mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Initial (barely) working version of IP-Adapter model management.
This commit is contained in:
parent
0d823901ef
commit
3ee9a21647
@ -16,10 +16,10 @@ from invokeai.app.invocations.baseinvocation import (
|
||||
from invokeai.app.invocations.primitives import ImageField
|
||||
|
||||
IP_ADAPTER_MODELS = Literal[
|
||||
"models/core/ip_adapters/sd-1/ip-adapter_sd15.bin",
|
||||
"models/core/ip_adapters/sd-1/ip-adapter-plus_sd15.bin",
|
||||
"models/core/ip_adapters/sd-1/ip-adapter-plus-face_sd15.bin",
|
||||
"models/core/ip_adapters/sdxl/ip-adapter_sdxl.bin",
|
||||
"ip-adapter_sd15",
|
||||
"ip-adapter-plus_sd15",
|
||||
"ip-adapter-plus-face_sd15",
|
||||
"ip-adapter_sdxl",
|
||||
]
|
||||
|
||||
IP_ADAPTER_IMAGE_ENCODER_MODELS = Literal[
|
||||
@ -52,7 +52,7 @@ class IPAdapterInvocation(BaseInvocation):
|
||||
# Inputs
|
||||
image: ImageField = InputField(description="The IP-Adapter image prompt.")
|
||||
ip_adapter_model: IP_ADAPTER_MODELS = InputField(
|
||||
default="models/core/ip_adapters/sd-1/ip-adapter_sd15.bin",
|
||||
default="ip-adapter_sd15.bin",
|
||||
description="The name of the IP-Adapter model.",
|
||||
title="IP-Adapter Model",
|
||||
)
|
||||
@ -65,12 +65,8 @@ class IPAdapterInvocation(BaseInvocation):
|
||||
return IPAdapterOutput(
|
||||
ip_adapter=IPAdapterField(
|
||||
image=self.image,
|
||||
ip_adapter_model=(
|
||||
context.services.configuration.get_config().root_dir / self.ip_adapter_model
|
||||
).as_posix(),
|
||||
image_encoder_model=(
|
||||
context.services.configuration.get_config().root_dir / self.image_encoder_model
|
||||
).as_posix(),
|
||||
ip_adapter_model=self.ip_adapter_model,
|
||||
image_encoder_model=self.image_encoder_model,
|
||||
weight=self.weight,
|
||||
),
|
||||
)
|
||||
|
@ -403,14 +403,23 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
self,
|
||||
context: InvocationContext,
|
||||
ip_adapter: Optional[IPAdapterField],
|
||||
) -> IPAdapterData:
|
||||
exit_stack: ExitStack,
|
||||
) -> Optional[IPAdapterData]:
|
||||
if ip_adapter is None:
|
||||
return None
|
||||
|
||||
input_image = context.services.images.get_pil_image(ip_adapter.image.image_name)
|
||||
|
||||
ip_adapter_model = exit_stack.enter_context(
|
||||
context.services.model_manager.get_model(
|
||||
model_name=ip_adapter.ip_adapter_model,
|
||||
model_type=ModelType.IPAdapter,
|
||||
base_model=BaseModelType.StableDiffusion1, # HACK(ryand): Pass this in properly
|
||||
context=context,
|
||||
)
|
||||
)
|
||||
return IPAdapterData(
|
||||
ip_adapter_model=ip_adapter.ip_adapter_model, # name of model, NOT model object.
|
||||
image_encoder_model=ip_adapter.image_encoder_model, # name of model, NOT model object.
|
||||
ip_adapter_model=ip_adapter_model,
|
||||
image=input_image,
|
||||
weight=ip_adapter.weight,
|
||||
)
|
||||
@ -543,6 +552,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
ip_adapter_data = self.prep_ip_adapter_data(
|
||||
context=context,
|
||||
ip_adapter=self.ip_adapter,
|
||||
exit_stack=exit_stack,
|
||||
)
|
||||
|
||||
num_inference_steps, timesteps, init_timestep = self.init_scheduler(
|
||||
|
@ -7,23 +7,33 @@ import warnings
|
||||
from dataclasses import dataclass, field
|
||||
from pathlib import Path
|
||||
from tempfile import TemporaryDirectory
|
||||
from typing import Optional, List, Dict, Callable, Union, Set
|
||||
from typing import Callable, Dict, List, Optional, Set, Union
|
||||
|
||||
import requests
|
||||
import torch
|
||||
from diffusers import DiffusionPipeline
|
||||
from diffusers import logging as dlogging
|
||||
import torch
|
||||
from huggingface_hub import hf_hub_url, HfFolder, HfApi
|
||||
from huggingface_hub import HfApi, HfFolder, hf_hub_url
|
||||
from omegaconf import OmegaConf
|
||||
from tqdm import tqdm
|
||||
|
||||
import invokeai.configs as configs
|
||||
|
||||
from invokeai.app.services.config import InvokeAIAppConfig
|
||||
from invokeai.backend.model_management import ModelManager, ModelType, BaseModelType, ModelVariantType, AddModelResult
|
||||
from invokeai.backend.model_management.model_probe import ModelProbe, SchedulerPredictionType, ModelProbeInfo
|
||||
from invokeai.backend.model_management import (
|
||||
AddModelResult,
|
||||
BaseModelType,
|
||||
ModelManager,
|
||||
ModelType,
|
||||
ModelVariantType,
|
||||
)
|
||||
from invokeai.backend.model_management.model_probe import (
|
||||
ModelProbe,
|
||||
ModelProbeInfo,
|
||||
SchedulerPredictionType,
|
||||
)
|
||||
from invokeai.backend.util import download_with_resume
|
||||
from invokeai.backend.util.devices import torch_dtype, choose_torch_device
|
||||
from invokeai.backend.util.devices import choose_torch_device, torch_dtype
|
||||
|
||||
from ..util.logging import InvokeAILogger
|
||||
|
||||
warnings.filterwarnings("ignore")
|
||||
@ -308,6 +318,7 @@ class ModelInstall(object):
|
||||
location = self._download_hf_pipeline(repo_id, staging) # pipeline
|
||||
elif "unet/model.onnx" in files:
|
||||
location = self._download_hf_model(repo_id, files, staging)
|
||||
# TODO(ryand): Add special handling for ip_adapter?
|
||||
else:
|
||||
for suffix in ["safetensors", "bin"]:
|
||||
if f"pytorch_lora_weights.{suffix}" in files:
|
||||
@ -534,14 +545,17 @@ def hf_download_with_resume(
|
||||
logger.info(f"{model_name}: Downloading...")
|
||||
|
||||
try:
|
||||
with open(model_dest, open_mode) as file, tqdm(
|
||||
with (
|
||||
open(model_dest, open_mode) as file,
|
||||
tqdm(
|
||||
desc=model_name,
|
||||
initial=exist_size,
|
||||
total=total + exist_size,
|
||||
unit="iB",
|
||||
unit_scale=True,
|
||||
unit_divisor=1000,
|
||||
) as bar:
|
||||
) as bar,
|
||||
):
|
||||
for data in resp.iter_content(chunk_size=1024):
|
||||
size = file.write(data)
|
||||
bar.update(size)
|
||||
|
@ -2,6 +2,7 @@
|
||||
# and modified as needed
|
||||
|
||||
from contextlib import contextmanager
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
from diffusers.models import UNet2DConditionModel
|
||||
@ -45,36 +46,74 @@ class IPAdapter:
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
unet: UNet2DConditionModel,
|
||||
image_encoder_path: str,
|
||||
ip_adapter_ckpt_path: str,
|
||||
device: torch.device,
|
||||
dtype: torch.dtype = torch.float16,
|
||||
num_tokens: int = 4,
|
||||
):
|
||||
self._unet = unet
|
||||
self._device = device
|
||||
self.device = device
|
||||
self.dtype = dtype
|
||||
|
||||
self._image_encoder_path = image_encoder_path
|
||||
self._ip_adapter_ckpt_path = ip_adapter_ckpt_path
|
||||
self._num_tokens = num_tokens
|
||||
|
||||
self._attn_processors = self._prepare_attention_processors()
|
||||
|
||||
# load image encoder
|
||||
self._image_encoder = CLIPVisionModelWithProjection.from_pretrained(self._image_encoder_path).to(
|
||||
self._device, dtype=torch.float16
|
||||
self.device, dtype=self.dtype
|
||||
)
|
||||
self._clip_image_processor = CLIPImageProcessor()
|
||||
# image proj model
|
||||
self._image_proj_model = self._init_image_proj_model()
|
||||
|
||||
self._load_weights()
|
||||
# Fields to be initialized later in initialize().
|
||||
self._unet = None
|
||||
self._image_proj_model = None
|
||||
self._attn_processors = None
|
||||
|
||||
self._state_dict = torch.load(self._ip_adapter_ckpt_path, map_location="cpu")
|
||||
|
||||
def is_initialized(self):
|
||||
return self._unet is not None and self._image_proj_model is not None and self._attn_processors is not None
|
||||
|
||||
def initialize(self, unet: UNet2DConditionModel):
|
||||
"""Finish the model initialization process.
|
||||
|
||||
HACK: This is separate from __init__ for compatibility with the model manager. The full initialization requires
|
||||
access to the UNet model to be patched, which can not easily be passed to __init__ by the model manager.
|
||||
|
||||
Args:
|
||||
unet (UNet2DConditionModel): The UNet whose attention blocks will be patched by this IP-Adapter.
|
||||
"""
|
||||
if self.is_initialized():
|
||||
raise Exception("IPAdapter has already been initialized.")
|
||||
|
||||
self._unet = unet
|
||||
self._image_proj_model = self._init_image_proj_model()
|
||||
self._attn_processors = self._prepare_attention_processors()
|
||||
|
||||
# Copy the weights from the _state_dict into the models.
|
||||
self._image_proj_model.load_state_dict(self._state_dict["image_proj"])
|
||||
ip_layers = torch.nn.ModuleList(self._attn_processors.values())
|
||||
ip_layers.load_state_dict(self._state_dict["ip_adapter"])
|
||||
|
||||
self._state_dict = None
|
||||
|
||||
def to(self, device: torch.device, dtype: Optional[torch.dtype] = None):
|
||||
self.device = device
|
||||
if dtype is not None:
|
||||
self.dtype = dtype
|
||||
|
||||
for model in [self._image_encoder, self._image_proj_model, self._attn_processors]:
|
||||
# If this is called before initialize(), then some models will still be None. We just update the non-None
|
||||
# models.
|
||||
if model is not None:
|
||||
model.to(device=self.device, dtype=self.dtype)
|
||||
|
||||
def _init_image_proj_model(self):
|
||||
image_proj_model = ImageProjModel(
|
||||
cross_attention_dim=self._unet.config.cross_attention_dim,
|
||||
clip_embeddings_dim=self._image_encoder.config.projection_dim,
|
||||
clip_extra_context_tokens=self._num_tokens,
|
||||
).to(self._device, dtype=torch.float16)
|
||||
).to(self.device, dtype=self.dtype)
|
||||
return image_proj_model
|
||||
|
||||
def _prepare_attention_processors(self):
|
||||
@ -99,7 +138,7 @@ class IPAdapter:
|
||||
hidden_size=hidden_size,
|
||||
cross_attention_dim=cross_attention_dim,
|
||||
scale=1.0,
|
||||
).to(self._device, dtype=torch.float16)
|
||||
).to(self.device, dtype=self.dtype)
|
||||
return attn_procs
|
||||
|
||||
@contextmanager
|
||||
@ -109,30 +148,36 @@ class IPAdapter:
|
||||
Yields:
|
||||
None
|
||||
"""
|
||||
if not self.is_initialized():
|
||||
raise Exception("Call IPAdapter.initialize() before calling IPAdapter.apply_ip_adapter_attention().")
|
||||
|
||||
orig_attn_processors = self._unet.attn_processors
|
||||
# Make a (moderately-) shallow copy of the self._attn_processors dict, because set_attn_processor(...) actually
|
||||
# pops elements from the passed dict.
|
||||
ip_adapter_attn_processors = {k: v for k, v in self._attn_processors.items()}
|
||||
try:
|
||||
self._unet.set_attn_processor(self._attn_processors)
|
||||
self._unet.set_attn_processor(ip_adapter_attn_processors)
|
||||
yield None
|
||||
finally:
|
||||
self._unet.set_attn_processor(orig_attn_processors)
|
||||
|
||||
def _load_weights(self):
|
||||
state_dict = torch.load(self._ip_adapter_ckpt_path, map_location="cpu")
|
||||
self._image_proj_model.load_state_dict(state_dict["image_proj"])
|
||||
ip_layers = torch.nn.ModuleList(self._attn_processors.values())
|
||||
ip_layers.load_state_dict(state_dict["ip_adapter"])
|
||||
|
||||
@torch.inference_mode()
|
||||
def get_image_embeds(self, pil_image):
|
||||
if not self.is_initialized():
|
||||
raise Exception("Call IPAdapter.initialize() before calling IPAdapter.get_image_embeds().")
|
||||
|
||||
if isinstance(pil_image, Image.Image):
|
||||
pil_image = [pil_image]
|
||||
clip_image = self._clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
|
||||
clip_image_embeds = self._image_encoder(clip_image.to(self._device, dtype=torch.float16)).image_embeds
|
||||
clip_image_embeds = self._image_encoder(clip_image.to(self.device, dtype=self.dtype)).image_embeds
|
||||
image_prompt_embeds = self._image_proj_model(clip_image_embeds)
|
||||
uncond_image_prompt_embeds = self._image_proj_model(torch.zeros_like(clip_image_embeds))
|
||||
return image_prompt_embeds, uncond_image_prompt_embeds
|
||||
|
||||
def set_scale(self, scale):
|
||||
if not self.is_initialized():
|
||||
raise Exception("Call IPAdapter.initialize() before calling IPAdapter.set_scale().")
|
||||
|
||||
for attn_processor in self._attn_processors.values():
|
||||
if isinstance(attn_processor, IPAttnProcessor):
|
||||
attn_processor.scale = scale
|
||||
@ -151,15 +196,18 @@ class IPAdapterPlus(IPAdapter):
|
||||
embedding_dim=self._image_encoder.config.hidden_size,
|
||||
output_dim=self._unet.config.cross_attention_dim,
|
||||
ff_mult=4,
|
||||
).to(self._device, dtype=torch.float16)
|
||||
).to(self.device, dtype=self.dtype)
|
||||
return image_proj_model
|
||||
|
||||
@torch.inference_mode()
|
||||
def get_image_embeds(self, pil_image):
|
||||
if not self.is_initialized():
|
||||
raise Exception("Call IPAdapter.initialize() before calling IPAdapter.get_image_embeds().")
|
||||
|
||||
if isinstance(pil_image, Image.Image):
|
||||
pil_image = [pil_image]
|
||||
clip_image = self._clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
|
||||
clip_image = clip_image.to(self._device, dtype=torch.float16)
|
||||
clip_image = clip_image.to(self.device, dtype=self.dtype)
|
||||
clip_image_embeds = self._image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
|
||||
image_prompt_embeds = self._image_proj_model(clip_image_embeds)
|
||||
uncond_clip_image_embeds = self._image_encoder(
|
||||
|
@ -1001,8 +1001,8 @@ class ModelManager(object):
|
||||
new_models_found = True
|
||||
except DuplicateModelException as e:
|
||||
self.logger.warning(e)
|
||||
except InvalidModelException:
|
||||
self.logger.warning(f"Not a valid model: {model_path}")
|
||||
except InvalidModelException as e:
|
||||
self.logger.warning(f"Not a valid model: {model_path}. {e}")
|
||||
except NotImplementedError as e:
|
||||
self.logger.warning(e)
|
||||
|
||||
|
@ -61,7 +61,7 @@ class ModelType(str, Enum):
|
||||
Lora = "lora"
|
||||
ControlNet = "controlnet" # used by model_probe
|
||||
TextualInversion = "embedding"
|
||||
IPAdapter = "ipadapter"
|
||||
IPAdapter = "ip_adapter"
|
||||
|
||||
|
||||
class SubModelType(str, Enum):
|
||||
|
@ -1,24 +1,31 @@
|
||||
import os
|
||||
import typing
|
||||
from enum import Enum
|
||||
from typing import Any, Optional
|
||||
from typing import Any, Literal, Optional
|
||||
|
||||
import torch
|
||||
|
||||
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter, IPAdapterPlus
|
||||
from invokeai.backend.model_management.models.base import (
|
||||
BaseModelType,
|
||||
InvalidModelException,
|
||||
ModelBase,
|
||||
ModelConfigBase,
|
||||
ModelType,
|
||||
SubModelType,
|
||||
classproperty,
|
||||
)
|
||||
|
||||
|
||||
class IPAdapterModelFormat(Enum):
|
||||
# The 'official' IP-Adapter model format from Tencent (i.e. https://huggingface.co/h94/IP-Adapter)
|
||||
Tencent = "tencent"
|
||||
class IPAdapterModelFormat(str, Enum):
|
||||
# Checkpoint is the 'official' IP-Adapter model format from Tencent (i.e. https://huggingface.co/h94/IP-Adapter)
|
||||
Checkpoint = "checkpoint"
|
||||
|
||||
|
||||
class IPAdapterModel(ModelBase):
|
||||
class CheckpointConfig(ModelConfigBase):
|
||||
model_format: Literal[IPAdapterModelFormat.Checkpoint]
|
||||
|
||||
def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType):
|
||||
assert model_type == ModelType.IPAdapter
|
||||
super().__init__(model_path, base_model, model_type)
|
||||
@ -31,23 +38,58 @@ class IPAdapterModel(ModelBase):
|
||||
if not os.path.exists(path):
|
||||
raise ModuleNotFoundError(f"No IP-Adapter model at path '{path}'.")
|
||||
|
||||
raise NotImplementedError()
|
||||
if os.path.isfile(path):
|
||||
if path.endswith((".safetensors", ".ckpt", ".pt", ".pth", ".bin")):
|
||||
return IPAdapterModelFormat.Checkpoint
|
||||
|
||||
raise InvalidModelException(f"Unexpected IP-Adapter model format: {path}")
|
||||
|
||||
@classproperty
|
||||
def save_to_config(cls) -> bool:
|
||||
raise NotImplementedError()
|
||||
return True
|
||||
|
||||
def get_size(self, child_type: Optional[SubModelType] = None) -> int:
|
||||
if child_type is not None:
|
||||
raise ValueError("There are no child models in an IP-Adapter model.")
|
||||
|
||||
raise NotImplementedError()
|
||||
# TODO(ryand): Update self.model_size when the model is loaded from disk.
|
||||
return self.model_size
|
||||
|
||||
def _get_text_encoder_path(self) -> str:
|
||||
# TODO(ryand): Move the CLIP image encoder to its own model directory.
|
||||
return os.path.join(os.path.dirname(self.model_path), "image_encoder")
|
||||
|
||||
def get_model(
|
||||
self,
|
||||
torch_dtype: Optional[torch.dtype],
|
||||
child_type: Optional[SubModelType] = None,
|
||||
) -> Any:
|
||||
) -> typing.Union[IPAdapter, IPAdapterPlus]:
|
||||
if child_type is not None:
|
||||
raise ValueError("There are no child models in an IP-Adapter model.")
|
||||
raise NotImplementedError()
|
||||
|
||||
# TODO(ryand): Update IPAdapter to accept a torch_dtype param.
|
||||
|
||||
# TODO(ryand): Checking for "plus" in the file name is fragile. It should be possible to infer whether this is a
|
||||
# "plus" variant by loading the state_dict.
|
||||
if "plus" in str(self.model_path):
|
||||
return IPAdapterPlus(
|
||||
image_encoder_path=self._get_text_encoder_path(), ip_adapter_ckpt_path=self.model_path, device="cpu"
|
||||
)
|
||||
else:
|
||||
return IPAdapter(
|
||||
image_encoder_path=self._get_text_encoder_path(), ip_adapter_ckpt_path=self.model_path, device="cpu"
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def convert_if_required(
|
||||
cls,
|
||||
model_path: str,
|
||||
output_path: str,
|
||||
config: ModelConfigBase,
|
||||
base_model: BaseModelType,
|
||||
) -> str:
|
||||
format = cls.detect_format(model_path)
|
||||
if format == IPAdapterModelFormat.Checkpoint:
|
||||
return model_path
|
||||
else:
|
||||
raise ValueError(f"Unsupported format: '{format}'.")
|
||||
|
@ -171,8 +171,7 @@ class ControlNetData:
|
||||
|
||||
@dataclass
|
||||
class IPAdapterData:
|
||||
ip_adapter_model: str = Field(default=None)
|
||||
image_encoder_model: str = Field(default=None)
|
||||
ip_adapter_model: IPAdapter = Field(default=None)
|
||||
image: PIL.Image = Field(default=None)
|
||||
# TODO: change to polymorphic so can do different weights per step (once implemented...)
|
||||
# weight: Union[float, List[float]] = Field(default=1.0)
|
||||
@ -417,27 +416,15 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
return latents, attention_map_saver
|
||||
|
||||
if ip_adapter_data is not None:
|
||||
# Initialize IPAdapter
|
||||
# TODO(ryand): Refactor to use model management for the IP-Adapter.
|
||||
if "plus" in ip_adapter_data.ip_adapter_model:
|
||||
ip_adapter = IPAdapterPlus(
|
||||
self.unet,
|
||||
ip_adapter_data.image_encoder_model,
|
||||
ip_adapter_data.ip_adapter_model,
|
||||
self.unet.device,
|
||||
num_tokens=16,
|
||||
)
|
||||
else:
|
||||
ip_adapter = IPAdapter(
|
||||
self.unet,
|
||||
ip_adapter_data.image_encoder_model,
|
||||
ip_adapter_data.ip_adapter_model,
|
||||
self.unet.device,
|
||||
)
|
||||
ip_adapter.set_scale(ip_adapter_data.weight)
|
||||
if not ip_adapter_data.ip_adapter_model.is_initialized():
|
||||
# TODO(ryan): Do we need to initialize every time? How long does initialize take?
|
||||
ip_adapter_data.ip_adapter_model.initialize(self.unet)
|
||||
ip_adapter_data.ip_adapter_model.set_scale(ip_adapter_data.weight)
|
||||
|
||||
# Get image embeddings from CLIP and ImageProjModel.
|
||||
image_prompt_embeds, uncond_image_prompt_embeds = ip_adapter.get_image_embeds(ip_adapter_data.image)
|
||||
image_prompt_embeds, uncond_image_prompt_embeds = ip_adapter_data.ip_adapter_model.get_image_embeds(
|
||||
ip_adapter_data.image
|
||||
)
|
||||
conditioning_data.ip_adapter_conditioning = IPAdapterConditioningInfo(
|
||||
image_prompt_embeds, uncond_image_prompt_embeds
|
||||
)
|
||||
@ -451,7 +438,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
elif ip_adapter_data is not None:
|
||||
# TODO(ryand): Should we raise an exception if both custom attention and IP-Adapter attention are active?
|
||||
# As it is now, the IP-Adapter will silently be skipped.
|
||||
attn_ctx = ip_adapter.apply_ip_adapter_attention()
|
||||
attn_ctx = ip_adapter_data.ip_adapter_model.apply_ip_adapter_attention()
|
||||
else:
|
||||
attn_ctx = nullcontext()
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user