diff --git a/invokeai/app/invocations/flux_text_to_image.py b/invokeai/app/invocations/flux_text_to_image.py index 43cf1f9d65..19af5baae6 100644 --- a/invokeai/app/invocations/flux_text_to_image.py +++ b/invokeai/app/invocations/flux_text_to_image.py @@ -116,30 +116,30 @@ class FluxTextToImageInvocation(BaseInvocation, WithMetadata, WithBoard): if context.util.is_canceled(): raise CanceledException - # TODO: Make this look like the image - latent_image = unpack(img.float(), self.height, self.width) - latent_image = latent_image.squeeze() # Remove unnecessary dimensions - flattened_tensor = latent_image.reshape(-1) # Flatten to shape [48*128*128] + # TODO: Make this look like the image before re-enabling + # latent_image = unpack(img.float(), self.height, self.width) + # latent_image = latent_image.squeeze() # Remove unnecessary dimensions + # flattened_tensor = latent_image.reshape(-1) # Flatten to shape [48*128*128] - # Create a new tensor of the required shape [255, 255, 3] - latent_image = flattened_tensor[: 255 * 255 * 3].reshape(255, 255, 3) # Reshape to RGB format + # # Create a new tensor of the required shape [255, 255, 3] + # latent_image = flattened_tensor[: 255 * 255 * 3].reshape(255, 255, 3) # Reshape to RGB format - # Convert to a NumPy array and then to a PIL Image - image = Image.fromarray(latent_image.cpu().numpy().astype(np.uint8)) + # # Convert to a NumPy array and then to a PIL Image + # image = Image.fromarray(latent_image.cpu().numpy().astype(np.uint8)) - (width, height) = image.size - width *= 8 - height *= 8 + # (width, height) = image.size + # width *= 8 + # height *= 8 - dataURL = image_to_dataURL(image, image_format="JPEG") + # dataURL = image_to_dataURL(image, image_format="JPEG") - # TODO: move this whole function to invocation context to properly reference these variables - context._services.events.emit_invocation_denoise_progress( - context._data.queue_item, - context._data.invocation, - state, - ProgressImage(dataURL=dataURL, width=width, height=height), - ) + # # TODO: move this whole function to invocation context to properly reference these variables + # context._services.events.emit_invocation_denoise_progress( + # context._data.queue_item, + # context._data.invocation, + # state, + # ProgressImage(dataURL=dataURL, width=width, height=height), + # ) x = denoise( model=transformer,