feat(ui): simplify linear graph creation logic

Instead of manually creating every node and edge, we can simply copy/paste the base graph from node editor, then sub in parameters.

This is a much more intelligible process. We still need to handle seed, img2img fit and controlnet separately.
This commit is contained in:
psychedelicious 2023-06-19 11:49:59 +10:00
parent a01998d095
commit 3c60616b4d
6 changed files with 406 additions and 564 deletions

View File

@ -1,10 +1,10 @@
import { startAppListening } from '..';
import { buildImageToImageGraph } from 'features/nodes/util/graphBuilders/buildImageToImageGraph';
import { sessionCreated } from 'services/thunks/session';
import { log } from 'app/logging/useLogger';
import { imageToImageGraphBuilt } from 'features/nodes/store/actions';
import { userInvoked } from 'app/store/actions';
import { sessionReadyToInvoke } from 'features/system/store/actions';
import { buildImageToImageGraph } from 'features/nodes/util/graphBuilders/buildImageToImageGraph';
const moduleLog = log.child({ namespace: 'invoke' });

View File

@ -1,10 +1,10 @@
import { startAppListening } from '..';
import { buildTextToImageGraph } from 'features/nodes/util/graphBuilders/buildTextToImageGraph';
import { sessionCreated } from 'services/thunks/session';
import { log } from 'app/logging/useLogger';
import { textToImageGraphBuilt } from 'features/nodes/store/actions';
import { userInvoked } from 'app/store/actions';
import { sessionReadyToInvoke } from 'features/system/store/actions';
import { buildTextToImageGraph } from 'features/nodes/util/graphBuilders/buildTextToImageGraph';
const moduleLog = log.child({ namespace: 'invoke' });

View File

@ -2,8 +2,7 @@ import { RootState } from 'app/store/store';
import { filter, forEach, size } from 'lodash-es';
import { CollectInvocation, ControlNetInvocation } from 'services/api';
import { NonNullableGraph } from '../types/types';
const CONTROL_NET_COLLECT = 'control_net_collect';
import { CONTROL_NET_COLLECT } from './graphBuilders/constants';
export const addControlNetToLinearGraph = (
graph: NonNullableGraph,
@ -37,7 +36,7 @@ export const addControlNetToLinearGraph = (
});
}
forEach(controlNets, (controlNet, index) => {
forEach(controlNets, (controlNet) => {
const {
controlNetId,
isEnabled,

View File

@ -1,34 +1,30 @@
import { RootState } from 'app/store/store';
import {
CompelInvocation,
Graph,
ImageResizeInvocation,
ImageToLatentsInvocation,
IterateInvocation,
LatentsToImageInvocation,
LatentsToLatentsInvocation,
NoiseInvocation,
RandomIntInvocation,
RangeOfSizeInvocation,
} from 'services/api';
import { NonNullableGraph } from 'features/nodes/types/types';
import { log } from 'app/logging/useLogger';
import {
ITERATE,
LATENTS_TO_IMAGE,
MODEL_LOADER,
NEGATIVE_CONDITIONING,
NOISE,
POSITIVE_CONDITIONING,
RANDOM_INT,
RANGE_OF_SIZE,
IMAGE_TO_IMAGE_GRAPH,
IMAGE_TO_LATENTS,
LATENTS_TO_LATENTS,
RESIZE,
} from './constants';
import { set } from 'lodash-es';
import { addControlNetToLinearGraph } from '../addControlNetToLinearGraph';
const moduleLog = log.child({ namespace: 'nodes' });
const POSITIVE_CONDITIONING = 'positive_conditioning';
const NEGATIVE_CONDITIONING = 'negative_conditioning';
const IMAGE_TO_LATENTS = 'image_to_latents';
const LATENTS_TO_LATENTS = 'latents_to_latents';
const LATENTS_TO_IMAGE = 'latents_to_image';
const RESIZE = 'resize_image';
const NOISE = 'noise';
const RANDOM_INT = 'rand_int';
const RANGE_OF_SIZE = 'range_of_size';
const ITERATE = 'iterate';
/**
* Builds the Image to Image tab graph.
*/
@ -36,7 +32,7 @@ export const buildImageToImageGraph = (state: RootState): Graph => {
const {
positivePrompt,
negativePrompt,
model,
model: model_name,
cfgScale: cfg_scale,
scheduler,
steps,
@ -50,298 +46,221 @@ export const buildImageToImageGraph = (state: RootState): Graph => {
shouldRandomizeSeed,
} = state.generation;
/**
* The easiest way to build linear graphs is to do it in the node editor, then copy and paste the
* full graph here as a template. Then use the parameters from app state and set friendlier node
* ids.
*
* The only thing we need extra logic for is handling randomized seed, control net, and for img2img,
* the `fit` param. These are added to the graph at the end.
*/
if (!initialImage) {
moduleLog.error('No initial image found in state');
throw new Error('No initial image found in state');
}
// copy-pasted graph from node editor, filled in with state values & friendly node ids
const graph: NonNullableGraph = {
nodes: {},
edges: [],
};
// Create the positive conditioning (prompt) node
const positiveConditioningNode: CompelInvocation = {
id: POSITIVE_CONDITIONING,
type: 'compel',
prompt: positivePrompt,
model,
};
// Negative conditioning
const negativeConditioningNode: CompelInvocation = {
id: NEGATIVE_CONDITIONING,
type: 'compel',
prompt: negativePrompt,
model,
};
// This will encode the raster image to latents - but it may get its `image` from a resize node,
// so we do not set its `image` property yet
const imageToLatentsNode: ImageToLatentsInvocation = {
id: IMAGE_TO_LATENTS,
type: 'i2l',
model,
};
// This does the actual img2img inference
const latentsToLatentsNode: LatentsToLatentsInvocation = {
id: LATENTS_TO_LATENTS,
type: 'l2l',
cfg_scale,
model,
scheduler,
steps,
strength,
};
// Finally we decode the latents back to an image
const latentsToImageNode: LatentsToImageInvocation = {
id: LATENTS_TO_IMAGE,
type: 'l2i',
model,
};
// Add all those nodes to the graph
graph.nodes[POSITIVE_CONDITIONING] = positiveConditioningNode;
graph.nodes[NEGATIVE_CONDITIONING] = negativeConditioningNode;
graph.nodes[IMAGE_TO_LATENTS] = imageToLatentsNode;
graph.nodes[LATENTS_TO_LATENTS] = latentsToLatentsNode;
graph.nodes[LATENTS_TO_IMAGE] = latentsToImageNode;
// Connect the prompt nodes to the imageToLatents node
graph.edges.push({
source: { node_id: POSITIVE_CONDITIONING, field: 'conditioning' },
destination: {
node_id: LATENTS_TO_LATENTS,
field: 'positive_conditioning',
},
});
graph.edges.push({
source: { node_id: NEGATIVE_CONDITIONING, field: 'conditioning' },
destination: {
node_id: LATENTS_TO_LATENTS,
field: 'negative_conditioning',
},
});
// Connect the image-encoding node
graph.edges.push({
source: { node_id: IMAGE_TO_LATENTS, field: 'latents' },
destination: {
node_id: LATENTS_TO_LATENTS,
field: 'latents',
},
});
// Connect the image-decoding node
graph.edges.push({
source: { node_id: LATENTS_TO_LATENTS, field: 'latents' },
destination: {
node_id: LATENTS_TO_IMAGE,
field: 'latents',
},
});
/**
* Now we need to handle iterations and random seeds. There are four possible scenarios:
* - Single iteration, explicit seed
* - Single iteration, random seed
* - Multiple iterations, explicit seed
* - Multiple iterations, random seed
*
* They all have different graphs and connections.
*/
// Single iteration, explicit seed
if (!shouldRandomizeSeed && iterations === 1) {
// Noise node using the explicit seed
const noiseNode: NoiseInvocation = {
id: NOISE,
type: 'noise',
seed: seed,
};
graph.nodes[NOISE] = noiseNode;
// Connect noise to l2l
graph.edges.push({
source: { node_id: NOISE, field: 'noise' },
destination: {
node_id: LATENTS_TO_LATENTS,
field: 'noise',
id: IMAGE_TO_IMAGE_GRAPH,
nodes: {
[POSITIVE_CONDITIONING]: {
type: 'compel',
id: POSITIVE_CONDITIONING,
prompt: positivePrompt,
},
});
}
[NEGATIVE_CONDITIONING]: {
type: 'compel',
id: NEGATIVE_CONDITIONING,
prompt: negativePrompt,
},
[RANGE_OF_SIZE]: {
type: 'range_of_size',
id: RANGE_OF_SIZE,
// seed - must be connected manually
// start: 0,
size: iterations,
step: 1,
},
[NOISE]: {
type: 'noise',
id: NOISE,
},
[MODEL_LOADER]: {
type: 'sd1_model_loader',
id: MODEL_LOADER,
model_name,
},
[LATENTS_TO_IMAGE]: {
type: 'l2i',
id: LATENTS_TO_IMAGE,
},
[ITERATE]: {
type: 'iterate',
id: ITERATE,
},
[LATENTS_TO_LATENTS]: {
type: 'l2l',
id: LATENTS_TO_LATENTS,
cfg_scale,
scheduler,
steps,
strength,
},
[IMAGE_TO_LATENTS]: {
type: 'i2l',
id: IMAGE_TO_LATENTS,
// must be set manually later, bc `fit` parameter may require a resize node inserted
// image: {
// image_name: initialImage.image_name,
// },
},
},
edges: [
{
source: {
node_id: MODEL_LOADER,
field: 'clip',
},
destination: {
node_id: POSITIVE_CONDITIONING,
field: 'clip',
},
},
{
source: {
node_id: MODEL_LOADER,
field: 'clip',
},
destination: {
node_id: NEGATIVE_CONDITIONING,
field: 'clip',
},
},
{
source: {
node_id: MODEL_LOADER,
field: 'vae',
},
destination: {
node_id: LATENTS_TO_IMAGE,
field: 'vae',
},
},
{
source: {
node_id: RANGE_OF_SIZE,
field: 'collection',
},
destination: {
node_id: ITERATE,
field: 'collection',
},
},
{
source: {
node_id: ITERATE,
field: 'item',
},
destination: {
node_id: NOISE,
field: 'seed',
},
},
{
source: {
node_id: LATENTS_TO_LATENTS,
field: 'latents',
},
destination: {
node_id: LATENTS_TO_IMAGE,
field: 'latents',
},
},
{
source: {
node_id: IMAGE_TO_LATENTS,
field: 'latents',
},
destination: {
node_id: LATENTS_TO_LATENTS,
field: 'latents',
},
},
{
source: {
node_id: NOISE,
field: 'noise',
},
destination: {
node_id: LATENTS_TO_LATENTS,
field: 'noise',
},
},
{
source: {
node_id: MODEL_LOADER,
field: 'vae',
},
destination: {
node_id: IMAGE_TO_LATENTS,
field: 'vae',
},
},
{
source: {
node_id: MODEL_LOADER,
field: 'unet',
},
destination: {
node_id: LATENTS_TO_LATENTS,
field: 'unet',
},
},
{
source: {
node_id: NEGATIVE_CONDITIONING,
field: 'conditioning',
},
destination: {
node_id: LATENTS_TO_LATENTS,
field: 'negative_conditioning',
},
},
{
source: {
node_id: POSITIVE_CONDITIONING,
field: 'conditioning',
},
destination: {
node_id: LATENTS_TO_LATENTS,
field: 'positive_conditioning',
},
},
],
};
// Single iteration, random seed
if (shouldRandomizeSeed && iterations === 1) {
// Random int node to generate the seed
// handle seed
if (shouldRandomizeSeed) {
// Random int node to generate the starting seed
const randomIntNode: RandomIntInvocation = {
id: RANDOM_INT,
type: 'rand_int',
};
// Noise node without any seed
const noiseNode: NoiseInvocation = {
id: NOISE,
type: 'noise',
};
graph.nodes[RANDOM_INT] = randomIntNode;
graph.nodes[NOISE] = noiseNode;
// Connect random int to the seed of the noise node
graph.edges.push({
source: { node_id: RANDOM_INT, field: 'a' },
destination: {
node_id: NOISE,
field: 'seed',
},
});
// Connect noise to l2l
graph.edges.push({
source: { node_id: NOISE, field: 'noise' },
destination: {
node_id: LATENTS_TO_LATENTS,
field: 'noise',
},
});
}
// Multiple iterations, explicit seed
if (!shouldRandomizeSeed && iterations > 1) {
// Range of size node to generate `iterations` count of seeds - range of size generates a collection
// of ints from `start` to `start + size`. The `start` is the seed, and the `size` is the number of
// iterations.
const rangeOfSizeNode: RangeOfSizeInvocation = {
id: RANGE_OF_SIZE,
type: 'range_of_size',
start: seed,
size: iterations,
};
// Iterate node to iterate over the seeds generated by the range of size node
const iterateNode: IterateInvocation = {
id: ITERATE,
type: 'iterate',
};
// Noise node without any seed
const noiseNode: NoiseInvocation = {
id: NOISE,
type: 'noise',
};
// Adding to the graph
graph.nodes[RANGE_OF_SIZE] = rangeOfSizeNode;
graph.nodes[ITERATE] = iterateNode;
graph.nodes[NOISE] = noiseNode;
// Connect range of size to iterate
graph.edges.push({
source: { node_id: RANGE_OF_SIZE, field: 'collection' },
destination: {
node_id: ITERATE,
field: 'collection',
},
});
// Connect iterate to noise
graph.edges.push({
source: {
node_id: ITERATE,
field: 'item',
},
destination: {
node_id: NOISE,
field: 'seed',
},
});
// Connect noise to l2l
graph.edges.push({
source: { node_id: NOISE, field: 'noise' },
destination: {
node_id: LATENTS_TO_LATENTS,
field: 'noise',
},
});
}
// Multiple iterations, random seed
if (shouldRandomizeSeed && iterations > 1) {
// Random int node to generate the seed
const randomIntNode: RandomIntInvocation = {
id: RANDOM_INT,
type: 'rand_int',
};
// Range of size node to generate `iterations` count of seeds - range of size generates a collection
const rangeOfSizeNode: RangeOfSizeInvocation = {
id: RANGE_OF_SIZE,
type: 'range_of_size',
size: iterations,
};
// Iterate node to iterate over the seeds generated by the range of size node
const iterateNode: IterateInvocation = {
id: ITERATE,
type: 'iterate',
};
// Noise node without any seed
const noiseNode: NoiseInvocation = {
id: NOISE,
type: 'noise',
width,
height,
};
// Adding to the graph
graph.nodes[RANDOM_INT] = randomIntNode;
graph.nodes[RANGE_OF_SIZE] = rangeOfSizeNode;
graph.nodes[ITERATE] = iterateNode;
graph.nodes[NOISE] = noiseNode;
// Connect random int to the start of the range of size so the range starts on the random first seed
graph.edges.push({
source: { node_id: RANDOM_INT, field: 'a' },
destination: { node_id: RANGE_OF_SIZE, field: 'start' },
});
// Connect range of size to iterate
graph.edges.push({
source: { node_id: RANGE_OF_SIZE, field: 'collection' },
destination: {
node_id: ITERATE,
field: 'collection',
},
});
// Connect iterate to noise
graph.edges.push({
source: {
node_id: ITERATE,
field: 'item',
},
destination: {
node_id: NOISE,
field: 'seed',
},
});
// Connect noise to l2l
graph.edges.push({
source: { node_id: NOISE, field: 'noise' },
destination: {
node_id: LATENTS_TO_LATENTS,
field: 'noise',
},
});
} else {
// User specified seed, so set the start of the range of size to the seed
(graph.nodes[RANGE_OF_SIZE] as RangeOfSizeInvocation).start = seed;
}
// handle `fit`
if (
shouldFitToWidthHeight &&
(initialImage.width !== width || initialImage.height !== height)
@ -410,6 +329,7 @@ export const buildImageToImageGraph = (state: RootState): Graph => {
});
}
// add controlnet
addControlNetToLinearGraph(graph, LATENTS_TO_LATENTS, state);
return graph;

View File

@ -1,34 +1,29 @@
import { RootState } from 'app/store/store';
import { NonNullableGraph } from 'features/nodes/types/types';
import {
CompelInvocation,
Graph,
IterateInvocation,
LatentsToImageInvocation,
NoiseInvocation,
RandomIntInvocation,
RangeOfSizeInvocation,
TextToLatentsInvocation,
} from 'services/api';
import { NonNullableGraph } from 'features/nodes/types/types';
import {
ITERATE,
LATENTS_TO_IMAGE,
MODEL_LOADER,
NEGATIVE_CONDITIONING,
NOISE,
POSITIVE_CONDITIONING,
RANDOM_INT,
RANGE_OF_SIZE,
TEXT_TO_IMAGE_GRAPH,
TEXT_TO_LATENTS,
} from './constants';
import { addControlNetToLinearGraph } from '../addControlNetToLinearGraph';
const POSITIVE_CONDITIONING = 'positive_conditioning';
const NEGATIVE_CONDITIONING = 'negative_conditioning';
const TEXT_TO_LATENTS = 'text_to_latents';
const LATENTS_TO_IMAGE = 'latents_to_image';
const NOISE = 'noise';
const RANDOM_INT = 'rand_int';
const RANGE_OF_SIZE = 'range_of_size';
const ITERATE = 'iterate';
/**
* Builds the Text to Image tab graph.
*/
export const buildTextToImageGraph = (state: RootState): Graph => {
const {
positivePrompt,
negativePrompt,
model,
model: model_name,
cfgScale: cfg_scale,
scheduler,
steps,
@ -39,277 +34,188 @@ export const buildTextToImageGraph = (state: RootState): Graph => {
shouldRandomizeSeed,
} = state.generation;
const graph: NonNullableGraph = {
nodes: {},
edges: [],
};
// Create the conditioning, t2l and l2i nodes
const positiveConditioningNode: CompelInvocation = {
id: POSITIVE_CONDITIONING,
type: 'compel',
prompt: positivePrompt,
model,
};
const negativeConditioningNode: CompelInvocation = {
id: NEGATIVE_CONDITIONING,
type: 'compel',
prompt: negativePrompt,
model,
};
const textToLatentsNode: TextToLatentsInvocation = {
id: TEXT_TO_LATENTS,
type: 't2l',
cfg_scale,
model,
scheduler,
steps,
};
const latentsToImageNode: LatentsToImageInvocation = {
id: LATENTS_TO_IMAGE,
type: 'l2i',
model,
};
// Add to the graph
graph.nodes[POSITIVE_CONDITIONING] = positiveConditioningNode;
graph.nodes[NEGATIVE_CONDITIONING] = negativeConditioningNode;
graph.nodes[TEXT_TO_LATENTS] = textToLatentsNode;
graph.nodes[LATENTS_TO_IMAGE] = latentsToImageNode;
// Connect them
graph.edges.push({
source: { node_id: POSITIVE_CONDITIONING, field: 'conditioning' },
destination: {
node_id: TEXT_TO_LATENTS,
field: 'positive_conditioning',
},
});
graph.edges.push({
source: { node_id: NEGATIVE_CONDITIONING, field: 'conditioning' },
destination: {
node_id: TEXT_TO_LATENTS,
field: 'negative_conditioning',
},
});
graph.edges.push({
source: { node_id: TEXT_TO_LATENTS, field: 'latents' },
destination: {
node_id: LATENTS_TO_IMAGE,
field: 'latents',
},
});
/**
* Now we need to handle iterations and random seeds. There are four possible scenarios:
* - Single iteration, explicit seed
* - Single iteration, random seed
* - Multiple iterations, explicit seed
* - Multiple iterations, random seed
* The easiest way to build linear graphs is to do it in the node editor, then copy and paste the
* full graph here as a template. Then use the parameters from app state and set friendlier node
* ids.
*
* They all have different graphs and connections.
* The only thing we need extra logic for is handling randomized seed, control net, and for img2img,
* the `fit` param. These are added to the graph at the end.
*/
// Single iteration, explicit seed
if (!shouldRandomizeSeed && iterations === 1) {
// Noise node using the explicit seed
const noiseNode: NoiseInvocation = {
id: NOISE,
type: 'noise',
seed: seed,
width,
height,
};
graph.nodes[NOISE] = noiseNode;
// Connect noise to l2l
graph.edges.push({
source: { node_id: NOISE, field: 'noise' },
destination: {
node_id: TEXT_TO_LATENTS,
field: 'noise',
// copy-pasted graph from node editor, filled in with state values & friendly node ids
const graph: NonNullableGraph = {
id: TEXT_TO_IMAGE_GRAPH,
nodes: {
[POSITIVE_CONDITIONING]: {
type: 'compel',
id: POSITIVE_CONDITIONING,
prompt: positivePrompt,
},
});
}
[NEGATIVE_CONDITIONING]: {
type: 'compel',
id: NEGATIVE_CONDITIONING,
prompt: negativePrompt,
},
[RANGE_OF_SIZE]: {
type: 'range_of_size',
id: RANGE_OF_SIZE,
// start: 0, // seed - must be connected manually
size: iterations,
step: 1,
},
[NOISE]: {
type: 'noise',
id: NOISE,
width,
height,
},
[TEXT_TO_LATENTS]: {
type: 't2l',
id: TEXT_TO_LATENTS,
cfg_scale,
scheduler,
steps,
},
[MODEL_LOADER]: {
type: 'sd1_model_loader',
id: MODEL_LOADER,
model_name,
},
[LATENTS_TO_IMAGE]: {
type: 'l2i',
id: LATENTS_TO_IMAGE,
},
[ITERATE]: {
type: 'iterate',
id: ITERATE,
},
},
edges: [
{
source: {
node_id: NEGATIVE_CONDITIONING,
field: 'conditioning',
},
destination: {
node_id: TEXT_TO_LATENTS,
field: 'negative_conditioning',
},
},
{
source: {
node_id: POSITIVE_CONDITIONING,
field: 'conditioning',
},
destination: {
node_id: TEXT_TO_LATENTS,
field: 'positive_conditioning',
},
},
{
source: {
node_id: MODEL_LOADER,
field: 'clip',
},
destination: {
node_id: POSITIVE_CONDITIONING,
field: 'clip',
},
},
{
source: {
node_id: MODEL_LOADER,
field: 'clip',
},
destination: {
node_id: NEGATIVE_CONDITIONING,
field: 'clip',
},
},
{
source: {
node_id: MODEL_LOADER,
field: 'unet',
},
destination: {
node_id: TEXT_TO_LATENTS,
field: 'unet',
},
},
{
source: {
node_id: TEXT_TO_LATENTS,
field: 'latents',
},
destination: {
node_id: LATENTS_TO_IMAGE,
field: 'latents',
},
},
{
source: {
node_id: MODEL_LOADER,
field: 'vae',
},
destination: {
node_id: LATENTS_TO_IMAGE,
field: 'vae',
},
},
{
source: {
node_id: RANGE_OF_SIZE,
field: 'collection',
},
destination: {
node_id: ITERATE,
field: 'collection',
},
},
{
source: {
node_id: ITERATE,
field: 'item',
},
destination: {
node_id: NOISE,
field: 'seed',
},
},
{
source: {
node_id: NOISE,
field: 'noise',
},
destination: {
node_id: TEXT_TO_LATENTS,
field: 'noise',
},
},
],
};
// Single iteration, random seed
if (shouldRandomizeSeed && iterations === 1) {
// Random int node to generate the seed
// handle seed
if (shouldRandomizeSeed) {
// Random int node to generate the starting seed
const randomIntNode: RandomIntInvocation = {
id: RANDOM_INT,
type: 'rand_int',
};
// Noise node without any seed
const noiseNode: NoiseInvocation = {
id: NOISE,
type: 'noise',
width,
height,
};
graph.nodes[RANDOM_INT] = randomIntNode;
graph.nodes[NOISE] = noiseNode;
// Connect random int to the seed of the noise node
graph.edges.push({
source: { node_id: RANDOM_INT, field: 'a' },
destination: {
node_id: NOISE,
field: 'seed',
},
});
// Connect noise to t2l
graph.edges.push({
source: { node_id: NOISE, field: 'noise' },
destination: {
node_id: TEXT_TO_LATENTS,
field: 'noise',
},
});
}
// Multiple iterations, explicit seed
if (!shouldRandomizeSeed && iterations > 1) {
// Range of size node to generate `iterations` count of seeds - range of size generates a collection
// of ints from `start` to `start + size`. The `start` is the seed, and the `size` is the number of
// iterations.
const rangeOfSizeNode: RangeOfSizeInvocation = {
id: RANGE_OF_SIZE,
type: 'range_of_size',
start: seed,
size: iterations,
};
// Iterate node to iterate over the seeds generated by the range of size node
const iterateNode: IterateInvocation = {
id: ITERATE,
type: 'iterate',
};
// Noise node without any seed
const noiseNode: NoiseInvocation = {
id: NOISE,
type: 'noise',
width,
height,
};
// Adding to the graph
graph.nodes[RANGE_OF_SIZE] = rangeOfSizeNode;
graph.nodes[ITERATE] = iterateNode;
graph.nodes[NOISE] = noiseNode;
// Connect range of size to iterate
graph.edges.push({
source: { node_id: RANGE_OF_SIZE, field: 'collection' },
destination: {
node_id: ITERATE,
field: 'collection',
},
});
// Connect iterate to noise
graph.edges.push({
source: {
node_id: ITERATE,
field: 'item',
},
destination: {
node_id: NOISE,
field: 'seed',
},
});
// Connect noise to t2l
graph.edges.push({
source: { node_id: NOISE, field: 'noise' },
destination: {
node_id: TEXT_TO_LATENTS,
field: 'noise',
},
});
}
// Multiple iterations, random seed
if (shouldRandomizeSeed && iterations > 1) {
// Random int node to generate the seed
const randomIntNode: RandomIntInvocation = {
id: RANDOM_INT,
type: 'rand_int',
};
// Range of size node to generate `iterations` count of seeds - range of size generates a collection
const rangeOfSizeNode: RangeOfSizeInvocation = {
id: RANGE_OF_SIZE,
type: 'range_of_size',
size: iterations,
};
// Iterate node to iterate over the seeds generated by the range of size node
const iterateNode: IterateInvocation = {
id: ITERATE,
type: 'iterate',
};
// Noise node without any seed
const noiseNode: NoiseInvocation = {
id: NOISE,
type: 'noise',
width,
height,
};
// Adding to the graph
graph.nodes[RANDOM_INT] = randomIntNode;
graph.nodes[RANGE_OF_SIZE] = rangeOfSizeNode;
graph.nodes[ITERATE] = iterateNode;
graph.nodes[NOISE] = noiseNode;
// Connect random int to the start of the range of size so the range starts on the random first seed
graph.edges.push({
source: { node_id: RANDOM_INT, field: 'a' },
destination: { node_id: RANGE_OF_SIZE, field: 'start' },
});
// Connect range of size to iterate
graph.edges.push({
source: { node_id: RANGE_OF_SIZE, field: 'collection' },
destination: {
node_id: ITERATE,
field: 'collection',
},
});
// Connect iterate to noise
graph.edges.push({
source: {
node_id: ITERATE,
field: 'item',
},
destination: {
node_id: NOISE,
field: 'seed',
},
});
// Connect noise to t2l
graph.edges.push({
source: { node_id: NOISE, field: 'noise' },
destination: {
node_id: TEXT_TO_LATENTS,
field: 'noise',
},
});
} else {
// User specified seed, so set the start of the range of size to the seed
(graph.nodes[RANGE_OF_SIZE] as RangeOfSizeInvocation).start = seed;
}
// add controlnet
addControlNetToLinearGraph(graph, TEXT_TO_LATENTS, state);
return graph;

View File

@ -0,0 +1,17 @@
export const POSITIVE_CONDITIONING = 'positive_conditioning';
export const NEGATIVE_CONDITIONING = 'negative_conditioning';
export const TEXT_TO_LATENTS = 'text_to_latents';
export const LATENTS_TO_IMAGE = 'latents_to_image';
export const NOISE = 'noise';
export const RANDOM_INT = 'rand_int';
export const RANGE_OF_SIZE = 'range_of_size';
export const ITERATE = 'iterate';
export const MODEL_LOADER = 'model_loader';
export const IMAGE_TO_LATENTS = 'image_to_latents';
export const LATENTS_TO_LATENTS = 'latents_to_latents';
export const RESIZE = 'resize_image';
export const TEXT_TO_IMAGE_GRAPH = 'text_to_image_graph';
export const IMAGE_TO_IMAGE_GRAPH = 'image_to_image_graph';
export const CONTROL_NET_COLLECT = 'control_net_collect';