chore: Black linting

This commit is contained in:
blessedcoolant 2023-08-27 06:17:08 +12:00
parent b18695df6f
commit 3f8d17d6b7

View File

@ -8,21 +8,27 @@ import numpy as np
import torch import torch
import torchvision.transforms as T import torchvision.transforms as T
from diffusers.image_processor import VaeImageProcessor from diffusers.image_processor import VaeImageProcessor
from diffusers.models.attention_processor import (AttnProcessor2_0, from diffusers.models.attention_processor import (
AttnProcessor2_0,
LoRAAttnProcessor2_0, LoRAAttnProcessor2_0,
LoRAXFormersAttnProcessor, LoRAXFormersAttnProcessor,
XFormersAttnProcessor) XFormersAttnProcessor,
)
from diffusers.schedulers import DPMSolverSDEScheduler from diffusers.schedulers import DPMSolverSDEScheduler
from diffusers.schedulers import SchedulerMixin as Scheduler from diffusers.schedulers import SchedulerMixin as Scheduler
from pydantic import validator from pydantic import validator
from torchvision.transforms.functional import resize as tv_resize from torchvision.transforms.functional import resize as tv_resize
from invokeai.app.invocations.metadata import CoreMetadata from invokeai.app.invocations.metadata import CoreMetadata
from invokeai.app.invocations.primitives import (DenoiseMaskField, from invokeai.app.invocations.primitives import (
DenoiseMaskOutput, ImageField, DenoiseMaskField,
ImageOutput, LatentsField, DenoiseMaskOutput,
ImageField,
ImageOutput,
LatentsField,
LatentsOutput, LatentsOutput,
build_latents_output) build_latents_output,
)
from invokeai.app.util.controlnet_utils import prepare_control_image from invokeai.app.util.controlnet_utils import prepare_control_image
from invokeai.app.util.step_callback import stable_diffusion_step_callback from invokeai.app.util.step_callback import stable_diffusion_step_callback
from invokeai.backend.model_management.models import ModelType, SilenceWarnings from invokeai.backend.model_management.models import ModelType, SilenceWarnings
@ -31,16 +37,16 @@ from ...backend.model_management.lora import ModelPatcher
from ...backend.model_management.models import BaseModelType from ...backend.model_management.models import BaseModelType
from ...backend.stable_diffusion import PipelineIntermediateState from ...backend.stable_diffusion import PipelineIntermediateState
from ...backend.stable_diffusion.diffusers_pipeline import ( from ...backend.stable_diffusion.diffusers_pipeline import (
ConditioningData, ControlNetData, StableDiffusionGeneratorPipeline, ConditioningData,
image_resized_to_grid_as_tensor) ControlNetData,
from ...backend.stable_diffusion.diffusion.shared_invokeai_diffusion import \ StableDiffusionGeneratorPipeline,
PostprocessingSettings image_resized_to_grid_as_tensor,
)
from ...backend.stable_diffusion.diffusion.shared_invokeai_diffusion import PostprocessingSettings
from ...backend.stable_diffusion.schedulers import SCHEDULER_MAP from ...backend.stable_diffusion.schedulers import SCHEDULER_MAP
from ...backend.util.devices import choose_precision, choose_torch_device from ...backend.util.devices import choose_precision, choose_torch_device
from ..models.image import ImageCategory, ResourceOrigin from ..models.image import ImageCategory, ResourceOrigin
from .baseinvocation import (BaseInvocation, FieldDescriptions, Input, from .baseinvocation import BaseInvocation, FieldDescriptions, Input, InputField, InvocationContext, UIType, tags, title
InputField, InvocationContext, UIType, tags,
title)
from .compel import ConditioningField from .compel import ConditioningField
from .controlnet_image_processors import ControlField from .controlnet_image_processors import ControlField
from .model import ModelInfo, UNetField, VaeField from .model import ModelInfo, UNetField, VaeField
@ -60,11 +66,7 @@ class CreateDenoiseMaskInvocation(BaseInvocation):
type: Literal["create_denoise_mask"] = "create_denoise_mask" type: Literal["create_denoise_mask"] = "create_denoise_mask"
# Inputs # Inputs
vae: VaeField = InputField( vae: VaeField = InputField(description=FieldDescriptions.vae, input=Input.Connection, ui_order=0)
description=FieldDescriptions.vae,
input=Input.Connection,
ui_order=0
)
image: Optional[ImageField] = InputField(default=None, description="Image which will be masked", ui_order=1) image: Optional[ImageField] = InputField(default=None, description="Image which will be masked", ui_order=1)
mask: ImageField = InputField(description="The mask to use when pasting", ui_order=2) mask: ImageField = InputField(description="The mask to use when pasting", ui_order=2)
tiled: bool = InputField(default=False, description=FieldDescriptions.tiled, ui_order=3) tiled: bool = InputField(default=False, description=FieldDescriptions.tiled, ui_order=3)