokeAI runtime directory") logger.info("Initializing InvokeAI runtime directory")
for name in ( for name in ("models", "databases", "text-inversion-output", "text-inversion-training-data", "configs"):
"models",
"databases",
"text-inversion-output",
"text-inversion-training-data",
"configs"
):
os.makedirs(os.path.join(root, name), exist_ok=True) os.makedirs(os.path.join(root, name), exist_ok=True)
for model_type in ModelType: for model_type in ModelType:
Path(root, 'autoimport', model_type.value).mkdir(parents=True, exist_ok=True) Path(root, "autoimport", model_type.value).mkdir(parents=True, exist_ok=True)
configs_src = Path(configs.__path__[0]) configs_src = Path(configs.__path__[0])
configs_dest = root / "configs" configs_dest = root / "configs"
if not os.path.samefile(configs_src, configs_dest): if not os.path.samefile(configs_src, configs_dest):
shutil.copytree(configs_src, configs_dest, dirs_exist_ok=True) shutil.copytree(configs_src, configs_dest, dirs_exist_ok=True)
dest = root / 'models' dest = root / "models"
for model_base in BaseModelType: for model_base in BaseModelType:
for model_type in ModelType: for model_type in ModelType:
path = dest / model_base.value / model_type.value path = dest / model_base.value / model_type.value
path.mkdir(parents=True, exist_ok=True) path.mkdir(parents=True, exist_ok=True)
path = dest / 'core' path = dest / "core"
path.mkdir(parents=True, exist_ok=True) path.mkdir(parents=True, exist_ok=True)
maybe_create_models_yaml(root) maybe_create_models_yaml(root)
def maybe_create_models_yaml(root: Path): def maybe_create_models_yaml(root: Path):
models_yaml = root / 'configs' / 'models.yaml' models_yaml = root / "configs" / "models.yaml"
if models_yaml.exists(): if models_yaml.exists():
if OmegaConf.load(models_yaml).get('__metadata__'): # up to date if OmegaConf.load(models_yaml).get("__metadata__"): # up to date
return return
else: else:
logger.info('Creating new models.yaml, original saved as models.yaml.orig') logger.info("Creating new models.yaml, original saved as models.yaml.orig")
models_yaml.rename(models_yaml.parent / 'models.yaml.orig') models_yaml.rename(models_yaml.parent / "models.yaml.orig")
with open(models_yaml,'w') as yaml_file: with open(models_yaml, "w") as yaml_file:
yaml_file.write(yaml.dump({'__metadata__': yaml_file.write(yaml.dump({"__metadata__": {"version": "3.0.0"}}))
{'version':'3.0.0'}
}
)
)
# ------------------------------------- # -------------------------------------
def run_console_ui( def run_console_ui(program_opts: Namespace, initfile: Path = None) -> (Namespace, Namespace):
program_opts: Namespace, initfile: Path = None
) -> (Namespace, Namespace):
# parse_args() will read from init file if present # parse_args() will read from init file if present
invokeai_opts = default_startup_options(initfile) invokeai_opts = default_startup_options(initfile)
invokeai_opts.root = program_opts.root invokeai_opts.root = program_opts.root
@ -616,8 +603,9 @@ def run_console_ui(
# the install-models application spawns a subprocess to install # the install-models application spawns a subprocess to install
# models, and will crash unless this is set before running. # models, and will crash unless this is set before running.
import torch import torch
torch.multiprocessing.set_start_method("spawn") torch.multiprocessing.set_start_method("spawn")
editApp = EditOptApplication(program_opts, invokeai_opts) editApp = EditOptApplication(program_opts, invokeai_opts)
editApp.run() editApp.run()
if editApp.user_cancelled: if editApp.user_cancelled:
@ -634,39 +622,42 @@ def write_opts(opts: Namespace, init_file: Path):
# this will load current settings # this will load current settings
new_config = InvokeAIAppConfig.get_config() new_config = InvokeAIAppConfig.get_config()
new_config.root = config.root new_config.root = config.root
for key,value in opts.__dict__.items():
if hasattr(new_config,key):
setattr(new_config,key,value)
with open(init_file,'w', encoding='utf-8') as file: for key, value in opts.__dict__.items():
if hasattr(new_config, key):
setattr(new_config, key, value)
with open(init_file, "w", encoding="utf-8") as file:
file.write(new_config.to_yaml()) file.write(new_config.to_yaml())
if hasattr(opts,'hf_token') and opts.hf_token: if hasattr(opts, "hf_token") and opts.hf_token:
HfLogin(opts.hf_token) HfLogin(opts.hf_token)
# ------------------------------------- # -------------------------------------
def default_output_dir() -> Path: def default_output_dir() -> Path:
return config.root_path / "outputs" return config.root_path / "outputs"
# ------------------------------------- # -------------------------------------
def write_default_options(program_opts: Namespace, initfile: Path): def write_default_options(program_opts: Namespace, initfile: Path):
opt = default_startup_options(initfile) opt = default_startup_options(initfile)
write_opts(opt, initfile) write_opts(opt, initfile)
# ------------------------------------- # -------------------------------------
# Here we bring in # Here we bring in
# the legacy Args object in order to parse # the legacy Args object in order to parse
# the old init file and write out the new # the old init file and write out the new
# yaml format. # yaml format.
def migrate_init_file(legacy_format:Path): def migrate_init_file(legacy_format: Path):
old = legacy_parser.parse_args([f'@{str(legacy_format)}']) old = legacy_parser.parse_args([f"@{str(legacy_format)}"])
new = InvokeAIAppConfig.get_config() new = InvokeAIAppConfig.get_config()
fields = list(get_type_hints(InvokeAIAppConfig).keys()) fields = list(get_type_hints(InvokeAIAppConfig).keys())
for attr in fields: for attr in fields:
if hasattr(old,attr): if hasattr(old, attr):
setattr(new,attr,getattr(old,attr)) setattr(new, attr, getattr(old, attr))
# a few places where the field names have changed and we have to # a few places where the field names have changed and we have to
# manually add in the new names/values # manually add in the new names/values
@ -674,40 +665,43 @@ def migrate_init_file(legacy_format:Path):
new.conf_path = old.conf new.conf_path = old.conf
new.root = legacy_format.parent.resolve() new.root = legacy_format.parent.resolve()
invokeai_yaml = legacy_format.parent / 'invokeai.yaml' invokeai_yaml = legacy_format.parent / "invokeai.yaml"
with open(invokeai_yaml,"w", encoding="utf-8") as outfile: with open(invokeai_yaml, "w", encoding="utf-8") as outfile:
outfile.write(new.to_yaml()) outfile.write(new.to_yaml())
legacy_format.replace(legacy_format.parent / 'invokeai.init.orig') legacy_format.replace(legacy_format.parent / "invokeai.init.orig")
# ------------------------------------- # -------------------------------------
def migrate_models(root: Path): def migrate_models(root: Path):
from invokeai.backend.install.migrate_to_3 import do_migrate from invokeai.backend.install.migrate_to_3 import do_migrate
do_migrate(root, root) do_migrate(root, root)
def migrate_if_needed(opt: Namespace, root: Path)->bool:
# We check for to see if the runtime directory is correctly initialized.
old_init_file = root / 'invokeai.init'
new_init_file = root / 'invokeai.yaml'
old_hub = root / 'models/hub'
migration_needed = (old_init_file.exists() and not new_init_file.exists()) and old_hub.exists()
if migration_needed:
if opt.yes_to_all or \
yes_or_no(f'{str(config.root_path)} appears to be a 2.3 format root directory. Convert to version 3.0?'):
logger.info('** Migrating invokeai.init to invokeai.yaml') def migrate_if_needed(opt: Namespace, root: Path) -> bool:
# We check for to see if the runtime directory is correctly initialized.
old_init_file = root / "invokeai.init"
new_init_file = root / "invokeai.yaml"
old_hub = root / "models/hub"
migration_needed = (old_init_file.exists() and not new_init_file.exists()) and old_hub.exists()
if migration_needed:
if opt.yes_to_all or yes_or_no(
f"{str(config.root_path)} appears to be a 2.3 format root directory. Convert to version 3.0?"
):
logger.info("** Migrating invokeai.init to invokeai.yaml")
migrate_init_file(old_init_file) migrate_init_file(old_init_file)
config.parse_args(argv=[],conf=OmegaConf.load(new_init_file)) config.parse_args(argv=[], conf=OmegaConf.load(new_init_file))
if old_hub.exists(): if old_hub.exists():
migrate_models(config.root_path) migrate_models(config.root_path)
else: else:
print('Cannot continue without conversion. Aborting.') print("Cannot continue without conversion. Aborting.")
return migration_needed return migration_needed
# ------------------------------------- # -------------------------------------
def main(): def main():
parser = argparse.ArgumentParser(description="InvokeAI model downloader") parser = argparse.ArgumentParser(description="InvokeAI model downloader")
@ -764,9 +758,9 @@ def main():
invoke_args = [] invoke_args = []
if opt.root: if opt.root:
invoke_args.extend(['--root',opt.root]) invoke_args.extend(["--root", opt.root])
if opt.full_precision: if opt.full_precision:
invoke_args.extend(['--precision','float32']) invoke_args.extend(["--precision", "float32"])
config.parse_args(invoke_args) config.parse_args(invoke_args)
logger = InvokeAILogger().getLogger(config=config) logger = InvokeAILogger().getLogger(config=config)
@ -782,22 +776,18 @@ def main():
initialize_rootdir(config.root_path, opt.yes_to_all) initialize_rootdir(config.root_path, opt.yes_to_all)
models_to_download = default_user_selections(opt) models_to_download = default_user_selections(opt)
new_init_file = config.root_path / 'invokeai.yaml' new_init_file = config.root_path / "invokeai.yaml"
if opt.yes_to_all: if opt.yes_to_all:
write_default_options(opt, new_init_file) write_default_options(opt, new_init_file)
init_options = Namespace( init_options = Namespace(precision="float32" if opt.full_precision else "float16")
precision="float32" if opt.full_precision else "float16"
)
else: else:
init_options, models_to_download = run_console_ui(opt, new_init_file) init_options, models_to_download = run_console_ui(opt, new_init_file)
if init_options: if init_options:
write_opts(init_options, new_init_file) write_opts(init_options, new_init_file)
else: else:
logger.info( logger.info('\n** CANCELLED AT USER\'S REQUEST. USE THE "invoke.sh" LAUNCHER TO RUN LATER **\n')
'\n** CANCELLED AT USER\'S REQUEST. USE THE "invoke.sh" LAUNCHER TO RUN LATER **\n'
)
sys.exit(0) sys.exit(0)
if opt.skip_support_models: if opt.skip_support_models:
logger.info("Skipping support models at user's request") logger.info("Skipping support models at user's request")
else: else:
@ -811,7 +801,7 @@ def main():
postscript(errors=errors) postscript(errors=errors)
if not opt.yes_to_all: if not opt.yes_to_all:
input('Press any key to continue...') input("Press any key to continue...")
except KeyboardInterrupt: except KeyboardInterrupt:
print("\nGoodbye! Come back soon.") print("\nGoodbye! Come back soon.")

View File

@ -47,17 +47,18 @@ PRECISION_CHOICES = [
"float16", "float16",
] ]
class FileArgumentParser(ArgumentParser): class FileArgumentParser(ArgumentParser):
""" """
Supports reading defaults from an init file. Supports reading defaults from an init file.
""" """
def convert_arg_line_to_args(self, arg_line): def convert_arg_line_to_args(self, arg_line):
return shlex.split(arg_line, comments=True) return shlex.split(arg_line, comments=True)
legacy_parser = FileArgumentParser( legacy_parser = FileArgumentParser(
description= description="""
"""
Generate images using Stable Diffusion. Generate images using Stable Diffusion.
Use --web to launch the web interface. Use --web to launch the web interface.
Use --from_file to load prompts from a file path or standard input ("-"). Use --from_file to load prompts from a file path or standard input ("-").
@ -65,304 +66,279 @@ Generate images using Stable Diffusion.
Other command-line arguments are defaults that can usually be overridden Other command-line arguments are defaults that can usually be overridden
prompt the command prompt. prompt the command prompt.
""", """,
fromfile_prefix_chars='@', fromfile_prefix_chars="@",
) )
general_group = legacy_parser.add_argument_group('General') general_group = legacy_parser.add_argument_group("General")
model_group = legacy_parser.add_argument_group('Model selection') model_group = legacy_parser.add_argument_group("Model selection")
file_group = legacy_parser.add_argument_group('Input/output') file_group = legacy_parser.add_argument_group("Input/output")
web_server_group = legacy_parser.add_argument_group('Web server') web_server_group = legacy_parser.add_argument_group("Web server")
render_group = legacy_parser.add_argument_group('Rendering') render_group = legacy_parser.add_argument_group("Rendering")
postprocessing_group = legacy_parser.add_argument_group('Postprocessing') postprocessing_group = legacy_parser.add_argument_group("Postprocessing")
deprecated_group = legacy_parser.add_argument_group('Deprecated options') deprecated_group = legacy_parser.add_argument_group("Deprecated options")
deprecated_group.add_argument('--laion400m') deprecated_group.add_argument("--laion400m")
deprecated_group.add_argument('--weights') # deprecated deprecated_group.add_argument("--weights") # deprecated
general_group.add_argument( general_group.add_argument("--version", "-V", action="store_true", help="Print InvokeAI version number")
'--version','-V',
action='store_true',
help='Print InvokeAI version number'
)
model_group.add_argument( model_group.add_argument(
'--root_dir', "--root_dir",
default=None, default=None,
help='Path to directory containing "models", "outputs" and "configs". If not present will read from environment variable INVOKEAI_ROOT. Defaults to ~/invokeai.', help='Path to directory containing "models", "outputs" and "configs". If not present will read from environment variable INVOKEAI_ROOT. Defaults to ~/invokeai.',
) )
model_group.add_argument( model_group.add_argument(
'--config', "--config",
'-c', "-c",
'-config', "-config",
dest='conf', dest="conf",
default='./configs/models.yaml', default="./configs/models.yaml",
help='Path to configuration file for alternate models.', help="Path to configuration file for alternate models.",
) )
model_group.add_argument( model_group.add_argument(
'--model', "--model",
help='Indicates which diffusion model to load (defaults to "default" stanza in configs/models.yaml)', help='Indicates which diffusion model to load (defaults to "default" stanza in configs/models.yaml)',
) )
model_group.add_argument( model_group.add_argument(
'--weight_dirs', "--weight_dirs",
nargs='+', nargs="+",
type=str, type=str,
help='List of one or more directories that will be auto-scanned for new model weights to import', help="List of one or more directories that will be auto-scanned for new model weights to import",
) )
model_group.add_argument( model_group.add_argument(
'--png_compression','-z', "--png_compression",
"-z",
type=int, type=int,
default=6, default=6,
choices=range(0,9), choices=range(0, 9),
dest='png_compression', dest="png_compression",
help='level of PNG compression, from 0 (none) to 9 (maximum). Default is 6.' help="level of PNG compression, from 0 (none) to 9 (maximum). Default is 6.",
) )
model_group.add_argument( model_group.add_argument(
'-F', "-F",
'--full_precision', "--full_precision",
dest='full_precision', dest="full_precision",
action='store_true', action="store_true",
help='Deprecated way to set --precision=float32', help="Deprecated way to set --precision=float32",
) )
model_group.add_argument( model_group.add_argument(
'--max_loaded_models', "--max_loaded_models",
dest='max_loaded_models', dest="max_loaded_models",
type=int, type=int,
default=2, default=2,
help='Maximum number of models to keep in memory for fast switching, including the one in GPU', help="Maximum number of models to keep in memory for fast switching, including the one in GPU",
) )
model_group.add_argument( model_group.add_argument(
'--free_gpu_mem', "--free_gpu_mem",
dest='free_gpu_mem', dest="free_gpu_mem",
action='store_true', action="store_true",
help='Force free gpu memory before final decoding', help="Force free gpu memory before final decoding",
) )
model_group.add_argument( model_group.add_argument(
'--sequential_guidance', "--sequential_guidance",
dest='sequential_guidance', dest="sequential_guidance",
action='store_true', action="store_true",
help="Calculate guidance in serial instead of in parallel, lowering memory requirement " help="Calculate guidance in serial instead of in parallel, lowering memory requirement " "at the expense of speed",
"at the expense of speed",
) )
model_group.add_argument( model_group.add_argument(
'--xformers', "--xformers",
action=argparse.BooleanOptionalAction, action=argparse.BooleanOptionalAction,
default=True, default=True,
help='Enable/disable xformers support (default enabled if installed)', help="Enable/disable xformers support (default enabled if installed)",
) )
model_group.add_argument( model_group.add_argument(
"--always_use_cpu", "--always_use_cpu", dest="always_use_cpu", action="store_true", help="Force use of CPU even if GPU is available"
dest="always_use_cpu",
action="store_true",
help="Force use of CPU even if GPU is available"
) )
model_group.add_argument( model_group.add_argument(
'--precision', "--precision",
dest='precision', dest="precision",
type=str, type=str,
choices=PRECISION_CHOICES, choices=PRECISION_CHOICES,
metavar='PRECISION', metavar="PRECISION",
help=f'Set model precision. Defaults to auto selected based on device. Options: {", ".join(PRECISION_CHOICES)}', help=f'Set model precision. Defaults to auto selected based on device. Options: {", ".join(PRECISION_CHOICES)}',
default='auto', default="auto",
) )
model_group.add_argument( model_group.add_argument(
'--ckpt_convert', "--ckpt_convert",
action=argparse.BooleanOptionalAction, action=argparse.BooleanOptionalAction,
dest='ckpt_convert', dest="ckpt_convert",
default=True, default=True,
help='Deprecated option. Legacy ckpt files are now always converted to diffusers when loaded.' help="Deprecated option. Legacy ckpt files are now always converted to diffusers when loaded.",
) )
model_group.add_argument( model_group.add_argument(
'--internet', "--internet",
action=argparse.BooleanOptionalAction, action=argparse.BooleanOptionalAction,
dest='internet_available', dest="internet_available",
default=True, default=True,
help='Indicate whether internet is available for just-in-time model downloading (default: probe automatically).', help="Indicate whether internet is available for just-in-time model downloading (default: probe automatically).",
) )
model_group.add_argument( model_group.add_argument(
'--nsfw_checker', "--nsfw_checker",
'--safety_checker', "--safety_checker",
action=argparse.BooleanOptionalAction, action=argparse.BooleanOptionalAction,
dest='safety_checker', dest="safety_checker",
default=False, default=False,
help='Check for and blur potentially NSFW images. Use --no-nsfw_checker to disable.', help="Check for and blur potentially NSFW images. Use --no-nsfw_checker to disable.",
) )
model_group.add_argument( model_group.add_argument(
'--autoimport', "--autoimport",
default=None, default=None,
type=str, type=str,
help='Check the indicated directory for .ckpt/.safetensors weights files at startup and import directly', help="Check the indicated directory for .ckpt/.safetensors weights files at startup and import directly",
) )
model_group.add_argument( model_group.add_argument(
'--autoconvert', "--autoconvert",
default=None, default=None,
type=str, type=str,
help='Check the indicated directory for .ckpt/.safetensors weights files at startup and import as optimized diffuser models', help="Check the indicated directory for .ckpt/.safetensors weights files at startup and import as optimized diffuser models",
) )
model_group.add_argument( model_group.add_argument(
'--patchmatch', "--patchmatch",
action=argparse.BooleanOptionalAction, action=argparse.BooleanOptionalAction,
default=True, default=True,
help='Load the patchmatch extension for outpainting. Use --no-patchmatch to disable.', help="Load the patchmatch extension for outpainting. Use --no-patchmatch to disable.",
) )
file_group.add_argument( file_group.add_argument(
'--from_file', "--from_file",
dest='infile', dest="infile",
type=str, type=str,
help='If specified, load prompts from this file', help="If specified, load prompts from this file",
) )
file_group.add_argument( file_group.add_argument(
'--outdir', "--outdir",
'-o', "-o",
type=str, type=str,
help='Directory to save generated images and a log of prompts and seeds. Default: ROOTDIR/outputs', help="Directory to save generated images and a log of prompts and seeds. Default: ROOTDIR/outputs",
default='outputs', default="outputs",
) )
file_group.add_argument( file_group.add_argument(
'--prompt_as_dir', "--prompt_as_dir",
'-p', "-p",
action='store_true', action="store_true",
help='Place images in subdirectories named after the prompt.', help="Place images in subdirectories named after the prompt.",
) )
render_group.add_argument( render_group.add_argument(
'--fnformat', "--fnformat",
default='{prefix}.{seed}.png', default="{prefix}.{seed}.png",
type=str, type=str,
help='Overwrite the filename format. You can use any argument as wildcard enclosed in curly braces. Default is {prefix}.{seed}.png', help="Overwrite the filename format. You can use any argument as wildcard enclosed in curly braces. Default is {prefix}.{seed}.png",
) )
render_group.add_argument("-s", "--steps", type=int, default=50, help="Number of steps")
render_group.add_argument( render_group.add_argument(
'-s', "-W",
'--steps', "--width",
type=int, type=int,
default=50, help="Image width, multiple of 64",
help='Number of steps'
) )
render_group.add_argument( render_group.add_argument(
'-W', "-H",
'--width', "--height",
type=int, type=int,
help='Image width, multiple of 64', help="Image height, multiple of 64",
) )
render_group.add_argument( render_group.add_argument(
'-H', "-C",
'--height', "--cfg_scale",
type=int,
help='Image height, multiple of 64',
)
render_group.add_argument(
'-C',
'--cfg_scale',
default=7.5, default=7.5,
type=float, type=float,
help='Classifier free guidance (CFG) scale - higher numbers cause generator to "try" harder.', help='Classifier free guidance (CFG) scale - higher numbers cause generator to "try" harder.',
) )
render_group.add_argument( render_group.add_argument(
'--sampler', "--sampler",
'-A', "-A",
'-m', "-m",
dest='sampler_name', dest="sampler_name",
type=str, type=str,
choices=SAMPLER_CHOICES, choices=SAMPLER_CHOICES,
metavar='SAMPLER_NAME', metavar="SAMPLER_NAME",
help=f'Set the default sampler. Supported samplers: {", ".join(SAMPLER_CHOICES)}', help=f'Set the default sampler. Supported samplers: {", ".join(SAMPLER_CHOICES)}',
default='k_lms', default="k_lms",
) )
render_group.add_argument( render_group.add_argument(
'--log_tokenization', "--log_tokenization", "-t", action="store_true", help="shows how the prompt is split into tokens"
'-t',
action='store_true',
help='shows how the prompt is split into tokens'
) )
render_group.add_argument( render_group.add_argument(
'-f', "-f",
'--strength', "--strength",
type=float, type=float,
help='img2img strength for noising/unnoising. 0.0 preserves image exactly, 1.0 replaces it completely', help="img2img strength for noising/unnoising. 0.0 preserves image exactly, 1.0 replaces it completely",
) )
render_group.add_argument( render_group.add_argument(
'-T', "-T",
'-fit', "-fit",
'--fit', "--fit",
action=argparse.BooleanOptionalAction, action=argparse.BooleanOptionalAction,
help='If specified, will resize the input image to fit within the dimensions of width x height (512x512 default)', help="If specified, will resize the input image to fit within the dimensions of width x height (512x512 default)",
) )
render_group.add_argument("--grid", "-g", action=argparse.BooleanOptionalAction, help="generate a grid")
render_group.add_argument( render_group.add_argument(
'--grid', "--embedding_directory",
'-g', "--embedding_path",
action=argparse.BooleanOptionalAction, dest="embedding_path",
help='generate a grid' default="embeddings",
)
render_group.add_argument(
'--embedding_directory',
'--embedding_path',
dest='embedding_path',
default='embeddings',
type=str, type=str,
help='Path to a directory containing .bin and/or .pt files, or a single .bin/.pt file. You may use subdirectories. (default is ROOTDIR/embeddings)' help="Path to a directory containing .bin and/or .pt files, or a single .bin/.pt file. You may use subdirectories. (default is ROOTDIR/embeddings)",
) )
render_group.add_argument( render_group.add_argument(
'--lora_directory', "--lora_directory",
dest='lora_path', dest="lora_path",
default='loras', default="loras",
type=str, type=str,
help='Path to a directory containing LoRA files; subdirectories are not supported. (default is ROOTDIR/loras)' help="Path to a directory containing LoRA files; subdirectories are not supported. (default is ROOTDIR/loras)",
) )
render_group.add_argument( render_group.add_argument(
'--embeddings', "--embeddings",
action=argparse.BooleanOptionalAction, action=argparse.BooleanOptionalAction,
default=True, default=True,
help='Enable embedding directory (default). Use --no-embeddings to disable.', help="Enable embedding directory (default). Use --no-embeddings to disable.",
) )
render_group.add_argument("--enable_image_debugging", action="store_true", help="Generates debugging image to display")
render_group.add_argument( render_group.add_argument(
'--enable_image_debugging', "--karras_max",
action='store_true',
help='Generates debugging image to display'
)
render_group.add_argument(
'--karras_max',
type=int, type=int,
default=None, default=None,
help="control the point at which the K* samplers will shift from using the Karras noise schedule (good for low step counts) to the LatentDiffusion noise schedule (good for high step counts). Set to 0 to use LatentDiffusion for all step values, and to a high value (e.g. 1000) to use Karras for all step values. [29]." help="control the point at which the K* samplers will shift from using the Karras noise schedule (good for low step counts) to the LatentDiffusion noise schedule (good for high step counts). Set to 0 to use LatentDiffusion for all step values, and to a high value (e.g. 1000) to use Karras for all step values. [29].",
) )
# Restoration related args # Restoration related args
postprocessing_group.add_argument( postprocessing_group.add_argument(
'--no_restore', "--no_restore",
dest='restore', dest="restore",
action='store_false', action="store_false",
help='Disable face restoration with GFPGAN or codeformer', help="Disable face restoration with GFPGAN or codeformer",
) )
postprocessing_group.add_argument( postprocessing_group.add_argument(
'--no_upscale', "--no_upscale",
dest='esrgan', dest="esrgan",
action='store_false', action="store_false",
help='Disable upscaling with ESRGAN', help="Disable upscaling with ESRGAN",
) )
postprocessing_group.add_argument( postprocessing_group.add_argument(
'--esrgan_bg_tile', "--esrgan_bg_tile",
type=int, type=int,
default=400, default=400,
help='Tile size for background sampler, 0 for no tile during testing. Default: 400.', help="Tile size for background sampler, 0 for no tile during testing. Default: 400.",
) )
postprocessing_group.add_argument( postprocessing_group.add_argument(
'--esrgan_denoise_str', "--esrgan_denoise_str",
type=float, type=float,
default=0.75, default=0.75,
help='esrgan denoise str. 0 is no denoise, 1 is max denoise. Default: 0.75', help="esrgan denoise str. 0 is no denoise, 1 is max denoise. Default: 0.75",
) )
postprocessing_group.add_argument( postprocessing_group.add_argument(
'--gfpgan_model_path', "--gfpgan_model_path",
type=str, type=str,
default='./models/gfpgan/GFPGANv1.4.pth', default="./models/gfpgan/GFPGANv1.4.pth",
help='Indicates the path to the GFPGAN model', help="Indicates the path to the GFPGAN model",
) )
web_server_group.add_argument( web_server_group.add_argument(
'--web', "--web",
dest='web', dest="web",
action='store_true', action="store_true",
help='Start in web server mode.', help="Start in web server mode.",
) )
web_server_group.add_argument( web_server_group.add_argument(
'--web_develop', "--web_develop",
dest='web_develop', dest="web_develop",
action='store_true', action="store_true",
help='Start in web server development mode.', help="Start in web server development mode.",
) )
web_server_group.add_argument( web_server_group.add_argument(
"--web_verbose", "--web_verbose",
@ -376,32 +352,27 @@ web_server_group.add_argument(
help="Additional allowed origins, comma-separated", help="Additional allowed origins, comma-separated",
) )
web_server_group.add_argument( web_server_group.add_argument(
'--host', "--host",
type=str, type=str,
default='127.0.0.1', default="127.0.0.1",
help='Web server: Host or IP to listen on. Set to 0.0.0.0 to accept traffic from other devices on your network.' help="Web server: Host or IP to listen on. Set to 0.0.0.0 to accept traffic from other devices on your network.",
) )
web_server_group.add_argument("--port", type=int, default="9090", help="Web server: Port to listen on")
web_server_group.add_argument( web_server_group.add_argument(
'--port', "--certfile",
type=int,
default='9090',
help='Web server: Port to listen on'
)
web_server_group.add_argument(
'--certfile',
type=str, type=str,
default=None, default=None,
help='Web server: Path to certificate file to use for SSL. Use together with --keyfile' help="Web server: Path to certificate file to use for SSL. Use together with --keyfile",
) )
web_server_group.add_argument( web_server_group.add_argument(
'--keyfile', "--keyfile",
type=str, type=str,
default=None, default=None,
help='Web server: Path to private key file to use for SSL. Use together with --certfile' help="Web server: Path to private key file to use for SSL. Use together with --certfile",
) )
web_server_group.add_argument( web_server_group.add_argument(
'--gui', "--gui",
dest='gui', dest="gui",
action='store_true', action="store_true",
help='Start InvokeAI GUI', help="Start InvokeAI GUI",
) )

View File

@ -1,7 +1,7 @@
''' """
Migrate the models directory and models.yaml file from an existing Migrate the models directory and models.yaml file from an existing
InvokeAI 2.3 installation to 3.0.0. InvokeAI 2.3 installation to 3.0.0.
''' """
import os import os
import argparse import argparse
@ -29,14 +29,13 @@ from transformers import (
import invokeai.backend.util.logging as logger import invokeai.backend.util.logging as logger
from invokeai.app.services.config import InvokeAIAppConfig from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.backend.model_management import ModelManager from invokeai.backend.model_management import ModelManager
from invokeai.backend.model_management.model_probe import ( from invokeai.backend.model_management.model_probe import ModelProbe, ModelType, BaseModelType, ModelProbeInfo
ModelProbe, ModelType, BaseModelType, ModelProbeInfo
)
warnings.filterwarnings("ignore") warnings.filterwarnings("ignore")
transformers.logging.set_verbosity_error() transformers.logging.set_verbosity_error()
diffusers.logging.set_verbosity_error() diffusers.logging.set_verbosity_error()
# holder for paths that we will migrate # holder for paths that we will migrate
@dataclass @dataclass
class ModelPaths: class ModelPaths:
@ -45,81 +44,82 @@ class ModelPaths:
loras: Path loras: Path
controlnets: Path controlnets: Path
class MigrateTo3(object): class MigrateTo3(object):
def __init__(self, def __init__(
from_root: Path, self,
to_models: Path, from_root: Path,
model_manager: ModelManager, to_models: Path,
src_paths: ModelPaths, model_manager: ModelManager,
): src_paths: ModelPaths,
):
self.root_directory = from_root self.root_directory = from_root
self.dest_models = to_models self.dest_models = to_models
self.mgr = model_manager self.mgr = model_manager
self.src_paths = src_paths self.src_paths = src_paths
@classmethod @classmethod
def initialize_yaml(cls, yaml_file: Path): def initialize_yaml(cls, yaml_file: Path):
with open(yaml_file, 'w') as file: with open(yaml_file, "w") as file:
file.write( file.write(yaml.dump({"__metadata__": {"version": "3.0.0"}}))
yaml.dump(
{
'__metadata__': {'version':'3.0.0'}
}
)
)
def create_directory_structure(self): def create_directory_structure(self):
''' """
Create the basic directory structure for the models folder. Create the basic directory structure for the models folder.
''' """
for model_base in [BaseModelType.StableDiffusion1,BaseModelType.StableDiffusion2]: for model_base in [BaseModelType.StableDiffusion1, BaseModelType.StableDiffusion2]:
for model_type in [ModelType.Main, ModelType.Vae, ModelType.Lora, for model_type in [
ModelType.ControlNet,ModelType.TextualInversion]: ModelType.Main,
ModelType.Vae,
ModelType.Lora,
ModelType.ControlNet,
ModelType.TextualInversion,
]:
path = self.dest_models / model_base.value / model_type.value path = self.dest_models / model_base.value / model_type.value
path.mkdir(parents=True, exist_ok=True) path.mkdir(parents=True, exist_ok=True)
path = self.dest_models / 'core' path = self.dest_models / "core"
path.mkdir(parents=True, exist_ok=True) path.mkdir(parents=True, exist_ok=True)
@staticmethod @staticmethod
def copy_file(src:Path,dest:Path): def copy_file(src: Path, dest: Path):
''' """
copy a single file with logging copy a single file with logging
''' """
if dest.exists(): if dest.exists():
logger.info(f'Skipping existing {str(dest)}') logger.info(f"Skipping existing {str(dest)}")
return return
logger.info(f'Copying {str(src)} to {str(dest)}') logger.info(f"Copying {str(src)} to {str(dest)}")
try: try:
shutil.copy(src, dest) shutil.copy(src, dest)
except Exception as e: except Exception as e:
logger.error(f'COPY FAILED: {str(e)}') logger.error(f"COPY FAILED: {str(e)}")
@staticmethod @staticmethod
def copy_dir(src:Path,dest:Path): def copy_dir(src: Path, dest: Path):
''' """
Recursively copy a directory with logging Recursively copy a directory with logging
''' """
if dest.exists(): if dest.exists():
logger.info(f'Skipping existing {str(dest)}') logger.info(f"Skipping existing {str(dest)}")
return return
logger.info(f'Copying {str(src)} to {str(dest)}') logger.info(f"Copying {str(src)} to {str(dest)}")
try: try:
shutil.copytree(src, dest) shutil.copytree(src, dest)
except Exception as e: except Exception as e:
logger.error(f'COPY FAILED: {str(e)}') logger.error(f"COPY FAILED: {str(e)}")
def migrate_models(self, src_dir: Path): def migrate_models(self, src_dir: Path):
''' """
Recursively walk through src directory, probe anything Recursively walk through src directory, probe anything
that looks like a model, and copy the model into the that looks like a model, and copy the model into the
appropriate location within the destination models directory. appropriate location within the destination models directory.
''' """
directories_scanned = set() directories_scanned = set()
for root, dirs, files in os.walk(src_dir): for root, dirs, files in os.walk(src_dir):
for d in dirs: for d in dirs:
try: try:
model = Path(root,d) model = Path(root, d)
info = ModelProbe().heuristic_probe(model) info = ModelProbe().heuristic_probe(model)
if not info: if not info:
continue continue
@ -136,9 +136,9 @@ class MigrateTo3(object):
# don't copy raw learned_embeds.bin or pytorch_lora_weights.bin # don't copy raw learned_embeds.bin or pytorch_lora_weights.bin
# let them be copied as part of a tree copy operation # let them be copied as part of a tree copy operation
try: try:
if f in {'learned_embeds.bin','pytorch_lora_weights.bin'}: if f in {"learned_embeds.bin", "pytorch_lora_weights.bin"}:
continue continue
model = Path(root,f) model = Path(root, f)
if model.parent in directories_scanned: if model.parent in directories_scanned:
continue continue
info = ModelProbe().heuristic_probe(model) info = ModelProbe().heuristic_probe(model)
@ -154,148 +154,146 @@ class MigrateTo3(object):
logger.error(str(e)) logger.error(str(e))
def migrate_support_models(self): def migrate_support_models(self):
''' """
Copy the clipseg, upscaler, and restoration models to their new Copy the clipseg, upscaler, and restoration models to their new
locations. locations.
''' """
dest_directory = self.dest_models dest_directory = self.dest_models
if (self.root_directory / 'models/clipseg').exists(): if (self.root_directory / "models/clipseg").exists():
self.copy_dir(self.root_directory / 'models/clipseg', dest_directory / 'core/misc/clipseg') self.copy_dir(self.root_directory / "models/clipseg", dest_directory / "core/misc/clipseg")
if (self.root_directory / 'models/realesrgan').exists(): if (self.root_directory / "models/realesrgan").exists():
self.copy_dir(self.root_directory / 'models/realesrgan', dest_directory / 'core/upscaling/realesrgan') self.copy_dir(self.root_directory / "models/realesrgan", dest_directory / "core/upscaling/realesrgan")
for d in ['codeformer','gfpgan']: for d in ["codeformer", "gfpgan"]:
path = self.root_directory / 'models' / d path = self.root_directory / "models" / d
if path.exists(): if path.exists():
self.copy_dir(path,dest_directory / f'core/face_restoration/{d}') self.copy_dir(path, dest_directory / f"core/face_restoration/{d}")
def migrate_tuning_models(self): def migrate_tuning_models(self):
''' """
Migrate the embeddings, loras and controlnets directories to their new homes. Migrate the embeddings, loras and controlnets directories to their new homes.
''' """
for src in [self.src_paths.embeddings, self.src_paths.loras, self.src_paths.controlnets]: for src in [self.src_paths.embeddings, self.src_paths.loras, self.src_paths.controlnets]:
if not src: if not src:
continue continue
if src.is_dir(): if src.is_dir():
logger.info(f'Scanning {src}') logger.info(f"Scanning {src}")
self.migrate_models(src) self.migrate_models(src)
else: else:
logger.info(f'{src} directory not found; skipping') logger.info(f"{src} directory not found; skipping")
continue continue
def migrate_conversion_models(self): def migrate_conversion_models(self):
''' """
Migrate all the models that are needed by the ckpt_to_diffusers conversion Migrate all the models that are needed by the ckpt_to_diffusers conversion
script. script.
''' """
dest_directory = self.dest_models dest_directory = self.dest_models
kwargs = dict( kwargs = dict(
cache_dir = self.root_directory / 'models/hub', cache_dir=self.root_directory / "models/hub",
#local_files_only = True # local_files_only = True
) )
try: try:
logger.info('Migrating core tokenizers and text encoders') logger.info("Migrating core tokenizers and text encoders")
target_dir = dest_directory / 'core' / 'convert' target_dir = dest_directory / "core" / "convert"
self._migrate_pretrained(BertTokenizerFast, self._migrate_pretrained(
repo_id='bert-base-uncased', BertTokenizerFast, repo_id="bert-base-uncased", dest=target_dir / "bert-base-uncased", **kwargs
dest = target_dir / 'bert-base-uncased', )
**kwargs)
# sd-1 # sd-1
repo_id = 'openai/clip-vit-large-patch14' repo_id = "openai/clip-vit-large-patch14"
self._migrate_pretrained(CLIPTokenizer, self._migrate_pretrained(
repo_id= repo_id, CLIPTokenizer, repo_id=repo_id, dest=target_dir / "clip-vit-large-patch14", **kwargs
dest= target_dir / 'clip-vit-large-patch14', )
**kwargs) self._migrate_pretrained(
self._migrate_pretrained(CLIPTextModel, CLIPTextModel, repo_id=repo_id, dest=target_dir / "clip-vit-large-patch14", force=True, **kwargs
repo_id = repo_id, )
dest = target_dir / 'clip-vit-large-patch14',
force = True,
**kwargs)
# sd-2 # sd-2
repo_id = "stabilityai/stable-diffusion-2" repo_id = "stabilityai/stable-diffusion-2"
self._migrate_pretrained(CLIPTokenizer, self._migrate_pretrained(
repo_id = repo_id, CLIPTokenizer,
dest = target_dir / 'stable-diffusion-2-clip' / 'tokenizer', repo_id=repo_id,
**{'subfolder':'tokenizer',**kwargs} dest=target_dir / "stable-diffusion-2-clip" / "tokenizer",
) **{"subfolder": "tokenizer", **kwargs},
self._migrate_pretrained(CLIPTextModel, )
repo_id = repo_id, self._migrate_pretrained(
dest = target_dir / 'stable-diffusion-2-clip' / 'text_encoder', CLIPTextModel,
**{'subfolder':'text_encoder',**kwargs} repo_id=repo_id,
) dest=target_dir / "stable-diffusion-2-clip" / "text_encoder",
**{"subfolder": "text_encoder", **kwargs},
)
# VAE # VAE
logger.info('Migrating stable diffusion VAE') logger.info("Migrating stable diffusion VAE")
self._migrate_pretrained(AutoencoderKL, self._migrate_pretrained(
repo_id = 'stabilityai/sd-vae-ft-mse', AutoencoderKL, repo_id="stabilityai/sd-vae-ft-mse", dest=target_dir / "sd-vae-ft-mse", **kwargs
dest = target_dir / 'sd-vae-ft-mse', )
**kwargs)
# safety checking # safety checking
logger.info('Migrating safety checker') logger.info("Migrating safety checker")
repo_id = "CompVis/stable-diffusion-safety-checker" repo_id = "CompVis/stable-diffusion-safety-checker"
self._migrate_pretrained(AutoFeatureExtractor, self._migrate_pretrained(
repo_id = repo_id, AutoFeatureExtractor, repo_id=repo_id, dest=target_dir / "stable-diffusion-safety-checker", **kwargs
dest = target_dir / 'stable-diffusion-safety-checker', )
**kwargs) self._migrate_pretrained(
self._migrate_pretrained(StableDiffusionSafetyChecker, StableDiffusionSafetyChecker,
repo_id = repo_id, repo_id=repo_id,
dest = target_dir / 'stable-diffusion-safety-checker', dest=target_dir / "stable-diffusion-safety-checker",
**kwargs) **kwargs,
)
except KeyboardInterrupt: except KeyboardInterrupt:
raise raise
except Exception as e: except Exception as e:
logger.error(str(e)) logger.error(str(e))
def _model_probe_to_path(self, info: ModelProbeInfo)->Path: def _model_probe_to_path(self, info: ModelProbeInfo) -> Path:
return Path(self.dest_models, info.base_type.value, info.model_type.value) return Path(self.dest_models, info.base_type.value, info.model_type.value)
def _migrate_pretrained(self, model_class, repo_id: str, dest: Path, force:bool=False, **kwargs): def _migrate_pretrained(self, model_class, repo_id: str, dest: Path, force: bool = False, **kwargs):
if dest.exists() and not force: if dest.exists() and not force:
logger.info(f'Skipping existing {dest}') logger.info(f"Skipping existing {dest}")
return return
model = model_class.from_pretrained(repo_id, **kwargs) model = model_class.from_pretrained(repo_id, **kwargs)
self._save_pretrained(model, dest, overwrite=force) self._save_pretrained(model, dest, overwrite=force)
def _save_pretrained(self, model, dest: Path, overwrite: bool=False): def _save_pretrained(self, model, dest: Path, overwrite: bool = False):
model_name = dest.name model_name = dest.name
if overwrite: if overwrite:
model.save_pretrained(dest, safe_serialization=True) model.save_pretrained(dest, safe_serialization=True)
else: else:
download_path = dest.with_name(f'{model_name}.downloading') download_path = dest.with_name(f"{model_name}.downloading")
model.save_pretrained(download_path, safe_serialization=True) model.save_pretrained(download_path, safe_serialization=True)
download_path.replace(dest) download_path.replace(dest)
def _download_vae(self, repo_id: str, subfolder:str=None)->Path: def _download_vae(self, repo_id: str, subfolder: str = None) -> Path:
vae = AutoencoderKL.from_pretrained(repo_id, cache_dir=self.root_directory / 'models/hub', subfolder=subfolder) vae = AutoencoderKL.from_pretrained(repo_id, cache_dir=self.root_directory / "models/hub", subfolder=subfolder)
info = ModelProbe().heuristic_probe(vae) info = ModelProbe().heuristic_probe(vae)
_, model_name = repo_id.split('/') _, model_name = repo_id.split("/")
dest = self._model_probe_to_path(info) / self.unique_name(model_name, info) dest = self._model_probe_to_path(info) / self.unique_name(model_name, info)
vae.save_pretrained(dest, safe_serialization=True) vae.save_pretrained(dest, safe_serialization=True)
return dest return dest
def _vae_path(self, vae: Union[str,dict])->Path: def _vae_path(self, vae: Union[str, dict]) -> Path:
''' """
Convert 2.3 VAE stanza to a straight path. Convert 2.3 VAE stanza to a straight path.
''' """
vae_path = None vae_path = None
# First get a path # First get a path
if isinstance(vae,str): if isinstance(vae, str):
vae_path = vae vae_path = vae
elif isinstance(vae,DictConfig): elif isinstance(vae, DictConfig):
if p := vae.get('path'): if p := vae.get("path"):
vae_path = p vae_path = p
elif repo_id := vae.get('repo_id'): elif repo_id := vae.get("repo_id"):
if repo_id=='stabilityai/sd-vae-ft-mse': # this guy is already downloaded if repo_id == "stabilityai/sd-vae-ft-mse": # this guy is already downloaded
vae_path = 'models/core/convert/sd-vae-ft-mse' vae_path = "models/core/convert/sd-vae-ft-mse"
return vae_path return vae_path
else: else:
vae_path = self._download_vae(repo_id, vae.get('subfolder')) vae_path = self._download_vae(repo_id, vae.get("subfolder"))
assert vae_path is not None, "Couldn't find VAE for this model" assert vae_path is not None, "Couldn't find VAE for this model"
@ -307,152 +305,144 @@ class MigrateTo3(object):
dest = self._model_probe_to_path(info) / vae_path.name dest = self._model_probe_to_path(info) / vae_path.name
if not dest.exists(): if not dest.exists():
if vae_path.is_dir(): if vae_path.is_dir():
self.copy_dir(vae_path,dest) self.copy_dir(vae_path, dest)
else: else:
self.copy_file(vae_path,dest) self.copy_file(vae_path, dest)
vae_path = dest vae_path = dest
if vae_path.is_relative_to(self.dest_models): if vae_path.is_relative_to(self.dest_models):
rel_path = vae_path.relative_to(self.dest_models) rel_path = vae_path.relative_to(self.dest_models)
return Path('models',rel_path) return Path("models", rel_path)
else: else:
return vae_path return vae_path
def migrate_repo_id(self, repo_id: str, model_name: str=None, **extra_config): def migrate_repo_id(self, repo_id: str, model_name: str = None, **extra_config):
''' """
Migrate a locally-cached diffusers pipeline identified with a repo_id Migrate a locally-cached diffusers pipeline identified with a repo_id
''' """
dest_dir = self.dest_models dest_dir = self.dest_models
cache = self.root_directory / 'models/hub' cache = self.root_directory / "models/hub"
kwargs = dict( kwargs = dict(
cache_dir = cache, cache_dir=cache,
safety_checker = None, safety_checker=None,
# local_files_only = True, # local_files_only = True,
) )
owner,repo_name = repo_id.split('/') owner, repo_name = repo_id.split("/")
model_name = model_name or repo_name model_name = model_name or repo_name
model = cache / '--'.join(['models',owner,repo_name]) model = cache / "--".join(["models", owner, repo_name])
if len(list(model.glob('snapshots/**/model_index.json')))==0: if len(list(model.glob("snapshots/**/model_index.json"))) == 0:
return return
revisions = [x.name for x in model.glob('refs/*')] revisions = [x.name for x in model.glob("refs/*")]
# if an fp16 is available we use that # if an fp16 is available we use that
revision = 'fp16' if len(revisions) > 1 and 'fp16' in revisions else revisions[0] revision = "fp16" if len(revisions) > 1 and "fp16" in revisions else revisions[0]
pipeline = StableDiffusionPipeline.from_pretrained( pipeline = StableDiffusionPipeline.from_pretrained(repo_id, revision=revision, **kwargs)
repo_id,
revision=revision,
**kwargs)
info = ModelProbe().heuristic_probe(pipeline) info = ModelProbe().heuristic_probe(pipeline)
if not info: if not info:
return return
if self.mgr.model_exists(model_name, info.base_type, info.model_type): if self.mgr.model_exists(model_name, info.base_type, info.model_type):
logger.warning(f'A model named {model_name} already exists at the destination. Skipping migration.') logger.warning(f"A model named {model_name} already exists at the destination. Skipping migration.")
return return
dest = self._model_probe_to_path(info) / model_name dest = self._model_probe_to_path(info) / model_name
self._save_pretrained(pipeline, dest) self._save_pretrained(pipeline, dest)
rel_path = Path('models',dest.relative_to(dest_dir)) rel_path = Path("models", dest.relative_to(dest_dir))
self._add_model(model_name, info, rel_path, **extra_config) self._add_model(model_name, info, rel_path, **extra_config)
def migrate_path(self, location: Path, model_name: str=None, **extra_config): def migrate_path(self, location: Path, model_name: str = None, **extra_config):
''' """
Migrate a model referred to using 'weights' or 'path' Migrate a model referred to using 'weights' or 'path'
''' """
# handle relative paths # handle relative paths
dest_dir = self.dest_models dest_dir = self.dest_models
location = self.root_directory / location location = self.root_directory / location
model_name = model_name or location.stem model_name = model_name or location.stem
info = ModelProbe().heuristic_probe(location) info = ModelProbe().heuristic_probe(location)
if not info: if not info:
return return
if self.mgr.model_exists(model_name, info.base_type, info.model_type): if self.mgr.model_exists(model_name, info.base_type, info.model_type):
logger.warning(f'A model named {model_name} already exists at the destination. Skipping migration.') logger.warning(f"A model named {model_name} already exists at the destination. Skipping migration.")
return return
# uh oh, weights is in the old models directory - move it into the new one # uh oh, weights is in the old models directory - move it into the new one
if Path(location).is_relative_to(self.src_paths.models): if Path(location).is_relative_to(self.src_paths.models):
dest = Path(dest_dir, info.base_type.value, info.model_type.value, location.name) dest = Path(dest_dir, info.base_type.value, info.model_type.value, location.name)
if location.is_dir(): if location.is_dir():
self.copy_dir(location,dest) self.copy_dir(location, dest)
else: else:
self.copy_file(location,dest) self.copy_file(location, dest)
location = Path('models', info.base_type.value, info.model_type.value, location.name) location = Path("models", info.base_type.value, info.model_type.value, location.name)
self._add_model(model_name, info, location, **extra_config) self._add_model(model_name, info, location, **extra_config)
def _add_model(self, def _add_model(self, model_name: str, info: ModelProbeInfo, location: Path, **extra_config):
model_name: str,
info: ModelProbeInfo,
location: Path,
**extra_config):
if info.model_type != ModelType.Main: if info.model_type != ModelType.Main:
return return
self.mgr.add_model(
model_name = model_name,
base_model = info.base_type,
model_type = info.model_type,
clobber = True,
model_attributes = {
'path': str(location),
'description': f'A {info.base_type.value} {info.model_type.value} model',
'model_format': info.format,
'variant': info.variant_type.value,
**extra_config,
}
)
def migrate_defined_models(self):
'''
Migrate models defined in models.yaml
'''
# find any models referred to in old models.yaml
conf = OmegaConf.load(self.root_directory / 'configs/models.yaml')
for model_name, stanza in conf.items():
self.mgr.add_model(
model_name=model_name,
base_model=info.base_type,
model_type=info.model_type,
clobber=True,
model_attributes={
"path": str(location),
"description": f"A {info.base_type.value} {info.model_type.value} model",
"model_format": info.format,
"variant": info.variant_type.value,
**extra_config,
},
)
def migrate_defined_models(self):
"""
Migrate models defined in models.yaml
"""
# find any models referred to in old models.yaml
conf = OmegaConf.load(self.root_directory / "configs/models.yaml")
for model_name, stanza in conf.items():
try: try:
passthru_args = {} passthru_args = {}
if vae := stanza.get('vae'): if vae := stanza.get("vae"):
try: try:
passthru_args['vae'] = str(self._vae_path(vae)) passthru_args["vae"] = str(self._vae_path(vae))
except Exception as e: except Exception as e:
logger.warning(f'Could not find a VAE matching "{vae}" for model "{model_name}"') logger.warning(f'Could not find a VAE matching "{vae}" for model "{model_name}"')
logger.warning(str(e)) logger.warning(str(e))
if config := stanza.get('config'): if config := stanza.get("config"):
passthru_args['config'] = config passthru_args["config"] = config
if description:= stanza.get('description'): if description := stanza.get("description"):
passthru_args['description'] = description passthru_args["description"] = description
if repo_id := stanza.get('repo_id'): if repo_id := stanza.get("repo_id"):
logger.info(f'Migrating diffusers model {model_name}') logger.info(f"Migrating diffusers model {model_name}")
self.migrate_repo_id(repo_id, model_name, **passthru_args) self.migrate_repo_id(repo_id, model_name, **passthru_args)
elif location := stanza.get('weights'): elif location := stanza.get("weights"):
logger.info(f'Migrating checkpoint model {model_name}') logger.info(f"Migrating checkpoint model {model_name}")
self.migrate_path(Path(location), model_name, **passthru_args) self.migrate_path(Path(location), model_name, **passthru_args)
elif location := stanza.get('path'): elif location := stanza.get("path"):
logger.info(f'Migrating diffusers model {model_name}') logger.info(f"Migrating diffusers model {model_name}")
self.migrate_path(Path(location), model_name, **passthru_args) self.migrate_path(Path(location), model_name, **passthru_args)
except KeyboardInterrupt: except KeyboardInterrupt:
raise raise
except Exception as e: except Exception as e:
logger.error(str(e)) logger.error(str(e))
def migrate(self): def migrate(self):
self.create_directory_structure() self.create_directory_structure()
# the configure script is doing this # the configure script is doing this
@ -461,67 +451,71 @@ class MigrateTo3(object):
self.migrate_tuning_models() self.migrate_tuning_models()
self.migrate_defined_models() self.migrate_defined_models()
def _parse_legacy_initfile(root: Path, initfile: Path)->ModelPaths:
''' def _parse_legacy_initfile(root: Path, initfile: Path) -> ModelPaths:
"""
Returns tuple of (embedding_path, lora_path, controlnet_path) Returns tuple of (embedding_path, lora_path, controlnet_path)
''' """
parser = argparse.ArgumentParser(fromfile_prefix_chars='@') parser = argparse.ArgumentParser(fromfile_prefix_chars="@")
parser.add_argument( parser.add_argument(
'--embedding_directory', "--embedding_directory",
'--embedding_path', "--embedding_path",
type=Path, type=Path,
dest='embedding_path', dest="embedding_path",
default=Path('embeddings'), default=Path("embeddings"),
) )
parser.add_argument( parser.add_argument(
'--lora_directory', "--lora_directory",
dest='lora_path', dest="lora_path",
type=Path, type=Path,
default=Path('loras'), default=Path("loras"),
) )
opt,_ = parser.parse_known_args([f'@{str(initfile)}']) opt, _ = parser.parse_known_args([f"@{str(initfile)}"])
return ModelPaths( return ModelPaths(
models = root / 'models', models=root / "models",
embeddings = root / str(opt.embedding_path).strip('"'), embeddings=root / str(opt.embedding_path).strip('"'),
loras = root / str(opt.lora_path).strip('"'), loras=root / str(opt.lora_path).strip('"'),
controlnets = root / 'controlnets', controlnets=root / "controlnets",
) )
def _parse_legacy_yamlfile(root: Path, initfile: Path)->ModelPaths:
''' def _parse_legacy_yamlfile(root: Path, initfile: Path) -> ModelPaths:
"""
Returns tuple of (embedding_path, lora_path, controlnet_path) Returns tuple of (embedding_path, lora_path, controlnet_path)
''' """
# Don't use the config object because it is unforgiving of version updates # Don't use the config object because it is unforgiving of version updates
# Just use omegaconf directly # Just use omegaconf directly
opt = OmegaConf.load(initfile) opt = OmegaConf.load(initfile)
paths = opt.InvokeAI.Paths paths = opt.InvokeAI.Paths
models = paths.get('models_dir','models') models = paths.get("models_dir", "models")
embeddings = paths.get('embedding_dir','embeddings') embeddings = paths.get("embedding_dir", "embeddings")
loras = paths.get('lora_dir','loras') loras = paths.get("lora_dir", "loras")
controlnets = paths.get('controlnet_dir','controlnets') controlnets = paths.get("controlnet_dir", "controlnets")
return ModelPaths( return ModelPaths(
models = root / models, models=root / models,
embeddings = root / embeddings, embeddings=root / embeddings,
loras = root /loras, loras=root / loras,
controlnets = root / controlnets, controlnets=root / controlnets,
) )
def get_legacy_embeddings(root: Path) -> ModelPaths: def get_legacy_embeddings(root: Path) -> ModelPaths:
path = root / 'invokeai.init' path = root / "invokeai.init"
if path.exists(): if path.exists():
return _parse_legacy_initfile(root, path) return _parse_legacy_initfile(root, path)
path = root / 'invokeai.yaml' path = root / "invokeai.yaml"
if path.exists(): if path.exists():
return _parse_legacy_yamlfile(root, path) return _parse_legacy_yamlfile(root, path)
def do_migrate(src_directory: Path, dest_directory: Path): def do_migrate(src_directory: Path, dest_directory: Path):
""" """
Migrate models from src to dest InvokeAI root directories Migrate models from src to dest InvokeAI root directories
""" """
config_file = dest_directory / 'configs' / 'models.yaml.3' config_file = dest_directory / "configs" / "models.yaml.3"
dest_models = dest_directory / 'models.3' dest_models = dest_directory / "models.3"
version_3 = (dest_directory / 'models' / 'core').exists() version_3 = (dest_directory / "models" / "core").exists()
# Here we create the destination models.yaml file. # Here we create the destination models.yaml file.
# If we are writing into a version 3 directory and the # If we are writing into a version 3 directory and the
@ -530,80 +524,80 @@ def do_migrate(src_directory: Path, dest_directory: Path):
# create a new empty one. # create a new empty one.
if version_3: # write into the dest directory if version_3: # write into the dest directory
try: try:
shutil.copy(dest_directory / 'configs' / 'models.yaml', config_file) shutil.copy(dest_directory / "configs" / "models.yaml", config_file)
except: except:
MigrateTo3.initialize_yaml(config_file) MigrateTo3.initialize_yaml(config_file)
mgr = ModelManager(config_file) # important to initialize BEFORE moving the models directory mgr = ModelManager(config_file) # important to initialize BEFORE moving the models directory
(dest_directory / 'models').replace(dest_models) (dest_directory / "models").replace(dest_models)
else: else:
MigrateTo3.initialize_yaml(config_file) MigrateTo3.initialize_yaml(config_file)
mgr = ModelManager(config_file) mgr = ModelManager(config_file)
paths = get_legacy_embeddings(src_directory) paths = get_legacy_embeddings(src_directory)
migrator = MigrateTo3( migrator = MigrateTo3(from_root=src_directory, to_models=dest_models, model_manager=mgr, src_paths=paths)
from_root = src_directory,
to_models = dest_models,
model_manager = mgr,
src_paths = paths
)
migrator.migrate() migrator.migrate()
print("Migration successful.") print("Migration successful.")
if not version_3: if not version_3:
(dest_directory / 'models').replace(src_directory / 'models.orig') (dest_directory / "models").replace(src_directory / "models.orig")
print(f'Original models directory moved to {dest_directory}/models.orig') print(f"Original models directory moved to {dest_directory}/models.orig")
(dest_directory / 'configs' / 'models.yaml').replace(src_directory / 'configs' / 'models.yaml.orig') (dest_directory / "configs" / "models.yaml").replace(src_directory / "configs" / "models.yaml.orig")
print(f'Original models.yaml file moved to {dest_directory}/configs/models.yaml.orig') print(f"Original models.yaml file moved to {dest_directory}/configs/models.yaml.orig")
config_file.replace(config_file.with_suffix('')) config_file.replace(config_file.with_suffix(""))
dest_models.replace(dest_models.with_suffix('')) dest_models.replace(dest_models.with_suffix(""))
def main(): def main():
parser = argparse.ArgumentParser(prog="invokeai-migrate3", parser = argparse.ArgumentParser(
description=""" prog="invokeai-migrate3",
description="""
This will copy and convert the models directory and the configs/models.yaml from the InvokeAI 2.3 format This will copy and convert the models directory and the configs/models.yaml from the InvokeAI 2.3 format
'--from-directory' root to the InvokeAI 3.0 '--to-directory' root. These may be abbreviated '--from' and '--to'.a '--from-directory' root to the InvokeAI 3.0 '--to-directory' root. These may be abbreviated '--from' and '--to'.a
The old models directory and config file will be renamed 'models.orig' and 'models.yaml.orig' respectively. The old models directory and config file will be renamed 'models.orig' and 'models.yaml.orig' respectively.
It is safe to provide the same directory for both arguments, but it is better to use the invokeai_configure It is safe to provide the same directory for both arguments, but it is better to use the invokeai_configure
script, which will perform a full upgrade in place.""" script, which will perform a full upgrade in place.""",
) )
parser.add_argument('--from-directory', parser.add_argument(
dest='src_root', "--from-directory",
type=Path, dest="src_root",
required=True, type=Path,
help='Source InvokeAI 2.3 root directory (containing "invokeai.init" or "invokeai.yaml")' required=True,
) help='Source InvokeAI 2.3 root directory (containing "invokeai.init" or "invokeai.yaml")',
parser.add_argument('--to-directory', )
dest='dest_root', parser.add_argument(
type=Path, "--to-directory",
required=True, dest="dest_root",
help='Destination InvokeAI 3.0 directory (containing "invokeai.yaml")' type=Path,
) required=True,
help='Destination InvokeAI 3.0 directory (containing "invokeai.yaml")',
)
args = parser.parse_args() args = parser.parse_args()
src_root = args.src_root src_root = args.src_root
assert src_root.is_dir(), f"{src_root} is not a valid directory" assert src_root.is_dir(), f"{src_root} is not a valid directory"
assert (src_root / 'models').is_dir(), f"{src_root} does not contain a 'models' subdirectory" assert (src_root / "models").is_dir(), f"{src_root} does not contain a 'models' subdirectory"
assert (src_root / 'models' / 'hub').exists(), f"{src_root} does not contain a version 2.3 models directory" assert (src_root / "models" / "hub").exists(), f"{src_root} does not contain a version 2.3 models directory"
assert (src_root / 'invokeai.init').exists() or (src_root / 'invokeai.yaml').exists(), f"{src_root} does not contain an InvokeAI init file." assert (src_root / "invokeai.init").exists() or (
src_root / "invokeai.yaml"
).exists(), f"{src_root} does not contain an InvokeAI init file."
dest_root = args.dest_root dest_root = args.dest_root
assert dest_root.is_dir(), f"{dest_root} is not a valid directory" assert dest_root.is_dir(), f"{dest_root} is not a valid directory"
config = InvokeAIAppConfig.get_config() config = InvokeAIAppConfig.get_config()
config.parse_args(['--root',str(dest_root)]) config.parse_args(["--root", str(dest_root)])
# TODO: revisit - don't rely on invokeai.yaml to exist yet! # TODO: revisit - don't rely on invokeai.yaml to exist yet!
dest_is_setup = (dest_root / 'models/core').exists() and (dest_root / 'databases').exists() dest_is_setup = (dest_root / "models/core").exists() and (dest_root / "databases").exists()
if not dest_is_setup: if not dest_is_setup:
import invokeai.frontend.install.invokeai_configure import invokeai.frontend.install.invokeai_configure
from invokeai.backend.install.invokeai_configure import initialize_rootdir from invokeai.backend.install.invokeai_configure import initialize_rootdir
initialize_rootdir(dest_root, True) initialize_rootdir(dest_root, True)
do_migrate(src_root,dest_root) do_migrate(src_root, dest_root)
if __name__ == '__main__':
if __name__ == "__main__":
main() main()

View File

@ -4,7 +4,7 @@ Utility (backend) functions used by model_install.py
import os import os
import shutil import shutil
import warnings import warnings
from dataclasses import dataclass,field from dataclasses import dataclass, field
from pathlib import Path from pathlib import Path
from tempfile import TemporaryDirectory from tempfile import TemporaryDirectory
from typing import List, Dict, Callable, Union, Set from typing import List, Dict, Callable, Union, Set
@ -28,7 +28,7 @@ warnings.filterwarnings("ignore")
# --------------------------globals----------------------- # --------------------------globals-----------------------
config = InvokeAIAppConfig.get_config() config = InvokeAIAppConfig.get_config()
logger = InvokeAILogger.getLogger(name='InvokeAI') logger = InvokeAILogger.getLogger(name="InvokeAI")
# the initial "configs" dir is now bundled in the `invokeai.configs` package # the initial "configs" dir is now bundled in the `invokeai.configs` package
Dataset_path = Path(configs.__path__[0]) / "INITIAL_MODELS.yaml" Dataset_path = Path(configs.__path__[0]) / "INITIAL_MODELS.yaml"
@ -45,59 +45,63 @@ Config_preamble = """
LEGACY_CONFIGS = { LEGACY_CONFIGS = {
BaseModelType.StableDiffusion1: { BaseModelType.StableDiffusion1: {
ModelVariantType.Normal: 'v1-inference.yaml', ModelVariantType.Normal: "v1-inference.yaml",
ModelVariantType.Inpaint: 'v1-inpainting-inference.yaml', ModelVariantType.Inpaint: "v1-inpainting-inference.yaml",
}, },
BaseModelType.StableDiffusion2: { BaseModelType.StableDiffusion2: {
ModelVariantType.Normal: { ModelVariantType.Normal: {
SchedulerPredictionType.Epsilon: 'v2-inference.yaml', SchedulerPredictionType.Epsilon: "v2-inference.yaml",
SchedulerPredictionType.VPrediction: 'v2-inference-v.yaml', SchedulerPredictionType.VPrediction: "v2-inference-v.yaml",
}, },
ModelVariantType.Inpaint: { ModelVariantType.Inpaint: {
SchedulerPredictionType.Epsilon: 'v2-inpainting-inference.yaml', SchedulerPredictionType.Epsilon: "v2-inpainting-inference.yaml",
SchedulerPredictionType.VPrediction: 'v2-inpainting-inference-v.yaml', SchedulerPredictionType.VPrediction: "v2-inpainting-inference-v.yaml",
} },
}, },
BaseModelType.StableDiffusionXL: { BaseModelType.StableDiffusionXL: {
ModelVariantType.Normal: 'sd_xl_base.yaml', ModelVariantType.Normal: "sd_xl_base.yaml",
}, },
BaseModelType.StableDiffusionXLRefiner: { BaseModelType.StableDiffusionXLRefiner: {
ModelVariantType.Normal: 'sd_xl_refiner.yaml', ModelVariantType.Normal: "sd_xl_refiner.yaml",
}, },
} }
@dataclass @dataclass
class ModelInstallList: class ModelInstallList:
'''Class for listing models to be installed/removed''' """Class for listing models to be installed/removed"""
install_models: List[str] = field(default_factory=list) install_models: List[str] = field(default_factory=list)
remove_models: List[str] = field(default_factory=list) remove_models: List[str] = field(default_factory=list)
@dataclass
class InstallSelections():
install_models: List[str]= field(default_factory=list)
remove_models: List[str]=field(default_factory=list)
@dataclass @dataclass
class ModelLoadInfo(): class InstallSelections:
install_models: List[str] = field(default_factory=list)
remove_models: List[str] = field(default_factory=list)
@dataclass
class ModelLoadInfo:
name: str name: str
model_type: ModelType model_type: ModelType
base_type: BaseModelType base_type: BaseModelType
path: Path = None path: Path = None
repo_id: str = None repo_id: str = None
description: str = '' description: str = ""
installed: bool = False installed: bool = False
recommended: bool = False recommended: bool = False
default: bool = False default: bool = False
class ModelInstall(object): class ModelInstall(object):
def __init__(self, def __init__(
config:InvokeAIAppConfig, self,
prediction_type_helper: Callable[[Path],SchedulerPredictionType]=None, config: InvokeAIAppConfig,
model_manager: ModelManager = None, prediction_type_helper: Callable[[Path], SchedulerPredictionType] = None,
access_token:str = None): model_manager: ModelManager = None,
access_token: str = None,
):
self.config = config self.config = config
self.mgr = model_manager or ModelManager(config.model_conf_path) self.mgr = model_manager or ModelManager(config.model_conf_path)
self.datasets = OmegaConf.load(Dataset_path) self.datasets = OmegaConf.load(Dataset_path)
@ -105,66 +109,66 @@ class ModelInstall(object):
self.access_token = access_token or HfFolder.get_token() self.access_token = access_token or HfFolder.get_token()
self.reverse_paths = self._reverse_paths(self.datasets) self.reverse_paths = self._reverse_paths(self.datasets)
def all_models(self)->Dict[str,ModelLoadInfo]: def all_models(self) -> Dict[str, ModelLoadInfo]:
''' """
Return dict of model_key=>ModelLoadInfo objects. Return dict of model_key=>ModelLoadInfo objects.
This method consolidates and simplifies the entries in both This method consolidates and simplifies the entries in both
models.yaml and INITIAL_MODELS.yaml so that they can models.yaml and INITIAL_MODELS.yaml so that they can
be treated uniformly. It also sorts the models alphabetically be treated uniformly. It also sorts the models alphabetically
by their name, to improve the display somewhat. by their name, to improve the display somewhat.
''' """
model_dict = dict() model_dict = dict()
# first populate with the entries in INITIAL_MODELS.yaml # first populate with the entries in INITIAL_MODELS.yaml
for key, value in self.datasets.items(): for key, value in self.datasets.items():
name,base,model_type = ModelManager.parse_key(key) name, base, model_type = ModelManager.parse_key(key)
value['name'] = name value["name"] = name
value['base_type'] = base value["base_type"] = base
value['model_type'] = model_type value["model_type"] = model_type
model_dict[key] = ModelLoadInfo(**value) model_dict[key] = ModelLoadInfo(**value)
# supplement with entries in models.yaml # supplement with entries in models.yaml
installed_models = self.mgr.list_models() installed_models = self.mgr.list_models()
for md in installed_models: for md in installed_models:
base = md['base_model'] base = md["base_model"]
model_type = md['model_type'] model_type = md["model_type"]
name = md['model_name'] name = md["model_name"]
key = ModelManager.create_key(name, base, model_type) key = ModelManager.create_key(name, base, model_type)
if key in model_dict: if key in model_dict:
model_dict[key].installed = True model_dict[key].installed = True
else: else:
model_dict[key] = ModelLoadInfo( model_dict[key] = ModelLoadInfo(
name = name, name=name,
base_type = base, base_type=base,
model_type = model_type, model_type=model_type,
path = value.get('path'), path=value.get("path"),
installed = True, installed=True,
) )
return {x : model_dict[x] for x in sorted(model_dict.keys(),key=lambda y: model_dict[y].name.lower())} return {x: model_dict[x] for x in sorted(model_dict.keys(), key=lambda y: model_dict[y].name.lower())}
def list_models(self, model_type): def list_models(self, model_type):
installed = self.mgr.list_models(model_type=model_type) installed = self.mgr.list_models(model_type=model_type)
print(f'Installed models of type `{model_type}`:') print(f"Installed models of type `{model_type}`:")
for i in installed: for i in installed:
print(f"{i['model_name']}\t{i['base_model']}\t{i['path']}") print(f"{i['model_name']}\t{i['base_model']}\t{i['path']}")
# logic here a little reversed to maintain backward compatibility # logic here a little reversed to maintain backward compatibility
def starter_models(self, all_models: bool=False)->Set[str]: def starter_models(self, all_models: bool = False) -> Set[str]:
models = set() models = set()
for key, value in self.datasets.items(): for key, value in self.datasets.items():
name,base,model_type = ModelManager.parse_key(key) name, base, model_type = ModelManager.parse_key(key)
if all_models or model_type in [ModelType.Main, ModelType.Vae]: if all_models or model_type in [ModelType.Main, ModelType.Vae]:
models.add(key) models.add(key)
return models return models
def recommended_models(self)->Set[str]: def recommended_models(self) -> Set[str]:
starters = self.starter_models(all_models=True) starters = self.starter_models(all_models=True)
return set([x for x in starters if self.datasets[x].get('recommended',False)]) return set([x for x in starters if self.datasets[x].get("recommended", False)])
def default_model(self)->str: def default_model(self) -> str:
starters = self.starter_models() starters = self.starter_models()
defaults = [x for x in starters if self.datasets[x].get('default',False)] defaults = [x for x in starters if self.datasets[x].get("default", False)]
return defaults[0] return defaults[0]
def install(self, selections: InstallSelections): def install(self, selections: InstallSelections):
@ -173,54 +177,57 @@ class ModelInstall(object):
job = 1 job = 1
jobs = len(selections.remove_models) + len(selections.install_models) jobs = len(selections.remove_models) + len(selections.install_models)
# remove requested models # remove requested models
for key in selections.remove_models: for key in selections.remove_models:
name,base,mtype = self.mgr.parse_key(key) name, base, mtype = self.mgr.parse_key(key)
logger.info(f'Deleting {mtype} model {name} [{job}/{jobs}]') logger.info(f"Deleting {mtype} model {name} [{job}/{jobs}]")
try: try:
self.mgr.del_model(name,base,mtype) self.mgr.del_model(name, base, mtype)
except FileNotFoundError as e: except FileNotFoundError as e:
logger.warning(e) logger.warning(e)
job += 1 job += 1
# add requested models # add requested models
for path in selections.install_models: for path in selections.install_models:
logger.info(f'Installing {path} [{job}/{jobs}]') logger.info(f"Installing {path} [{job}/{jobs}]")
try: try:
self.heuristic_import(path) self.heuristic_import(path)
except (ValueError, KeyError) as e: except (ValueError, KeyError) as e:
logger.error(str(e)) logger.error(str(e))
job += 1 job += 1
dlogging.set_verbosity(verbosity) dlogging.set_verbosity(verbosity)
self.mgr.commit() self.mgr.commit()
def heuristic_import(self, def heuristic_import(
model_path_id_or_url: Union[str,Path], self,
models_installed: Set[Path]=None, model_path_id_or_url: Union[str, Path],
)->Dict[str, AddModelResult]: models_installed: Set[Path] = None,
''' ) -> Dict[str, AddModelResult]:
"""
:param model_path_id_or_url: A Path to a local model to import, or a string representing its repo_id or URL :param model_path_id_or_url: A Path to a local model to import, or a string representing its repo_id or URL
:param models_installed: Set of installed models, used for recursive invocation :param models_installed: Set of installed models, used for recursive invocation
Returns a set of dict objects corresponding to newly-created stanzas in models.yaml. Returns a set of dict objects corresponding to newly-created stanzas in models.yaml.
''' """
if not models_installed: if not models_installed:
models_installed = dict() models_installed = dict()
# A little hack to allow nested routines to retrieve info on the requested ID # A little hack to allow nested routines to retrieve info on the requested ID
self.current_id = model_path_id_or_url self.current_id = model_path_id_or_url
path = Path(model_path_id_or_url) path = Path(model_path_id_or_url)
# checkpoint file, or similar # checkpoint file, or similar
if path.is_file(): if path.is_file():
models_installed.update({str(path):self._install_path(path)}) models_installed.update({str(path): self._install_path(path)})
# folders style or similar # folders style or similar
elif path.is_dir() and any([(path/x).exists() for x in \ elif path.is_dir() and any(
{'config.json','model_index.json','learned_embeds.bin','pytorch_lora_weights.bin'} [
] (path / x).exists()
): for x in {"config.json", "model_index.json", "learned_embeds.bin", "pytorch_lora_weights.bin"}
]
):
models_installed.update({str(model_path_id_or_url): self._install_path(path)}) models_installed.update({str(model_path_id_or_url): self._install_path(path)})
# recursive scan # recursive scan
@ -229,7 +236,7 @@ class ModelInstall(object):
self.heuristic_import(child, models_installed=models_installed) self.heuristic_import(child, models_installed=models_installed)
# huggingface repo # huggingface repo
elif len(str(model_path_id_or_url).split('/')) == 2: elif len(str(model_path_id_or_url).split("/")) == 2:
models_installed.update({str(model_path_id_or_url): self._install_repo(str(model_path_id_or_url))}) models_installed.update({str(model_path_id_or_url): self._install_repo(str(model_path_id_or_url))})
# a URL # a URL
@ -237,42 +244,43 @@ class ModelInstall(object):
models_installed.update({str(model_path_id_or_url): self._install_url(model_path_id_or_url)}) models_installed.update({str(model_path_id_or_url): self._install_url(model_path_id_or_url)})
else: else:
raise KeyError(f'{str(model_path_id_or_url)} is not recognized as a local path, repo ID or URL. Skipping') raise KeyError(f"{str(model_path_id_or_url)} is not recognized as a local path, repo ID or URL. Skipping")
return models_installed return models_installed
# install a model from a local path. The optional info parameter is there to prevent # install a model from a local path. The optional info parameter is there to prevent
# the model from being probed twice in the event that it has already been probed. # the model from being probed twice in the event that it has already been probed.
def _install_path(self, path: Path, info: ModelProbeInfo=None)->AddModelResult: def _install_path(self, path: Path, info: ModelProbeInfo = None) -> AddModelResult:
info = info or ModelProbe().heuristic_probe(path,self.prediction_helper) info = info or ModelProbe().heuristic_probe(path, self.prediction_helper)
if not info: if not info:
logger.warning(f'Unable to parse format of {path}') logger.warning(f"Unable to parse format of {path}")
return None return None
model_name = path.stem if path.is_file() else path.name model_name = path.stem if path.is_file() else path.name
if self.mgr.model_exists(model_name, info.base_type, info.model_type): if self.mgr.model_exists(model_name, info.base_type, info.model_type):
raise ValueError(f'A model named "{model_name}" is already installed.') raise ValueError(f'A model named "{model_name}" is already installed.')
attributes = self._make_attributes(path,info) attributes = self._make_attributes(path, info)
return self.mgr.add_model(model_name = model_name, return self.mgr.add_model(
base_model = info.base_type, model_name=model_name,
model_type = info.model_type, base_model=info.base_type,
model_attributes = attributes, model_type=info.model_type,
) model_attributes=attributes,
)
def _install_url(self, url: str)->AddModelResult: def _install_url(self, url: str) -> AddModelResult:
with TemporaryDirectory(dir=self.config.models_path) as staging: with TemporaryDirectory(dir=self.config.models_path) as staging:
location = download_with_resume(url,Path(staging)) location = download_with_resume(url, Path(staging))
if not location: if not location:
logger.error(f'Unable to download {url}. Skipping.') logger.error(f"Unable to download {url}. Skipping.")
info = ModelProbe().heuristic_probe(location) info = ModelProbe().heuristic_probe(location)
dest = self.config.models_path / info.base_type.value / info.model_type.value / location.name dest = self.config.models_path / info.base_type.value / info.model_type.value / location.name
models_path = shutil.move(location,dest) models_path = shutil.move(location, dest)
# staged version will be garbage-collected at this time # staged version will be garbage-collected at this time
return self._install_path(Path(models_path), info) return self._install_path(Path(models_path), info)
def _install_repo(self, repo_id: str)->AddModelResult: def _install_repo(self, repo_id: str) -> AddModelResult:
hinfo = HfApi().model_info(repo_id) hinfo = HfApi().model_info(repo_id)
# we try to figure out how to download this most economically # we try to figure out how to download this most economically
# list all the files in the repo # list all the files in the repo
files = [x.rfilename for x in hinfo.siblings] files = [x.rfilename for x in hinfo.siblings]
@ -280,42 +288,49 @@ class ModelInstall(object):
with TemporaryDirectory(dir=self.config.models_path) as staging: with TemporaryDirectory(dir=self.config.models_path) as staging:
staging = Path(staging) staging = Path(staging)
if 'model_index.json' in files: if "model_index.json" in files:
location = self._download_hf_pipeline(repo_id, staging) # pipeline location = self._download_hf_pipeline(repo_id, staging) # pipeline
else: else:
for suffix in ['safetensors','bin']: for suffix in ["safetensors", "bin"]:
if f'pytorch_lora_weights.{suffix}' in files: if f"pytorch_lora_weights.{suffix}" in files:
location = self._download_hf_model(repo_id, ['pytorch_lora_weights.bin'], staging) # LoRA location = self._download_hf_model(repo_id, ["pytorch_lora_weights.bin"], staging) # LoRA
break break
elif self.config.precision=='float16' and f'diffusion_pytorch_model.fp16.{suffix}' in files: # vae, controlnet or some other standalone elif (
files = ['config.json', f'diffusion_pytorch_model.fp16.{suffix}'] self.config.precision == "float16" and f"diffusion_pytorch_model.fp16.{suffix}" in files
): # vae, controlnet or some other standalone
files = ["config.json", f"diffusion_pytorch_model.fp16.{suffix}"]
location = self._download_hf_model(repo_id, files, staging) location = self._download_hf_model(repo_id, files, staging)
break break
elif f'diffusion_pytorch_model.{suffix}' in files: elif f"diffusion_pytorch_model.{suffix}" in files:
files = ['config.json', f'diffusion_pytorch_model.{suffix}'] files = ["config.json", f"diffusion_pytorch_model.{suffix}"]
location = self._download_hf_model(repo_id, files, staging) location = self._download_hf_model(repo_id, files, staging)
break break
elif f'learned_embeds.{suffix}' in files: elif f"learned_embeds.{suffix}" in files:
location = self._download_hf_model(repo_id, [f'learned_embeds.{suffix}'], staging) location = self._download_hf_model(repo_id, [f"learned_embeds.{suffix}"], staging)
break break
if not location: if not location:
logger.warning(f'Could not determine type of repo {repo_id}. Skipping install.') logger.warning(f"Could not determine type of repo {repo_id}. Skipping install.")
return {} return {}
info = ModelProbe().heuristic_probe(location, self.prediction_helper) info = ModelProbe().heuristic_probe(location, self.prediction_helper)
if not info: if not info:
logger.warning(f'Could not probe {location}. Skipping install.') logger.warning(f"Could not probe {location}. Skipping install.")
return {} return {}
dest = self.config.models_path / info.base_type.value / info.model_type.value / self._get_model_name(repo_id,location) dest = (
self.config.models_path
/ info.base_type.value
/ info.model_type.value
/ self._get_model_name(repo_id, location)
)
if dest.exists(): if dest.exists():
shutil.rmtree(dest) shutil.rmtree(dest)
shutil.copytree(location,dest) shutil.copytree(location, dest)
return self._install_path(dest, info) return self._install_path(dest, info)
def _get_model_name(self,path_name: str, location: Path)->str: def _get_model_name(self, path_name: str, location: Path) -> str:
''' """
Calculate a name for the model - primitive implementation. Calculate a name for the model - primitive implementation.
''' """
if key := self.reverse_paths.get(path_name): if key := self.reverse_paths.get(path_name):
(name, base, mtype) = ModelManager.parse_key(key) (name, base, mtype) = ModelManager.parse_key(key)
return name return name
@ -324,99 +339,103 @@ class ModelInstall(object):
else: else:
return location.stem return location.stem
def _make_attributes(self, path: Path, info: ModelProbeInfo)->dict: def _make_attributes(self, path: Path, info: ModelProbeInfo) -> dict:
model_name = path.name if path.is_dir() else path.stem model_name = path.name if path.is_dir() else path.stem
description = f'{info.base_type.value} {info.model_type.value} model {model_name}' description = f"{info.base_type.value} {info.model_type.value} model {model_name}"
if key := self.reverse_paths.get(self.current_id): if key := self.reverse_paths.get(self.current_id):
if key in self.datasets: if key in self.datasets:
description = self.datasets[key].get('description') or description description = self.datasets[key].get("description") or description
rel_path = self.relative_to_root(path) rel_path = self.relative_to_root(path)
attributes = dict( attributes = dict(
path = str(rel_path), path=str(rel_path),
description = str(description), description=str(description),
model_format = info.format, model_format=info.format,
) )
legacy_conf = None legacy_conf = None
if info.model_type == ModelType.Main: if info.model_type == ModelType.Main:
attributes.update(dict(variant = info.variant_type,)) attributes.update(
if info.format=="checkpoint": dict(
variant=info.variant_type,
)
)
if info.format == "checkpoint":
try: try:
possible_conf = path.with_suffix('.yaml') possible_conf = path.with_suffix(".yaml")
if possible_conf.exists(): if possible_conf.exists():
legacy_conf = str(self.relative_to_root(possible_conf)) legacy_conf = str(self.relative_to_root(possible_conf))
elif info.base_type == BaseModelType.StableDiffusion2: elif info.base_type == BaseModelType.StableDiffusion2:
legacy_conf = Path(self.config.legacy_conf_dir, LEGACY_CONFIGS[info.base_type][info.variant_type][info.prediction_type]) legacy_conf = Path(
self.config.legacy_conf_dir,
LEGACY_CONFIGS[info.base_type][info.variant_type][info.prediction_type],
)
else: else:
legacy_conf = Path(self.config.legacy_conf_dir, LEGACY_CONFIGS[info.base_type][info.variant_type]) legacy_conf = Path(
self.config.legacy_conf_dir, LEGACY_CONFIGS[info.base_type][info.variant_type]
)
except KeyError: except KeyError:
legacy_conf = Path(self.config.legacy_conf_dir, 'v1-inference.yaml') # best guess legacy_conf = Path(self.config.legacy_conf_dir, "v1-inference.yaml") # best guess
if info.model_type == ModelType.ControlNet and info.format=="checkpoint": if info.model_type == ModelType.ControlNet and info.format == "checkpoint":
possible_conf = path.with_suffix('.yaml') possible_conf = path.with_suffix(".yaml")
if possible_conf.exists(): if possible_conf.exists():
legacy_conf = str(self.relative_to_root(possible_conf)) legacy_conf = str(self.relative_to_root(possible_conf))
if legacy_conf: if legacy_conf:
attributes.update( attributes.update(dict(config=str(legacy_conf)))
dict(
config = str(legacy_conf)
)
)
return attributes return attributes
def relative_to_root(self, path: Path)->Path: def relative_to_root(self, path: Path) -> Path:
root = self.config.root_path root = self.config.root_path
if path.is_relative_to(root): if path.is_relative_to(root):
return path.relative_to(root) return path.relative_to(root)
else: else:
return path return path
def _download_hf_pipeline(self, repo_id: str, staging: Path)->Path: def _download_hf_pipeline(self, repo_id: str, staging: Path) -> Path:
''' """
This retrieves a StableDiffusion model from cache or remote and then This retrieves a StableDiffusion model from cache or remote and then
does a save_pretrained() to the indicated staging area. does a save_pretrained() to the indicated staging area.
''' """
_,name = repo_id.split("/") _, name = repo_id.split("/")
revisions = ['fp16','main'] if self.config.precision=='float16' else ['main'] revisions = ["fp16", "main"] if self.config.precision == "float16" else ["main"]
model = None model = None
for revision in revisions: for revision in revisions:
try: try:
model = DiffusionPipeline.from_pretrained(repo_id,revision=revision,safety_checker=None) model = DiffusionPipeline.from_pretrained(repo_id, revision=revision, safety_checker=None)
except: # most errors are due to fp16 not being present. Fix this to catch other errors except: # most errors are due to fp16 not being present. Fix this to catch other errors
pass pass
if model: if model:
break break
if not model: if not model:
logger.error(f'Diffusers model {repo_id} could not be downloaded. Skipping.') logger.error(f"Diffusers model {repo_id} could not be downloaded. Skipping.")
return None return None
model.save_pretrained(staging / name, safe_serialization=True) model.save_pretrained(staging / name, safe_serialization=True)
return staging / name return staging / name
def _download_hf_model(self, repo_id: str, files: List[str], staging: Path)->Path: def _download_hf_model(self, repo_id: str, files: List[str], staging: Path) -> Path:
_,name = repo_id.split("/") _, name = repo_id.split("/")
location = staging / name location = staging / name
paths = list() paths = list()
for filename in files: for filename in files:
p = hf_download_with_resume(repo_id, p = hf_download_with_resume(
model_dir=location, repo_id, model_dir=location, model_name=filename, access_token=self.access_token
model_name=filename, )
access_token = self.access_token
)
if p: if p:
paths.append(p) paths.append(p)
else: else:
logger.warning(f'Could not download {filename} from {repo_id}.') logger.warning(f"Could not download {filename} from {repo_id}.")
return location if len(paths)>0 else None return location if len(paths) > 0 else None
@classmethod @classmethod
def _reverse_paths(cls,datasets)->dict: def _reverse_paths(cls, datasets) -> dict:
''' """
Reverse mapping from repo_id/path to destination name. Reverse mapping from repo_id/path to destination name.
''' """
return {v.get('path') or v.get('repo_id') : k for k, v in datasets.items()} return {v.get("path") or v.get("repo_id"): k for k, v in datasets.items()}
# ------------------------------------- # -------------------------------------
def yes_or_no(prompt: str, default_yes=True): def yes_or_no(prompt: str, default_yes=True):
@ -427,13 +446,12 @@ def yes_or_no(prompt: str, default_yes=True):
else: else:
return response[0] in ("y", "Y") return response[0] in ("y", "Y")
# --------------------------------------------- # ---------------------------------------------
def hf_download_from_pretrained( def hf_download_from_pretrained(model_class: object, model_name: str, destination: Path, **kwargs):
model_class: object, model_name: str, destination: Path, **kwargs logger = InvokeAILogger.getLogger("InvokeAI")
): logger.addFilter(lambda x: "fp16 is not a valid" not in x.getMessage())
logger = InvokeAILogger.getLogger('InvokeAI')
logger.addFilter(lambda x: 'fp16 is not a valid' not in x.getMessage())
model = model_class.from_pretrained( model = model_class.from_pretrained(
model_name, model_name,
resume_download=True, resume_download=True,
@ -442,13 +460,14 @@ def hf_download_from_pretrained(
model.save_pretrained(destination, safe_serialization=True) model.save_pretrained(destination, safe_serialization=True)
return destination return destination
# --------------------------------------------- # ---------------------------------------------
def hf_download_with_resume( def hf_download_with_resume(
repo_id: str, repo_id: str,
model_dir: str, model_dir: str,
model_name: str, model_name: str,
model_dest: Path = None, model_dest: Path = None,
access_token: str = None, access_token: str = None,
) -> Path: ) -> Path:
model_dest = model_dest or Path(os.path.join(model_dir, model_name)) model_dest = model_dest or Path(os.path.join(model_dir, model_name))
os.makedirs(model_dir, exist_ok=True) os.makedirs(model_dir, exist_ok=True)
@ -467,9 +486,7 @@ def hf_download_with_resume(
resp = requests.get(url, headers=header, stream=True) resp = requests.get(url, headers=header, stream=True)
total = int(resp.headers.get("content-length", 0)) total = int(resp.headers.get("content-length", 0))
if ( if resp.status_code == 416: # "range not satisfiable", which means nothing to return
resp.status_code == 416
): # "range not satisfiable", which means nothing to return
logger.info(f"{model_name}: complete file found. Skipping.") logger.info(f"{model_name}: complete file found. Skipping.")
return model_dest return model_dest
elif resp.status_code == 404: elif resp.status_code == 404:
@ -498,5 +515,3 @@ def hf_download_with_resume(
logger.error(f"An error occurred while downloading {model_name}: {str(e)}") logger.error(f"An error occurred while downloading {model_name}: {str(e)}")
return None return None
return model_dest return model_dest

View File

@ -3,6 +3,12 @@ Initialization file for invokeai.backend.model_management
""" """
from .model_manager import ModelManager, ModelInfo, AddModelResult, SchedulerPredictionType from .model_manager import ModelManager, ModelInfo, AddModelResult, SchedulerPredictionType
from .model_cache import ModelCache from .model_cache import ModelCache
from .models import BaseModelType, ModelType, SubModelType, ModelVariantType, ModelNotFoundException, DuplicateModelException from .models import (
BaseModelType,
ModelType,
SubModelType,
ModelVariantType,
ModelNotFoundException,
DuplicateModelException,
)
from .model_merge import ModelMerger, MergeInterpolationMethod from .model_merge import ModelMerger, MergeInterpolationMethod

View File

@ -56,9 +56,7 @@ from diffusers.schedulers import (
) )
from diffusers.utils import is_accelerate_available, is_omegaconf_available, is_safetensors_available from diffusers.utils import is_accelerate_available, is_omegaconf_available, is_safetensors_available
from diffusers.utils.import_utils import BACKENDS_MAPPING from diffusers.utils.import_utils import BACKENDS_MAPPING
from diffusers.pipelines.latent_diffusion.pipeline_latent_diffusion import ( from diffusers.pipelines.latent_diffusion.pipeline_latent_diffusion import LDMBertConfig, LDMBertModel
LDMBertConfig, LDMBertModel
)
from diffusers.pipelines.paint_by_example import PaintByExampleImageEncoder from diffusers.pipelines.paint_by_example import PaintByExampleImageEncoder
from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
@ -85,6 +83,7 @@ if is_accelerate_available():
logger = InvokeAILogger.getLogger(__name__) logger = InvokeAILogger.getLogger(__name__)
CONVERT_MODEL_ROOT = InvokeAIAppConfig.get_config().root_path / MODEL_CORE / "convert" CONVERT_MODEL_ROOT = InvokeAIAppConfig.get_config().root_path / MODEL_CORE / "convert"
def shave_segments(path, n_shave_prefix_segments=1): def shave_segments(path, n_shave_prefix_segments=1):
""" """
Removes segments. Positive values shave the first segments, negative shave the last segments. Removes segments. Positive values shave the first segments, negative shave the last segments.
@ -509,9 +508,7 @@ def convert_ldm_unet_checkpoint(
paths = renew_resnet_paths(resnets) paths = renew_resnet_paths(resnets)
meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"} meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"}
assign_to_checkpoint( assign_to_checkpoint(paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config)
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
if len(attentions): if len(attentions):
paths = renew_attention_paths(attentions) paths = renew_attention_paths(attentions)
@ -796,7 +793,7 @@ def convert_ldm_bert_checkpoint(checkpoint, config):
def convert_ldm_clip_checkpoint(checkpoint, local_files_only=False, text_encoder=None): def convert_ldm_clip_checkpoint(checkpoint, local_files_only=False, text_encoder=None):
if text_encoder is None: if text_encoder is None:
config = CLIPTextConfig.from_pretrained(CONVERT_MODEL_ROOT / 'clip-vit-large-patch14') config = CLIPTextConfig.from_pretrained(CONVERT_MODEL_ROOT / "clip-vit-large-patch14")
ctx = init_empty_weights if is_accelerate_available() else nullcontext ctx = init_empty_weights if is_accelerate_available() else nullcontext
with ctx(): with ctx():
@ -1008,7 +1005,9 @@ def stable_unclip_image_encoder(original_config):
elif sd_clip_image_embedder_class == "FrozenOpenCLIPImageEmbedder": elif sd_clip_image_embedder_class == "FrozenOpenCLIPImageEmbedder":
feature_extractor = CLIPImageProcessor() feature_extractor = CLIPImageProcessor()
# InvokeAI doesn't use CLIPVisionModelWithProjection so it isn't in the core - if this code is hit a download will occur # InvokeAI doesn't use CLIPVisionModelWithProjection so it isn't in the core - if this code is hit a download will occur
image_encoder = CLIPVisionModelWithProjection.from_pretrained(CONVERT_MODEL_ROOT / "CLIP-ViT-H-14-laion2B-s32B-b79K") image_encoder = CLIPVisionModelWithProjection.from_pretrained(
CONVERT_MODEL_ROOT / "CLIP-ViT-H-14-laion2B-s32B-b79K"
)
else: else:
raise NotImplementedError( raise NotImplementedError(
f"Unknown CLIP image embedder class in stable diffusion checkpoint {sd_clip_image_embedder_class}" f"Unknown CLIP image embedder class in stable diffusion checkpoint {sd_clip_image_embedder_class}"
@ -1071,17 +1070,17 @@ def convert_controlnet_checkpoint(
extract_ema, extract_ema,
use_linear_projection=None, use_linear_projection=None,
cross_attention_dim=None, cross_attention_dim=None,
precision: torch.dtype=torch.float32, precision: torch.dtype = torch.float32,
): ):
ctrlnet_config = create_unet_diffusers_config(original_config, image_size=image_size, controlnet=True) ctrlnet_config = create_unet_diffusers_config(original_config, image_size=image_size, controlnet=True)
ctrlnet_config["upcast_attention"] = upcast_attention ctrlnet_config["upcast_attention"] = upcast_attention
ctrlnet_config.pop("sample_size") ctrlnet_config.pop("sample_size")
original_config = ctrlnet_config.copy() original_config = ctrlnet_config.copy()
ctrlnet_config.pop('addition_embed_type') ctrlnet_config.pop("addition_embed_type")
ctrlnet_config.pop('addition_time_embed_dim') ctrlnet_config.pop("addition_time_embed_dim")
ctrlnet_config.pop('transformer_layers_per_block') ctrlnet_config.pop("transformer_layers_per_block")
if use_linear_projection is not None: if use_linear_projection is not None:
ctrlnet_config["use_linear_projection"] = use_linear_projection ctrlnet_config["use_linear_projection"] = use_linear_projection
@ -1111,6 +1110,7 @@ def convert_controlnet_checkpoint(
return controlnet.to(precision) return controlnet.to(precision)
# TO DO - PASS PRECISION # TO DO - PASS PRECISION
def download_from_original_stable_diffusion_ckpt( def download_from_original_stable_diffusion_ckpt(
checkpoint_path: str, checkpoint_path: str,
@ -1249,8 +1249,8 @@ def download_from_original_stable_diffusion_ckpt(
# "state_dict" key https://huggingface.co/thibaud/controlnet-canny-sd21 # "state_dict" key https://huggingface.co/thibaud/controlnet-canny-sd21
while "state_dict" in checkpoint: while "state_dict" in checkpoint:
checkpoint = checkpoint["state_dict"] checkpoint = checkpoint["state_dict"]
logger.debug(f'model_type = {model_type}; original_config_file = {original_config_file}') logger.debug(f"model_type = {model_type}; original_config_file = {original_config_file}")
if original_config_file is None: if original_config_file is None:
key_name_v2_1 = "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight" key_name_v2_1 = "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight"
@ -1258,7 +1258,9 @@ def download_from_original_stable_diffusion_ckpt(
key_name_sd_xl_refiner = "conditioner.embedders.0.model.transformer.resblocks.9.mlp.c_proj.bias" key_name_sd_xl_refiner = "conditioner.embedders.0.model.transformer.resblocks.9.mlp.c_proj.bias"
# model_type = "v1" # model_type = "v1"
config_url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml" config_url = (
"https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml"
)
if key_name_v2_1 in checkpoint and checkpoint[key_name_v2_1].shape[-1] == 1024: if key_name_v2_1 in checkpoint and checkpoint[key_name_v2_1].shape[-1] == 1024:
# model_type = "v2" # model_type = "v2"
@ -1277,7 +1279,10 @@ def download_from_original_stable_diffusion_ckpt(
original_config_file = BytesIO(requests.get(config_url).content) original_config_file = BytesIO(requests.get(config_url).content)
original_config = OmegaConf.load(original_config_file) original_config = OmegaConf.load(original_config_file)
if model_version == BaseModelType.StableDiffusion2 and original_config["model"]["params"]["parameterization"] == "v": if (
model_version == BaseModelType.StableDiffusion2
and original_config["model"]["params"]["parameterization"] == "v"
):
prediction_type = "v_prediction" prediction_type = "v_prediction"
upcast_attention = True upcast_attention = True
image_size = 768 image_size = 768
@ -1436,7 +1441,7 @@ def download_from_original_stable_diffusion_ckpt(
config_kwargs = {"subfolder": "text_encoder"} config_kwargs = {"subfolder": "text_encoder"}
text_model = convert_open_clip_checkpoint(checkpoint, config_name, **config_kwargs) text_model = convert_open_clip_checkpoint(checkpoint, config_name, **config_kwargs)
tokenizer = CLIPTokenizer.from_pretrained(CONVERT_MODEL_ROOT / 'stable-diffusion-2-clip', subfolder="tokenizer") tokenizer = CLIPTokenizer.from_pretrained(CONVERT_MODEL_ROOT / "stable-diffusion-2-clip", subfolder="tokenizer")
if stable_unclip is None: if stable_unclip is None:
if controlnet: if controlnet:
@ -1491,7 +1496,9 @@ def download_from_original_stable_diffusion_ckpt(
prior = PriorTransformer.from_pretrained(karlo_model, subfolder="prior") prior = PriorTransformer.from_pretrained(karlo_model, subfolder="prior")
prior_tokenizer = CLIPTokenizer.from_pretrained(CONVERT_MODEL_ROOT / "clip-vit-large-patch14") prior_tokenizer = CLIPTokenizer.from_pretrained(CONVERT_MODEL_ROOT / "clip-vit-large-patch14")
prior_text_model = CLIPTextModelWithProjection.from_pretrained(CONVERT_MODEL_ROOT / "clip-vit-large-patch14") prior_text_model = CLIPTextModelWithProjection.from_pretrained(
CONVERT_MODEL_ROOT / "clip-vit-large-patch14"
)
prior_scheduler = UnCLIPScheduler.from_pretrained(karlo_model, subfolder="prior_scheduler") prior_scheduler = UnCLIPScheduler.from_pretrained(karlo_model, subfolder="prior_scheduler")
prior_scheduler = DDPMScheduler.from_config(prior_scheduler.config) prior_scheduler = DDPMScheduler.from_config(prior_scheduler.config)
@ -1533,11 +1540,19 @@ def download_from_original_stable_diffusion_ckpt(
text_model = convert_ldm_clip_checkpoint( text_model = convert_ldm_clip_checkpoint(
checkpoint, local_files_only=local_files_only, text_encoder=text_encoder checkpoint, local_files_only=local_files_only, text_encoder=text_encoder
) )
tokenizer = CLIPTokenizer.from_pretrained(CONVERT_MODEL_ROOT / "clip-vit-large-patch14") if tokenizer is None else tokenizer tokenizer = (
CLIPTokenizer.from_pretrained(CONVERT_MODEL_ROOT / "clip-vit-large-patch14")
if tokenizer is None
else tokenizer
)
if load_safety_checker: if load_safety_checker:
safety_checker = StableDiffusionSafetyChecker.from_pretrained(CONVERT_MODEL_ROOT / "stable-diffusion-safety-checker") safety_checker = StableDiffusionSafetyChecker.from_pretrained(
feature_extractor = AutoFeatureExtractor.from_pretrained(CONVERT_MODEL_ROOT / "stable-diffusion-safety-checker") CONVERT_MODEL_ROOT / "stable-diffusion-safety-checker"
)
feature_extractor = AutoFeatureExtractor.from_pretrained(
CONVERT_MODEL_ROOT / "stable-diffusion-safety-checker"
)
else: else:
safety_checker = None safety_checker = None
feature_extractor = None feature_extractor = None
@ -1567,7 +1582,7 @@ def download_from_original_stable_diffusion_ckpt(
if model_type == "SDXL": if model_type == "SDXL":
tokenizer = CLIPTokenizer.from_pretrained(CONVERT_MODEL_ROOT / "clip-vit-large-patch14") tokenizer = CLIPTokenizer.from_pretrained(CONVERT_MODEL_ROOT / "clip-vit-large-patch14")
text_encoder = convert_ldm_clip_checkpoint(checkpoint, local_files_only=local_files_only) text_encoder = convert_ldm_clip_checkpoint(checkpoint, local_files_only=local_files_only)
tokenizer_name = CONVERT_MODEL_ROOT / "CLIP-ViT-bigG-14-laion2B-39B-b160k" tokenizer_name = CONVERT_MODEL_ROOT / "CLIP-ViT-bigG-14-laion2B-39B-b160k"
tokenizer_2 = CLIPTokenizer.from_pretrained(tokenizer_name, pad_token="!") tokenizer_2 = CLIPTokenizer.from_pretrained(tokenizer_name, pad_token="!")
@ -1577,7 +1592,7 @@ def download_from_original_stable_diffusion_ckpt(
checkpoint, config_name, prefix="conditioner.embedders.1.model.", has_projection=True, **config_kwargs checkpoint, config_name, prefix="conditioner.embedders.1.model.", has_projection=True, **config_kwargs
) )
pipe = StableDiffusionXLPipeline ( pipe = StableDiffusionXLPipeline(
vae=vae.to(precision), vae=vae.to(precision),
text_encoder=text_encoder, text_encoder=text_encoder,
tokenizer=tokenizer, tokenizer=tokenizer,
@ -1686,24 +1701,22 @@ def download_controlnet_from_original_ckpt(
return controlnet return controlnet
def convert_ldm_vae_to_diffusers(checkpoint, vae_config: DictConfig, image_size: int) -> AutoencoderKL:
vae_config = create_vae_diffusers_config(
vae_config, image_size=image_size
)
converted_vae_checkpoint = convert_ldm_vae_checkpoint( def convert_ldm_vae_to_diffusers(checkpoint, vae_config: DictConfig, image_size: int) -> AutoencoderKL:
checkpoint, vae_config vae_config = create_vae_diffusers_config(vae_config, image_size=image_size)
)
converted_vae_checkpoint = convert_ldm_vae_checkpoint(checkpoint, vae_config)
vae = AutoencoderKL(**vae_config) vae = AutoencoderKL(**vae_config)
vae.load_state_dict(converted_vae_checkpoint) vae.load_state_dict(converted_vae_checkpoint)
return vae return vae
def convert_ckpt_to_diffusers( def convert_ckpt_to_diffusers(
checkpoint_path: Union[str, Path], checkpoint_path: Union[str, Path],
dump_path: Union[str, Path], dump_path: Union[str, Path],
use_safetensors: bool=True, use_safetensors: bool = True,
**kwargs, **kwargs,
): ):
""" """
Takes all the arguments of download_from_original_stable_diffusion_ckpt(), Takes all the arguments of download_from_original_stable_diffusion_ckpt(),
@ -1717,10 +1730,11 @@ def convert_ckpt_to_diffusers(
safe_serialization=use_safetensors and is_safetensors_available(), safe_serialization=use_safetensors and is_safetensors_available(),
) )
def convert_controlnet_to_diffusers( def convert_controlnet_to_diffusers(
checkpoint_path: Union[str, Path], checkpoint_path: Union[str, Path],
dump_path: Union[str, Path], dump_path: Union[str, Path],
**kwargs, **kwargs,
): ):
""" """
Takes all the arguments of download_controlnet_from_original_ckpt(), Takes all the arguments of download_controlnet_from_original_ckpt(),

View File

@ -11,14 +11,15 @@ from diffusers.models import UNet2DConditionModel
from safetensors.torch import load_file from safetensors.torch import load_file
from transformers import CLIPTextModel, CLIPTokenizer from transformers import CLIPTextModel, CLIPTokenizer
class LoRALayerBase:
#rank: Optional[int]
#alpha: Optional[float]
#bias: Optional[torch.Tensor]
#layer_key: str
#@property class LoRALayerBase:
#def scale(self): # rank: Optional[int]
# alpha: Optional[float]
# bias: Optional[torch.Tensor]
# layer_key: str
# @property
# def scale(self):
# return self.alpha / self.rank if (self.alpha and self.rank) else 1.0 # return self.alpha / self.rank if (self.alpha and self.rank) else 1.0
def __init__( def __init__(
@ -31,11 +32,7 @@ class LoRALayerBase:
else: else:
self.alpha = None self.alpha = None
if ( if "bias_indices" in values and "bias_values" in values and "bias_size" in values:
"bias_indices" in values
and "bias_values" in values
and "bias_size" in values
):
self.bias = torch.sparse_coo_tensor( self.bias = torch.sparse_coo_tensor(
values["bias_indices"], values["bias_indices"],
values["bias_values"], values["bias_values"],
@ -45,13 +42,13 @@ class LoRALayerBase:
else: else:
self.bias = None self.bias = None
self.rank = None # set in layer implementation self.rank = None # set in layer implementation
self.layer_key = layer_key self.layer_key = layer_key
def forward( def forward(
self, self,
module: torch.nn.Module, module: torch.nn.Module,
input_h: Any, # for real looks like Tuple[torch.nn.Tensor] but not sure input_h: Any, # for real looks like Tuple[torch.nn.Tensor] but not sure
multiplier: float, multiplier: float,
): ):
if type(module) == torch.nn.Conv2d: if type(module) == torch.nn.Conv2d:
@ -71,12 +68,16 @@ class LoRALayerBase:
bias = self.bias if self.bias is not None else 0 bias = self.bias if self.bias is not None else 0
scale = self.alpha / self.rank if (self.alpha and self.rank) else 1.0 scale = self.alpha / self.rank if (self.alpha and self.rank) else 1.0
return op( return (
*input_h, op(
(weight + bias).view(module.weight.shape), *input_h,
None, (weight + bias).view(module.weight.shape),
**extra_args, None,
) * multiplier * scale **extra_args,
)
* multiplier
* scale
)
def get_weight(self): def get_weight(self):
raise NotImplementedError() raise NotImplementedError()
@ -99,9 +100,9 @@ class LoRALayerBase:
# TODO: find and debug lora/locon with bias # TODO: find and debug lora/locon with bias
class LoRALayer(LoRALayerBase): class LoRALayer(LoRALayerBase):
#up: torch.Tensor # up: torch.Tensor
#mid: Optional[torch.Tensor] # mid: Optional[torch.Tensor]
#down: torch.Tensor # down: torch.Tensor
def __init__( def __init__(
self, self,
@ -151,12 +152,12 @@ class LoRALayer(LoRALayerBase):
class LoHALayer(LoRALayerBase): class LoHALayer(LoRALayerBase):
#w1_a: torch.Tensor # w1_a: torch.Tensor
#w1_b: torch.Tensor # w1_b: torch.Tensor
#w2_a: torch.Tensor # w2_a: torch.Tensor
#w2_b: torch.Tensor # w2_b: torch.Tensor
#t1: Optional[torch.Tensor] = None # t1: Optional[torch.Tensor] = None
#t2: Optional[torch.Tensor] = None # t2: Optional[torch.Tensor] = None
def __init__( def __init__(
self, self,
@ -187,12 +188,8 @@ class LoHALayer(LoRALayerBase):
weight = (self.w1_a @ self.w1_b) * (self.w2_a @ self.w2_b) weight = (self.w1_a @ self.w1_b) * (self.w2_a @ self.w2_b)
else: else:
rebuild1 = torch.einsum( rebuild1 = torch.einsum("i j k l, j r, i p -> p r k l", self.t1, self.w1_b, self.w1_a)
"i j k l, j r, i p -> p r k l", self.t1, self.w1_b, self.w1_a rebuild2 = torch.einsum("i j k l, j r, i p -> p r k l", self.t2, self.w2_b, self.w2_a)
)
rebuild2 = torch.einsum(
"i j k l, j r, i p -> p r k l", self.t2, self.w2_b, self.w2_a
)
weight = rebuild1 * rebuild2 weight = rebuild1 * rebuild2
return weight return weight
@ -223,20 +220,20 @@ class LoHALayer(LoRALayerBase):
class LoKRLayer(LoRALayerBase): class LoKRLayer(LoRALayerBase):
#w1: Optional[torch.Tensor] = None # w1: Optional[torch.Tensor] = None
#w1_a: Optional[torch.Tensor] = None # w1_a: Optional[torch.Tensor] = None
#w1_b: Optional[torch.Tensor] = None # w1_b: Optional[torch.Tensor] = None
#w2: Optional[torch.Tensor] = None # w2: Optional[torch.Tensor] = None
#w2_a: Optional[torch.Tensor] = None # w2_a: Optional[torch.Tensor] = None
#w2_b: Optional[torch.Tensor] = None # w2_b: Optional[torch.Tensor] = None
#t2: Optional[torch.Tensor] = None # t2: Optional[torch.Tensor] = None
def __init__( def __init__(
self, self,
layer_key: str, layer_key: str,
values: dict, values: dict,
): ):
super().__init__(layer_key, values) super().__init__(layer_key, values)
if "lokr_w1" in values: if "lokr_w1" in values:
self.w1 = values["lokr_w1"] self.w1 = values["lokr_w1"]
@ -266,7 +263,7 @@ class LoKRLayer(LoRALayerBase):
elif "lokr_w2_b" in values: elif "lokr_w2_b" in values:
self.rank = values["lokr_w2_b"].shape[0] self.rank = values["lokr_w2_b"].shape[0]
else: else:
self.rank = None # unscaled self.rank = None # unscaled
def get_weight(self): def get_weight(self):
w1 = self.w1 w1 = self.w1
@ -278,7 +275,7 @@ class LoKRLayer(LoRALayerBase):
if self.t2 is None: if self.t2 is None:
w2 = self.w2_a @ self.w2_b w2 = self.w2_a @ self.w2_b
else: else:
w2 = torch.einsum('i j k l, i p, j r -> p r k l', self.t2, self.w2_a, self.w2_b) w2 = torch.einsum("i j k l, i p, j r -> p r k l", self.t2, self.w2_a, self.w2_b)
if len(w2.shape) == 4: if len(w2.shape) == 4:
w1 = w1.unsqueeze(2).unsqueeze(2) w1 = w1.unsqueeze(2).unsqueeze(2)
@ -317,7 +314,7 @@ class LoKRLayer(LoRALayerBase):
self.t2 = self.t2.to(device=device, dtype=dtype) self.t2 = self.t2.to(device=device, dtype=dtype)
class LoRAModel: #(torch.nn.Module): class LoRAModel: # (torch.nn.Module):
_name: str _name: str
layers: Dict[str, LoRALayer] layers: Dict[str, LoRALayer]
_device: torch.device _device: torch.device
@ -345,7 +342,7 @@ class LoRAModel: #(torch.nn.Module):
@property @property
def dtype(self): def dtype(self):
return self._dtype return self._dtype
def to( def to(
self, self,
@ -380,7 +377,7 @@ class LoRAModel: #(torch.nn.Module):
model = cls( model = cls(
device=device, device=device,
dtype=dtype, dtype=dtype,
name=file_path.stem, # TODO: name=file_path.stem, # TODO:
layers=dict(), layers=dict(),
) )
@ -392,7 +389,6 @@ class LoRAModel: #(torch.nn.Module):
state_dict = cls._group_state(state_dict) state_dict = cls._group_state(state_dict)
for layer_key, values in state_dict.items(): for layer_key, values in state_dict.items():
# lora and locon # lora and locon
if "lora_down.weight" in values: if "lora_down.weight" in values:
layer = LoRALayer(layer_key, values) layer = LoRALayer(layer_key, values)
@ -407,9 +403,7 @@ class LoRAModel: #(torch.nn.Module):
else: else:
# TODO: diff/ia3/... format # TODO: diff/ia3/... format
print( print(f">> Encountered unknown lora layer module in {model.name}: {layer_key}")
f">> Encountered unknown lora layer module in {model.name}: {layer_key}"
)
return return
# lower memory consumption by removing already parsed layer values # lower memory consumption by removing already parsed layer values
@ -443,9 +437,10 @@ with LoRAHelper.apply_lora_unet(unet, loras):
# unmodified unet # unmodified unet
""" """
# TODO: rename smth like ModelPatcher and add TI method? # TODO: rename smth like ModelPatcher and add TI method?
class ModelPatcher: class ModelPatcher:
@staticmethod @staticmethod
def _resolve_lora_key(model: torch.nn.Module, lora_key: str, prefix: str) -> Tuple[str, torch.nn.Module]: def _resolve_lora_key(model: torch.nn.Module, lora_key: str, prefix: str) -> Tuple[str, torch.nn.Module]:
assert "." not in lora_key assert "." not in lora_key
@ -455,10 +450,10 @@ class ModelPatcher:
module = model module = model
module_key = "" module_key = ""
key_parts = lora_key[len(prefix):].split('_') key_parts = lora_key[len(prefix) :].split("_")
submodule_name = key_parts.pop(0) submodule_name = key_parts.pop(0)
while len(key_parts) > 0: while len(key_parts) > 0:
try: try:
module = module.get_submodule(submodule_name) module = module.get_submodule(submodule_name)
@ -477,7 +472,6 @@ class ModelPatcher:
applied_loras: List[Tuple[LoRAModel, float]], applied_loras: List[Tuple[LoRAModel, float]],
layer_name: str, layer_name: str,
): ):
def lora_forward(module, input_h, output): def lora_forward(module, input_h, output):
if len(applied_loras) == 0: if len(applied_loras) == 0:
return output return output
@ -491,7 +485,6 @@ class ModelPatcher:
return lora_forward return lora_forward
@classmethod @classmethod
@contextmanager @contextmanager
def apply_lora_unet( def apply_lora_unet(
@ -502,7 +495,6 @@ class ModelPatcher:
with cls.apply_lora(unet, loras, "lora_unet_"): with cls.apply_lora(unet, loras, "lora_unet_"):
yield yield
@classmethod @classmethod
@contextmanager @contextmanager
def apply_lora_text_encoder( def apply_lora_text_encoder(
@ -513,7 +505,6 @@ class ModelPatcher:
with cls.apply_lora(text_encoder, loras, "lora_te_"): with cls.apply_lora(text_encoder, loras, "lora_te_"):
yield yield
@classmethod @classmethod
@contextmanager @contextmanager
def apply_lora( def apply_lora(
@ -526,7 +517,7 @@ class ModelPatcher:
try: try:
with torch.no_grad(): with torch.no_grad():
for lora, lora_weight in loras: for lora, lora_weight in loras:
#assert lora.device.type == "cpu" # assert lora.device.type == "cpu"
for layer_key, layer in lora.layers.items(): for layer_key, layer in lora.layers.items():
if not layer_key.startswith(prefix): if not layer_key.startswith(prefix):
continue continue
@ -536,7 +527,7 @@ class ModelPatcher:
original_weights[module_key] = module.weight.detach().to(device="cpu", copy=True) original_weights[module_key] = module.weight.detach().to(device="cpu", copy=True)
# enable autocast to calc fp16 loras on cpu # enable autocast to calc fp16 loras on cpu
#with torch.autocast(device_type="cpu"): # with torch.autocast(device_type="cpu"):
layer.to(dtype=torch.float32) layer.to(dtype=torch.float32)
layer_scale = layer.alpha / layer.rank if (layer.alpha and layer.rank) else 1.0 layer_scale = layer.alpha / layer.rank if (layer.alpha and layer.rank) else 1.0
layer_weight = layer.get_weight() * lora_weight * layer_scale layer_weight = layer.get_weight() * lora_weight * layer_scale
@ -547,14 +538,13 @@ class ModelPatcher:
module.weight += layer_weight.to(device=module.weight.device, dtype=module.weight.dtype) module.weight += layer_weight.to(device=module.weight.device, dtype=module.weight.dtype)
yield # wait for context manager exit yield # wait for context manager exit
finally: finally:
with torch.no_grad(): with torch.no_grad():
for module_key, weight in original_weights.items(): for module_key, weight in original_weights.items():
model.get_submodule(module_key).weight.copy_(weight) model.get_submodule(module_key).weight.copy_(weight)
@classmethod @classmethod
@contextmanager @contextmanager
def apply_ti( def apply_ti(
@ -602,7 +592,9 @@ class ModelPatcher:
f"Cannot load embedding for {trigger}. It was trained on a model with token dimension {embedding.shape[0]}, but the current model has token dimension {model_embeddings.weight.data[token_id].shape[0]}." f"Cannot load embedding for {trigger}. It was trained on a model with token dimension {embedding.shape[0]}, but the current model has token dimension {model_embeddings.weight.data[token_id].shape[0]}."
) )
model_embeddings.weight.data[token_id] = embedding.to(device=text_encoder.device, dtype=text_encoder.dtype) model_embeddings.weight.data[token_id] = embedding.to(
device=text_encoder.device, dtype=text_encoder.dtype
)
ti_tokens.append(token_id) ti_tokens.append(token_id)
if len(ti_tokens) > 1: if len(ti_tokens) > 1:
@ -614,7 +606,6 @@ class ModelPatcher:
if init_tokens_count and new_tokens_added: if init_tokens_count and new_tokens_added:
text_encoder.resize_token_embeddings(init_tokens_count) text_encoder.resize_token_embeddings(init_tokens_count)
@classmethod @classmethod
@contextmanager @contextmanager
def apply_clip_skip( def apply_clip_skip(
@ -633,9 +624,10 @@ class ModelPatcher:
while len(skipped_layers) > 0: while len(skipped_layers) > 0:
text_encoder.text_model.encoder.layers.append(skipped_layers.pop()) text_encoder.text_model.encoder.layers.append(skipped_layers.pop())
class TextualInversionModel: class TextualInversionModel:
name: str name: str
embedding: torch.Tensor # [n, 768]|[n, 1280] embedding: torch.Tensor # [n, 768]|[n, 1280]
@classmethod @classmethod
def from_checkpoint( def from_checkpoint(
@ -647,8 +639,8 @@ class TextualInversionModel:
if not isinstance(file_path, Path): if not isinstance(file_path, Path):
file_path = Path(file_path) file_path = Path(file_path)
result = cls() # TODO: result = cls() # TODO:
result.name = file_path.stem # TODO: result.name = file_path.stem # TODO:
if file_path.suffix == ".safetensors": if file_path.suffix == ".safetensors":
state_dict = load_file(file_path.absolute().as_posix(), device="cpu") state_dict = load_file(file_path.absolute().as_posix(), device="cpu")
@ -659,7 +651,9 @@ class TextualInversionModel:
# difference mostly in metadata # difference mostly in metadata
if "string_to_param" in state_dict: if "string_to_param" in state_dict:
if len(state_dict["string_to_param"]) > 1: if len(state_dict["string_to_param"]) > 1:
print(f"Warn: Embedding \"{file_path.name}\" contains multiple tokens, which is not supported. The first token will be used.") print(
f'Warn: Embedding "{file_path.name}" contains multiple tokens, which is not supported. The first token will be used.'
)
result.embedding = next(iter(state_dict["string_to_param"].values())) result.embedding = next(iter(state_dict["string_to_param"].values()))
@ -688,10 +682,7 @@ class TextualInversionManager(BaseTextualInversionManager):
self.pad_tokens = dict() self.pad_tokens = dict()
self.tokenizer = tokenizer self.tokenizer = tokenizer
def expand_textual_inversion_token_ids_if_necessary( def expand_textual_inversion_token_ids_if_necessary(self, token_ids: list[int]) -> list[int]:
self, token_ids: list[int]
) -> list[int]:
if len(self.pad_tokens) == 0: if len(self.pad_tokens) == 0:
return token_ids return token_ids
@ -707,4 +698,3 @@ class TextualInversionManager(BaseTextualInversionManager):
new_token_ids.extend(self.pad_tokens[token_id]) new_token_ids.extend(self.pad_tokens[token_id])
return new_token_ids return new_token_ids

View File

@ -37,19 +37,22 @@ from .models import BaseModelType, ModelType, SubModelType, ModelBase
DEFAULT_MAX_CACHE_SIZE = 6.0 DEFAULT_MAX_CACHE_SIZE = 6.0
# amount of GPU memory to hold in reserve for use by generations (GB) # amount of GPU memory to hold in reserve for use by generations (GB)
DEFAULT_MAX_VRAM_CACHE_SIZE= 2.75 DEFAULT_MAX_VRAM_CACHE_SIZE = 2.75
# actual size of a gig # actual size of a gig
GIG = 1073741824 GIG = 1073741824
class ModelLocker(object): class ModelLocker(object):
"Forward declaration" "Forward declaration"
pass pass
class ModelCache(object): class ModelCache(object):
"Forward declaration" "Forward declaration"
pass pass
class _CacheRecord: class _CacheRecord:
size: int size: int
model: Any model: Any
@ -79,22 +82,22 @@ class _CacheRecord:
return self.model.device != self.cache.storage_device return self.model.device != self.cache.storage_device
else: else:
return False return False
class ModelCache(object): class ModelCache(object):
def __init__( def __init__(
self, self,
max_cache_size: float=DEFAULT_MAX_CACHE_SIZE, max_cache_size: float = DEFAULT_MAX_CACHE_SIZE,
max_vram_cache_size: float=DEFAULT_MAX_VRAM_CACHE_SIZE, max_vram_cache_size: float = DEFAULT_MAX_VRAM_CACHE_SIZE,
execution_device: torch.device=torch.device('cuda'), execution_device: torch.device = torch.device("cuda"),
storage_device: torch.device=torch.device('cpu'), storage_device: torch.device = torch.device("cpu"),
precision: torch.dtype=torch.float16, precision: torch.dtype = torch.float16,
sequential_offload: bool=False, sequential_offload: bool = False,
lazy_offloading: bool=True, lazy_offloading: bool = True,
sha_chunksize: int = 16777216, sha_chunksize: int = 16777216,
logger: types.ModuleType = logger logger: types.ModuleType = logger,
): ):
''' """
:param max_cache_size: Maximum size of the RAM cache [6.0 GB] :param max_cache_size: Maximum size of the RAM cache [6.0 GB]
:param execution_device: Torch device to load active model into [torch.device('cuda')] :param execution_device: Torch device to load active model into [torch.device('cuda')]
:param storage_device: Torch device to save inactive model in [torch.device('cpu')] :param storage_device: Torch device to save inactive model in [torch.device('cpu')]
@ -102,16 +105,16 @@ class ModelCache(object):
:param lazy_offloading: Keep model in VRAM until another model needs to be loaded :param lazy_offloading: Keep model in VRAM until another model needs to be loaded
:param sequential_offload: Conserve VRAM by loading and unloading each stage of the pipeline sequentially :param sequential_offload: Conserve VRAM by loading and unloading each stage of the pipeline sequentially
:param sha_chunksize: Chunksize to use when calculating sha256 model hash :param sha_chunksize: Chunksize to use when calculating sha256 model hash
''' """
self.model_infos: Dict[str, ModelBase] = dict() self.model_infos: Dict[str, ModelBase] = dict()
# allow lazy offloading only when vram cache enabled # allow lazy offloading only when vram cache enabled
self.lazy_offloading = lazy_offloading and max_vram_cache_size > 0 self.lazy_offloading = lazy_offloading and max_vram_cache_size > 0
self.precision: torch.dtype=precision self.precision: torch.dtype = precision
self.max_cache_size: float=max_cache_size self.max_cache_size: float = max_cache_size
self.max_vram_cache_size: float=max_vram_cache_size self.max_vram_cache_size: float = max_vram_cache_size
self.execution_device: torch.device=execution_device self.execution_device: torch.device = execution_device
self.storage_device: torch.device=storage_device self.storage_device: torch.device = storage_device
self.sha_chunksize=sha_chunksize self.sha_chunksize = sha_chunksize
self.logger = logger self.logger = logger
self._cached_models = dict() self._cached_models = dict()
@ -124,7 +127,6 @@ class ModelCache(object):
model_type: ModelType, model_type: ModelType,
submodel_type: Optional[SubModelType] = None, submodel_type: Optional[SubModelType] = None,
): ):
key = f"{model_path}:{base_model}:{model_type}" key = f"{model_path}:{base_model}:{model_type}"
if submodel_type: if submodel_type:
key += f":{submodel_type}" key += f":{submodel_type}"
@ -163,7 +165,6 @@ class ModelCache(object):
submodel: Optional[SubModelType] = None, submodel: Optional[SubModelType] = None,
gpu_load: bool = True, gpu_load: bool = True,
) -> Any: ) -> Any:
if not isinstance(model_path, Path): if not isinstance(model_path, Path):
model_path = Path(model_path) model_path = Path(model_path)
@ -186,7 +187,7 @@ class ModelCache(object):
# TODO: lock for no copies on simultaneous calls? # TODO: lock for no copies on simultaneous calls?
cache_entry = self._cached_models.get(key, None) cache_entry = self._cached_models.get(key, None)
if cache_entry is None: if cache_entry is None:
self.logger.info(f'Loading model {model_path}, type {base_model}:{model_type}:{submodel}') self.logger.info(f"Loading model {model_path}, type {base_model}:{model_type}:{submodel}")
# this will remove older cached models until # this will remove older cached models until
# there is sufficient room to load the requested model # there is sufficient room to load the requested model
@ -196,7 +197,7 @@ class ModelCache(object):
gc.collect() gc.collect()
model = model_info.get_model(child_type=submodel, torch_dtype=self.precision) model = model_info.get_model(child_type=submodel, torch_dtype=self.precision)
if mem_used := model_info.get_size(submodel): if mem_used := model_info.get_size(submodel):
self.logger.debug(f'CPU RAM used for load: {(mem_used/GIG):.2f} GB') self.logger.debug(f"CPU RAM used for load: {(mem_used/GIG):.2f} GB")
cache_entry = _CacheRecord(self, model, mem_used) cache_entry = _CacheRecord(self, model, mem_used)
self._cached_models[key] = cache_entry self._cached_models[key] = cache_entry
@ -209,13 +210,13 @@ class ModelCache(object):
class ModelLocker(object): class ModelLocker(object):
def __init__(self, cache, key, model, gpu_load, size_needed): def __init__(self, cache, key, model, gpu_load, size_needed):
''' """
:param cache: The model_cache object :param cache: The model_cache object
:param key: The key of the model to lock in GPU :param key: The key of the model to lock in GPU
:param model: The model to lock :param model: The model to lock
:param gpu_load: True if load into gpu :param gpu_load: True if load into gpu
:param size_needed: Size of the model to load :param size_needed: Size of the model to load
''' """
self.gpu_load = gpu_load self.gpu_load = gpu_load
self.cache = cache self.cache = cache
self.key = key self.key = key
@ -224,7 +225,7 @@ class ModelCache(object):
self.cache_entry = self.cache._cached_models[self.key] self.cache_entry = self.cache._cached_models[self.key]
def __enter__(self) -> Any: def __enter__(self) -> Any:
if not hasattr(self.model, 'to'): if not hasattr(self.model, "to"):
return self.model return self.model
# NOTE that the model has to have the to() method in order for this # NOTE that the model has to have the to() method in order for this
@ -234,22 +235,21 @@ class ModelCache(object):
try: try:
if self.cache.lazy_offloading: if self.cache.lazy_offloading:
self.cache._offload_unlocked_models(self.size_needed) self.cache._offload_unlocked_models(self.size_needed)
if self.model.device != self.cache.execution_device: if self.model.device != self.cache.execution_device:
self.cache.logger.debug(f'Moving {self.key} into {self.cache.execution_device}') self.cache.logger.debug(f"Moving {self.key} into {self.cache.execution_device}")
with VRAMUsage() as mem: with VRAMUsage() as mem:
self.model.to(self.cache.execution_device) # move into GPU self.model.to(self.cache.execution_device) # move into GPU
self.cache.logger.debug(f'GPU VRAM used for load: {(mem.vram_used/GIG):.2f} GB') self.cache.logger.debug(f"GPU VRAM used for load: {(mem.vram_used/GIG):.2f} GB")
self.cache.logger.debug(f'Locking {self.key} in {self.cache.execution_device}') self.cache.logger.debug(f"Locking {self.key} in {self.cache.execution_device}")
self.cache._print_cuda_stats() self.cache._print_cuda_stats()
except: except:
self.cache_entry.unlock() self.cache_entry.unlock()
raise raise
# TODO: not fully understand # TODO: not fully understand
# in the event that the caller wants the model in RAM, we # in the event that the caller wants the model in RAM, we
# move it into CPU if it is in GPU and not locked # move it into CPU if it is in GPU and not locked
@ -259,7 +259,7 @@ class ModelCache(object):
return self.model return self.model
def __exit__(self, type, value, traceback): def __exit__(self, type, value, traceback):
if not hasattr(self.model, 'to'): if not hasattr(self.model, "to"):
return return
self.cache_entry.unlock() self.cache_entry.unlock()
@ -277,11 +277,11 @@ class ModelCache(object):
self, self,
model_path: Union[str, Path], model_path: Union[str, Path],
) -> str: ) -> str:
''' """
Given the HF repo id or path to a model on disk, returns a unique Given the HF repo id or path to a model on disk, returns a unique
hash. Works for legacy checkpoint files, HF models on disk, and HF repo IDs hash. Works for legacy checkpoint files, HF models on disk, and HF repo IDs
:param model_path: Path to model file/directory on disk. :param model_path: Path to model file/directory on disk.
''' """
return self._local_model_hash(model_path) return self._local_model_hash(model_path)
def cache_size(self) -> float: def cache_size(self) -> float:
@ -290,7 +290,7 @@ class ModelCache(object):
return current_cache_size / GIG return current_cache_size / GIG
def _has_cuda(self) -> bool: def _has_cuda(self) -> bool:
return self.execution_device.type == 'cuda' return self.execution_device.type == "cuda"
def _print_cuda_stats(self): def _print_cuda_stats(self):
vram = "%4.2fG" % (torch.cuda.memory_allocated() / GIG) vram = "%4.2fG" % (torch.cuda.memory_allocated() / GIG)
@ -306,18 +306,21 @@ class ModelCache(object):
if model_info.locked: if model_info.locked:
locked_models += 1 locked_models += 1
self.logger.debug(f"Current VRAM/RAM usage: {vram}/{ram}; cached_models/loaded_models/locked_models/ = {cached_models}/{loaded_models}/{locked_models}") self.logger.debug(
f"Current VRAM/RAM usage: {vram}/{ram}; cached_models/loaded_models/locked_models/ = {cached_models}/{loaded_models}/{locked_models}"
)
def _make_cache_room(self, model_size): def _make_cache_room(self, model_size):
# calculate how much memory this model will require # calculate how much memory this model will require
#multiplier = 2 if self.precision==torch.float32 else 1 # multiplier = 2 if self.precision==torch.float32 else 1
bytes_needed = model_size bytes_needed = model_size
maximum_size = self.max_cache_size * GIG # stored in GB, convert to bytes maximum_size = self.max_cache_size * GIG # stored in GB, convert to bytes
current_size = sum([m.size for m in self._cached_models.values()]) current_size = sum([m.size for m in self._cached_models.values()])
if current_size + bytes_needed > maximum_size: if current_size + bytes_needed > maximum_size:
self.logger.debug(f'Max cache size exceeded: {(current_size/GIG):.2f}/{self.max_cache_size:.2f} GB, need an additional {(bytes_needed/GIG):.2f} GB') self.logger.debug(
f"Max cache size exceeded: {(current_size/GIG):.2f}/{self.max_cache_size:.2f} GB, need an additional {(bytes_needed/GIG):.2f} GB"
)
self.logger.debug(f"Before unloading: cached_models={len(self._cached_models)}") self.logger.debug(f"Before unloading: cached_models={len(self._cached_models)}")
@ -339,7 +342,7 @@ class ModelCache(object):
with suppress(RuntimeError): with suppress(RuntimeError):
referrer.clear() referrer.clear()
cleared = True cleared = True
#break # break
# repeat if referrers changes(due to frame clear), else exit loop # repeat if referrers changes(due to frame clear), else exit loop
if cleared: if cleared:
@ -348,13 +351,17 @@ class ModelCache(object):
break break
device = cache_entry.model.device if hasattr(cache_entry.model, "device") else None device = cache_entry.model.device if hasattr(cache_entry.model, "device") else None
self.logger.debug(f"Model: {model_key}, locks: {cache_entry._locks}, device: {device}, loaded: {cache_entry.loaded}, refs: {refs}") self.logger.debug(
f"Model: {model_key}, locks: {cache_entry._locks}, device: {device}, loaded: {cache_entry.loaded}, refs: {refs}"
)
# 2 refs: # 2 refs:
# 1 from cache_entry # 1 from cache_entry
# 1 from getrefcount function # 1 from getrefcount function
if not cache_entry.locked and refs <= 2: if not cache_entry.locked and refs <= 2:
self.logger.debug(f'Unloading model {model_key} to free {(model_size/GIG):.2f} GB (-{(cache_entry.size/GIG):.2f} GB)') self.logger.debug(
f"Unloading model {model_key} to free {(model_size/GIG):.2f} GB (-{(cache_entry.size/GIG):.2f} GB)"
)
current_size -= cache_entry.size current_size -= cache_entry.size
del self._cache_stack[pos] del self._cache_stack[pos]
del self._cached_models[model_key] del self._cached_models[model_key]
@ -368,38 +375,36 @@ class ModelCache(object):
self.logger.debug(f"After unloading: cached_models={len(self._cached_models)}") self.logger.debug(f"After unloading: cached_models={len(self._cached_models)}")
def _offload_unlocked_models(self, size_needed: int=0): def _offload_unlocked_models(self, size_needed: int = 0):
reserved = self.max_vram_cache_size * GIG reserved = self.max_vram_cache_size * GIG
vram_in_use = torch.cuda.memory_allocated() vram_in_use = torch.cuda.memory_allocated()
self.logger.debug(f'{(vram_in_use/GIG):.2f}GB VRAM used for models; max allowed={(reserved/GIG):.2f}GB') self.logger.debug(f"{(vram_in_use/GIG):.2f}GB VRAM used for models; max allowed={(reserved/GIG):.2f}GB")
for model_key, cache_entry in sorted(self._cached_models.items(), key=lambda x:x[1].size): for model_key, cache_entry in sorted(self._cached_models.items(), key=lambda x: x[1].size):
if vram_in_use <= reserved: if vram_in_use <= reserved:
break break
if not cache_entry.locked and cache_entry.loaded: if not cache_entry.locked and cache_entry.loaded:
self.logger.debug(f'Offloading {model_key} from {self.execution_device} into {self.storage_device}') self.logger.debug(f"Offloading {model_key} from {self.execution_device} into {self.storage_device}")
with VRAMUsage() as mem: with VRAMUsage() as mem:
cache_entry.model.to(self.storage_device) cache_entry.model.to(self.storage_device)
self.logger.debug(f'GPU VRAM freed: {(mem.vram_used/GIG):.2f} GB') self.logger.debug(f"GPU VRAM freed: {(mem.vram_used/GIG):.2f} GB")
vram_in_use += mem.vram_used # note vram_used is negative vram_in_use += mem.vram_used # note vram_used is negative
self.logger.debug(f'{(vram_in_use/GIG):.2f}GB VRAM used for models; max allowed={(reserved/GIG):.2f}GB') self.logger.debug(f"{(vram_in_use/GIG):.2f}GB VRAM used for models; max allowed={(reserved/GIG):.2f}GB")
gc.collect() gc.collect()
torch.cuda.empty_cache() torch.cuda.empty_cache()
def _local_model_hash(self, model_path: Union[str, Path]) -> str: def _local_model_hash(self, model_path: Union[str, Path]) -> str:
sha = hashlib.sha256() sha = hashlib.sha256()
path = Path(model_path) path = Path(model_path)
hashpath = path / "checksum.sha256" hashpath = path / "checksum.sha256"
if hashpath.exists() and path.stat().st_mtime <= hashpath.stat().st_mtime: if hashpath.exists() and path.stat().st_mtime <= hashpath.stat().st_mtime:
with open(hashpath) as f: with open(hashpath) as f:
hash = f.read() hash = f.read()
return hash return hash
self.logger.debug(f'computing hash of model {path.name}') self.logger.debug(f"computing hash of model {path.name}")
for file in list(path.rglob("*.ckpt")) \ for file in list(path.rglob("*.ckpt")) + list(path.rglob("*.safetensors")) + list(path.rglob("*.pth")):
+ list(path.rglob("*.safetensors")) \
+ list(path.rglob("*.pth")):
with open(file, "rb") as f: with open(file, "rb") as f:
while chunk := f.read(self.sha_chunksize): while chunk := f.read(self.sha_chunksize):
sha.update(chunk) sha.update(chunk)
@ -408,11 +413,12 @@ class ModelCache(object):
f.write(hash) f.write(hash)
return hash return hash
class VRAMUsage(object): class VRAMUsage(object):
def __init__(self): def __init__(self):
self.vram = None self.vram = None
self.vram_used = 0 self.vram_used = 0
def __enter__(self): def __enter__(self):
self.vram = torch.cuda.memory_allocated() self.vram = torch.cuda.memory_allocated()
return self return self

View File

@ -249,20 +249,26 @@ from invokeai.backend.util import CUDA_DEVICE, Chdir
from .model_cache import ModelCache, ModelLocker from .model_cache import ModelCache, ModelLocker
from .model_search import ModelSearch from .model_search import ModelSearch
from .models import ( from .models import (
BaseModelType, ModelType, SubModelType, BaseModelType,
ModelError, SchedulerPredictionType, MODEL_CLASSES, ModelType,
SubModelType,
ModelError,
SchedulerPredictionType,
MODEL_CLASSES,
ModelConfigBase, ModelConfigBase,
ModelNotFoundException, InvalidModelException, ModelNotFoundException,
InvalidModelException,
DuplicateModelException, DuplicateModelException,
) )
# We are only starting to number the config file with release 3. # We are only starting to number the config file with release 3.
# The config file version doesn't have to start at release version, but it will help # The config file version doesn't have to start at release version, but it will help
# reduce confusion. # reduce confusion.
CONFIG_FILE_VERSION='3.0.0' CONFIG_FILE_VERSION = "3.0.0"
@dataclass @dataclass
class ModelInfo(): class ModelInfo:
context: ModelLocker context: ModelLocker
name: str name: str
base_model: BaseModelType base_model: BaseModelType
@ -275,20 +281,24 @@ class ModelInfo():
def __enter__(self): def __enter__(self):
return self.context.__enter__() return self.context.__enter__()
def __exit__(self,*args, **kwargs): def __exit__(self, *args, **kwargs):
self.context.__exit__(*args, **kwargs) self.context.__exit__(*args, **kwargs)
class AddModelResult(BaseModel): class AddModelResult(BaseModel):
name: str = Field(description="The name of the model after installation") name: str = Field(description="The name of the model after installation")
model_type: ModelType = Field(description="The type of model") model_type: ModelType = Field(description="The type of model")
base_model: BaseModelType = Field(description="The base model") base_model: BaseModelType = Field(description="The base model")
config: ModelConfigBase = Field(description="The configuration of the model") config: ModelConfigBase = Field(description="The configuration of the model")
MAX_CACHE_SIZE = 6.0 # GB MAX_CACHE_SIZE = 6.0 # GB
class ConfigMeta(BaseModel): class ConfigMeta(BaseModel):
version: str version: str
class ModelManager(object): class ModelManager(object):
""" """
High-level interface to model management. High-level interface to model management.
@ -315,12 +325,12 @@ class ModelManager(object):
if isinstance(config, (str, Path)): if isinstance(config, (str, Path)):
self.config_path = Path(config) self.config_path = Path(config)
if not self.config_path.exists(): if not self.config_path.exists():
logger.warning(f'The file {self.config_path} was not found. Initializing a new file') logger.warning(f"The file {self.config_path} was not found. Initializing a new file")
self.initialize_model_config(self.config_path) self.initialize_model_config(self.config_path)
config = OmegaConf.load(self.config_path) config = OmegaConf.load(self.config_path)
elif not isinstance(config, DictConfig): elif not isinstance(config, DictConfig):
raise ValueError('config argument must be an OmegaConf object, a Path or a string') raise ValueError("config argument must be an OmegaConf object, a Path or a string")
self.config_meta = ConfigMeta(**config.pop("__metadata__")) self.config_meta = ConfigMeta(**config.pop("__metadata__"))
# TODO: metadata not found # TODO: metadata not found
@ -330,11 +340,11 @@ class ModelManager(object):
self.logger = logger self.logger = logger
self.cache = ModelCache( self.cache = ModelCache(
max_cache_size=max_cache_size, max_cache_size=max_cache_size,
max_vram_cache_size = self.app_config.max_vram_cache_size, max_vram_cache_size=self.app_config.max_vram_cache_size,
execution_device = device_type, execution_device=device_type,
precision = precision, precision=precision,
sequential_offload = sequential_offload, sequential_offload=sequential_offload,
logger = logger, logger=logger,
) )
self._read_models(config) self._read_models(config)
@ -348,7 +358,7 @@ class ModelManager(object):
self.models = dict() self.models = dict()
for model_key, model_config in config.items(): for model_key, model_config in config.items():
if model_key.startswith('_'): if model_key.startswith("_"):
continue continue
model_name, base_model, model_type = self.parse_key(model_key) model_name, base_model, model_type = self.parse_key(model_key)
model_class = MODEL_CLASSES[base_model][model_type] model_class = MODEL_CLASSES[base_model][model_type]
@ -395,7 +405,7 @@ class ModelManager(object):
@classmethod @classmethod
def parse_key(cls, model_key: str) -> Tuple[str, BaseModelType, ModelType]: def parse_key(cls, model_key: str) -> Tuple[str, BaseModelType, ModelType]:
base_model_str, model_type_str, model_name = model_key.split('/', 2) base_model_str, model_type_str, model_name = model_key.split("/", 2)
try: try:
model_type = ModelType(model_type_str) model_type = ModelType(model_type_str)
except: except:
@ -414,20 +424,16 @@ class ModelManager(object):
@classmethod @classmethod
def initialize_model_config(cls, config_path: Path): def initialize_model_config(cls, config_path: Path):
"""Create empty config file""" """Create empty config file"""
with open(config_path,'w') as yaml_file: with open(config_path, "w") as yaml_file:
yaml_file.write(yaml.dump({'__metadata__': yaml_file.write(yaml.dump({"__metadata__": {"version": "3.0.0"}}))
{'version':'3.0.0'}
}
)
)
def get_model( def get_model(
self, self,
model_name: str, model_name: str,
base_model: BaseModelType, base_model: BaseModelType,
model_type: ModelType, model_type: ModelType,
submodel_type: Optional[SubModelType] = None submodel_type: Optional[SubModelType] = None,
)->ModelInfo: ) -> ModelInfo:
"""Given a model named identified in models.yaml, return """Given a model named identified in models.yaml, return
an ModelInfo object describing it. an ModelInfo object describing it.
:param model_name: symbolic name of the model in models.yaml :param model_name: symbolic name of the model in models.yaml
@ -451,7 +457,7 @@ class ModelManager(object):
if not model_path.exists(): if not model_path.exists():
if model_class.save_to_config: if model_class.save_to_config:
self.models[model_key].error = ModelError.NotFound self.models[model_key].error = ModelError.NotFound
raise Exception(f"Files for model \"{model_key}\" not found") raise Exception(f'Files for model "{model_key}" not found')
else: else:
self.models.pop(model_key, None) self.models.pop(model_key, None)
@ -473,7 +479,7 @@ class ModelManager(object):
model_path = model_class.convert_if_required( model_path = model_class.convert_if_required(
base_model=base_model, base_model=base_model,
model_path=str(model_path), # TODO: refactor str/Path types logic model_path=str(model_path), # TODO: refactor str/Path types logic
output_path=dst_convert_path, output_path=dst_convert_path,
config=model_config, config=model_config,
) )
@ -490,17 +496,17 @@ class ModelManager(object):
self.cache_keys[model_key] = set() self.cache_keys[model_key] = set()
self.cache_keys[model_key].add(model_context.key) self.cache_keys[model_key].add(model_context.key)
model_hash = "<NO_HASH>" # TODO: model_hash = "<NO_HASH>" # TODO:
return ModelInfo( return ModelInfo(
context = model_context, context=model_context,
name = model_name, name=model_name,
base_model = base_model, base_model=base_model,
type = submodel_type or model_type, type=submodel_type or model_type,
hash = model_hash, hash=model_hash,
location = model_path, # TODO: location=model_path, # TODO:
precision = self.cache.precision, precision=self.cache.precision,
_cache = self.cache, _cache=self.cache,
) )
def model_info( def model_info(
@ -516,7 +522,7 @@ class ModelManager(object):
if model_key in self.models: if model_key in self.models:
return self.models[model_key].dict(exclude_defaults=True) return self.models[model_key].dict(exclude_defaults=True)
else: else:
return None # TODO: None or empty dict on not found return None # TODO: None or empty dict on not found
def model_names(self) -> List[Tuple[str, BaseModelType, ModelType]]: def model_names(self) -> List[Tuple[str, BaseModelType, ModelType]]:
""" """
@ -526,16 +532,16 @@ class ModelManager(object):
return [(self.parse_key(x)) for x in self.models.keys()] return [(self.parse_key(x)) for x in self.models.keys()]
def list_model( def list_model(
self, self,
model_name: str, model_name: str,
base_model: BaseModelType, base_model: BaseModelType,
model_type: ModelType, model_type: ModelType,
) -> dict: ) -> dict:
""" """
Returns a dict describing one installed model, using Returns a dict describing one installed model, using
the combined format of the list_models() method. the combined format of the list_models() method.
""" """
models = self.list_models(base_model,model_type,model_name) models = self.list_models(base_model, model_type, model_name)
return models[0] if models else None return models[0] if models else None
def list_models( def list_models(
@ -548,13 +554,17 @@ class ModelManager(object):
Return a list of models. Return a list of models.
""" """
model_keys = [self.create_key(model_name, base_model, model_type)] if model_name else sorted(self.models, key=str.casefold) model_keys = (
[self.create_key(model_name, base_model, model_type)]
if model_name
else sorted(self.models, key=str.casefold)
)
models = [] models = []
for model_key in model_keys: for model_key in model_keys:
model_config = self.models.get(model_key) model_config = self.models.get(model_key)
if not model_config: if not model_config:
self.logger.error(f'Unknown model {model_name}') self.logger.error(f"Unknown model {model_name}")
raise ModelNotFoundException(f'Unknown model {model_name}') raise ModelNotFoundException(f"Unknown model {model_name}")
cur_model_name, cur_base_model, cur_model_type = self.parse_key(model_key) cur_model_name, cur_base_model, cur_model_type = self.parse_key(model_key)
if base_model is not None and cur_base_model != base_model: if base_model is not None and cur_base_model != base_model:
@ -571,8 +581,8 @@ class ModelManager(object):
) )
# expose paths as absolute to help web UI # expose paths as absolute to help web UI
if path := model_dict.get('path'): if path := model_dict.get("path"):
model_dict['path'] = str(self.app_config.root_path / path) model_dict["path"] = str(self.app_config.root_path / path)
models.append(model_dict) models.append(model_dict)
return models return models
@ -641,15 +651,15 @@ class ModelManager(object):
model_info(). model_info().
""" """
# relativize paths as they go in - this makes it easier to move the root directory around # relativize paths as they go in - this makes it easier to move the root directory around
if path := model_attributes.get('path'): if path := model_attributes.get("path"):
if Path(path).is_relative_to(self.app_config.root_path): if Path(path).is_relative_to(self.app_config.root_path):
model_attributes['path'] = str(Path(path).relative_to(self.app_config.root_path)) model_attributes["path"] = str(Path(path).relative_to(self.app_config.root_path))
model_class = MODEL_CLASSES[base_model][model_type] model_class = MODEL_CLASSES[base_model][model_type]
model_config = model_class.create_config(**model_attributes) model_config = model_class.create_config(**model_attributes)
model_key = self.create_key(model_name, base_model, model_type) model_key = self.create_key(model_name, base_model, model_type)
if model_key in self.models and not clobber: if model_key in self.models and not clobber:
raise Exception(f'Attempt to overwrite existing model definition "{model_key}"') raise Exception(f'Attempt to overwrite existing model definition "{model_key}"')
old_model = self.models.pop(model_key, None) old_model = self.models.pop(model_key, None)
@ -675,23 +685,23 @@ class ModelManager(object):
self.commit() self.commit()
return AddModelResult( return AddModelResult(
name = model_name, name=model_name,
model_type = model_type, model_type=model_type,
base_model = base_model, base_model=base_model,
config = model_config, config=model_config,
) )
def rename_model( def rename_model(
self, self,
model_name: str, model_name: str,
base_model: BaseModelType, base_model: BaseModelType,
model_type: ModelType, model_type: ModelType,
new_name: str = None, new_name: str = None,
new_base: BaseModelType = None, new_base: BaseModelType = None,
): ):
''' """
Rename or rebase a model. Rename or rebase a model.
''' """
if new_name is None and new_base is None: if new_name is None and new_base is None:
self.logger.error("rename_model() called with neither a new_name nor a new_base. {model_name} unchanged.") self.logger.error("rename_model() called with neither a new_name nor a new_base. {model_name} unchanged.")
return return
@ -710,7 +720,13 @@ class ModelManager(object):
# if this is a model file/directory that we manage ourselves, we need to move it # if this is a model file/directory that we manage ourselves, we need to move it
if old_path.is_relative_to(self.app_config.models_path): if old_path.is_relative_to(self.app_config.models_path):
new_path = self.app_config.root_path / 'models' / BaseModelType(new_base).value / ModelType(model_type).value / new_name new_path = (
self.app_config.root_path
/ "models"
/ BaseModelType(new_base).value
/ ModelType(model_type).value
/ new_name
)
move(old_path, new_path) move(old_path, new_path)
model_cfg.path = str(new_path.relative_to(self.app_config.root_path)) model_cfg.path = str(new_path.relative_to(self.app_config.root_path))
@ -726,18 +742,18 @@ class ModelManager(object):
for cache_id in cache_ids: for cache_id in cache_ids:
self.cache.uncache_model(cache_id) self.cache.uncache_model(cache_id)
self.models.pop(model_key, None) # delete self.models.pop(model_key, None) # delete
self.models[new_key] = model_cfg self.models[new_key] = model_cfg
self.commit() self.commit()
def convert_model ( def convert_model(
self, self,
model_name: str, model_name: str,
base_model: BaseModelType, base_model: BaseModelType,
model_type: Union[ModelType.Main,ModelType.Vae], model_type: Union[ModelType.Main, ModelType.Vae],
dest_directory: Optional[Path]=None, dest_directory: Optional[Path] = None,
) -> AddModelResult: ) -> AddModelResult:
''' """
Convert a checkpoint file into a diffusers folder, deleting the cached Convert a checkpoint file into a diffusers folder, deleting the cached
version and deleting the original checkpoint file if it is in the models version and deleting the original checkpoint file if it is in the models
directory. directory.
@ -746,7 +762,7 @@ class ModelManager(object):
:param model_type: Type of model ['vae' or 'main'] :param model_type: Type of model ['vae' or 'main']
This will raise a ValueError unless the model is a checkpoint. This will raise a ValueError unless the model is a checkpoint.
''' """
info = self.model_info(model_name, base_model, model_type) info = self.model_info(model_name, base_model, model_type)
if info["model_format"] != "checkpoint": if info["model_format"] != "checkpoint":
raise ValueError(f"not a checkpoint format model: {model_name}") raise ValueError(f"not a checkpoint format model: {model_name}")
@ -754,27 +770,32 @@ class ModelManager(object):
# We are taking advantage of a side effect of get_model() that converts check points # We are taking advantage of a side effect of get_model() that converts check points
# into cached diffusers directories stored at `location`. It doesn't matter # into cached diffusers directories stored at `location`. It doesn't matter
# what submodeltype we request here, so we get the smallest. # what submodeltype we request here, so we get the smallest.
submodel = {"submodel_type": SubModelType.Scheduler} if model_type==ModelType.Main else {} submodel = {"submodel_type": SubModelType.Scheduler} if model_type == ModelType.Main else {}
model = self.get_model(model_name, model = self.get_model(
base_model, model_name,
model_type, base_model,
**submodel, model_type,
) **submodel,
)
checkpoint_path = self.app_config.root_path / info["path"] checkpoint_path = self.app_config.root_path / info["path"]
old_diffusers_path = self.app_config.models_path / model.location old_diffusers_path = self.app_config.models_path / model.location
new_diffusers_path = (dest_directory or self.app_config.models_path / base_model.value / model_type.value) / model_name new_diffusers_path = (
dest_directory or self.app_config.models_path / base_model.value / model_type.value
) / model_name
if new_diffusers_path.exists(): if new_diffusers_path.exists():
raise ValueError(f"A diffusers model already exists at {new_diffusers_path}") raise ValueError(f"A diffusers model already exists at {new_diffusers_path}")
try: try:
move(old_diffusers_path,new_diffusers_path) move(old_diffusers_path, new_diffusers_path)
info["model_format"] = "diffusers" info["model_format"] = "diffusers"
info["path"] = str(new_diffusers_path) if dest_directory else str(new_diffusers_path.relative_to(self.app_config.root_path)) info["path"] = (
info.pop('config') str(new_diffusers_path)
if dest_directory
else str(new_diffusers_path.relative_to(self.app_config.root_path))
)
info.pop("config")
result = self.add_model(model_name, base_model, model_type, result = self.add_model(model_name, base_model, model_type, model_attributes=info, clobber=True)
model_attributes = info,
clobber=True)
except: except:
# something went wrong, so don't leave dangling diffusers model in directory or it will cause a duplicate model error! # something went wrong, so don't leave dangling diffusers model in directory or it will cause a duplicate model error!
rmtree(new_diffusers_path) rmtree(new_diffusers_path)
@ -798,15 +819,12 @@ class ModelManager(object):
found_models = [] found_models = []
for file in files: for file in files:
location = str(file.resolve()).replace("\\", "/") location = str(file.resolve()).replace("\\", "/")
if ( if "model.safetensors" not in location and "diffusion_pytorch_model.safetensors" not in location:
"model.safetensors" not in location
and "diffusion_pytorch_model.safetensors" not in location
):
found_models.append({"name": file.stem, "location": location}) found_models.append({"name": file.stem, "location": location})
return search_folder, found_models return search_folder, found_models
def commit(self, conf_file: Path=None) -> None: def commit(self, conf_file: Path = None) -> None:
""" """
Write current configuration out to the indicated file. Write current configuration out to the indicated file.
""" """
@ -824,7 +842,7 @@ class ModelManager(object):
yaml_str = OmegaConf.to_yaml(data_to_save) yaml_str = OmegaConf.to_yaml(data_to_save)
config_file_path = conf_file or self.config_path config_file_path = conf_file or self.config_path
assert config_file_path is not None,'no config file path to write to' assert config_file_path is not None, "no config file path to write to"
config_file_path = self.app_config.root_path / config_file_path config_file_path = self.app_config.root_path / config_file_path
tmpfile = os.path.join(os.path.dirname(config_file_path), "new_config.tmp") tmpfile = os.path.join(os.path.dirname(config_file_path), "new_config.tmp")
try: try:
@ -857,11 +875,10 @@ class ModelManager(object):
base_model: Optional[BaseModelType] = None, base_model: Optional[BaseModelType] = None,
model_type: Optional[ModelType] = None, model_type: Optional[ModelType] = None,
): ):
loaded_files = set() loaded_files = set()
new_models_found = False new_models_found = False
self.logger.info(f'Scanning {self.app_config.models_path} for new models') self.logger.info(f"Scanning {self.app_config.models_path} for new models")
with Chdir(self.app_config.root_path): with Chdir(self.app_config.root_path):
for model_key, model_config in list(self.models.items()): for model_key, model_config in list(self.models.items()):
model_name, cur_base_model, cur_model_type = self.parse_key(model_key) model_name, cur_base_model, cur_model_type = self.parse_key(model_key)
@ -887,10 +904,10 @@ class ModelManager(object):
models_dir = self.app_config.models_path / cur_base_model.value / cur_model_type.value models_dir = self.app_config.models_path / cur_base_model.value / cur_model_type.value
if not models_dir.exists(): if not models_dir.exists():
continue # TODO: or create all folders? continue # TODO: or create all folders?
for model_path in models_dir.iterdir(): for model_path in models_dir.iterdir():
if model_path not in loaded_files: # TODO: check if model_path not in loaded_files: # TODO: check
model_name = model_path.name if model_path.is_dir() else model_path.stem model_name = model_path.name if model_path.is_dir() else model_path.stem
model_key = self.create_key(model_name, cur_base_model, cur_model_type) model_key = self.create_key(model_name, cur_base_model, cur_model_type)
@ -900,7 +917,7 @@ class ModelManager(object):
if model_path.is_relative_to(self.app_config.root_path): if model_path.is_relative_to(self.app_config.root_path):
model_path = model_path.relative_to(self.app_config.root_path) model_path = model_path.relative_to(self.app_config.root_path)
model_config: ModelConfigBase = model_class.probe_config(str(model_path)) model_config: ModelConfigBase = model_class.probe_config(str(model_path))
self.models[model_key] = model_config self.models[model_key] = model_config
new_models_found = True new_models_found = True
@ -916,11 +933,10 @@ class ModelManager(object):
if (new_models_found or imported_models) and self.config_path: if (new_models_found or imported_models) and self.config_path:
self.commit() self.commit()
def autoimport(self) -> Dict[str, AddModelResult]:
def autoimport(self)->Dict[str, AddModelResult]: """
'''
Scan the autoimport directory (if defined) and import new models, delete defunct models. Scan the autoimport directory (if defined) and import new models, delete defunct models.
''' """
# avoid circular import # avoid circular import
from invokeai.backend.install.model_install_backend import ModelInstall from invokeai.backend.install.model_install_backend import ModelInstall
from invokeai.frontend.install.model_install import ask_user_for_prediction_type from invokeai.frontend.install.model_install import ask_user_for_prediction_type
@ -939,7 +955,9 @@ class ModelManager(object):
self.new_models_found.update(self.installer.heuristic_import(model)) self.new_models_found.update(self.installer.heuristic_import(model))
def on_search_completed(self): def on_search_completed(self):
self.logger.info(f'Scanned {self._items_scanned} files and directories, imported {len(self.new_models_found)} models') self.logger.info(
f"Scanned {self._items_scanned} files and directories, imported {len(self.new_models_found)} models"
)
def models_found(self): def models_found(self):
return self.new_models_found return self.new_models_found
@ -949,31 +967,37 @@ class ModelManager(object):
# LS: hacky # LS: hacky
# Patch in the SD VAE from core so that it is available for use by the UI # Patch in the SD VAE from core so that it is available for use by the UI
try: try:
self.heuristic_import({config.root_path / 'models/core/convert/sd-vae-ft-mse'}) self.heuristic_import({config.root_path / "models/core/convert/sd-vae-ft-mse"})
except: except:
pass pass
installer = ModelInstall(config = self.app_config, installer = ModelInstall(
model_manager = self, config=self.app_config,
prediction_type_helper = ask_user_for_prediction_type, model_manager=self,
) prediction_type_helper=ask_user_for_prediction_type,
known_paths = {config.root_path / x['path'] for x in self.list_models()} )
directories = {config.root_path / x for x in [config.autoimport_dir, known_paths = {config.root_path / x["path"] for x in self.list_models()}
config.lora_dir, directories = {
config.embedding_dir, config.root_path / x
config.controlnet_dir, for x in [
] if x config.autoimport_dir,
} config.lora_dir,
config.embedding_dir,
config.controlnet_dir,
]
if x
}
scanner = ScanAndImport(directories, self.logger, ignore=known_paths, installer=installer) scanner = ScanAndImport(directories, self.logger, ignore=known_paths, installer=installer)
scanner.search() scanner.search()
return scanner.models_found() return scanner.models_found()
def heuristic_import(self, def heuristic_import(
items_to_import: Set[str], self,
prediction_type_helper: Callable[[Path],SchedulerPredictionType]=None, items_to_import: Set[str],
)->Dict[str, AddModelResult]: prediction_type_helper: Callable[[Path], SchedulerPredictionType] = None,
'''Import a list of paths, repo_ids or URLs. Returns the set of ) -> Dict[str, AddModelResult]:
"""Import a list of paths, repo_ids or URLs. Returns the set of
successfully imported items. successfully imported items.
:param items_to_import: Set of strings corresponding to models to be imported. :param items_to_import: Set of strings corresponding to models to be imported.
:param prediction_type_helper: A callback that receives the Path of a Stable Diffusion 2 checkpoint model and returns a SchedulerPredictionType. :param prediction_type_helper: A callback that receives the Path of a Stable Diffusion 2 checkpoint model and returns a SchedulerPredictionType.
@ -992,14 +1016,15 @@ class ModelManager(object):
May return the following exceptions: May return the following exceptions:
- ModelNotFoundException - one or more of the items to import is not a valid path, repo_id or URL - ModelNotFoundException - one or more of the items to import is not a valid path, repo_id or URL
- ValueError - a corresponding model already exists - ValueError - a corresponding model already exists
''' """
# avoid circular import here # avoid circular import here
from invokeai.backend.install.model_install_backend import ModelInstall from invokeai.backend.install.model_install_backend import ModelInstall
successfully_installed = dict() successfully_installed = dict()
installer = ModelInstall(config = self.app_config, installer = ModelInstall(
prediction_type_helper = prediction_type_helper, config=self.app_config, prediction_type_helper=prediction_type_helper, model_manager=self
model_manager = self) )
for thing in items_to_import: for thing in items_to_import:
installed = installer.heuristic_import(thing) installed = installer.heuristic_import(thing)
successfully_installed.update(installed) successfully_installed.update(installed)

View File

@ -17,23 +17,25 @@ import invokeai.backend.util.logging as logger
from ...backend.model_management import ModelManager, ModelType, BaseModelType, ModelVariantType, AddModelResult from ...backend.model_management import ModelManager, ModelType, BaseModelType, ModelVariantType, AddModelResult
class MergeInterpolationMethod(str, Enum): class MergeInterpolationMethod(str, Enum):
WeightedSum = "weighted_sum" WeightedSum = "weighted_sum"
Sigmoid = "sigmoid" Sigmoid = "sigmoid"
InvSigmoid = "inv_sigmoid" InvSigmoid = "inv_sigmoid"
AddDifference = "add_difference" AddDifference = "add_difference"
class ModelMerger(object): class ModelMerger(object):
def __init__(self, manager: ModelManager): def __init__(self, manager: ModelManager):
self.manager = manager self.manager = manager
def merge_diffusion_models( def merge_diffusion_models(
self, self,
model_paths: List[Path], model_paths: List[Path],
alpha: float = 0.5, alpha: float = 0.5,
interp: MergeInterpolationMethod = None, interp: MergeInterpolationMethod = None,
force: bool = False, force: bool = False,
**kwargs, **kwargs,
) -> DiffusionPipeline: ) -> DiffusionPipeline:
""" """
:param model_paths: up to three models, designated by their local paths or HuggingFace repo_ids :param model_paths: up to three models, designated by their local paths or HuggingFace repo_ids
@ -58,24 +60,23 @@ class ModelMerger(object):
merged_pipe = pipe.merge( merged_pipe = pipe.merge(
pretrained_model_name_or_path_list=model_paths, pretrained_model_name_or_path_list=model_paths,
alpha=alpha, alpha=alpha,
interp=interp.value if interp else None, #diffusers API treats None as "weighted sum" interp=interp.value if interp else None, # diffusers API treats None as "weighted sum"
force=force, force=force,
**kwargs, **kwargs,
) )
dlogging.set_verbosity(verbosity) dlogging.set_verbosity(verbosity)
return merged_pipe return merged_pipe
def merge_diffusion_models_and_save(
def merge_diffusion_models_and_save ( self,
self, model_names: List[str],
model_names: List[str], base_model: Union[BaseModelType, str],
base_model: Union[BaseModelType,str], merged_model_name: str,
merged_model_name: str, alpha: float = 0.5,
alpha: float = 0.5, interp: MergeInterpolationMethod = None,
interp: MergeInterpolationMethod = None, force: bool = False,
force: bool = False, merge_dest_directory: Optional[Path] = None,
merge_dest_directory: Optional[Path] = None, **kwargs,
**kwargs,
) -> AddModelResult: ) -> AddModelResult:
""" """
:param models: up to three models, designated by their InvokeAI models.yaml model name :param models: up to three models, designated by their InvokeAI models.yaml model name
@ -94,39 +95,45 @@ class ModelMerger(object):
config = self.manager.app_config config = self.manager.app_config
base_model = BaseModelType(base_model) base_model = BaseModelType(base_model)
vae = None vae = None
for mod in model_names: for mod in model_names:
info = self.manager.list_model(mod, base_model=base_model, model_type=ModelType.Main) info = self.manager.list_model(mod, base_model=base_model, model_type=ModelType.Main)
assert info, f"model {mod}, base_model {base_model}, is unknown" assert info, f"model {mod}, base_model {base_model}, is unknown"
assert info["model_format"] == "diffusers", f"{mod} is not a diffusers model. It must be optimized before merging" assert (
assert info["variant"] == "normal", f"{mod} is a {info['variant']} model, which cannot currently be merged" info["model_format"] == "diffusers"
assert len(model_names) <= 2 or \ ), f"{mod} is not a diffusers model. It must be optimized before merging"
interp==MergeInterpolationMethod.AddDifference, "When merging three models, only the 'add_difference' merge method is supported" assert info["variant"] == "normal", f"{mod} is a {info['variant']} model, which cannot currently be merged"
assert (
len(model_names) <= 2 or interp == MergeInterpolationMethod.AddDifference
), "When merging three models, only the 'add_difference' merge method is supported"
# pick up the first model's vae # pick up the first model's vae
if mod == model_names[0]: if mod == model_names[0]:
vae = info.get("vae") vae = info.get("vae")
model_paths.extend([config.root_path / info["path"]]) model_paths.extend([config.root_path / info["path"]])
merge_method = None if interp == 'weighted_sum' else MergeInterpolationMethod(interp) merge_method = None if interp == "weighted_sum" else MergeInterpolationMethod(interp)
logger.debug(f'interp = {interp}, merge_method={merge_method}') logger.debug(f"interp = {interp}, merge_method={merge_method}")
merged_pipe = self.merge_diffusion_models( merged_pipe = self.merge_diffusion_models(model_paths, alpha, merge_method, force, **kwargs)
model_paths, alpha, merge_method, force, **kwargs dump_path = (
Path(merge_dest_directory)
if merge_dest_directory
else config.models_path / base_model.value / ModelType.Main.value
) )
dump_path = Path(merge_dest_directory) if merge_dest_directory else config.models_path / base_model.value / ModelType.Main.value
dump_path.mkdir(parents=True, exist_ok=True) dump_path.mkdir(parents=True, exist_ok=True)
dump_path = dump_path / merged_model_name dump_path = dump_path / merged_model_name
merged_pipe.save_pretrained(dump_path, safe_serialization=1) merged_pipe.save_pretrained(dump_path, safe_serialization=1)
attributes = dict( attributes = dict(
path = str(dump_path), path=str(dump_path),
description = f"Merge of models {', '.join(model_names)}", description=f"Merge of models {', '.join(model_names)}",
model_format = "diffusers", model_format="diffusers",
variant = ModelVariantType.Normal.value, variant=ModelVariantType.Normal.value,
vae = vae, vae=vae,
)
return self.manager.add_model(
merged_model_name,
base_model=base_model,
model_type=ModelType.Main,
model_attributes=attributes,
clobber=True,
) )
return self.manager.add_model(merged_model_name,
base_model = base_model,
model_type = ModelType.Main,
model_attributes = attributes,
clobber = True
)

View File

@ -10,12 +10,16 @@ from typing import Callable, Literal, Union, Dict, Optional
from picklescan.scanner import scan_file_path from picklescan.scanner import scan_file_path
from .models import ( from .models import (
BaseModelType, ModelType, ModelVariantType, BaseModelType,
SchedulerPredictionType, SilenceWarnings, ModelType,
InvalidModelException ModelVariantType,
SchedulerPredictionType,
SilenceWarnings,
InvalidModelException,
) )
from .models.base import read_checkpoint_meta from .models.base import read_checkpoint_meta
@dataclass @dataclass
class ModelProbeInfo(object): class ModelProbeInfo(object):
model_type: ModelType model_type: ModelType
@ -23,70 +27,74 @@ class ModelProbeInfo(object):
variant_type: ModelVariantType variant_type: ModelVariantType
prediction_type: SchedulerPredictionType prediction_type: SchedulerPredictionType
upcast_attention: bool upcast_attention: bool
format: Literal['diffusers','checkpoint', 'lycoris'] format: Literal["diffusers", "checkpoint", "lycoris"]
image_size: int image_size: int
class ProbeBase(object): class ProbeBase(object):
'''forward declaration''' """forward declaration"""
pass pass
class ModelProbe(object): class ModelProbe(object):
PROBES = { PROBES = {
'diffusers': { }, "diffusers": {},
'checkpoint': { }, "checkpoint": {},
} }
CLASS2TYPE = { CLASS2TYPE = {
'StableDiffusionPipeline' : ModelType.Main, "StableDiffusionPipeline": ModelType.Main,
'StableDiffusionInpaintPipeline' : ModelType.Main, "StableDiffusionInpaintPipeline": ModelType.Main,
'StableDiffusionXLPipeline' : ModelType.Main, "StableDiffusionXLPipeline": ModelType.Main,
'StableDiffusionXLImg2ImgPipeline' : ModelType.Main, "StableDiffusionXLImg2ImgPipeline": ModelType.Main,
'AutoencoderKL' : ModelType.Vae, "AutoencoderKL": ModelType.Vae,
'ControlNetModel' : ModelType.ControlNet, "ControlNetModel": ModelType.ControlNet,
} }
@classmethod @classmethod
def register_probe(cls, def register_probe(cls, format: Literal["diffusers", "checkpoint"], model_type: ModelType, probe_class: ProbeBase):
format: Literal['diffusers','checkpoint'],
model_type: ModelType,
probe_class: ProbeBase):
cls.PROBES[format][model_type] = probe_class cls.PROBES[format][model_type] = probe_class
@classmethod @classmethod
def heuristic_probe(cls, def heuristic_probe(
model: Union[Dict, ModelMixin, Path], cls,
prediction_type_helper: Callable[[Path],SchedulerPredictionType]=None, model: Union[Dict, ModelMixin, Path],
)->ModelProbeInfo: prediction_type_helper: Callable[[Path], SchedulerPredictionType] = None,
if isinstance(model,Path): ) -> ModelProbeInfo:
return cls.probe(model_path=model,prediction_type_helper=prediction_type_helper) if isinstance(model, Path):
elif isinstance(model,(dict,ModelMixin,ConfigMixin)): return cls.probe(model_path=model, prediction_type_helper=prediction_type_helper)
elif isinstance(model, (dict, ModelMixin, ConfigMixin)):
return cls.probe(model_path=None, model=model, prediction_type_helper=prediction_type_helper) return cls.probe(model_path=None, model=model, prediction_type_helper=prediction_type_helper)
else: else:
raise InvalidModelException("model parameter {model} is neither a Path, nor a model") raise InvalidModelException("model parameter {model} is neither a Path, nor a model")
@classmethod @classmethod
def probe(cls, def probe(
model_path: Path, cls,
model: Optional[Union[Dict, ModelMixin]] = None, model_path: Path,
prediction_type_helper: Optional[Callable[[Path],SchedulerPredictionType]] = None)->ModelProbeInfo: model: Optional[Union[Dict, ModelMixin]] = None,
''' prediction_type_helper: Optional[Callable[[Path], SchedulerPredictionType]] = None,
) -> ModelProbeInfo:
"""
Probe the model at model_path and return sufficient information about it Probe the model at model_path and return sufficient information about it
to place it somewhere in the models directory hierarchy. If the model is to place it somewhere in the models directory hierarchy. If the model is
already loaded into memory, you may provide it as model in order to avoid already loaded into memory, you may provide it as model in order to avoid
opening it a second time. The prediction_type_helper callable is a function that receives opening it a second time. The prediction_type_helper callable is a function that receives
the path to the model and returns the BaseModelType. It is called to distinguish the path to the model and returns the BaseModelType. It is called to distinguish
between V2-Base and V2-768 SD models. between V2-Base and V2-768 SD models.
''' """
if model_path: if model_path:
format_type = 'diffusers' if model_path.is_dir() else 'checkpoint' format_type = "diffusers" if model_path.is_dir() else "checkpoint"
else: else:
format_type = 'diffusers' if isinstance(model,(ConfigMixin,ModelMixin)) else 'checkpoint' format_type = "diffusers" if isinstance(model, (ConfigMixin, ModelMixin)) else "checkpoint"
model_info = None model_info = None
try: try:
model_type = cls.get_model_type_from_folder(model_path, model) \ model_type = (
if format_type == 'diffusers' \ cls.get_model_type_from_folder(model_path, model)
else cls.get_model_type_from_checkpoint(model_path, model) if format_type == "diffusers"
else cls.get_model_type_from_checkpoint(model_path, model)
)
probe_class = cls.PROBES[format_type].get(model_type) probe_class = cls.PROBES[format_type].get(model_type)
if not probe_class: if not probe_class:
return None return None
@ -96,17 +104,23 @@ class ModelProbe(object):
prediction_type = probe.get_scheduler_prediction_type() prediction_type = probe.get_scheduler_prediction_type()
format = probe.get_format() format = probe.get_format()
model_info = ModelProbeInfo( model_info = ModelProbeInfo(
model_type = model_type, model_type=model_type,
base_type = base_type, base_type=base_type,
variant_type = variant_type, variant_type=variant_type,
prediction_type = prediction_type, prediction_type=prediction_type,
upcast_attention = (base_type==BaseModelType.StableDiffusion2 \ upcast_attention=(
and prediction_type==SchedulerPredictionType.VPrediction), base_type == BaseModelType.StableDiffusion2
format = format, and prediction_type == SchedulerPredictionType.VPrediction
image_size = 1024 if (base_type in {BaseModelType.StableDiffusionXL,BaseModelType.StableDiffusionXLRefiner}) else \ ),
768 if (base_type==BaseModelType.StableDiffusion2 \ format=format,
and prediction_type==SchedulerPredictionType.VPrediction ) else \ image_size=1024
512 if (base_type in {BaseModelType.StableDiffusionXL, BaseModelType.StableDiffusionXLRefiner})
else 768
if (
base_type == BaseModelType.StableDiffusion2
and prediction_type == SchedulerPredictionType.VPrediction
)
else 512,
) )
except Exception: except Exception:
raise raise
@ -115,7 +129,7 @@ class ModelProbe(object):
@classmethod @classmethod
def get_model_type_from_checkpoint(cls, model_path: Path, checkpoint: dict) -> ModelType: def get_model_type_from_checkpoint(cls, model_path: Path, checkpoint: dict) -> ModelType:
if model_path.suffix not in ('.bin','.pt','.ckpt','.safetensors','.pth'): if model_path.suffix not in (".bin", ".pt", ".ckpt", ".safetensors", ".pth"):
return None return None
if model_path.name == "learned_embeds.bin": if model_path.name == "learned_embeds.bin":
@ -142,32 +156,32 @@ class ModelProbe(object):
# diffusers-ti # diffusers-ti
if len(ckpt) < 10 and all(isinstance(v, torch.Tensor) for v in ckpt.values()): if len(ckpt) < 10 and all(isinstance(v, torch.Tensor) for v in ckpt.values()):
return ModelType.TextualInversion return ModelType.TextualInversion
raise InvalidModelException(f"Unable to determine model type for {model_path}") raise InvalidModelException(f"Unable to determine model type for {model_path}")
@classmethod @classmethod
def get_model_type_from_folder(cls, folder_path: Path, model: ModelMixin)->ModelType: def get_model_type_from_folder(cls, folder_path: Path, model: ModelMixin) -> ModelType:
''' """
Get the model type of a hugging-face style folder. Get the model type of a hugging-face style folder.
''' """
class_name = None class_name = None
if model: if model:
class_name = model.__class__.__name__ class_name = model.__class__.__name__
else: else:
if (folder_path / 'learned_embeds.bin').exists(): if (folder_path / "learned_embeds.bin").exists():
return ModelType.TextualInversion return ModelType.TextualInversion
if (folder_path / 'pytorch_lora_weights.bin').exists(): if (folder_path / "pytorch_lora_weights.bin").exists():
return ModelType.Lora return ModelType.Lora
i = folder_path / 'model_index.json' i = folder_path / "model_index.json"
c = folder_path / 'config.json' c = folder_path / "config.json"
config_path = i if i.exists() else c if c.exists() else None config_path = i if i.exists() else c if c.exists() else None
if config_path: if config_path:
with open(config_path,'r') as file: with open(config_path, "r") as file:
conf = json.load(file) conf = json.load(file)
class_name = conf['_class_name'] class_name = conf["_class_name"]
if class_name and (type := cls.CLASS2TYPE.get(class_name)): if class_name and (type := cls.CLASS2TYPE.get(class_name)):
return type return type
@ -176,7 +190,7 @@ class ModelProbe(object):
raise InvalidModelException(f"Unable to determine model type for {folder_path}") raise InvalidModelException(f"Unable to determine model type for {folder_path}")
@classmethod @classmethod
def _scan_and_load_checkpoint(cls,model_path: Path)->dict: def _scan_and_load_checkpoint(cls, model_path: Path) -> dict:
with SilenceWarnings(): with SilenceWarnings():
if model_path.suffix.endswith((".ckpt", ".pt", ".bin")): if model_path.suffix.endswith((".ckpt", ".pt", ".bin")):
cls._scan_model(model_path, model_path) cls._scan_model(model_path, model_path)
@ -186,55 +200,53 @@ class ModelProbe(object):
@classmethod @classmethod
def _scan_model(cls, model_name, checkpoint): def _scan_model(cls, model_name, checkpoint):
""" """
Apply picklescanner to the indicated checkpoint and issue a warning Apply picklescanner to the indicated checkpoint and issue a warning
and option to exit if an infected file is identified. and option to exit if an infected file is identified.
""" """
# scan model # scan model
scan_result = scan_file_path(checkpoint) scan_result = scan_file_path(checkpoint)
if scan_result.infected_files != 0: if scan_result.infected_files != 0:
raise "The model {model_name} is potentially infected by malware. Aborting import." raise "The model {model_name} is potentially infected by malware. Aborting import."
###################################################3 ###################################################3
# Checkpoint probing # Checkpoint probing
###################################################3 ###################################################3
class ProbeBase(object): class ProbeBase(object):
def get_base_type(self)->BaseModelType: def get_base_type(self) -> BaseModelType:
pass pass
def get_variant_type(self)->ModelVariantType: def get_variant_type(self) -> ModelVariantType:
pass
def get_scheduler_prediction_type(self)->SchedulerPredictionType:
pass pass
def get_format(self)->str: def get_scheduler_prediction_type(self) -> SchedulerPredictionType:
pass pass
def get_format(self) -> str:
pass
class CheckpointProbeBase(ProbeBase): class CheckpointProbeBase(ProbeBase):
def __init__(self, def __init__(
checkpoint_path: Path, self, checkpoint_path: Path, checkpoint: dict, helper: Callable[[Path], SchedulerPredictionType] = None
checkpoint: dict, ) -> BaseModelType:
helper: Callable[[Path],SchedulerPredictionType] = None
)->BaseModelType:
self.checkpoint = checkpoint or ModelProbe._scan_and_load_checkpoint(checkpoint_path) self.checkpoint = checkpoint or ModelProbe._scan_and_load_checkpoint(checkpoint_path)
self.checkpoint_path = checkpoint_path self.checkpoint_path = checkpoint_path
self.helper = helper self.helper = helper
def get_base_type(self)->BaseModelType: def get_base_type(self) -> BaseModelType:
pass pass
def get_format(self)->str: def get_format(self) -> str:
return 'checkpoint' return "checkpoint"
def get_variant_type(self)-> ModelVariantType: def get_variant_type(self) -> ModelVariantType:
model_type = ModelProbe.get_model_type_from_checkpoint(self.checkpoint_path,self.checkpoint) model_type = ModelProbe.get_model_type_from_checkpoint(self.checkpoint_path, self.checkpoint)
if model_type != ModelType.Main: if model_type != ModelType.Main:
return ModelVariantType.Normal return ModelVariantType.Normal
state_dict = self.checkpoint.get('state_dict') or self.checkpoint state_dict = self.checkpoint.get("state_dict") or self.checkpoint
in_channels = state_dict[ in_channels = state_dict["model.diffusion_model.input_blocks.0.0.weight"].shape[1]
"model.diffusion_model.input_blocks.0.0.weight"
].shape[1]
if in_channels == 9: if in_channels == 9:
return ModelVariantType.Inpaint return ModelVariantType.Inpaint
elif in_channels == 5: elif in_channels == 5:
@ -242,18 +254,21 @@ class CheckpointProbeBase(ProbeBase):
elif in_channels == 4: elif in_channels == 4:
return ModelVariantType.Normal return ModelVariantType.Normal
else: else:
raise InvalidModelException(f"Cannot determine variant type (in_channels={in_channels}) at {self.checkpoint_path}") raise InvalidModelException(
f"Cannot determine variant type (in_channels={in_channels}) at {self.checkpoint_path}"
)
class PipelineCheckpointProbe(CheckpointProbeBase): class PipelineCheckpointProbe(CheckpointProbeBase):
def get_base_type(self)->BaseModelType: def get_base_type(self) -> BaseModelType:
checkpoint = self.checkpoint checkpoint = self.checkpoint
state_dict = self.checkpoint.get('state_dict') or checkpoint state_dict = self.checkpoint.get("state_dict") or checkpoint
key_name = "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight" key_name = "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight"
if key_name in state_dict and state_dict[key_name].shape[-1] == 768: if key_name in state_dict and state_dict[key_name].shape[-1] == 768:
return BaseModelType.StableDiffusion1 return BaseModelType.StableDiffusion1
if key_name in state_dict and state_dict[key_name].shape[-1] == 1024: if key_name in state_dict and state_dict[key_name].shape[-1] == 1024:
return BaseModelType.StableDiffusion2 return BaseModelType.StableDiffusion2
key_name = 'model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_k.weight' key_name = "model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_k.weight"
if key_name in state_dict and state_dict[key_name].shape[-1] == 2048: if key_name in state_dict and state_dict[key_name].shape[-1] == 2048:
return BaseModelType.StableDiffusionXL return BaseModelType.StableDiffusionXL
elif key_name in state_dict and state_dict[key_name].shape[-1] == 1280: elif key_name in state_dict and state_dict[key_name].shape[-1] == 1280:
@ -261,35 +276,38 @@ class PipelineCheckpointProbe(CheckpointProbeBase):
else: else:
raise InvalidModelException("Cannot determine base type") raise InvalidModelException("Cannot determine base type")
def get_scheduler_prediction_type(self)->SchedulerPredictionType: def get_scheduler_prediction_type(self) -> SchedulerPredictionType:
type = self.get_base_type() type = self.get_base_type()
if type == BaseModelType.StableDiffusion1: if type == BaseModelType.StableDiffusion1:
return SchedulerPredictionType.Epsilon return SchedulerPredictionType.Epsilon
checkpoint = self.checkpoint checkpoint = self.checkpoint
state_dict = self.checkpoint.get('state_dict') or checkpoint state_dict = self.checkpoint.get("state_dict") or checkpoint
key_name = "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight" key_name = "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight"
if key_name in state_dict and state_dict[key_name].shape[-1] == 1024: if key_name in state_dict and state_dict[key_name].shape[-1] == 1024:
if 'global_step' in checkpoint: if "global_step" in checkpoint:
if checkpoint['global_step'] == 220000: if checkpoint["global_step"] == 220000:
return SchedulerPredictionType.Epsilon return SchedulerPredictionType.Epsilon
elif checkpoint["global_step"] == 110000: elif checkpoint["global_step"] == 110000:
return SchedulerPredictionType.VPrediction return SchedulerPredictionType.VPrediction
if self.checkpoint_path and self.helper \ if (
and not self.checkpoint_path.with_suffix('.yaml').exists(): # if a .yaml config file exists, then this step not needed self.checkpoint_path and self.helper and not self.checkpoint_path.with_suffix(".yaml").exists()
): # if a .yaml config file exists, then this step not needed
return self.helper(self.checkpoint_path) return self.helper(self.checkpoint_path)
else: else:
return None return None
class VaeCheckpointProbe(CheckpointProbeBase): class VaeCheckpointProbe(CheckpointProbeBase):
def get_base_type(self)->BaseModelType: def get_base_type(self) -> BaseModelType:
# I can't find any standalone 2.X VAEs to test with! # I can't find any standalone 2.X VAEs to test with!
return BaseModelType.StableDiffusion1 return BaseModelType.StableDiffusion1
class LoRACheckpointProbe(CheckpointProbeBase):
def get_format(self)->str:
return 'lycoris'
def get_base_type(self)->BaseModelType: class LoRACheckpointProbe(CheckpointProbeBase):
def get_format(self) -> str:
return "lycoris"
def get_base_type(self) -> BaseModelType:
checkpoint = self.checkpoint checkpoint = self.checkpoint
key1 = "lora_te_text_model_encoder_layers_0_mlp_fc1.lora_down.weight" key1 = "lora_te_text_model_encoder_layers_0_mlp_fc1.lora_down.weight"
key2 = "lora_te_text_model_encoder_layers_0_self_attn_k_proj.hada_w1_a" key2 = "lora_te_text_model_encoder_layers_0_self_attn_k_proj.hada_w1_a"
@ -307,16 +325,17 @@ class LoRACheckpointProbe(CheckpointProbeBase):
else: else:
return None return None
class TextualInversionCheckpointProbe(CheckpointProbeBase): class TextualInversionCheckpointProbe(CheckpointProbeBase):
def get_format(self)->str: def get_format(self) -> str:
return None return None
def get_base_type(self)->BaseModelType: def get_base_type(self) -> BaseModelType:
checkpoint = self.checkpoint checkpoint = self.checkpoint
if 'string_to_token' in checkpoint: if "string_to_token" in checkpoint:
token_dim = list(checkpoint['string_to_param'].values())[0].shape[-1] token_dim = list(checkpoint["string_to_param"].values())[0].shape[-1]
elif 'emb_params' in checkpoint: elif "emb_params" in checkpoint:
token_dim = checkpoint['emb_params'].shape[-1] token_dim = checkpoint["emb_params"].shape[-1]
else: else:
token_dim = list(checkpoint.values())[0].shape[0] token_dim = list(checkpoint.values())[0].shape[0]
if token_dim == 768: if token_dim == 768:
@ -326,12 +345,14 @@ class TextualInversionCheckpointProbe(CheckpointProbeBase):
else: else:
return None return None
class ControlNetCheckpointProbe(CheckpointProbeBase): class ControlNetCheckpointProbe(CheckpointProbeBase):
def get_base_type(self)->BaseModelType: def get_base_type(self) -> BaseModelType:
checkpoint = self.checkpoint checkpoint = self.checkpoint
for key_name in ('control_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight', for key_name in (
'input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight' "control_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight",
): "input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight",
):
if key_name not in checkpoint: if key_name not in checkpoint:
continue continue
if checkpoint[key_name].shape[-1] == 768: if checkpoint[key_name].shape[-1] == 768:
@ -342,56 +363,54 @@ class ControlNetCheckpointProbe(CheckpointProbeBase):
return self.helper(self.checkpoint_path) return self.helper(self.checkpoint_path)
raise InvalidModelException("Unable to determine base type for {self.checkpoint_path}") raise InvalidModelException("Unable to determine base type for {self.checkpoint_path}")
######################################################## ########################################################
# classes for probing folders # classes for probing folders
####################################################### #######################################################
class FolderProbeBase(ProbeBase): class FolderProbeBase(ProbeBase):
def __init__(self, def __init__(self, folder_path: Path, model: ModelMixin = None, helper: Callable = None): # not used
folder_path: Path,
model: ModelMixin = None,
helper: Callable=None # not used
):
self.model = model self.model = model
self.folder_path = folder_path self.folder_path = folder_path
def get_variant_type(self)->ModelVariantType: def get_variant_type(self) -> ModelVariantType:
return ModelVariantType.Normal return ModelVariantType.Normal
def get_format(self)->str: def get_format(self) -> str:
return 'diffusers' return "diffusers"
class PipelineFolderProbe(FolderProbeBase): class PipelineFolderProbe(FolderProbeBase):
def get_base_type(self)->BaseModelType: def get_base_type(self) -> BaseModelType:
if self.model: if self.model:
unet_conf = self.model.unet.config unet_conf = self.model.unet.config
else: else:
with open(self.folder_path / 'unet' / 'config.json','r') as file: with open(self.folder_path / "unet" / "config.json", "r") as file:
unet_conf = json.load(file) unet_conf = json.load(file)
if unet_conf['cross_attention_dim'] == 768: if unet_conf["cross_attention_dim"] == 768:
return BaseModelType.StableDiffusion1 return BaseModelType.StableDiffusion1
elif unet_conf['cross_attention_dim'] == 1024: elif unet_conf["cross_attention_dim"] == 1024:
return BaseModelType.StableDiffusion2 return BaseModelType.StableDiffusion2
elif unet_conf['cross_attention_dim'] == 1280: elif unet_conf["cross_attention_dim"] == 1280:
return BaseModelType.StableDiffusionXLRefiner return BaseModelType.StableDiffusionXLRefiner
elif unet_conf['cross_attention_dim'] == 2048: elif unet_conf["cross_attention_dim"] == 2048:
return BaseModelType.StableDiffusionXL return BaseModelType.StableDiffusionXL
else: else:
raise InvalidModelException(f'Unknown base model for {self.folder_path}') raise InvalidModelException(f"Unknown base model for {self.folder_path}")
def get_scheduler_prediction_type(self)->SchedulerPredictionType: def get_scheduler_prediction_type(self) -> SchedulerPredictionType:
if self.model: if self.model:
scheduler_conf = self.model.scheduler.config scheduler_conf = self.model.scheduler.config
else: else:
with open(self.folder_path / 'scheduler' / 'scheduler_config.json','r') as file: with open(self.folder_path / "scheduler" / "scheduler_config.json", "r") as file:
scheduler_conf = json.load(file) scheduler_conf = json.load(file)
if scheduler_conf['prediction_type'] == "v_prediction": if scheduler_conf["prediction_type"] == "v_prediction":
return SchedulerPredictionType.VPrediction return SchedulerPredictionType.VPrediction
elif scheduler_conf['prediction_type'] == 'epsilon': elif scheduler_conf["prediction_type"] == "epsilon":
return SchedulerPredictionType.Epsilon return SchedulerPredictionType.Epsilon
else: else:
return None return None
def get_variant_type(self)->ModelVariantType: def get_variant_type(self) -> ModelVariantType:
# This only works for pipelines! Any kind of # This only works for pipelines! Any kind of
# exception results in our returning the # exception results in our returning the
# "normal" variant type # "normal" variant type
@ -399,11 +418,11 @@ class PipelineFolderProbe(FolderProbeBase):
if self.model: if self.model:
conf = self.model.unet.config conf = self.model.unet.config
else: else:
config_file = self.folder_path / 'unet' / 'config.json' config_file = self.folder_path / "unet" / "config.json"
with open(config_file,'r') as file: with open(config_file, "r") as file:
conf = json.load(file) conf = json.load(file)
in_channels = conf['in_channels'] in_channels = conf["in_channels"]
if in_channels == 9: if in_channels == 9:
return ModelVariantType.Inpaint return ModelVariantType.Inpaint
elif in_channels == 5: elif in_channels == 5:
@ -414,60 +433,67 @@ class PipelineFolderProbe(FolderProbeBase):
pass pass
return ModelVariantType.Normal return ModelVariantType.Normal
class VaeFolderProbe(FolderProbeBase): class VaeFolderProbe(FolderProbeBase):
def get_base_type(self)->BaseModelType: def get_base_type(self) -> BaseModelType:
config_file = self.folder_path / 'config.json' config_file = self.folder_path / "config.json"
if not config_file.exists(): if not config_file.exists():
raise InvalidModelException(f"Cannot determine base type for {self.folder_path}") raise InvalidModelException(f"Cannot determine base type for {self.folder_path}")
with open(config_file,'r') as file: with open(config_file, "r") as file:
config = json.load(file) config = json.load(file)
return BaseModelType.StableDiffusionXL \ return (
if config.get('scaling_factor',0)==0.13025 and config.get('sample_size') in [512, 1024] \ BaseModelType.StableDiffusionXL
if config.get("scaling_factor", 0) == 0.13025 and config.get("sample_size") in [512, 1024]
else BaseModelType.StableDiffusion1 else BaseModelType.StableDiffusion1
)
class TextualInversionFolderProbe(FolderProbeBase): class TextualInversionFolderProbe(FolderProbeBase):
def get_format(self)->str: def get_format(self) -> str:
return None return None
def get_base_type(self)->BaseModelType: def get_base_type(self) -> BaseModelType:
path = self.folder_path / 'learned_embeds.bin' path = self.folder_path / "learned_embeds.bin"
if not path.exists(): if not path.exists():
return None return None
checkpoint = ModelProbe._scan_and_load_checkpoint(path) checkpoint = ModelProbe._scan_and_load_checkpoint(path)
return TextualInversionCheckpointProbe(None,checkpoint=checkpoint).get_base_type() return TextualInversionCheckpointProbe(None, checkpoint=checkpoint).get_base_type()
class ControlNetFolderProbe(FolderProbeBase): class ControlNetFolderProbe(FolderProbeBase):
def get_base_type(self)->BaseModelType: def get_base_type(self) -> BaseModelType:
config_file = self.folder_path / 'config.json' config_file = self.folder_path / "config.json"
if not config_file.exists(): if not config_file.exists():
raise InvalidModelException(f"Cannot determine base type for {self.folder_path}") raise InvalidModelException(f"Cannot determine base type for {self.folder_path}")
with open(config_file,'r') as file: with open(config_file, "r") as file:
config = json.load(file) config = json.load(file)
# no obvious way to distinguish between sd2-base and sd2-768 # no obvious way to distinguish between sd2-base and sd2-768
return BaseModelType.StableDiffusion1 \ return (
if config['cross_attention_dim']==768 \ BaseModelType.StableDiffusion1 if config["cross_attention_dim"] == 768 else BaseModelType.StableDiffusion2
else BaseModelType.StableDiffusion2 )
class LoRAFolderProbe(FolderProbeBase): class LoRAFolderProbe(FolderProbeBase):
def get_base_type(self)->BaseModelType: def get_base_type(self) -> BaseModelType:
model_file = None model_file = None
for suffix in ['safetensors','bin']: for suffix in ["safetensors", "bin"]:
base_file = self.folder_path / f'pytorch_lora_weights.{suffix}' base_file = self.folder_path / f"pytorch_lora_weights.{suffix}"
if base_file.exists(): if base_file.exists():
model_file = base_file model_file = base_file
break break
if not model_file: if not model_file:
raise InvalidModelException('Unknown LoRA format encountered') raise InvalidModelException("Unknown LoRA format encountered")
return LoRACheckpointProbe(model_file,None).get_base_type() return LoRACheckpointProbe(model_file, None).get_base_type()
############## register probe classes ###### ############## register probe classes ######
ModelProbe.register_probe('diffusers', ModelType.Main, PipelineFolderProbe) ModelProbe.register_probe("diffusers", ModelType.Main, PipelineFolderProbe)
ModelProbe.register_probe('diffusers', ModelType.Vae, VaeFolderProbe) ModelProbe.register_probe("diffusers", ModelType.Vae, VaeFolderProbe)
ModelProbe.register_probe('diffusers', ModelType.Lora, LoRAFolderProbe) ModelProbe.register_probe("diffusers", ModelType.Lora, LoRAFolderProbe)
ModelProbe.register_probe('diffusers', ModelType.TextualInversion, TextualInversionFolderProbe) ModelProbe.register_probe("diffusers", ModelType.TextualInversion, TextualInversionFolderProbe)
ModelProbe.register_probe('diffusers', ModelType.ControlNet, ControlNetFolderProbe) ModelProbe.register_probe("diffusers", ModelType.ControlNet, ControlNetFolderProbe)
ModelProbe.register_probe('checkpoint', ModelType.Main, PipelineCheckpointProbe) ModelProbe.register_probe("checkpoint", ModelType.Main, PipelineCheckpointProbe)
ModelProbe.register_probe('checkpoint', ModelType.Vae, VaeCheckpointProbe) ModelProbe.register_probe("checkpoint", ModelType.Vae, VaeCheckpointProbe)
ModelProbe.register_probe('checkpoint', ModelType.Lora, LoRACheckpointProbe) ModelProbe.register_probe("checkpoint", ModelType.Lora, LoRACheckpointProbe)
ModelProbe.register_probe('checkpoint', ModelType.TextualInversion, TextualInversionCheckpointProbe) ModelProbe.register_probe("checkpoint", ModelType.TextualInversion, TextualInversionCheckpointProbe)
ModelProbe.register_probe('checkpoint', ModelType.ControlNet, ControlNetCheckpointProbe) ModelProbe.register_probe("checkpoint", ModelType.ControlNet, ControlNetCheckpointProbe)

View File

@ -10,8 +10,9 @@ from pathlib import Path
import invokeai.backend.util.logging as logger import invokeai.backend.util.logging as logger
class ModelSearch(ABC): class ModelSearch(ABC):
def __init__(self, directories: List[Path], logger: types.ModuleType=logger): def __init__(self, directories: List[Path], logger: types.ModuleType = logger):
""" """
Initialize a recursive model directory search. Initialize a recursive model directory search.
:param directories: List of directory Paths to recurse through :param directories: List of directory Paths to recurse through
@ -56,18 +57,23 @@ class ModelSearch(ABC):
def walk_directory(self, path: Path): def walk_directory(self, path: Path):
for root, dirs, files in os.walk(path): for root, dirs, files in os.walk(path):
if str(Path(root).name).startswith('.'): if str(Path(root).name).startswith("."):
self._pruned_paths.add(root) self._pruned_paths.add(root)
if any([Path(root).is_relative_to(x) for x in self._pruned_paths]): if any([Path(root).is_relative_to(x) for x in self._pruned_paths]):
continue continue
self._items_scanned += len(dirs) + len(files) self._items_scanned += len(dirs) + len(files)
for d in dirs: for d in dirs:
path = Path(root) / d path = Path(root) / d
if path in self._scanned_paths or path.parent in self._scanned_dirs: if path in self._scanned_paths or path.parent in self._scanned_dirs:
self._scanned_dirs.add(path) self._scanned_dirs.add(path)
continue continue
if any([(path/x).exists() for x in {'config.json','model_index.json','learned_embeds.bin','pytorch_lora_weights.bin'}]): if any(
[
(path / x).exists()
for x in {"config.json", "model_index.json", "learned_embeds.bin", "pytorch_lora_weights.bin"}
]
):
try: try:
self.on_model_found(path) self.on_model_found(path)
self._models_found += 1 self._models_found += 1
@ -79,18 +85,19 @@ class ModelSearch(ABC):
path = Path(root) / f path = Path(root) / f
if path.parent in self._scanned_dirs: if path.parent in self._scanned_dirs:
continue continue
if path.suffix in {'.ckpt','.bin','.pth','.safetensors','.pt'}: if path.suffix in {".ckpt", ".bin", ".pth", ".safetensors", ".pt"}:
try: try:
self.on_model_found(path) self.on_model_found(path)
self._models_found += 1 self._models_found += 1
except Exception as e: except Exception as e:
self.logger.warning(str(e)) self.logger.warning(str(e))
class FindModels(ModelSearch): class FindModels(ModelSearch):
def on_search_started(self): def on_search_started(self):
self.models_found: Set[Path] = set() self.models_found: Set[Path] = set()
def on_model_found(self,model: Path): def on_model_found(self, model: Path):
self.models_found.add(model) self.models_found.add(model)
def on_search_completed(self): def on_search_completed(self):
@ -99,5 +106,3 @@ class FindModels(ModelSearch):
def list_models(self) -> List[Path]: def list_models(self) -> List[Path]:
self.search() self.search()
return list(self.models_found) return list(self.models_found)

View File

@ -3,15 +3,24 @@ from enum import Enum
from pydantic import BaseModel from pydantic import BaseModel
from typing import Literal, get_origin from typing import Literal, get_origin
from .base import ( from .base import (
BaseModelType, ModelType, SubModelType, ModelBase, ModelConfigBase, BaseModelType,
ModelVariantType, SchedulerPredictionType, ModelError, SilenceWarnings, ModelType,
ModelNotFoundException, InvalidModelException, DuplicateModelException SubModelType,
) ModelBase,
ModelConfigBase,
ModelVariantType,
SchedulerPredictionType,
ModelError,
SilenceWarnings,
ModelNotFoundException,
InvalidModelException,
DuplicateModelException,
)
from .stable_diffusion import StableDiffusion1Model, StableDiffusion2Model from .stable_diffusion import StableDiffusion1Model, StableDiffusion2Model
from .sdxl import StableDiffusionXLModel from .sdxl import StableDiffusionXLModel
from .vae import VaeModel from .vae import VaeModel
from .lora import LoRAModel from .lora import LoRAModel
from .controlnet import ControlNetModel # TODO: from .controlnet import ControlNetModel # TODO:
from .textual_inversion import TextualInversionModel from .textual_inversion import TextualInversionModel
MODEL_CLASSES = { MODEL_CLASSES = {
@ -45,18 +54,19 @@ MODEL_CLASSES = {
ModelType.ControlNet: ControlNetModel, ModelType.ControlNet: ControlNetModel,
ModelType.TextualInversion: TextualInversionModel, ModelType.TextualInversion: TextualInversionModel,
}, },
#BaseModelType.Kandinsky2_1: { # BaseModelType.Kandinsky2_1: {
# ModelType.Main: Kandinsky2_1Model, # ModelType.Main: Kandinsky2_1Model,
# ModelType.MoVQ: MoVQModel, # ModelType.MoVQ: MoVQModel,
# ModelType.Lora: LoRAModel, # ModelType.Lora: LoRAModel,
# ModelType.ControlNet: ControlNetModel, # ModelType.ControlNet: ControlNetModel,
# ModelType.TextualInversion: TextualInversionModel, # ModelType.TextualInversion: TextualInversionModel,
#}, # },
} }
MODEL_CONFIGS = list() MODEL_CONFIGS = list()
OPENAPI_MODEL_CONFIGS = list() OPENAPI_MODEL_CONFIGS = list()
class OpenAPIModelInfoBase(BaseModel): class OpenAPIModelInfoBase(BaseModel):
model_name: str model_name: str
base_model: BaseModelType base_model: BaseModelType
@ -72,27 +82,31 @@ for base_model, models in MODEL_CLASSES.items():
# LS: sort to get the checkpoint configs first, which makes # LS: sort to get the checkpoint configs first, which makes
# for a better template in the Swagger docs # for a better template in the Swagger docs
for cfg in sorted(model_configs, key=lambda x: str(x)): for cfg in sorted(model_configs, key=lambda x: str(x)):
model_name, cfg_name = cfg.__qualname__.split('.')[-2:] model_name, cfg_name = cfg.__qualname__.split(".")[-2:]
openapi_cfg_name = model_name + cfg_name openapi_cfg_name = model_name + cfg_name
if openapi_cfg_name in vars(): if openapi_cfg_name in vars():
continue continue
api_wrapper = type(openapi_cfg_name, (cfg, OpenAPIModelInfoBase), dict( api_wrapper = type(
__annotations__ = dict( openapi_cfg_name,
model_type=Literal[model_type.value], (cfg, OpenAPIModelInfoBase),
dict(
__annotations__=dict(
model_type=Literal[model_type.value],
),
), ),
)) )
#globals()[openapi_cfg_name] = api_wrapper # globals()[openapi_cfg_name] = api_wrapper
vars()[openapi_cfg_name] = api_wrapper vars()[openapi_cfg_name] = api_wrapper
OPENAPI_MODEL_CONFIGS.append(api_wrapper) OPENAPI_MODEL_CONFIGS.append(api_wrapper)
def get_model_config_enums(): def get_model_config_enums():
enums = list() enums = list()
for model_config in MODEL_CONFIGS: for model_config in MODEL_CONFIGS:
if hasattr(inspect, "get_annotations"):
if hasattr(inspect,'get_annotations'):
fields = inspect.get_annotations(model_config) fields = inspect.get_annotations(model_config)
else: else:
fields = model_config.__annotations__ fields = model_config.__annotations__
@ -109,7 +123,9 @@ def get_model_config_enums():
if isinstance(field, type) and issubclass(field, str) and issubclass(field, Enum): if isinstance(field, type) and issubclass(field, str) and issubclass(field, Enum):
enums.append(field) enums.append(field)
elif get_origin(field) is Literal and all(isinstance(arg, str) and isinstance(arg, Enum) for arg in field.__args__): elif get_origin(field) is Literal and all(
isinstance(arg, str) and isinstance(arg, Enum) for arg in field.__args__
):
enums.append(type(field.__args__[0])) enums.append(type(field.__args__[0]))
elif field is None: elif field is None:
@ -119,4 +135,3 @@ def get_model_config_enums():
raise Exception(f"Unsupported format definition in {model_configs.__qualname__}") raise Exception(f"Unsupported format definition in {model_configs.__qualname__}")
return enums return enums

View File

@ -15,29 +15,35 @@ from contextlib import suppress
from pydantic import BaseModel, Field from pydantic import BaseModel, Field
from typing import List, Dict, Optional, Type, Literal, TypeVar, Generic, Callable, Any, Union from typing import List, Dict, Optional, Type, Literal, TypeVar, Generic, Callable, Any, Union
class DuplicateModelException(Exception): class DuplicateModelException(Exception):
pass pass
class InvalidModelException(Exception): class InvalidModelException(Exception):
pass pass
class ModelNotFoundException(Exception): class ModelNotFoundException(Exception):
pass pass
class BaseModelType(str, Enum): class BaseModelType(str, Enum):
StableDiffusion1 = "sd-1" StableDiffusion1 = "sd-1"
StableDiffusion2 = "sd-2" StableDiffusion2 = "sd-2"
StableDiffusionXL = "sdxl" StableDiffusionXL = "sdxl"
StableDiffusionXLRefiner = "sdxl-refiner" StableDiffusionXLRefiner = "sdxl-refiner"
#Kandinsky2_1 = "kandinsky-2.1" # Kandinsky2_1 = "kandinsky-2.1"
class ModelType(str, Enum): class ModelType(str, Enum):
Main = "main" Main = "main"
Vae = "vae" Vae = "vae"
Lora = "lora" Lora = "lora"
ControlNet = "controlnet" # used by model_probe ControlNet = "controlnet" # used by model_probe
TextualInversion = "embedding" TextualInversion = "embedding"
class SubModelType(str, Enum): class SubModelType(str, Enum):
UNet = "unet" UNet = "unet"
TextEncoder = "text_encoder" TextEncoder = "text_encoder"
@ -47,23 +53,27 @@ class SubModelType(str, Enum):
Vae = "vae" Vae = "vae"
Scheduler = "scheduler" Scheduler = "scheduler"
SafetyChecker = "safety_checker" SafetyChecker = "safety_checker"
#MoVQ = "movq" # MoVQ = "movq"
class ModelVariantType(str, Enum): class ModelVariantType(str, Enum):
Normal = "normal" Normal = "normal"
Inpaint = "inpaint" Inpaint = "inpaint"
Depth = "depth" Depth = "depth"
class SchedulerPredictionType(str, Enum): class SchedulerPredictionType(str, Enum):
Epsilon = "epsilon" Epsilon = "epsilon"
VPrediction = "v_prediction" VPrediction = "v_prediction"
Sample = "sample" Sample = "sample"
class ModelError(str, Enum): class ModelError(str, Enum):
NotFound = "not_found" NotFound = "not_found"
class ModelConfigBase(BaseModel): class ModelConfigBase(BaseModel):
path: str # or Path path: str # or Path
description: Optional[str] = Field(None) description: Optional[str] = Field(None)
model_format: Optional[str] = Field(None) model_format: Optional[str] = Field(None)
error: Optional[ModelError] = Field(None) error: Optional[ModelError] = Field(None)
@ -71,13 +81,17 @@ class ModelConfigBase(BaseModel):
class Config: class Config:
use_enum_values = True use_enum_values = True
class EmptyConfigLoader(ConfigMixin): class EmptyConfigLoader(ConfigMixin):
@classmethod @classmethod
def load_config(cls, *args, **kwargs): def load_config(cls, *args, **kwargs):
cls.config_name = kwargs.pop("config_name") cls.config_name = kwargs.pop("config_name")
return super().load_config(*args, **kwargs) return super().load_config(*args, **kwargs)
T_co = TypeVar('T_co', covariant=True)
T_co = TypeVar("T_co", covariant=True)
class classproperty(Generic[T_co]): class classproperty(Generic[T_co]):
def __init__(self, fget: Callable[[Any], T_co]) -> None: def __init__(self, fget: Callable[[Any], T_co]) -> None:
self.fget = fget self.fget = fget
@ -86,12 +100,13 @@ class classproperty(Generic[T_co]):
return self.fget(owner) return self.fget(owner)
def __set__(self, instance: Optional[Any], value: Any) -> None: def __set__(self, instance: Optional[Any], value: Any) -> None:
raise AttributeError('cannot set attribute') raise AttributeError("cannot set attribute")
class ModelBase(metaclass=ABCMeta): class ModelBase(metaclass=ABCMeta):
#model_path: str # model_path: str
#base_model: BaseModelType # base_model: BaseModelType
#model_type: ModelType # model_type: ModelType
def __init__( def __init__(
self, self,
@ -110,7 +125,7 @@ class ModelBase(metaclass=ABCMeta):
return None return None
elif any(t is None for t in subtypes): elif any(t is None for t in subtypes):
raise Exception(f"Unsupported definition: {subtypes}") raise Exception(f"Unsupported definition: {subtypes}")
if subtypes[0] in ["diffusers", "transformers"]: if subtypes[0] in ["diffusers", "transformers"]:
res_type = sys.modules[subtypes[0]] res_type = sys.modules[subtypes[0]]
subtypes = subtypes[1:] subtypes = subtypes[1:]
@ -119,7 +134,6 @@ class ModelBase(metaclass=ABCMeta):
res_type = sys.modules["diffusers"] res_type = sys.modules["diffusers"]
res_type = getattr(res_type, "pipelines") res_type = getattr(res_type, "pipelines")
for subtype in subtypes: for subtype in subtypes:
res_type = getattr(res_type, subtype) res_type = getattr(res_type, subtype)
return res_type return res_type
@ -128,7 +142,7 @@ class ModelBase(metaclass=ABCMeta):
def _get_configs(cls): def _get_configs(cls):
with suppress(Exception): with suppress(Exception):
return cls.__configs return cls.__configs
configs = dict() configs = dict()
for name in dir(cls): for name in dir(cls):
if name.startswith("__"): if name.startswith("__"):
@ -138,7 +152,7 @@ class ModelBase(metaclass=ABCMeta):
if not isinstance(value, type) or not issubclass(value, ModelConfigBase): if not isinstance(value, type) or not issubclass(value, ModelConfigBase):
continue continue
if hasattr(inspect,'get_annotations'): if hasattr(inspect, "get_annotations"):
fields = inspect.get_annotations(value) fields = inspect.get_annotations(value)
else: else:
fields = value.__annotations__ fields = value.__annotations__
@ -151,7 +165,9 @@ class ModelBase(metaclass=ABCMeta):
for model_format in field: for model_format in field:
configs[model_format.value] = value configs[model_format.value] = value
elif typing.get_origin(field) is Literal and all(isinstance(arg, str) and isinstance(arg, Enum) for arg in field.__args__): elif typing.get_origin(field) is Literal and all(
isinstance(arg, str) and isinstance(arg, Enum) for arg in field.__args__
):
for model_format in field.__args__: for model_format in field.__args__:
configs[model_format.value] = value configs[model_format.value] = value
@ -203,8 +219,8 @@ class ModelBase(metaclass=ABCMeta):
class DiffusersModel(ModelBase): class DiffusersModel(ModelBase):
#child_types: Dict[str, Type] # child_types: Dict[str, Type]
#child_sizes: Dict[str, int] # child_sizes: Dict[str, int]
def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType): def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType):
super().__init__(model_path, base_model, model_type) super().__init__(model_path, base_model, model_type)
@ -214,7 +230,7 @@ class DiffusersModel(ModelBase):
try: try:
config_data = DiffusionPipeline.load_config(self.model_path) config_data = DiffusionPipeline.load_config(self.model_path)
#config_data = json.loads(os.path.join(self.model_path, "model_index.json")) # config_data = json.loads(os.path.join(self.model_path, "model_index.json"))
except: except:
raise Exception("Invalid diffusers model! (model_index.json not found or invalid)") raise Exception("Invalid diffusers model! (model_index.json not found or invalid)")
@ -228,14 +244,12 @@ class DiffusersModel(ModelBase):
self.child_types[child_name] = child_type self.child_types[child_name] = child_type
self.child_sizes[child_name] = calc_model_size_by_fs(self.model_path, subfolder=child_name) self.child_sizes[child_name] = calc_model_size_by_fs(self.model_path, subfolder=child_name)
def get_size(self, child_type: Optional[SubModelType] = None): def get_size(self, child_type: Optional[SubModelType] = None):
if child_type is None: if child_type is None:
return sum(self.child_sizes.values()) return sum(self.child_sizes.values())
else: else:
return self.child_sizes[child_type] return self.child_sizes[child_type]
def get_model( def get_model(
self, self,
torch_dtype: Optional[torch.dtype], torch_dtype: Optional[torch.dtype],
@ -245,7 +259,7 @@ class DiffusersModel(ModelBase):
if child_type is None: if child_type is None:
raise Exception("Child model type can't be null on diffusers model") raise Exception("Child model type can't be null on diffusers model")
if child_type not in self.child_types: if child_type not in self.child_types:
return None # TODO: or raise return None # TODO: or raise
if torch_dtype == torch.float16: if torch_dtype == torch.float16:
variants = ["fp16", None] variants = ["fp16", None]
@ -265,8 +279,8 @@ class DiffusersModel(ModelBase):
) )
break break
except Exception as e: except Exception as e:
#print("====ERR LOAD====") # print("====ERR LOAD====")
#print(f"{variant}: {e}") # print(f"{variant}: {e}")
pass pass
else: else:
raise Exception(f"Failed to load {self.base_model}:{self.model_type}:{child_type} model") raise Exception(f"Failed to load {self.base_model}:{self.model_type}:{child_type} model")
@ -275,15 +289,10 @@ class DiffusersModel(ModelBase):
self.child_sizes[child_type] = calc_model_size_by_data(model) self.child_sizes[child_type] = calc_model_size_by_data(model)
return model return model
#def convert_if_required(model_path: str, cache_path: str, config: Optional[dict]) -> str: # def convert_if_required(model_path: str, cache_path: str, config: Optional[dict]) -> str:
def calc_model_size_by_fs(model_path: str, subfolder: Optional[str] = None, variant: Optional[str] = None):
def calc_model_size_by_fs(
model_path: str,
subfolder: Optional[str] = None,
variant: Optional[str] = None
):
if subfolder is not None: if subfolder is not None:
model_path = os.path.join(model_path, subfolder) model_path = os.path.join(model_path, subfolder)
@ -325,12 +334,12 @@ def calc_model_size_by_fs(
# calculate files size if there is no index file # calculate files size if there is no index file
formats = [ formats = [
(".safetensors",), # safetensors (".safetensors",), # safetensors
(".bin",), # torch (".bin",), # torch
(".onnx", ".pb"), # onnx (".onnx", ".pb"), # onnx
(".msgpack",), # flax (".msgpack",), # flax
(".ckpt",), # tf (".ckpt",), # tf
(".h5",), # tf2 (".h5",), # tf2
] ]
for file_format in formats: for file_format in formats:
@ -343,9 +352,9 @@ def calc_model_size_by_fs(
file_stats = os.stat(os.path.join(model_path, model_file)) file_stats = os.stat(os.path.join(model_path, model_file))
model_size += file_stats.st_size model_size += file_stats.st_size
return model_size return model_size
#raise NotImplementedError(f"Unknown model structure! Files: {all_files}") # raise NotImplementedError(f"Unknown model structure! Files: {all_files}")
return 0 # scheduler/feature_extractor/tokenizer - models without loading to gpu return 0 # scheduler/feature_extractor/tokenizer - models without loading to gpu
def calc_model_size_by_data(model) -> int: def calc_model_size_by_data(model) -> int:
@ -364,12 +373,12 @@ def _calc_pipeline_by_data(pipeline) -> int:
if submodel is not None and isinstance(submodel, torch.nn.Module): if submodel is not None and isinstance(submodel, torch.nn.Module):
res += _calc_model_by_data(submodel) res += _calc_model_by_data(submodel)
return res return res
def _calc_model_by_data(model) -> int: def _calc_model_by_data(model) -> int:
mem_params = sum([param.nelement()*param.element_size() for param in model.parameters()]) mem_params = sum([param.nelement() * param.element_size() for param in model.parameters()])
mem_bufs = sum([buf.nelement()*buf.element_size() for buf in model.buffers()]) mem_bufs = sum([buf.nelement() * buf.element_size() for buf in model.buffers()])
mem = mem_params + mem_bufs # in bytes mem = mem_params + mem_bufs # in bytes
return mem return mem
@ -377,11 +386,15 @@ def _fast_safetensors_reader(path: str):
checkpoint = dict() checkpoint = dict()
device = torch.device("meta") device = torch.device("meta")
with open(path, "rb") as f: with open(path, "rb") as f:
definition_len = int.from_bytes(f.read(8), 'little') definition_len = int.from_bytes(f.read(8), "little")
definition_json = f.read(definition_len) definition_json = f.read(definition_len)
definition = json.loads(definition_json) definition = json.loads(definition_json)
if "__metadata__" in definition and definition["__metadata__"].get("format", "pt") not in {"pt", "torch", "pytorch"}: if "__metadata__" in definition and definition["__metadata__"].get("format", "pt") not in {
"pt",
"torch",
"pytorch",
}:
raise Exception("Supported only pytorch safetensors files") raise Exception("Supported only pytorch safetensors files")
definition.pop("__metadata__", None) definition.pop("__metadata__", None)
@ -400,6 +413,7 @@ def _fast_safetensors_reader(path: str):
return checkpoint return checkpoint
def read_checkpoint_meta(path: Union[str, Path], scan: bool = False): def read_checkpoint_meta(path: Union[str, Path], scan: bool = False):
if str(path).endswith(".safetensors"): if str(path).endswith(".safetensors"):
try: try:
@ -411,25 +425,27 @@ def read_checkpoint_meta(path: Union[str, Path], scan: bool = False):
if scan: if scan:
scan_result = scan_file_path(path) scan_result = scan_file_path(path)
if scan_result.infected_files != 0: if scan_result.infected_files != 0:
raise Exception(f"The model file \"{path}\" is potentially infected by malware. Aborting import.") raise Exception(f'The model file "{path}" is potentially infected by malware. Aborting import.')
checkpoint = torch.load(path, map_location=torch.device("meta")) checkpoint = torch.load(path, map_location=torch.device("meta"))
return checkpoint return checkpoint
import warnings import warnings
from diffusers import logging as diffusers_logging from diffusers import logging as diffusers_logging
from transformers import logging as transformers_logging from transformers import logging as transformers_logging
class SilenceWarnings(object): class SilenceWarnings(object):
def __init__(self): def __init__(self):
self.transformers_verbosity = transformers_logging.get_verbosity() self.transformers_verbosity = transformers_logging.get_verbosity()
self.diffusers_verbosity = diffusers_logging.get_verbosity() self.diffusers_verbosity = diffusers_logging.get_verbosity()
def __enter__(self): def __enter__(self):
transformers_logging.set_verbosity_error() transformers_logging.set_verbosity_error()
diffusers_logging.set_verbosity_error() diffusers_logging.set_verbosity_error()
warnings.simplefilter('ignore') warnings.simplefilter("ignore")
def __exit__(self, type, value, traceback): def __exit__(self, type, value, traceback):
transformers_logging.set_verbosity(self.transformers_verbosity) transformers_logging.set_verbosity(self.transformers_verbosity)
diffusers_logging.set_verbosity(self.diffusers_verbosity) diffusers_logging.set_verbosity(self.diffusers_verbosity)
warnings.simplefilter('default') warnings.simplefilter("default")

View File

@ -18,13 +18,15 @@ from .base import (
) )
from invokeai.app.services.config import InvokeAIAppConfig from invokeai.app.services.config import InvokeAIAppConfig
class ControlNetModelFormat(str, Enum): class ControlNetModelFormat(str, Enum):
Checkpoint = "checkpoint" Checkpoint = "checkpoint"
Diffusers = "diffusers" Diffusers = "diffusers"
class ControlNetModel(ModelBase): class ControlNetModel(ModelBase):
#model_class: Type # model_class: Type
#model_size: int # model_size: int
class DiffusersConfig(ModelConfigBase): class DiffusersConfig(ModelConfigBase):
model_format: Literal[ControlNetModelFormat.Diffusers] model_format: Literal[ControlNetModelFormat.Diffusers]
@ -39,7 +41,7 @@ class ControlNetModel(ModelBase):
try: try:
config = EmptyConfigLoader.load_config(self.model_path, config_name="config.json") config = EmptyConfigLoader.load_config(self.model_path, config_name="config.json")
#config = json.loads(os.path.join(self.model_path, "config.json")) # config = json.loads(os.path.join(self.model_path, "config.json"))
except: except:
raise Exception("Invalid controlnet model! (config.json not found or invalid)") raise Exception("Invalid controlnet model! (config.json not found or invalid)")
@ -67,7 +69,7 @@ class ControlNetModel(ModelBase):
raise Exception("There is no child models in controlnet model") raise Exception("There is no child models in controlnet model")
model = None model = None
for variant in ['fp16',None]: for variant in ["fp16", None]:
try: try:
model = self.model_class.from_pretrained( model = self.model_class.from_pretrained(
self.model_path, self.model_path,
@ -79,7 +81,7 @@ class ControlNetModel(ModelBase):
pass pass
if not model: if not model:
raise ModelNotFoundException() raise ModelNotFoundException()
# calc more accurate size # calc more accurate size
self.model_size = calc_model_size_by_data(model) self.model_size = calc_model_size_by_data(model)
return model return model
@ -105,29 +107,30 @@ class ControlNetModel(ModelBase):
@classmethod @classmethod
def convert_if_required( def convert_if_required(
cls,
model_path: str,
output_path: str,
config: ModelConfigBase,
base_model: BaseModelType,
) -> str:
if cls.detect_format(model_path) == ControlNetModelFormat.Checkpoint:
return _convert_controlnet_ckpt_and_cache(
model_path = model_path,
model_config = config.config,
output_path = output_path,
base_model = base_model,
)
else:
return model_path
@classmethod
def _convert_controlnet_ckpt_and_cache(
cls, cls,
model_path: str, model_path: str,
output_path: str, output_path: str,
config: ModelConfigBase,
base_model: BaseModelType, base_model: BaseModelType,
model_config: ControlNetModel.CheckpointConfig, ) -> str:
if cls.detect_format(model_path) == ControlNetModelFormat.Checkpoint:
return _convert_controlnet_ckpt_and_cache(
model_path=model_path,
model_config=config.config,
output_path=output_path,
base_model=base_model,
)
else:
return model_path
@classmethod
def _convert_controlnet_ckpt_and_cache(
cls,
model_path: str,
output_path: str,
base_model: BaseModelType,
model_config: ControlNetModel.CheckpointConfig,
) -> str: ) -> str:
""" """
Convert the controlnet from checkpoint format to diffusers format, Convert the controlnet from checkpoint format to diffusers format,
@ -144,12 +147,13 @@ def _convert_controlnet_ckpt_and_cache(
# to avoid circular import errors # to avoid circular import errors
from ..convert_ckpt_to_diffusers import convert_controlnet_to_diffusers from ..convert_ckpt_to_diffusers import convert_controlnet_to_diffusers
convert_controlnet_to_diffusers( convert_controlnet_to_diffusers(
weights, weights,
output_path, output_path,
original_config_file = app_config.root_path / model_config, original_config_file=app_config.root_path / model_config,
image_size = 512, image_size=512,
scan_needed = True, scan_needed=True,
from_safetensors = weights.suffix == ".safetensors" from_safetensors=weights.suffix == ".safetensors",
) )
return output_path return output_path

View File

@ -12,18 +12,21 @@ from .base import (
InvalidModelException, InvalidModelException,
ModelNotFoundException, ModelNotFoundException,
) )
# TODO: naming # TODO: naming
from ..lora import LoRAModel as LoRAModelRaw from ..lora import LoRAModel as LoRAModelRaw
class LoRAModelFormat(str, Enum): class LoRAModelFormat(str, Enum):
LyCORIS = "lycoris" LyCORIS = "lycoris"
Diffusers = "diffusers" Diffusers = "diffusers"
class LoRAModel(ModelBase): class LoRAModel(ModelBase):
#model_size: int # model_size: int
class Config(ModelConfigBase): class Config(ModelConfigBase):
model_format: LoRAModelFormat # TODO: model_format: LoRAModelFormat # TODO:
def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType): def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType):
assert model_type == ModelType.Lora assert model_type == ModelType.Lora

View File

@ -15,12 +15,13 @@ from .base import (
) )
from omegaconf import OmegaConf from omegaconf import OmegaConf
class StableDiffusionXLModelFormat(str, Enum): class StableDiffusionXLModelFormat(str, Enum):
Checkpoint = "checkpoint" Checkpoint = "checkpoint"
Diffusers = "diffusers" Diffusers = "diffusers"
class StableDiffusionXLModel(DiffusersModel):
class StableDiffusionXLModel(DiffusersModel):
# TODO: check that configs overwriten properly # TODO: check that configs overwriten properly
class DiffusersConfig(ModelConfigBase): class DiffusersConfig(ModelConfigBase):
model_format: Literal[StableDiffusionXLModelFormat.Diffusers] model_format: Literal[StableDiffusionXLModelFormat.Diffusers]
@ -53,7 +54,7 @@ class StableDiffusionXLModel(DiffusersModel):
else: else:
checkpoint = read_checkpoint_meta(path) checkpoint = read_checkpoint_meta(path)
checkpoint = checkpoint.get('state_dict', checkpoint) checkpoint = checkpoint.get("state_dict", checkpoint)
in_channels = checkpoint["model.diffusion_model.input_blocks.0.0.weight"].shape[1] in_channels = checkpoint["model.diffusion_model.input_blocks.0.0.weight"].shape[1]
elif model_format == StableDiffusionXLModelFormat.Diffusers: elif model_format == StableDiffusionXLModelFormat.Diffusers:
@ -61,7 +62,7 @@ class StableDiffusionXLModel(DiffusersModel):
if os.path.exists(unet_config_path): if os.path.exists(unet_config_path):
with open(unet_config_path, "r") as f: with open(unet_config_path, "r") as f:
unet_config = json.loads(f.read()) unet_config = json.loads(f.read())
in_channels = unet_config['in_channels'] in_channels = unet_config["in_channels"]
else: else:
raise Exception("Not supported stable diffusion diffusers format(possibly onnx?)") raise Exception("Not supported stable diffusion diffusers format(possibly onnx?)")
@ -81,11 +82,10 @@ class StableDiffusionXLModel(DiffusersModel):
if ckpt_config_path is None: if ckpt_config_path is None:
# TO DO: implement picking # TO DO: implement picking
pass pass
return cls.create_config( return cls.create_config(
path=path, path=path,
model_format=model_format, model_format=model_format,
config=ckpt_config_path, config=ckpt_config_path,
variant=variant, variant=variant,
) )
@ -114,11 +114,12 @@ class StableDiffusionXLModel(DiffusersModel):
# source code changes, we simply translate here # source code changes, we simply translate here
if isinstance(config, cls.CheckpointConfig): if isinstance(config, cls.CheckpointConfig):
from invokeai.backend.model_management.models.stable_diffusion import _convert_ckpt_and_cache from invokeai.backend.model_management.models.stable_diffusion import _convert_ckpt_and_cache
return _convert_ckpt_and_cache( return _convert_ckpt_and_cache(
version=base_model, version=base_model,
model_config=config, model_config=config,
output_path=output_path, output_path=output_path,
use_safetensors=False, # corrupts sdxl models for some reason use_safetensors=False, # corrupts sdxl models for some reason
) )
else: else:
return model_path return model_path

View File

@ -26,8 +26,8 @@ class StableDiffusion1ModelFormat(str, Enum):
Checkpoint = "checkpoint" Checkpoint = "checkpoint"
Diffusers = "diffusers" Diffusers = "diffusers"
class StableDiffusion1Model(DiffusersModel):
class StableDiffusion1Model(DiffusersModel):
class DiffusersConfig(ModelConfigBase): class DiffusersConfig(ModelConfigBase):
model_format: Literal[StableDiffusion1ModelFormat.Diffusers] model_format: Literal[StableDiffusion1ModelFormat.Diffusers]
vae: Optional[str] = Field(None) vae: Optional[str] = Field(None)
@ -38,7 +38,7 @@ class StableDiffusion1Model(DiffusersModel):
vae: Optional[str] = Field(None) vae: Optional[str] = Field(None)
config: str config: str
variant: ModelVariantType variant: ModelVariantType
def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType): def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType):
assert base_model == BaseModelType.StableDiffusion1 assert base_model == BaseModelType.StableDiffusion1
assert model_type == ModelType.Main assert model_type == ModelType.Main
@ -59,7 +59,7 @@ class StableDiffusion1Model(DiffusersModel):
else: else:
checkpoint = read_checkpoint_meta(path) checkpoint = read_checkpoint_meta(path)
checkpoint = checkpoint.get('state_dict', checkpoint) checkpoint = checkpoint.get("state_dict", checkpoint)
in_channels = checkpoint["model.diffusion_model.input_blocks.0.0.weight"].shape[1] in_channels = checkpoint["model.diffusion_model.input_blocks.0.0.weight"].shape[1]
elif model_format == StableDiffusion1ModelFormat.Diffusers: elif model_format == StableDiffusion1ModelFormat.Diffusers:
@ -67,7 +67,7 @@ class StableDiffusion1Model(DiffusersModel):
if os.path.exists(unet_config_path): if os.path.exists(unet_config_path):
with open(unet_config_path, "r") as f: with open(unet_config_path, "r") as f:
unet_config = json.loads(f.read()) unet_config = json.loads(f.read())
in_channels = unet_config['in_channels'] in_channels = unet_config["in_channels"]
else: else:
raise NotImplementedError(f"{path} is not a supported stable diffusion diffusers format") raise NotImplementedError(f"{path} is not a supported stable diffusion diffusers format")
@ -88,7 +88,6 @@ class StableDiffusion1Model(DiffusersModel):
return cls.create_config( return cls.create_config(
path=path, path=path,
model_format=model_format, model_format=model_format,
config=ckpt_config_path, config=ckpt_config_path,
variant=variant, variant=variant,
) )
@ -125,16 +124,17 @@ class StableDiffusion1Model(DiffusersModel):
version=BaseModelType.StableDiffusion1, version=BaseModelType.StableDiffusion1,
model_config=config, model_config=config,
output_path=output_path, output_path=output_path,
) )
else: else:
return model_path return model_path
class StableDiffusion2ModelFormat(str, Enum): class StableDiffusion2ModelFormat(str, Enum):
Checkpoint = "checkpoint" Checkpoint = "checkpoint"
Diffusers = "diffusers" Diffusers = "diffusers"
class StableDiffusion2Model(DiffusersModel):
class StableDiffusion2Model(DiffusersModel):
# TODO: check that configs overwriten properly # TODO: check that configs overwriten properly
class DiffusersConfig(ModelConfigBase): class DiffusersConfig(ModelConfigBase):
model_format: Literal[StableDiffusion2ModelFormat.Diffusers] model_format: Literal[StableDiffusion2ModelFormat.Diffusers]
@ -167,7 +167,7 @@ class StableDiffusion2Model(DiffusersModel):
else: else:
checkpoint = read_checkpoint_meta(path) checkpoint = read_checkpoint_meta(path)
checkpoint = checkpoint.get('state_dict', checkpoint) checkpoint = checkpoint.get("state_dict", checkpoint)
in_channels = checkpoint["model.diffusion_model.input_blocks.0.0.weight"].shape[1] in_channels = checkpoint["model.diffusion_model.input_blocks.0.0.weight"].shape[1]
elif model_format == StableDiffusion2ModelFormat.Diffusers: elif model_format == StableDiffusion2ModelFormat.Diffusers:
@ -175,7 +175,7 @@ class StableDiffusion2Model(DiffusersModel):
if os.path.exists(unet_config_path): if os.path.exists(unet_config_path):
with open(unet_config_path, "r") as f: with open(unet_config_path, "r") as f:
unet_config = json.loads(f.read()) unet_config = json.loads(f.read())
in_channels = unet_config['in_channels'] in_channels = unet_config["in_channels"]
else: else:
raise Exception("Not supported stable diffusion diffusers format(possibly onnx?)") raise Exception("Not supported stable diffusion diffusers format(possibly onnx?)")
@ -198,7 +198,6 @@ class StableDiffusion2Model(DiffusersModel):
return cls.create_config( return cls.create_config(
path=path, path=path,
model_format=model_format, model_format=model_format,
config=ckpt_config_path, config=ckpt_config_path,
variant=variant, variant=variant,
) )
@ -239,17 +238,19 @@ class StableDiffusion2Model(DiffusersModel):
else: else:
return model_path return model_path
# TODO: rework # TODO: rework
# pass precision - currently defaulting to fp16 # pass precision - currently defaulting to fp16
def _convert_ckpt_and_cache( def _convert_ckpt_and_cache(
version: BaseModelType, version: BaseModelType,
model_config: Union[StableDiffusion1Model.CheckpointConfig, model_config: Union[
StableDiffusion2Model.CheckpointConfig, StableDiffusion1Model.CheckpointConfig,
StableDiffusionXLModel.CheckpointConfig, StableDiffusion2Model.CheckpointConfig,
], StableDiffusionXLModel.CheckpointConfig,
output_path: str, ],
use_save_model: bool=False, output_path: str,
**kwargs, use_save_model: bool = False,
**kwargs,
) -> str: ) -> str:
""" """
Convert the checkpoint model indicated in mconfig into a Convert the checkpoint model indicated in mconfig into a
@ -270,13 +271,14 @@ def _convert_ckpt_and_cache(
from ..convert_ckpt_to_diffusers import convert_ckpt_to_diffusers from ..convert_ckpt_to_diffusers import convert_ckpt_to_diffusers
from ...util.devices import choose_torch_device, torch_dtype from ...util.devices import choose_torch_device, torch_dtype
model_base_to_model_type = {BaseModelType.StableDiffusion1: 'FrozenCLIPEmbedder', model_base_to_model_type = {
BaseModelType.StableDiffusion2: 'FrozenOpenCLIPEmbedder', BaseModelType.StableDiffusion1: "FrozenCLIPEmbedder",
BaseModelType.StableDiffusionXL: 'SDXL', BaseModelType.StableDiffusion2: "FrozenOpenCLIPEmbedder",
BaseModelType.StableDiffusionXLRefiner: 'SDXL-Refiner', BaseModelType.StableDiffusionXL: "SDXL",
} BaseModelType.StableDiffusionXLRefiner: "SDXL-Refiner",
logger.info(f'Converting {weights} to diffusers format') }
with SilenceWarnings(): logger.info(f"Converting {weights} to diffusers format")
with SilenceWarnings():
convert_ckpt_to_diffusers( convert_ckpt_to_diffusers(
weights, weights,
output_path, output_path,
@ -286,12 +288,13 @@ def _convert_ckpt_and_cache(
original_config_file=config_file, original_config_file=config_file,
extract_ema=True, extract_ema=True,
scan_needed=True, scan_needed=True,
from_safetensors = weights.suffix == ".safetensors", from_safetensors=weights.suffix == ".safetensors",
precision = torch_dtype(choose_torch_device()), precision=torch_dtype(choose_torch_device()),
**kwargs, **kwargs,
) )
return output_path return output_path
def _select_ckpt_config(version: BaseModelType, variant: ModelVariantType): def _select_ckpt_config(version: BaseModelType, variant: ModelVariantType):
ckpt_configs = { ckpt_configs = {
BaseModelType.StableDiffusion1: { BaseModelType.StableDiffusion1: {
@ -299,7 +302,7 @@ def _select_ckpt_config(version: BaseModelType, variant: ModelVariantType):
ModelVariantType.Inpaint: "v1-inpainting-inference.yaml", ModelVariantType.Inpaint: "v1-inpainting-inference.yaml",
}, },
BaseModelType.StableDiffusion2: { BaseModelType.StableDiffusion2: {
ModelVariantType.Normal: "v2-inference-v.yaml", # best guess, as we can't differentiate with base(512) ModelVariantType.Normal: "v2-inference-v.yaml", # best guess, as we can't differentiate with base(512)
ModelVariantType.Inpaint: "v2-inpainting-inference.yaml", ModelVariantType.Inpaint: "v2-inpainting-inference.yaml",
ModelVariantType.Depth: "v2-midas-inference.yaml", ModelVariantType.Depth: "v2-midas-inference.yaml",
}, },
@ -321,8 +324,6 @@ def _select_ckpt_config(version: BaseModelType, variant: ModelVariantType):
if config_path.is_relative_to(app_config.root_path): if config_path.is_relative_to(app_config.root_path):
config_path = config_path.relative_to(app_config.root_path) config_path = config_path.relative_to(app_config.root_path)
return str(config_path) return str(config_path)
except: except:
return None return None

View File

@ -11,11 +11,13 @@ from .base import (
ModelNotFoundException, ModelNotFoundException,
InvalidModelException, InvalidModelException,
) )
# TODO: naming # TODO: naming
from ..lora import TextualInversionModel as TextualInversionModelRaw from ..lora import TextualInversionModel as TextualInversionModelRaw
class TextualInversionModel(ModelBase): class TextualInversionModel(ModelBase):
#model_size: int # model_size: int
class Config(ModelConfigBase): class Config(ModelConfigBase):
model_format: None model_format: None
@ -65,7 +67,7 @@ class TextualInversionModel(ModelBase):
if os.path.isdir(path): if os.path.isdir(path):
if os.path.exists(os.path.join(path, "learned_embeds.bin")): if os.path.exists(os.path.join(path, "learned_embeds.bin")):
return None # diffusers-ti return None # diffusers-ti
if os.path.isfile(path): if os.path.isfile(path):
if any([path.endswith(f".{ext}") for ext in ["safetensors", "ckpt", "pt", "bin"]]): if any([path.endswith(f".{ext}") for ext in ["safetensors", "ckpt", "pt", "bin"]]):

View File

@ -22,13 +22,15 @@ from invokeai.app.services.config import InvokeAIAppConfig
from diffusers.utils import is_safetensors_available from diffusers.utils import is_safetensors_available
from omegaconf import OmegaConf from omegaconf import OmegaConf
class VaeModelFormat(str, Enum): class VaeModelFormat(str, Enum):
Checkpoint = "checkpoint" Checkpoint = "checkpoint"
Diffusers = "diffusers" Diffusers = "diffusers"
class VaeModel(ModelBase): class VaeModel(ModelBase):
#vae_class: Type # vae_class: Type
#model_size: int # model_size: int
class Config(ModelConfigBase): class Config(ModelConfigBase):
model_format: VaeModelFormat model_format: VaeModelFormat
@ -39,7 +41,7 @@ class VaeModel(ModelBase):
try: try:
config = EmptyConfigLoader.load_config(self.model_path, config_name="config.json") config = EmptyConfigLoader.load_config(self.model_path, config_name="config.json")
#config = json.loads(os.path.join(self.model_path, "config.json")) # config = json.loads(os.path.join(self.model_path, "config.json"))
except: except:
raise Exception("Invalid vae model! (config.json not found or invalid)") raise Exception("Invalid vae model! (config.json not found or invalid)")
@ -95,7 +97,7 @@ class VaeModel(ModelBase):
cls, cls,
model_path: str, model_path: str,
output_path: str, output_path: str,
config: ModelConfigBase, # empty config or config of parent model config: ModelConfigBase, # empty config or config of parent model
base_model: BaseModelType, base_model: BaseModelType,
) -> str: ) -> str:
if cls.detect_format(model_path) == VaeModelFormat.Checkpoint: if cls.detect_format(model_path) == VaeModelFormat.Checkpoint:
@ -108,6 +110,7 @@ class VaeModel(ModelBase):
else: else:
return model_path return model_path
# TODO: rework # TODO: rework
def _convert_vae_ckpt_and_cache( def _convert_vae_ckpt_and_cache(
weights_path: str, weights_path: str,
@ -138,13 +141,14 @@ def _convert_vae_ckpt_and_cache(
2.1 - 768 2.1 - 768
""" """
image_size = 512 image_size = 512
# return cached version if it exists # return cached version if it exists
if output_path.exists(): if output_path.exists():
return output_path return output_path
if base_model in {BaseModelType.StableDiffusion1, BaseModelType.StableDiffusion2}: if base_model in {BaseModelType.StableDiffusion1, BaseModelType.StableDiffusion2}:
from .stable_diffusion import _select_ckpt_config from .stable_diffusion import _select_ckpt_config
# all sd models use same vae settings # all sd models use same vae settings
config_file = _select_ckpt_config(base_model, ModelVariantType.Normal) config_file = _select_ckpt_config(base_model, ModelVariantType.Normal)
else: else:
@ -152,7 +156,8 @@ def _convert_vae_ckpt_and_cache(
# this avoids circular import error # this avoids circular import error
from ..convert_ckpt_to_diffusers import convert_ldm_vae_to_diffusers from ..convert_ckpt_to_diffusers import convert_ldm_vae_to_diffusers
if weights_path.suffix == '.safetensors':
if weights_path.suffix == ".safetensors":
checkpoint = safetensors.torch.load_file(weights_path, device="cpu") checkpoint = safetensors.torch.load_file(weights_path, device="cpu")
else: else:
checkpoint = torch.load(weights_path, map_location="cpu") checkpoint = torch.load(weights_path, map_location="cpu")
@ -161,15 +166,12 @@ def _convert_vae_ckpt_and_cache(
if "state_dict" in checkpoint: if "state_dict" in checkpoint:
checkpoint = checkpoint["state_dict"] checkpoint = checkpoint["state_dict"]
config = OmegaConf.load(app_config.root_path/config_file) config = OmegaConf.load(app_config.root_path / config_file)
vae_model = convert_ldm_vae_to_diffusers( vae_model = convert_ldm_vae_to_diffusers(
checkpoint = checkpoint, checkpoint=checkpoint,
vae_config = config, vae_config=config,
image_size = image_size, image_size=image_size,
)
vae_model.save_pretrained(
output_path,
safe_serialization=is_safetensors_available()
) )
vae_model.save_pretrained(output_path, safe_serialization=is_safetensors_available())
return output_path return output_path

View File

@ -47,6 +47,7 @@ from .diffusion import (
) )
from .offloading import FullyLoadedModelGroup, ModelGroup from .offloading import FullyLoadedModelGroup, ModelGroup
@dataclass @dataclass
class PipelineIntermediateState: class PipelineIntermediateState:
run_id: str run_id: str
@ -72,7 +73,11 @@ class AddsMaskLatents:
initial_image_latents: torch.Tensor initial_image_latents: torch.Tensor
def __call__( def __call__(
self, latents: torch.Tensor, t: torch.Tensor, text_embeddings: torch.Tensor, **kwargs, self,
latents: torch.Tensor,
t: torch.Tensor,
text_embeddings: torch.Tensor,
**kwargs,
) -> torch.Tensor: ) -> torch.Tensor:
model_input = self.add_mask_channels(latents) model_input = self.add_mask_channels(latents)
return self.forward(model_input, t, text_embeddings, **kwargs) return self.forward(model_input, t, text_embeddings, **kwargs)
@ -80,12 +85,8 @@ class AddsMaskLatents:
def add_mask_channels(self, latents): def add_mask_channels(self, latents):
batch_size = latents.size(0) batch_size = latents.size(0)
# duplicate mask and latents for each batch # duplicate mask and latents for each batch
mask = einops.repeat( mask = einops.repeat(self.mask, "b c h w -> (repeat b) c h w", repeat=batch_size)
self.mask, "b c h w -> (repeat b) c h w", repeat=batch_size image_latents = einops.repeat(self.initial_image_latents, "b c h w -> (repeat b) c h w", repeat=batch_size)
)
image_latents = einops.repeat(
self.initial_image_latents, "b c h w -> (repeat b) c h w", repeat=batch_size
)
# add mask and image as additional channels # add mask and image as additional channels
model_input, _ = einops.pack([latents, mask, image_latents], "b * h w") model_input, _ = einops.pack([latents, mask, image_latents], "b * h w")
return model_input return model_input
@ -103,9 +104,7 @@ class AddsMaskGuidance:
noise: torch.Tensor noise: torch.Tensor
_debug: Optional[Callable] = None _debug: Optional[Callable] = None
def __call__( def __call__(self, step_output: Union[BaseOutput, SchedulerOutput], t: torch.Tensor, conditioning) -> BaseOutput:
self, step_output: Union[BaseOutput, SchedulerOutput], t: torch.Tensor, conditioning
) -> BaseOutput:
output_class = step_output.__class__ # We'll create a new one with masked data. output_class = step_output.__class__ # We'll create a new one with masked data.
# The problem with taking SchedulerOutput instead of the model output is that we're less certain what's in it. # The problem with taking SchedulerOutput instead of the model output is that we're less certain what's in it.
@ -116,11 +115,7 @@ class AddsMaskGuidance:
# Mask anything that has the same shape as prev_sample, return others as-is. # Mask anything that has the same shape as prev_sample, return others as-is.
return output_class( return output_class(
{ {
k: ( k: (self.apply_mask(v, self._t_for_field(k, t)) if are_like_tensors(prev_sample, v) else v)
self.apply_mask(v, self._t_for_field(k, t))
if are_like_tensors(prev_sample, v)
else v
)
for k, v in step_output.items() for k, v in step_output.items()
} }
) )
@ -132,9 +127,7 @@ class AddsMaskGuidance:
def apply_mask(self, latents: torch.Tensor, t) -> torch.Tensor: def apply_mask(self, latents: torch.Tensor, t) -> torch.Tensor:
batch_size = latents.size(0) batch_size = latents.size(0)
mask = einops.repeat( mask = einops.repeat(self.mask, "b c h w -> (repeat b) c h w", repeat=batch_size)
self.mask, "b c h w -> (repeat b) c h w", repeat=batch_size
)
if t.dim() == 0: if t.dim() == 0:
# some schedulers expect t to be one-dimensional. # some schedulers expect t to be one-dimensional.
# TODO: file diffusers bug about inconsistency? # TODO: file diffusers bug about inconsistency?
@ -144,12 +137,8 @@ class AddsMaskGuidance:
mask_latents = self.scheduler.add_noise(self.mask_latents, self.noise, t) mask_latents = self.scheduler.add_noise(self.mask_latents, self.noise, t)
# TODO: Do we need to also apply scheduler.scale_model_input? Or is add_noise appropriately scaled already? # TODO: Do we need to also apply scheduler.scale_model_input? Or is add_noise appropriately scaled already?
# mask_latents = self.scheduler.scale_model_input(mask_latents, t) # mask_latents = self.scheduler.scale_model_input(mask_latents, t)
mask_latents = einops.repeat( mask_latents = einops.repeat(mask_latents, "b c h w -> (repeat b) c h w", repeat=batch_size)
mask_latents, "b c h w -> (repeat b) c h w", repeat=batch_size masked_input = torch.lerp(mask_latents.to(dtype=latents.dtype), latents, mask.to(dtype=latents.dtype))
)
masked_input = torch.lerp(
mask_latents.to(dtype=latents.dtype), latents, mask.to(dtype=latents.dtype)
)
if self._debug: if self._debug:
self._debug(masked_input, f"t={t} lerped") self._debug(masked_input, f"t={t} lerped")
return masked_input return masked_input
@ -159,9 +148,7 @@ def trim_to_multiple_of(*args, multiple_of=8):
return tuple((x - x % multiple_of) for x in args) return tuple((x - x % multiple_of) for x in args)
def image_resized_to_grid_as_tensor( def image_resized_to_grid_as_tensor(image: PIL.Image.Image, normalize: bool = True, multiple_of=8) -> torch.FloatTensor:
image: PIL.Image.Image, normalize: bool = True, multiple_of=8
) -> torch.FloatTensor:
""" """
:param image: input image :param image: input image
@ -211,6 +198,7 @@ class GeneratorToCallbackinator(Generic[ParamType, ReturnType, CallbackType]):
raise AssertionError("why was that an empty generator?") raise AssertionError("why was that an empty generator?")
return result return result
@dataclass @dataclass
class ControlNetData: class ControlNetData:
model: ControlNetModel = Field(default=None) model: ControlNetModel = Field(default=None)
@ -341,9 +329,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
# FIXME: can't currently register control module # FIXME: can't currently register control module
# control_model=control_model, # control_model=control_model,
) )
self.invokeai_diffuser = InvokeAIDiffuserComponent( self.invokeai_diffuser = InvokeAIDiffuserComponent(self.unet, self._unet_forward)
self.unet, self._unet_forward
)
self._model_group = FullyLoadedModelGroup(execution_device or self.unet.device) self._model_group = FullyLoadedModelGroup(execution_device or self.unet.device)
self._model_group.install(*self._submodels) self._model_group.install(*self._submodels)
@ -354,11 +340,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
if xformers is available, use it, otherwise use sliced attention. if xformers is available, use it, otherwise use sliced attention.
""" """
config = InvokeAIAppConfig.get_config() config = InvokeAIAppConfig.get_config()
if ( if torch.cuda.is_available() and is_xformers_available() and not config.disable_xformers:
torch.cuda.is_available()
and is_xformers_available()
and not config.disable_xformers
):
self.enable_xformers_memory_efficient_attention() self.enable_xformers_memory_efficient_attention()
else: else:
if self.device.type == "cpu" or self.device.type == "mps": if self.device.type == "cpu" or self.device.type == "mps":
@ -369,9 +351,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
raise ValueError(f"unrecognized device {self.device}") raise ValueError(f"unrecognized device {self.device}")
# input tensor of [1, 4, h/8, w/8] # input tensor of [1, 4, h/8, w/8]
# output tensor of [16, (h/8 * w/8), (h/8 * w/8)] # output tensor of [16, (h/8 * w/8), (h/8 * w/8)]
bytes_per_element_needed_for_baddbmm_duplication = ( bytes_per_element_needed_for_baddbmm_duplication = latents.element_size() + 4
latents.element_size() + 4
)
max_size_required_for_baddbmm = ( max_size_required_for_baddbmm = (
16 16
* latents.size(dim=2) * latents.size(dim=2)
@ -380,9 +360,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
* latents.size(dim=3) * latents.size(dim=3)
* bytes_per_element_needed_for_baddbmm_duplication * bytes_per_element_needed_for_baddbmm_duplication
) )
if max_size_required_for_baddbmm > ( if max_size_required_for_baddbmm > (mem_free * 3.0 / 4.0): # 3.3 / 4.0 is from old Invoke code
mem_free * 3.0 / 4.0
): # 3.3 / 4.0 is from old Invoke code
self.enable_attention_slicing(slice_size="max") self.enable_attention_slicing(slice_size="max")
elif torch.backends.mps.is_available(): elif torch.backends.mps.is_available():
# diffusers recommends always enabling for mps # diffusers recommends always enabling for mps
@ -470,7 +448,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
control_data: List[ControlNetData] = None, control_data: List[ControlNetData] = None,
) -> tuple[torch.Tensor, Optional[AttentionMapSaver]]: ) -> tuple[torch.Tensor, Optional[AttentionMapSaver]]:
if self.scheduler.config.get("cpu_only", False): if self.scheduler.config.get("cpu_only", False):
scheduler_device = torch.device('cpu') scheduler_device = torch.device("cpu")
else: else:
scheduler_device = self._model_group.device_for(self.unet) scheduler_device = self._model_group.device_for(self.unet)
@ -488,7 +466,6 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
run_id=run_id, run_id=run_id,
additional_guidance=additional_guidance, additional_guidance=additional_guidance,
control_data=control_data, control_data=control_data,
callback=callback, callback=callback,
) )
return result.latents, result.attention_map_saver return result.latents, result.attention_map_saver
@ -511,9 +488,9 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
additional_guidance = [] additional_guidance = []
extra_conditioning_info = conditioning_data.extra extra_conditioning_info = conditioning_data.extra
with self.invokeai_diffuser.custom_attention_context( with self.invokeai_diffuser.custom_attention_context(
self.invokeai_diffuser.model, self.invokeai_diffuser.model,
extra_conditioning_info=extra_conditioning_info, extra_conditioning_info=extra_conditioning_info,
step_count=len(self.scheduler.timesteps), step_count=len(self.scheduler.timesteps),
): ):
yield PipelineIntermediateState( yield PipelineIntermediateState(
run_id=run_id, run_id=run_id,
@ -607,16 +584,15 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
# that are combined at higher level to make control_mode enum # that are combined at higher level to make control_mode enum
# soft_injection determines whether to do per-layer re-weighting adjustment (if True) # soft_injection determines whether to do per-layer re-weighting adjustment (if True)
# or default weighting (if False) # or default weighting (if False)
soft_injection = (control_mode == "more_prompt" or control_mode == "more_control") soft_injection = control_mode == "more_prompt" or control_mode == "more_control"
# cfg_injection = determines whether to apply ControlNet to only the conditional (if True) # cfg_injection = determines whether to apply ControlNet to only the conditional (if True)
# or the default both conditional and unconditional (if False) # or the default both conditional and unconditional (if False)
cfg_injection = (control_mode == "more_control" or control_mode == "unbalanced") cfg_injection = control_mode == "more_control" or control_mode == "unbalanced"
first_control_step = math.floor(control_datum.begin_step_percent * total_step_count) first_control_step = math.floor(control_datum.begin_step_percent * total_step_count)
last_control_step = math.ceil(control_datum.end_step_percent * total_step_count) last_control_step = math.ceil(control_datum.end_step_percent * total_step_count)
# only apply controlnet if current step is within the controlnet's begin/end step range # only apply controlnet if current step is within the controlnet's begin/end step range
if step_index >= first_control_step and step_index <= last_control_step: if step_index >= first_control_step and step_index <= last_control_step:
if cfg_injection: if cfg_injection:
control_latent_input = unet_latent_input control_latent_input = unet_latent_input
else: else:
@ -629,7 +605,10 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
encoder_hidden_states = conditioning_data.text_embeddings encoder_hidden_states = conditioning_data.text_embeddings
encoder_attention_mask = None encoder_attention_mask = None
else: else:
encoder_hidden_states, encoder_attention_mask = self.invokeai_diffuser._concat_conditionings_for_batch( (
encoder_hidden_states,
encoder_attention_mask,
) = self.invokeai_diffuser._concat_conditionings_for_batch(
conditioning_data.unconditioned_embeddings, conditioning_data.unconditioned_embeddings,
conditioning_data.text_embeddings, conditioning_data.text_embeddings,
) )
@ -646,9 +625,9 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
timestep=timestep, timestep=timestep,
encoder_hidden_states=encoder_hidden_states, encoder_hidden_states=encoder_hidden_states,
controlnet_cond=control_datum.image_tensor, controlnet_cond=control_datum.image_tensor,
conditioning_scale=controlnet_weight, # controlnet specific, NOT the guidance scale conditioning_scale=controlnet_weight, # controlnet specific, NOT the guidance scale
encoder_attention_mask=encoder_attention_mask, encoder_attention_mask=encoder_attention_mask,
guess_mode=soft_injection, # this is still called guess_mode in diffusers ControlNetModel guess_mode=soft_injection, # this is still called guess_mode in diffusers ControlNetModel
return_dict=False, return_dict=False,
) )
if cfg_injection: if cfg_injection:
@ -678,13 +657,11 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
step_index=step_index, step_index=step_index,
total_step_count=total_step_count, total_step_count=total_step_count,
down_block_additional_residuals=down_block_res_samples, # from controlnet(s) down_block_additional_residuals=down_block_res_samples, # from controlnet(s)
mid_block_additional_residual=mid_block_res_sample, # from controlnet(s) mid_block_additional_residual=mid_block_res_sample, # from controlnet(s)
) )
# compute the previous noisy sample x_t -> x_t-1 # compute the previous noisy sample x_t -> x_t-1
step_output = self.scheduler.step( step_output = self.scheduler.step(noise_pred, timestep, latents, **conditioning_data.scheduler_args)
noise_pred, timestep, latents, **conditioning_data.scheduler_args
)
# TODO: this additional_guidance extension point feels redundant with InvokeAIDiffusionComponent. # TODO: this additional_guidance extension point feels redundant with InvokeAIDiffusionComponent.
# But the way things are now, scheduler runs _after_ that, so there was # But the way things are now, scheduler runs _after_ that, so there was
@ -710,17 +687,16 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
# use of AddsMaskLatents. # use of AddsMaskLatents.
latents = AddsMaskLatents( latents = AddsMaskLatents(
self._unet_forward, self._unet_forward,
mask=torch.ones_like( mask=torch.ones_like(latents[:1, :1], device=latents.device, dtype=latents.dtype),
latents[:1, :1], device=latents.device, dtype=latents.dtype initial_image_latents=torch.zeros_like(latents[:1], device=latents.device, dtype=latents.dtype),
),
initial_image_latents=torch.zeros_like(
latents[:1], device=latents.device, dtype=latents.dtype
),
).add_mask_channels(latents) ).add_mask_channels(latents)
# First three args should be positional, not keywords, so torch hooks can see them. # First three args should be positional, not keywords, so torch hooks can see them.
return self.unet( return self.unet(
latents, t, text_embeddings, cross_attention_kwargs=cross_attention_kwargs, latents,
t,
text_embeddings,
cross_attention_kwargs=cross_attention_kwargs,
**kwargs, **kwargs,
).sample ).sample
@ -774,9 +750,9 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
) -> InvokeAIStableDiffusionPipelineOutput: ) -> InvokeAIStableDiffusionPipelineOutput:
timesteps, _ = self.get_img2img_timesteps(num_inference_steps, strength) timesteps, _ = self.get_img2img_timesteps(num_inference_steps, strength)
result_latents, result_attention_maps = self.latents_from_embeddings( result_latents, result_attention_maps = self.latents_from_embeddings(
latents=initial_latents if strength < 1.0 else torch.zeros_like( latents=initial_latents
initial_latents, device=initial_latents.device, dtype=initial_latents.dtype if strength < 1.0
), else torch.zeros_like(initial_latents, device=initial_latents.device, dtype=initial_latents.dtype),
num_inference_steps=num_inference_steps, num_inference_steps=num_inference_steps,
conditioning_data=conditioning_data, conditioning_data=conditioning_data,
timesteps=timesteps, timesteps=timesteps,
@ -797,14 +773,12 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
) )
return self.check_for_safety(output, dtype=conditioning_data.dtype) return self.check_for_safety(output, dtype=conditioning_data.dtype)
def get_img2img_timesteps( def get_img2img_timesteps(self, num_inference_steps: int, strength: float, device=None) -> (torch.Tensor, int):
self, num_inference_steps: int, strength: float, device=None
) -> (torch.Tensor, int):
img2img_pipeline = StableDiffusionImg2ImgPipeline(**self.components) img2img_pipeline = StableDiffusionImg2ImgPipeline(**self.components)
assert img2img_pipeline.scheduler is self.scheduler assert img2img_pipeline.scheduler is self.scheduler
if self.scheduler.config.get("cpu_only", False): if self.scheduler.config.get("cpu_only", False):
scheduler_device = torch.device('cpu') scheduler_device = torch.device("cpu")
else: else:
scheduler_device = self._model_group.device_for(self.unet) scheduler_device = self._model_group.device_for(self.unet)
@ -849,18 +823,16 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
# 6. Prepare latent variables # 6. Prepare latent variables
# can't quite use upstream StableDiffusionImg2ImgPipeline.prepare_latents # can't quite use upstream StableDiffusionImg2ImgPipeline.prepare_latents
# because we have our own noise function # because we have our own noise function
init_image_latents = self.non_noised_latents_from_image( init_image_latents = self.non_noised_latents_from_image(init_image, device=device, dtype=latents_dtype)
init_image, device=device, dtype=latents_dtype
)
if seed is not None: if seed is not None:
set_seed(seed) set_seed(seed)
noise = noise_func(init_image_latents) noise = noise_func(init_image_latents)
if mask.dim() == 3: if mask.dim() == 3:
mask = mask.unsqueeze(0) mask = mask.unsqueeze(0)
latent_mask = tv_resize( latent_mask = tv_resize(mask, init_image_latents.shape[-2:], T.InterpolationMode.BILINEAR).to(
mask, init_image_latents.shape[-2:], T.InterpolationMode.BILINEAR device=device, dtype=latents_dtype
).to(device=device, dtype=latents_dtype) )
guidance: List[Callable] = [] guidance: List[Callable] = []
@ -868,22 +840,20 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
# You'd think the inpainting model wouldn't be paying attention to the area it is going to repaint # You'd think the inpainting model wouldn't be paying attention to the area it is going to repaint
# (that's why there's a mask!) but it seems to really want that blanked out. # (that's why there's a mask!) but it seems to really want that blanked out.
masked_init_image = init_image * torch.where(mask < 0.5, 1, 0) masked_init_image = init_image * torch.where(mask < 0.5, 1, 0)
masked_latents = self.non_noised_latents_from_image( masked_latents = self.non_noised_latents_from_image(masked_init_image, device=device, dtype=latents_dtype)
masked_init_image, device=device, dtype=latents_dtype
)
# TODO: we should probably pass this in so we don't have to try/finally around setting it. # TODO: we should probably pass this in so we don't have to try/finally around setting it.
self.invokeai_diffuser.model_forward_callback = AddsMaskLatents( self.invokeai_diffuser.model_forward_callback = AddsMaskLatents(
self._unet_forward, latent_mask, masked_latents self._unet_forward, latent_mask, masked_latents
) )
else: else:
guidance.append( guidance.append(AddsMaskGuidance(latent_mask, init_image_latents, self.scheduler, noise))
AddsMaskGuidance(latent_mask, init_image_latents, self.scheduler, noise)
)
try: try:
result_latents, result_attention_maps = self.latents_from_embeddings( result_latents, result_attention_maps = self.latents_from_embeddings(
latents=init_image_latents if strength < 1.0 else torch.zeros_like( latents=init_image_latents
if strength < 1.0
else torch.zeros_like(
init_image_latents, device=init_image_latents.device, dtype=init_image_latents.dtype init_image_latents, device=init_image_latents.device, dtype=init_image_latents.dtype
), ),
num_inference_steps=num_inference_steps, num_inference_steps=num_inference_steps,
@ -914,18 +884,14 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
with torch.inference_mode(): with torch.inference_mode():
self._model_group.load(self.vae) self._model_group.load(self.vae)
init_latent_dist = self.vae.encode(init_image).latent_dist init_latent_dist = self.vae.encode(init_image).latent_dist
init_latents = init_latent_dist.sample().to( init_latents = init_latent_dist.sample().to(dtype=dtype) # FIXME: uses torch.randn. make reproducible!
dtype=dtype
) # FIXME: uses torch.randn. make reproducible!
init_latents = 0.18215 * init_latents init_latents = 0.18215 * init_latents
return init_latents return init_latents
def check_for_safety(self, output, dtype): def check_for_safety(self, output, dtype):
with torch.inference_mode(): with torch.inference_mode():
screened_images, has_nsfw_concept = self.run_safety_checker( screened_images, has_nsfw_concept = self.run_safety_checker(output.images, dtype=dtype)
output.images, dtype=dtype
)
screened_attention_map_saver = None screened_attention_map_saver = None
if has_nsfw_concept is None or not has_nsfw_concept: if has_nsfw_concept is None or not has_nsfw_concept:
screened_attention_map_saver = output.attention_map_saver screened_attention_map_saver = output.attention_map_saver
@ -949,9 +915,8 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
def debug_latents(self, latents, msg): def debug_latents(self, latents, msg):
from invokeai.backend.image_util import debug_image from invokeai.backend.image_util import debug_image
with torch.inference_mode(): with torch.inference_mode():
decoded = self.numpy_to_pil(self.decode_latents(latents)) decoded = self.numpy_to_pil(self.decode_latents(latents))
for i, img in enumerate(decoded): for i, img in enumerate(decoded):
debug_image( debug_image(img, f"latents {msg} {i+1}/{len(decoded)}", debug_status=True)
img, f"latents {msg} {i+1}/{len(decoded)}", debug_status=True
)

View File

@ -17,6 +17,7 @@ from torch import nn
import invokeai.backend.util.logging as logger import invokeai.backend.util.logging as logger
from ...util import torch_dtype from ...util import torch_dtype
class CrossAttentionType(enum.Enum): class CrossAttentionType(enum.Enum):
SELF = 1 SELF = 1
TOKENS = 2 TOKENS = 2
@ -55,9 +56,7 @@ class Context:
if name in self.self_cross_attention_module_identifiers: if name in self.self_cross_attention_module_identifiers:
assert False, f"name {name} cannot appear more than once" assert False, f"name {name} cannot appear more than once"
self.self_cross_attention_module_identifiers.append(name) self.self_cross_attention_module_identifiers.append(name)
for name, module in get_cross_attention_modules( for name, module in get_cross_attention_modules(model, CrossAttentionType.TOKENS):
model, CrossAttentionType.TOKENS
):
if name in self.tokens_cross_attention_module_identifiers: if name in self.tokens_cross_attention_module_identifiers:
assert False, f"name {name} cannot appear more than once" assert False, f"name {name} cannot appear more than once"
self.tokens_cross_attention_module_identifiers.append(name) self.tokens_cross_attention_module_identifiers.append(name)
@ -68,9 +67,7 @@ class Context:
else: else:
self.tokens_cross_attention_action = Context.Action.SAVE self.tokens_cross_attention_action = Context.Action.SAVE
def request_apply_saved_attention_maps( def request_apply_saved_attention_maps(self, cross_attention_type: CrossAttentionType):
self, cross_attention_type: CrossAttentionType
):
if cross_attention_type == CrossAttentionType.SELF: if cross_attention_type == CrossAttentionType.SELF:
self.self_cross_attention_action = Context.Action.APPLY self.self_cross_attention_action = Context.Action.APPLY
else: else:
@ -139,9 +136,7 @@ class Context:
saved_attention_dict = self.saved_cross_attention_maps[identifier] saved_attention_dict = self.saved_cross_attention_maps[identifier]
if requested_dim is None: if requested_dim is None:
if saved_attention_dict["dim"] is not None: if saved_attention_dict["dim"] is not None:
raise RuntimeError( raise RuntimeError(f"dim mismatch: expected dim=None, have {saved_attention_dict['dim']}")
f"dim mismatch: expected dim=None, have {saved_attention_dict['dim']}"
)
return saved_attention_dict["slices"][0] return saved_attention_dict["slices"][0]
if saved_attention_dict["dim"] == requested_dim: if saved_attention_dict["dim"] == requested_dim:
@ -154,21 +149,13 @@ class Context:
if saved_attention_dict["dim"] is None: if saved_attention_dict["dim"] is None:
whole_saved_attention = saved_attention_dict["slices"][0] whole_saved_attention = saved_attention_dict["slices"][0]
if requested_dim == 0: if requested_dim == 0:
return whole_saved_attention[ return whole_saved_attention[requested_offset : requested_offset + slice_size]
requested_offset : requested_offset + slice_size
]
elif requested_dim == 1: elif requested_dim == 1:
return whole_saved_attention[ return whole_saved_attention[:, requested_offset : requested_offset + slice_size]
:, requested_offset : requested_offset + slice_size
]
raise RuntimeError( raise RuntimeError(f"Cannot convert dim {saved_attention_dict['dim']} to requested dim {requested_dim}")
f"Cannot convert dim {saved_attention_dict['dim']} to requested dim {requested_dim}"
)
def get_slicing_strategy( def get_slicing_strategy(self, identifier: str) -> tuple[Optional[int], Optional[int]]:
self, identifier: str
) -> tuple[Optional[int], Optional[int]]:
saved_attention = self.saved_cross_attention_maps.get(identifier, None) saved_attention = self.saved_cross_attention_maps.get(identifier, None)
if saved_attention is None: if saved_attention is None:
return None, None return None, None
@ -201,9 +188,7 @@ class InvokeAICrossAttentionMixin:
def set_attention_slice_wrangler( def set_attention_slice_wrangler(
self, self,
wrangler: Optional[ wrangler: Optional[Callable[[nn.Module, torch.Tensor, int, int, int], torch.Tensor]],
Callable[[nn.Module, torch.Tensor, int, int, int], torch.Tensor]
],
): ):
""" """
Set custom attention calculator to be called when attention is calculated Set custom attention calculator to be called when attention is calculated
@ -219,14 +204,10 @@ class InvokeAICrossAttentionMixin:
""" """
self.attention_slice_wrangler = wrangler self.attention_slice_wrangler = wrangler
def set_slicing_strategy_getter( def set_slicing_strategy_getter(self, getter: Optional[Callable[[nn.Module], tuple[int, int]]]):
self, getter: Optional[Callable[[nn.Module], tuple[int, int]]]
):
self.slicing_strategy_getter = getter self.slicing_strategy_getter = getter
def set_attention_slice_calculated_callback( def set_attention_slice_calculated_callback(self, callback: Optional[Callable[[torch.Tensor], None]]):
self, callback: Optional[Callable[[torch.Tensor], None]]
):
self.attention_slice_calculated_callback = callback self.attention_slice_calculated_callback = callback
def einsum_lowest_level(self, query, key, value, dim, offset, slice_size): def einsum_lowest_level(self, query, key, value, dim, offset, slice_size):
@ -247,45 +228,31 @@ class InvokeAICrossAttentionMixin:
) )
# calculate attention slice by taking the best scores for each latent pixel # calculate attention slice by taking the best scores for each latent pixel
default_attention_slice = attention_scores.softmax( default_attention_slice = attention_scores.softmax(dim=-1, dtype=attention_scores.dtype)
dim=-1, dtype=attention_scores.dtype
)
attention_slice_wrangler = self.attention_slice_wrangler attention_slice_wrangler = self.attention_slice_wrangler
if attention_slice_wrangler is not None: if attention_slice_wrangler is not None:
attention_slice = attention_slice_wrangler( attention_slice = attention_slice_wrangler(self, default_attention_slice, dim, offset, slice_size)
self, default_attention_slice, dim, offset, slice_size
)
else: else:
attention_slice = default_attention_slice attention_slice = default_attention_slice
if self.attention_slice_calculated_callback is not None: if self.attention_slice_calculated_callback is not None:
self.attention_slice_calculated_callback( self.attention_slice_calculated_callback(attention_slice, dim, offset, slice_size)
attention_slice, dim, offset, slice_size
)
hidden_states = torch.bmm(attention_slice, value) hidden_states = torch.bmm(attention_slice, value)
return hidden_states return hidden_states
def einsum_op_slice_dim0(self, q, k, v, slice_size): def einsum_op_slice_dim0(self, q, k, v, slice_size):
r = torch.zeros( r = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype
)
for i in range(0, q.shape[0], slice_size): for i in range(0, q.shape[0], slice_size):
end = i + slice_size end = i + slice_size
r[i:end] = self.einsum_lowest_level( r[i:end] = self.einsum_lowest_level(q[i:end], k[i:end], v[i:end], dim=0, offset=i, slice_size=slice_size)
q[i:end], k[i:end], v[i:end], dim=0, offset=i, slice_size=slice_size
)
return r return r
def einsum_op_slice_dim1(self, q, k, v, slice_size): def einsum_op_slice_dim1(self, q, k, v, slice_size):
r = torch.zeros( r = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype
)
for i in range(0, q.shape[1], slice_size): for i in range(0, q.shape[1], slice_size):
end = i + slice_size end = i + slice_size
r[:, i:end] = self.einsum_lowest_level( r[:, i:end] = self.einsum_lowest_level(q[:, i:end], k, v, dim=1, offset=i, slice_size=slice_size)
q[:, i:end], k, v, dim=1, offset=i, slice_size=slice_size
)
return r return r
def einsum_op_mps_v1(self, q, k, v): def einsum_op_mps_v1(self, q, k, v):
@ -353,6 +320,7 @@ def restore_default_cross_attention(
else: else:
remove_attention_function(model) remove_attention_function(model)
def setup_cross_attention_control_attention_processors(unet: UNet2DConditionModel, context: Context): def setup_cross_attention_control_attention_processors(unet: UNet2DConditionModel, context: Context):
""" """
Inject attention parameters and functions into the passed in model to enable cross attention editing. Inject attention parameters and functions into the passed in model to enable cross attention editing.
@ -372,7 +340,7 @@ def setup_cross_attention_control_attention_processors(unet: UNet2DConditionMode
indices = torch.arange(max_length, dtype=torch.long) indices = torch.arange(max_length, dtype=torch.long)
for name, a0, a1, b0, b1 in context.arguments.edit_opcodes: for name, a0, a1, b0, b1 in context.arguments.edit_opcodes:
if b0 < max_length: if b0 < max_length:
if name == "equal":# or (name == "replace" and a1 - a0 == b1 - b0): if name == "equal": # or (name == "replace" and a1 - a0 == b1 - b0):
# these tokens have not been edited # these tokens have not been edited
indices[b0:b1] = indices_target[a0:a1] indices[b0:b1] = indices_target[a0:a1]
mask[b0:b1] = 1 mask[b0:b1] = 1
@ -386,16 +354,14 @@ def setup_cross_attention_control_attention_processors(unet: UNet2DConditionMode
else: else:
# try to re-use an existing slice size # try to re-use an existing slice size
default_slice_size = 4 default_slice_size = 4
slice_size = next((p.slice_size for p in old_attn_processors.values() if type(p) is SlicedAttnProcessor), default_slice_size) slice_size = next(
(p.slice_size for p in old_attn_processors.values() if type(p) is SlicedAttnProcessor), default_slice_size
)
unet.set_attn_processor(SlicedSwapCrossAttnProcesser(slice_size=slice_size)) unet.set_attn_processor(SlicedSwapCrossAttnProcesser(slice_size=slice_size))
def get_cross_attention_modules(
model, which: CrossAttentionType
) -> list[tuple[str, InvokeAICrossAttentionMixin]]:
cross_attention_class: type = ( def get_cross_attention_modules(model, which: CrossAttentionType) -> list[tuple[str, InvokeAICrossAttentionMixin]]:
InvokeAIDiffusersCrossAttention cross_attention_class: type = InvokeAIDiffusersCrossAttention
)
which_attn = "attn1" if which is CrossAttentionType.SELF else "attn2" which_attn = "attn1" if which is CrossAttentionType.SELF else "attn2"
attention_module_tuples = [ attention_module_tuples = [
(name, module) (name, module)
@ -420,9 +386,7 @@ def get_cross_attention_modules(
def inject_attention_function(unet, context: Context): def inject_attention_function(unet, context: Context):
# ORIGINAL SOURCE CODE: https://github.com/huggingface/diffusers/blob/91ddd2a25b848df0fa1262d4f1cd98c7ccb87750/src/diffusers/models/attention.py#L276 # ORIGINAL SOURCE CODE: https://github.com/huggingface/diffusers/blob/91ddd2a25b848df0fa1262d4f1cd98c7ccb87750/src/diffusers/models/attention.py#L276
def attention_slice_wrangler( def attention_slice_wrangler(module, suggested_attention_slice: torch.Tensor, dim, offset, slice_size):
module, suggested_attention_slice: torch.Tensor, dim, offset, slice_size
):
# memory_usage = suggested_attention_slice.element_size() * suggested_attention_slice.nelement() # memory_usage = suggested_attention_slice.element_size() * suggested_attention_slice.nelement()
attention_slice = suggested_attention_slice attention_slice = suggested_attention_slice
@ -430,9 +394,7 @@ def inject_attention_function(unet, context: Context):
if context.get_should_save_maps(module.identifier): if context.get_should_save_maps(module.identifier):
# print(module.identifier, "saving suggested_attention_slice of shape", # print(module.identifier, "saving suggested_attention_slice of shape",
# suggested_attention_slice.shape, "dim", dim, "offset", offset) # suggested_attention_slice.shape, "dim", dim, "offset", offset)
slice_to_save = ( slice_to_save = attention_slice.to("cpu") if dim is not None else attention_slice
attention_slice.to("cpu") if dim is not None else attention_slice
)
context.save_slice( context.save_slice(
module.identifier, module.identifier,
slice_to_save, slice_to_save,
@ -442,31 +404,20 @@ def inject_attention_function(unet, context: Context):
) )
elif context.get_should_apply_saved_maps(module.identifier): elif context.get_should_apply_saved_maps(module.identifier):
# print(module.identifier, "applying saved attention slice for dim", dim, "offset", offset) # print(module.identifier, "applying saved attention slice for dim", dim, "offset", offset)
saved_attention_slice = context.get_slice( saved_attention_slice = context.get_slice(module.identifier, dim, offset, slice_size)
module.identifier, dim, offset, slice_size
)
# slice may have been offloaded to CPU # slice may have been offloaded to CPU
saved_attention_slice = saved_attention_slice.to( saved_attention_slice = saved_attention_slice.to(suggested_attention_slice.device)
suggested_attention_slice.device
)
if context.is_tokens_cross_attention(module.identifier): if context.is_tokens_cross_attention(module.identifier):
index_map = context.cross_attention_index_map index_map = context.cross_attention_index_map
remapped_saved_attention_slice = torch.index_select( remapped_saved_attention_slice = torch.index_select(saved_attention_slice, -1, index_map)
saved_attention_slice, -1, index_map
)
this_attention_slice = suggested_attention_slice this_attention_slice = suggested_attention_slice
mask = context.cross_attention_mask.to( mask = context.cross_attention_mask.to(torch_dtype(suggested_attention_slice.device))
torch_dtype(suggested_attention_slice.device)
)
saved_mask = mask saved_mask = mask
this_mask = 1 - mask this_mask = 1 - mask
attention_slice = ( attention_slice = remapped_saved_attention_slice * saved_mask + this_attention_slice * this_mask
remapped_saved_attention_slice * saved_mask
+ this_attention_slice * this_mask
)
else: else:
# just use everything # just use everything
attention_slice = saved_attention_slice attention_slice = saved_attention_slice
@ -480,14 +431,10 @@ def inject_attention_function(unet, context: Context):
module.identifier = identifier module.identifier = identifier
try: try:
module.set_attention_slice_wrangler(attention_slice_wrangler) module.set_attention_slice_wrangler(attention_slice_wrangler)
module.set_slicing_strategy_getter( module.set_slicing_strategy_getter(lambda module: context.get_slicing_strategy(identifier))
lambda module: context.get_slicing_strategy(identifier)
)
except AttributeError as e: except AttributeError as e:
if is_attribute_error_about(e, "set_attention_slice_wrangler"): if is_attribute_error_about(e, "set_attention_slice_wrangler"):
print( print(f"TODO: implement set_attention_slice_wrangler for {type(module)}") # TODO
f"TODO: implement set_attention_slice_wrangler for {type(module)}"
) # TODO
else: else:
raise raise
@ -503,9 +450,7 @@ def remove_attention_function(unet):
module.set_slicing_strategy_getter(None) module.set_slicing_strategy_getter(None)
except AttributeError as e: except AttributeError as e:
if is_attribute_error_about(e, "set_attention_slice_wrangler"): if is_attribute_error_about(e, "set_attention_slice_wrangler"):
print( print(f"TODO: implement set_attention_slice_wrangler for {type(module)}")
f"TODO: implement set_attention_slice_wrangler for {type(module)}"
)
else: else:
raise raise
@ -530,9 +475,7 @@ def get_mem_free_total(device):
return mem_free_total return mem_free_total
class InvokeAIDiffusersCrossAttention( class InvokeAIDiffusersCrossAttention(diffusers.models.attention.Attention, InvokeAICrossAttentionMixin):
diffusers.models.attention.Attention, InvokeAICrossAttentionMixin
):
def __init__(self, **kwargs): def __init__(self, **kwargs):
super().__init__(**kwargs) super().__init__(**kwargs)
InvokeAICrossAttentionMixin.__init__(self) InvokeAICrossAttentionMixin.__init__(self)
@ -641,11 +584,7 @@ class SlicedSwapCrossAttnProcesser(SlicedAttnProcessor):
# kwargs # kwargs
swap_cross_attn_context: SwapCrossAttnContext = None, swap_cross_attn_context: SwapCrossAttnContext = None,
): ):
attention_type = ( attention_type = CrossAttentionType.SELF if encoder_hidden_states is None else CrossAttentionType.TOKENS
CrossAttentionType.SELF
if encoder_hidden_states is None
else CrossAttentionType.TOKENS
)
# if cross-attention control is not in play, just call through to the base implementation. # if cross-attention control is not in play, just call through to the base implementation.
if ( if (
@ -654,9 +593,7 @@ class SlicedSwapCrossAttnProcesser(SlicedAttnProcessor):
or not swap_cross_attn_context.wants_cross_attention_control(attention_type) or not swap_cross_attn_context.wants_cross_attention_control(attention_type)
): ):
# print(f"SwapCrossAttnContext for {attention_type} not active - passing request to superclass") # print(f"SwapCrossAttnContext for {attention_type} not active - passing request to superclass")
return super().__call__( return super().__call__(attn, hidden_states, encoder_hidden_states, attention_mask)
attn, hidden_states, encoder_hidden_states, attention_mask
)
# else: # else:
# print(f"SwapCrossAttnContext for {attention_type} active") # print(f"SwapCrossAttnContext for {attention_type} active")
@ -699,18 +636,10 @@ class SlicedSwapCrossAttnProcesser(SlicedAttnProcessor):
query_slice = query[start_idx:end_idx] query_slice = query[start_idx:end_idx]
original_key_slice = original_text_key[start_idx:end_idx] original_key_slice = original_text_key[start_idx:end_idx]
modified_key_slice = modified_text_key[start_idx:end_idx] modified_key_slice = modified_text_key[start_idx:end_idx]
attn_mask_slice = ( attn_mask_slice = attention_mask[start_idx:end_idx] if attention_mask is not None else None
attention_mask[start_idx:end_idx]
if attention_mask is not None
else None
)
original_attn_slice = attn.get_attention_scores( original_attn_slice = attn.get_attention_scores(query_slice, original_key_slice, attn_mask_slice)
query_slice, original_key_slice, attn_mask_slice modified_attn_slice = attn.get_attention_scores(query_slice, modified_key_slice, attn_mask_slice)
)
modified_attn_slice = attn.get_attention_scores(
query_slice, modified_key_slice, attn_mask_slice
)
# because the prompt modifications may result in token sequences shifted forwards or backwards, # because the prompt modifications may result in token sequences shifted forwards or backwards,
# the original attention probabilities must be remapped to account for token index changes in the # the original attention probabilities must be remapped to account for token index changes in the
@ -722,9 +651,7 @@ class SlicedSwapCrossAttnProcesser(SlicedAttnProcessor):
# only some tokens taken from the original attention probabilities. this is controlled by the mask. # only some tokens taken from the original attention probabilities. this is controlled by the mask.
mask = swap_cross_attn_context.mask mask = swap_cross_attn_context.mask
inverse_mask = 1 - mask inverse_mask = 1 - mask
attn_slice = ( attn_slice = remapped_original_attn_slice * mask + modified_attn_slice * inverse_mask
remapped_original_attn_slice * mask + modified_attn_slice * inverse_mask
)
del remapped_original_attn_slice, modified_attn_slice del remapped_original_attn_slice, modified_attn_slice
@ -744,6 +671,4 @@ class SlicedSwapCrossAttnProcesser(SlicedAttnProcessor):
class SwapCrossAttnProcessor(SlicedSwapCrossAttnProcesser): class SwapCrossAttnProcessor(SlicedSwapCrossAttnProcesser):
def __init__(self): def __init__(self):
super(SwapCrossAttnProcessor, self).__init__( super(SwapCrossAttnProcessor, self).__init__(slice_size=int(1e9)) # massive slice size = don't slice
slice_size=int(1e9)
) # massive slice size = don't slice

View File

@ -59,9 +59,7 @@ class AttentionMapSaver:
for key, maps in self.collated_maps.items(): for key, maps in self.collated_maps.items():
# maps has shape [(H*W), N] for N tokens # maps has shape [(H*W), N] for N tokens
# but we want [N, H, W] # but we want [N, H, W]
this_scale_factor = math.sqrt( this_scale_factor = math.sqrt(maps.shape[0] / (latents_width * latents_height))
maps.shape[0] / (latents_width * latents_height)
)
this_maps_height = int(float(latents_height) * this_scale_factor) this_maps_height = int(float(latents_height) * this_scale_factor)
this_maps_width = int(float(latents_width) * this_scale_factor) this_maps_width = int(float(latents_width) * this_scale_factor)
# and we need to do some dimension juggling # and we need to do some dimension juggling
@ -72,9 +70,7 @@ class AttentionMapSaver:
# scale to output size if necessary # scale to output size if necessary
if this_scale_factor != 1: if this_scale_factor != 1:
maps = tv_resize( maps = tv_resize(maps, [latents_height, latents_width], InterpolationMode.BICUBIC)
maps, [latents_height, latents_width], InterpolationMode.BICUBIC
)
# normalize # normalize
maps_min = torch.min(maps) maps_min = torch.min(maps)
@ -83,9 +79,7 @@ class AttentionMapSaver:
maps_normalized = (maps - maps_min) / maps_range maps_normalized = (maps - maps_min) / maps_range
# expand to (-0.1, 1.1) and clamp # expand to (-0.1, 1.1) and clamp
maps_normalized_expanded = maps_normalized * 1.1 - 0.05 maps_normalized_expanded = maps_normalized * 1.1 - 0.05
maps_normalized_expanded_clamped = torch.clamp( maps_normalized_expanded_clamped = torch.clamp(maps_normalized_expanded, 0, 1)
maps_normalized_expanded, 0, 1
)
# merge together, producing a vertical stack # merge together, producing a vertical stack
maps_stacked = torch.reshape( maps_stacked = torch.reshape(

View File

@ -31,6 +31,7 @@ ModelForwardCallback: TypeAlias = Union[
Callable[[torch.Tensor, torch.Tensor, torch.Tensor], torch.Tensor], Callable[[torch.Tensor, torch.Tensor, torch.Tensor], torch.Tensor],
] ]
@dataclass(frozen=True) @dataclass(frozen=True)
class PostprocessingSettings: class PostprocessingSettings:
threshold: float threshold: float
@ -81,14 +82,12 @@ class InvokeAIDiffuserComponent:
@contextmanager @contextmanager
def custom_attention_context( def custom_attention_context(
cls, cls,
unet: UNet2DConditionModel, # note: also may futz with the text encoder depending on requested LoRAs unet: UNet2DConditionModel, # note: also may futz with the text encoder depending on requested LoRAs
extra_conditioning_info: Optional[ExtraConditioningInfo], extra_conditioning_info: Optional[ExtraConditioningInfo],
step_count: int step_count: int,
): ):
old_attn_processors = None old_attn_processors = None
if extra_conditioning_info and ( if extra_conditioning_info and (extra_conditioning_info.wants_cross_attention_control):
extra_conditioning_info.wants_cross_attention_control
):
old_attn_processors = unet.attn_processors old_attn_processors = unet.attn_processors
# Load lora conditions into the model # Load lora conditions into the model
if extra_conditioning_info.wants_cross_attention_control: if extra_conditioning_info.wants_cross_attention_control:
@ -116,27 +115,15 @@ class InvokeAIDiffuserComponent:
return return
saver.add_attention_maps(slice, key) saver.add_attention_maps(slice, key)
tokens_cross_attention_modules = get_cross_attention_modules( tokens_cross_attention_modules = get_cross_attention_modules(self.model, CrossAttentionType.TOKENS)
self.model, CrossAttentionType.TOKENS
)
for identifier, module in tokens_cross_attention_modules: for identifier, module in tokens_cross_attention_modules:
key = ( key = "down" if identifier.startswith("down") else "up" if identifier.startswith("up") else "mid"
"down"
if identifier.startswith("down")
else "up"
if identifier.startswith("up")
else "mid"
)
module.set_attention_slice_calculated_callback( module.set_attention_slice_calculated_callback(
lambda slice, dim, offset, slice_size, key=key: callback( lambda slice, dim, offset, slice_size, key=key: callback(slice, dim, offset, slice_size, key)
slice, dim, offset, slice_size, key
)
) )
def remove_attention_map_saving(self): def remove_attention_map_saving(self):
tokens_cross_attention_modules = get_cross_attention_modules( tokens_cross_attention_modules = get_cross_attention_modules(self.model, CrossAttentionType.TOKENS)
self.model, CrossAttentionType.TOKENS
)
for _, module in tokens_cross_attention_modules: for _, module in tokens_cross_attention_modules:
module.set_attention_slice_calculated_callback(None) module.set_attention_slice_calculated_callback(None)
@ -171,10 +158,8 @@ class InvokeAIDiffuserComponent:
context: Context = self.cross_attention_control_context context: Context = self.cross_attention_control_context
if self.cross_attention_control_context is not None: if self.cross_attention_control_context is not None:
percent_through = step_index / total_step_count percent_through = step_index / total_step_count
cross_attention_control_types_to_do = ( cross_attention_control_types_to_do = context.get_active_cross_attention_control_types_for_step(
context.get_active_cross_attention_control_types_for_step( percent_through
percent_through
)
) )
wants_cross_attention_control = len(cross_attention_control_types_to_do) > 0 wants_cross_attention_control = len(cross_attention_control_types_to_do) > 0
@ -182,7 +167,11 @@ class InvokeAIDiffuserComponent:
if wants_hybrid_conditioning: if wants_hybrid_conditioning:
unconditioned_next_x, conditioned_next_x = self._apply_hybrid_conditioning( unconditioned_next_x, conditioned_next_x = self._apply_hybrid_conditioning(
x, sigma, unconditioning, conditioning, **kwargs, x,
sigma,
unconditioning,
conditioning,
**kwargs,
) )
elif wants_cross_attention_control: elif wants_cross_attention_control:
( (
@ -201,7 +190,11 @@ class InvokeAIDiffuserComponent:
unconditioned_next_x, unconditioned_next_x,
conditioned_next_x, conditioned_next_x,
) = self._apply_standard_conditioning_sequentially( ) = self._apply_standard_conditioning_sequentially(
x, sigma, unconditioning, conditioning, **kwargs, x,
sigma,
unconditioning,
conditioning,
**kwargs,
) )
else: else:
@ -209,12 +202,18 @@ class InvokeAIDiffuserComponent:
unconditioned_next_x, unconditioned_next_x,
conditioned_next_x, conditioned_next_x,
) = self._apply_standard_conditioning( ) = self._apply_standard_conditioning(
x, sigma, unconditioning, conditioning, **kwargs, x,
sigma,
unconditioning,
conditioning,
**kwargs,
) )
combined_next_x = self._combine( combined_next_x = self._combine(
# unconditioned_next_x, conditioned_next_x, unconditional_guidance_scale # unconditioned_next_x, conditioned_next_x, unconditional_guidance_scale
unconditioned_next_x, conditioned_next_x, guidance_scale unconditioned_next_x,
conditioned_next_x,
guidance_scale,
) )
return combined_next_x return combined_next_x
@ -229,37 +228,47 @@ class InvokeAIDiffuserComponent:
) -> torch.Tensor: ) -> torch.Tensor:
if postprocessing_settings is not None: if postprocessing_settings is not None:
percent_through = step_index / total_step_count percent_through = step_index / total_step_count
latents = self.apply_threshold( latents = self.apply_threshold(postprocessing_settings, latents, percent_through)
postprocessing_settings, latents, percent_through latents = self.apply_symmetry(postprocessing_settings, latents, percent_through)
)
latents = self.apply_symmetry(
postprocessing_settings, latents, percent_through
)
return latents return latents
def _concat_conditionings_for_batch(self, unconditioning, conditioning): def _concat_conditionings_for_batch(self, unconditioning, conditioning):
def _pad_conditioning(cond, target_len, encoder_attention_mask): def _pad_conditioning(cond, target_len, encoder_attention_mask):
conditioning_attention_mask = torch.ones((cond.shape[0], cond.shape[1]), device=cond.device, dtype=cond.dtype) conditioning_attention_mask = torch.ones(
(cond.shape[0], cond.shape[1]), device=cond.device, dtype=cond.dtype
)
if cond.shape[1] < max_len: if cond.shape[1] < max_len:
conditioning_attention_mask = torch.cat([ conditioning_attention_mask = torch.cat(
conditioning_attention_mask, [
torch.zeros((cond.shape[0], max_len - cond.shape[1]), device=cond.device, dtype=cond.dtype), conditioning_attention_mask,
], dim=1) torch.zeros((cond.shape[0], max_len - cond.shape[1]), device=cond.device, dtype=cond.dtype),
],
dim=1,
)
cond = torch.cat([ cond = torch.cat(
cond, [
torch.zeros((cond.shape[0], max_len - cond.shape[1], cond.shape[2]), device=cond.device, dtype=cond.dtype), cond,
], dim=1) torch.zeros(
(cond.shape[0], max_len - cond.shape[1], cond.shape[2]),
device=cond.device,
dtype=cond.dtype,
),
],
dim=1,
)
if encoder_attention_mask is None: if encoder_attention_mask is None:
encoder_attention_mask = conditioning_attention_mask encoder_attention_mask = conditioning_attention_mask
else: else:
encoder_attention_mask = torch.cat([ encoder_attention_mask = torch.cat(
encoder_attention_mask, [
conditioning_attention_mask, encoder_attention_mask,
]) conditioning_attention_mask,
]
)
return cond, encoder_attention_mask return cond, encoder_attention_mask
encoder_attention_mask = None encoder_attention_mask = None
@ -277,11 +286,11 @@ class InvokeAIDiffuserComponent:
x_twice = torch.cat([x] * 2) x_twice = torch.cat([x] * 2)
sigma_twice = torch.cat([sigma] * 2) sigma_twice = torch.cat([sigma] * 2)
both_conditionings, encoder_attention_mask = self._concat_conditionings_for_batch( both_conditionings, encoder_attention_mask = self._concat_conditionings_for_batch(unconditioning, conditioning)
unconditioning, conditioning
)
both_results = self.model_forward_callback( both_results = self.model_forward_callback(
x_twice, sigma_twice, both_conditionings, x_twice,
sigma_twice,
both_conditionings,
encoder_attention_mask=encoder_attention_mask, encoder_attention_mask=encoder_attention_mask,
**kwargs, **kwargs,
) )
@ -312,13 +321,17 @@ class InvokeAIDiffuserComponent:
uncond_mid_block, cond_mid_block = mid_block_additional_residual.chunk(2) uncond_mid_block, cond_mid_block = mid_block_additional_residual.chunk(2)
unconditioned_next_x = self.model_forward_callback( unconditioned_next_x = self.model_forward_callback(
x, sigma, unconditioning, x,
sigma,
unconditioning,
down_block_additional_residuals=uncond_down_block, down_block_additional_residuals=uncond_down_block,
mid_block_additional_residual=uncond_mid_block, mid_block_additional_residual=uncond_mid_block,
**kwargs, **kwargs,
) )
conditioned_next_x = self.model_forward_callback( conditioned_next_x = self.model_forward_callback(
x, sigma, conditioning, x,
sigma,
conditioning,
down_block_additional_residuals=cond_down_block, down_block_additional_residuals=cond_down_block,
mid_block_additional_residual=cond_mid_block, mid_block_additional_residual=cond_mid_block,
**kwargs, **kwargs,
@ -335,13 +348,15 @@ class InvokeAIDiffuserComponent:
for k in conditioning: for k in conditioning:
if isinstance(conditioning[k], list): if isinstance(conditioning[k], list):
both_conditionings[k] = [ both_conditionings[k] = [
torch.cat([unconditioning[k][i], conditioning[k][i]]) torch.cat([unconditioning[k][i], conditioning[k][i]]) for i in range(len(conditioning[k]))
for i in range(len(conditioning[k]))
] ]
else: else:
both_conditionings[k] = torch.cat([unconditioning[k], conditioning[k]]) both_conditionings[k] = torch.cat([unconditioning[k], conditioning[k]])
unconditioned_next_x, conditioned_next_x = self.model_forward_callback( unconditioned_next_x, conditioned_next_x = self.model_forward_callback(
x_twice, sigma_twice, both_conditionings, **kwargs, x_twice,
sigma_twice,
both_conditionings,
**kwargs,
).chunk(2) ).chunk(2)
return unconditioned_next_x, conditioned_next_x return unconditioned_next_x, conditioned_next_x
@ -388,9 +403,7 @@ class InvokeAIDiffuserComponent:
) )
# do requested cross attention types for conditioning (positive prompt) # do requested cross attention types for conditioning (positive prompt)
cross_attn_processor_context.cross_attention_types_to_do = ( cross_attn_processor_context.cross_attention_types_to_do = cross_attention_control_types_to_do
cross_attention_control_types_to_do
)
conditioned_next_x = self.model_forward_callback( conditioned_next_x = self.model_forward_callback(
x, x,
sigma, sigma,
@ -414,19 +427,14 @@ class InvokeAIDiffuserComponent:
latents: torch.Tensor, latents: torch.Tensor,
percent_through: float, percent_through: float,
) -> torch.Tensor: ) -> torch.Tensor:
if ( if postprocessing_settings.threshold is None or postprocessing_settings.threshold == 0.0:
postprocessing_settings.threshold is None
or postprocessing_settings.threshold == 0.0
):
return latents return latents
threshold = postprocessing_settings.threshold threshold = postprocessing_settings.threshold
warmup = postprocessing_settings.warmup warmup = postprocessing_settings.warmup
if percent_through < warmup: if percent_through < warmup:
current_threshold = threshold + threshold * 5 * ( current_threshold = threshold + threshold * 5 * (1 - (percent_through / warmup))
1 - (percent_through / warmup)
)
else: else:
current_threshold = threshold current_threshold = threshold
@ -440,18 +448,10 @@ class InvokeAIDiffuserComponent:
if self.debug_thresholding: if self.debug_thresholding:
std, mean = [i.item() for i in torch.std_mean(latents)] std, mean = [i.item() for i in torch.std_mean(latents)]
outside = torch.count_nonzero( outside = torch.count_nonzero((latents < -current_threshold) | (latents > current_threshold))
(latents < -current_threshold) | (latents > current_threshold) logger.info(f"Threshold: %={percent_through} threshold={current_threshold:.3f} (of {threshold:.3f})")
) logger.debug(f"min, mean, max = {minval:.3f}, {mean:.3f}, {maxval:.3f}\tstd={std}")
logger.info( logger.debug(f"{outside / latents.numel() * 100:.2f}% values outside threshold")
f"Threshold: %={percent_through} threshold={current_threshold:.3f} (of {threshold:.3f})"
)
logger.debug(
f"min, mean, max = {minval:.3f}, {mean:.3f}, {maxval:.3f}\tstd={std}"
)
logger.debug(
f"{outside / latents.numel() * 100:.2f}% values outside threshold"
)
if maxval < current_threshold and minval > -current_threshold: if maxval < current_threshold and minval > -current_threshold:
return latents return latents
@ -464,25 +464,17 @@ class InvokeAIDiffuserComponent:
latents = torch.clone(latents) latents = torch.clone(latents)
maxval = np.clip(maxval * scale, 1, current_threshold) maxval = np.clip(maxval * scale, 1, current_threshold)
num_altered += torch.count_nonzero(latents > maxval) num_altered += torch.count_nonzero(latents > maxval)
latents[latents > maxval] = ( latents[latents > maxval] = torch.rand_like(latents[latents > maxval]) * maxval
torch.rand_like(latents[latents > maxval]) * maxval
)
if minval < -current_threshold: if minval < -current_threshold:
latents = torch.clone(latents) latents = torch.clone(latents)
minval = np.clip(minval * scale, -current_threshold, -1) minval = np.clip(minval * scale, -current_threshold, -1)
num_altered += torch.count_nonzero(latents < minval) num_altered += torch.count_nonzero(latents < minval)
latents[latents < minval] = ( latents[latents < minval] = torch.rand_like(latents[latents < minval]) * minval
torch.rand_like(latents[latents < minval]) * minval
)
if self.debug_thresholding: if self.debug_thresholding:
logger.debug( logger.debug(f"min, , max = {minval:.3f}, , {maxval:.3f}\t(scaled by {scale})")
f"min, , max = {minval:.3f}, , {maxval:.3f}\t(scaled by {scale})" logger.debug(f"{num_altered / latents.numel() * 100:.2f}% values altered")
)
logger.debug(
f"{num_altered / latents.numel() * 100:.2f}% values altered"
)
return latents return latents
@ -501,15 +493,11 @@ class InvokeAIDiffuserComponent:
# Check for out of bounds # Check for out of bounds
h_symmetry_time_pct = postprocessing_settings.h_symmetry_time_pct h_symmetry_time_pct = postprocessing_settings.h_symmetry_time_pct
if h_symmetry_time_pct is not None and ( if h_symmetry_time_pct is not None and (h_symmetry_time_pct <= 0.0 or h_symmetry_time_pct > 1.0):
h_symmetry_time_pct <= 0.0 or h_symmetry_time_pct > 1.0
):
h_symmetry_time_pct = None h_symmetry_time_pct = None
v_symmetry_time_pct = postprocessing_settings.v_symmetry_time_pct v_symmetry_time_pct = postprocessing_settings.v_symmetry_time_pct
if v_symmetry_time_pct is not None and ( if v_symmetry_time_pct is not None and (v_symmetry_time_pct <= 0.0 or v_symmetry_time_pct > 1.0):
v_symmetry_time_pct <= 0.0 or v_symmetry_time_pct > 1.0
):
v_symmetry_time_pct = None v_symmetry_time_pct = None
dev = latents.device.type dev = latents.device.type
@ -554,9 +542,7 @@ class InvokeAIDiffuserComponent:
def estimate_percent_through(self, step_index, sigma): def estimate_percent_through(self, step_index, sigma):
if step_index is not None and self.cross_attention_control_context is not None: if step_index is not None and self.cross_attention_control_context is not None:
# percent_through will never reach 1.0 (but this is intended) # percent_through will never reach 1.0 (but this is intended)
return float(step_index) / float( return float(step_index) / float(self.cross_attention_control_context.step_count)
self.cross_attention_control_context.step_count
)
# find the best possible index of the current sigma in the sigma sequence # find the best possible index of the current sigma in the sigma sequence
smaller_sigmas = torch.nonzero(self.model.sigmas <= sigma) smaller_sigmas = torch.nonzero(self.model.sigmas <= sigma)
sigma_index = smaller_sigmas[-1].item() if smaller_sigmas.shape[0] > 0 else 0 sigma_index = smaller_sigmas[-1].item() if smaller_sigmas.shape[0] > 0 else 0
@ -567,19 +553,13 @@ class InvokeAIDiffuserComponent:
# todo: make this work # todo: make this work
@classmethod @classmethod
def apply_conjunction( def apply_conjunction(cls, x, t, forward_func, uc, c_or_weighted_c_list, global_guidance_scale):
cls, x, t, forward_func, uc, c_or_weighted_c_list, global_guidance_scale
):
x_in = torch.cat([x] * 2) x_in = torch.cat([x] * 2)
t_in = torch.cat([t] * 2) # aka sigmas t_in = torch.cat([t] * 2) # aka sigmas
deltas = None deltas = None
uncond_latents = None uncond_latents = None
weighted_cond_list = ( weighted_cond_list = c_or_weighted_c_list if type(c_or_weighted_c_list) is list else [(c_or_weighted_c_list, 1)]
c_or_weighted_c_list
if type(c_or_weighted_c_list) is list
else [(c_or_weighted_c_list, 1)]
)
# below is fugly omg # below is fugly omg
conditionings = [uc] + [c for c, weight in weighted_cond_list] conditionings = [uc] + [c for c, weight in weighted_cond_list]
@ -608,15 +588,11 @@ class InvokeAIDiffuserComponent:
deltas = torch.cat((deltas, latents_b - uncond_latents)) deltas = torch.cat((deltas, latents_b - uncond_latents))
# merge the weighted deltas together into a single merged delta # merge the weighted deltas together into a single merged delta
per_delta_weights = torch.tensor( per_delta_weights = torch.tensor(weights[1:], dtype=deltas.dtype, device=deltas.device)
weights[1:], dtype=deltas.dtype, device=deltas.device
)
normalize = False normalize = False
if normalize: if normalize:
per_delta_weights /= torch.sum(per_delta_weights) per_delta_weights /= torch.sum(per_delta_weights)
reshaped_weights = per_delta_weights.reshape( reshaped_weights = per_delta_weights.reshape(per_delta_weights.shape + (1, 1, 1))
per_delta_weights.shape + (1, 1, 1)
)
deltas_merged = torch.sum(deltas * reshaped_weights, dim=0, keepdim=True) deltas_merged = torch.sum(deltas * reshaped_weights, dim=0, keepdim=True)
# old_return_value = super().forward(x, sigma, uncond, cond, cond_scale) # old_return_value = super().forward(x, sigma, uncond, cond, cond_scale)

View File

@ -261,9 +261,7 @@ def srmd_degradation(x, k, sf=3):
year={2018} year={2018}
} }
""" """
x = ndimage.filters.convolve( x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode="wrap") # 'nearest' | 'mirror'
x, np.expand_dims(k, axis=2), mode="wrap"
) # 'nearest' | 'mirror'
x = bicubic_degradation(x, sf=sf) x = bicubic_degradation(x, sf=sf)
return x return x
@ -389,21 +387,15 @@ def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
noise_level = random.randint(noise_level1, noise_level2) noise_level = random.randint(noise_level1, noise_level2)
rnum = np.random.rand() rnum = np.random.rand()
if rnum > 0.6: # add color Gaussian noise if rnum > 0.6: # add color Gaussian noise
img = img + np.random.normal(0, noise_level / 255.0, img.shape).astype( img = img + np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
np.float32
)
elif rnum < 0.4: # add grayscale Gaussian noise elif rnum < 0.4: # add grayscale Gaussian noise
img = img + np.random.normal( img = img + np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
0, noise_level / 255.0, (*img.shape[:2], 1)
).astype(np.float32)
else: # add noise else: # add noise
L = noise_level2 / 255.0 L = noise_level2 / 255.0
D = np.diag(np.random.rand(3)) D = np.diag(np.random.rand(3))
U = orth(np.random.rand(3, 3)) U = orth(np.random.rand(3, 3))
conv = np.dot(np.dot(np.transpose(U), D), U) conv = np.dot(np.dot(np.transpose(U), D), U)
img = img + np.random.multivariate_normal( img = img + np.random.multivariate_normal([0, 0, 0], np.abs(L**2 * conv), img.shape[:2]).astype(np.float32)
[0, 0, 0], np.abs(L**2 * conv), img.shape[:2]
).astype(np.float32)
img = np.clip(img, 0.0, 1.0) img = np.clip(img, 0.0, 1.0)
return img return img
@ -413,21 +405,15 @@ def add_speckle_noise(img, noise_level1=2, noise_level2=25):
img = np.clip(img, 0.0, 1.0) img = np.clip(img, 0.0, 1.0)
rnum = random.random() rnum = random.random()
if rnum > 0.6: if rnum > 0.6:
img += img * np.random.normal(0, noise_level / 255.0, img.shape).astype( img += img * np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
np.float32
)
elif rnum < 0.4: elif rnum < 0.4:
img += img * np.random.normal( img += img * np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
0, noise_level / 255.0, (*img.shape[:2], 1)
).astype(np.float32)
else: else:
L = noise_level2 / 255.0 L = noise_level2 / 255.0
D = np.diag(np.random.rand(3)) D = np.diag(np.random.rand(3))
U = orth(np.random.rand(3, 3)) U = orth(np.random.rand(3, 3))
conv = np.dot(np.dot(np.transpose(U), D), U) conv = np.dot(np.dot(np.transpose(U), D), U)
img += img * np.random.multivariate_normal( img += img * np.random.multivariate_normal([0, 0, 0], np.abs(L**2 * conv), img.shape[:2]).astype(np.float32)
[0, 0, 0], np.abs(L**2 * conv), img.shape[:2]
).astype(np.float32)
img = np.clip(img, 0.0, 1.0) img = np.clip(img, 0.0, 1.0)
return img return img
@ -440,9 +426,7 @@ def add_Poisson_noise(img):
else: else:
img_gray = np.dot(img[..., :3], [0.299, 0.587, 0.114]) img_gray = np.dot(img[..., :3], [0.299, 0.587, 0.114])
img_gray = np.clip((img_gray * 255.0).round(), 0, 255) / 255.0 img_gray = np.clip((img_gray * 255.0).round(), 0, 255) / 255.0
noise_gray = ( noise_gray = np.random.poisson(img_gray * vals).astype(np.float32) / vals - img_gray
np.random.poisson(img_gray * vals).astype(np.float32) / vals - img_gray
)
img += noise_gray[:, :, np.newaxis] img += noise_gray[:, :, np.newaxis]
img = np.clip(img, 0.0, 1.0) img = np.clip(img, 0.0, 1.0)
return img return img
@ -451,9 +435,7 @@ def add_Poisson_noise(img):
def add_JPEG_noise(img): def add_JPEG_noise(img):
quality_factor = random.randint(30, 95) quality_factor = random.randint(30, 95)
img = cv2.cvtColor(util.single2uint(img), cv2.COLOR_RGB2BGR) img = cv2.cvtColor(util.single2uint(img), cv2.COLOR_RGB2BGR)
result, encimg = cv2.imencode( result, encimg = cv2.imencode(".jpg", img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor])
".jpg", img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor]
)
img = cv2.imdecode(encimg, 1) img = cv2.imdecode(encimg, 1)
img = cv2.cvtColor(util.uint2single(img), cv2.COLOR_BGR2RGB) img = cv2.cvtColor(util.uint2single(img), cv2.COLOR_BGR2RGB)
return img return img
@ -540,9 +522,7 @@ def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None):
k = fspecial("gaussian", 25, random.uniform(0.1, 0.6 * sf)) k = fspecial("gaussian", 25, random.uniform(0.1, 0.6 * sf))
k_shifted = shift_pixel(k, sf) k_shifted = shift_pixel(k, sf)
k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
img = ndimage.filters.convolve( img = ndimage.filters.convolve(img, np.expand_dims(k_shifted, axis=2), mode="mirror")
img, np.expand_dims(k_shifted, axis=2), mode="mirror"
)
img = img[0::sf, 0::sf, ...] # nearest downsampling img = img[0::sf, 0::sf, ...] # nearest downsampling
img = np.clip(img, 0.0, 1.0) img = np.clip(img, 0.0, 1.0)
@ -646,9 +626,7 @@ def degradation_bsrgan_variant(image, sf=4, isp_model=None):
k = fspecial("gaussian", 25, random.uniform(0.1, 0.6 * sf)) k = fspecial("gaussian", 25, random.uniform(0.1, 0.6 * sf))
k_shifted = shift_pixel(k, sf) k_shifted = shift_pixel(k, sf)
k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
image = ndimage.filters.convolve( image = ndimage.filters.convolve(image, np.expand_dims(k_shifted, axis=2), mode="mirror")
image, np.expand_dims(k_shifted, axis=2), mode="mirror"
)
image = image[0::sf, 0::sf, ...] # nearest downsampling image = image[0::sf, 0::sf, ...] # nearest downsampling
image = np.clip(image, 0.0, 1.0) image = np.clip(image, 0.0, 1.0)
@ -796,9 +774,7 @@ if __name__ == "__main__":
print(i) print(i)
img_lq = deg_fn(img) img_lq = deg_fn(img)
print(img_lq) print(img_lq)
img_lq_bicubic = albumentations.SmallestMaxSize( img_lq_bicubic = albumentations.SmallestMaxSize(max_size=h, interpolation=cv2.INTER_CUBIC)(image=img)["image"]
max_size=h, interpolation=cv2.INTER_CUBIC
)(image=img)["image"]
print(img_lq.shape) print(img_lq.shape)
print("bicubic", img_lq_bicubic.shape) print("bicubic", img_lq_bicubic.shape)
print(img_hq.shape) print(img_hq.shape)
@ -812,7 +788,5 @@ if __name__ == "__main__":
(int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
interpolation=0, interpolation=0,
) )
img_concat = np.concatenate( img_concat = np.concatenate([lq_bicubic_nearest, lq_nearest, util.single2uint(img_hq)], axis=1)
[lq_bicubic_nearest, lq_nearest, util.single2uint(img_hq)], axis=1
)
util.imsave(img_concat, str(i) + ".png") util.imsave(img_concat, str(i) + ".png")

View File

@ -261,9 +261,7 @@ def srmd_degradation(x, k, sf=3):
year={2018} year={2018}
} }
""" """
x = ndimage.filters.convolve( x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode="wrap") # 'nearest' | 'mirror'
x, np.expand_dims(k, axis=2), mode="wrap"
) # 'nearest' | 'mirror'
x = bicubic_degradation(x, sf=sf) x = bicubic_degradation(x, sf=sf)
return x return x
@ -393,21 +391,15 @@ def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
noise_level = random.randint(noise_level1, noise_level2) noise_level = random.randint(noise_level1, noise_level2)
rnum = np.random.rand() rnum = np.random.rand()
if rnum > 0.6: # add color Gaussian noise if rnum > 0.6: # add color Gaussian noise
img = img + np.random.normal(0, noise_level / 255.0, img.shape).astype( img = img + np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
np.float32
)
elif rnum < 0.4: # add grayscale Gaussian noise elif rnum < 0.4: # add grayscale Gaussian noise
img = img + np.random.normal( img = img + np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
0, noise_level / 255.0, (*img.shape[:2], 1)
).astype(np.float32)
else: # add noise else: # add noise
L = noise_level2 / 255.0 L = noise_level2 / 255.0
D = np.diag(np.random.rand(3)) D = np.diag(np.random.rand(3))
U = orth(np.random.rand(3, 3)) U = orth(np.random.rand(3, 3))
conv = np.dot(np.dot(np.transpose(U), D), U) conv = np.dot(np.dot(np.transpose(U), D), U)
img = img + np.random.multivariate_normal( img = img + np.random.multivariate_normal([0, 0, 0], np.abs(L**2 * conv), img.shape[:2]).astype(np.float32)
[0, 0, 0], np.abs(L**2 * conv), img.shape[:2]
).astype(np.float32)
img = np.clip(img, 0.0, 1.0) img = np.clip(img, 0.0, 1.0)
return img return img
@ -417,21 +409,15 @@ def add_speckle_noise(img, noise_level1=2, noise_level2=25):
img = np.clip(img, 0.0, 1.0) img = np.clip(img, 0.0, 1.0)
rnum = random.random() rnum = random.random()
if rnum > 0.6: if rnum > 0.6:
img += img * np.random.normal(0, noise_level / 255.0, img.shape).astype( img += img * np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
np.float32
)
elif rnum < 0.4: elif rnum < 0.4:
img += img * np.random.normal( img += img * np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
0, noise_level / 255.0, (*img.shape[:2], 1)
).astype(np.float32)
else: else:
L = noise_level2 / 255.0 L = noise_level2 / 255.0
D = np.diag(np.random.rand(3)) D = np.diag(np.random.rand(3))
U = orth(np.random.rand(3, 3)) U = orth(np.random.rand(3, 3))
conv = np.dot(np.dot(np.transpose(U), D), U) conv = np.dot(np.dot(np.transpose(U), D), U)
img += img * np.random.multivariate_normal( img += img * np.random.multivariate_normal([0, 0, 0], np.abs(L**2 * conv), img.shape[:2]).astype(np.float32)
[0, 0, 0], np.abs(L**2 * conv), img.shape[:2]
).astype(np.float32)
img = np.clip(img, 0.0, 1.0) img = np.clip(img, 0.0, 1.0)
return img return img
@ -444,9 +430,7 @@ def add_Poisson_noise(img):
else: else:
img_gray = np.dot(img[..., :3], [0.299, 0.587, 0.114]) img_gray = np.dot(img[..., :3], [0.299, 0.587, 0.114])
img_gray = np.clip((img_gray * 255.0).round(), 0, 255) / 255.0 img_gray = np.clip((img_gray * 255.0).round(), 0, 255) / 255.0
noise_gray = ( noise_gray = np.random.poisson(img_gray * vals).astype(np.float32) / vals - img_gray
np.random.poisson(img_gray * vals).astype(np.float32) / vals - img_gray
)
img += noise_gray[:, :, np.newaxis] img += noise_gray[:, :, np.newaxis]
img = np.clip(img, 0.0, 1.0) img = np.clip(img, 0.0, 1.0)
return img return img
@ -455,9 +439,7 @@ def add_Poisson_noise(img):
def add_JPEG_noise(img): def add_JPEG_noise(img):
quality_factor = random.randint(80, 95) quality_factor = random.randint(80, 95)
img = cv2.cvtColor(util.single2uint(img), cv2.COLOR_RGB2BGR) img = cv2.cvtColor(util.single2uint(img), cv2.COLOR_RGB2BGR)
result, encimg = cv2.imencode( result, encimg = cv2.imencode(".jpg", img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor])
".jpg", img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor]
)
img = cv2.imdecode(encimg, 1) img = cv2.imdecode(encimg, 1)
img = cv2.cvtColor(util.uint2single(img), cv2.COLOR_BGR2RGB) img = cv2.cvtColor(util.uint2single(img), cv2.COLOR_BGR2RGB)
return img return img
@ -544,9 +526,7 @@ def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None):
k = fspecial("gaussian", 25, random.uniform(0.1, 0.6 * sf)) k = fspecial("gaussian", 25, random.uniform(0.1, 0.6 * sf))
k_shifted = shift_pixel(k, sf) k_shifted = shift_pixel(k, sf)
k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
img = ndimage.filters.convolve( img = ndimage.filters.convolve(img, np.expand_dims(k_shifted, axis=2), mode="mirror")
img, np.expand_dims(k_shifted, axis=2), mode="mirror"
)
img = img[0::sf, 0::sf, ...] # nearest downsampling img = img[0::sf, 0::sf, ...] # nearest downsampling
img = np.clip(img, 0.0, 1.0) img = np.clip(img, 0.0, 1.0)
@ -653,9 +633,7 @@ def degradation_bsrgan_variant(image, sf=4, isp_model=None):
k = fspecial("gaussian", 25, random.uniform(0.1, 0.6 * sf)) k = fspecial("gaussian", 25, random.uniform(0.1, 0.6 * sf))
k_shifted = shift_pixel(k, sf) k_shifted = shift_pixel(k, sf)
k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
image = ndimage.filters.convolve( image = ndimage.filters.convolve(image, np.expand_dims(k_shifted, axis=2), mode="mirror")
image, np.expand_dims(k_shifted, axis=2), mode="mirror"
)
image = image[0::sf, 0::sf, ...] # nearest downsampling image = image[0::sf, 0::sf, ...] # nearest downsampling
image = np.clip(image, 0.0, 1.0) image = np.clip(image, 0.0, 1.0)
@ -705,9 +683,9 @@ if __name__ == "__main__":
img_lq = deg_fn(img)["image"] img_lq = deg_fn(img)["image"]
img_hq, img_lq = util.uint2single(img_hq), util.uint2single(img_lq) img_hq, img_lq = util.uint2single(img_hq), util.uint2single(img_lq)
print(img_lq) print(img_lq)
img_lq_bicubic = albumentations.SmallestMaxSize( img_lq_bicubic = albumentations.SmallestMaxSize(max_size=h, interpolation=cv2.INTER_CUBIC)(image=img_hq)[
max_size=h, interpolation=cv2.INTER_CUBIC "image"
)(image=img_hq)["image"] ]
print(img_lq.shape) print(img_lq.shape)
print("bicubic", img_lq_bicubic.shape) print("bicubic", img_lq_bicubic.shape)
print(img_hq.shape) print(img_hq.shape)
@ -721,7 +699,5 @@ if __name__ == "__main__":
(int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
interpolation=0, interpolation=0,
) )
img_concat = np.concatenate( img_concat = np.concatenate([lq_bicubic_nearest, lq_nearest, util.single2uint(img_hq)], axis=1)
[lq_bicubic_nearest, lq_nearest, util.single2uint(img_hq)], axis=1
)
util.imsave(img_concat, str(i) + ".png") util.imsave(img_concat, str(i) + ".png")

Some files were not shown because too many files have changed in this diff Show More