feat: refactor services folder/module structure

Refactor services folder/module structure.

**Motivation**

While working on our services I've repeatedly encountered circular imports and a general lack of clarity regarding where to put things. The structure introduced goes a long way towards resolving those issues, setting us up for a clean structure going forward.

**Services**

Services are now in their own folder with a few files:

- `services/{service_name}/__init__.py`: init as needed, mostly empty now
- `services/{service_name}/{service_name}_base.py`: the base class for the service
- `services/{service_name}/{service_name}_{impl_type}.py`: the default concrete implementation of the service - typically one of `sqlite`, `default`, or `memory`
- `services/{service_name}/{service_name}_common.py`: any common items - models, exceptions, utilities, etc

Though it's a bit verbose to have the service name both as the folder name and the prefix for files, I found it is _extremely_ confusing to have all of the base classes just be named `base.py`. So, at the cost of some verbosity when importing things, I've included the service name in the filename.

There are some minor logic changes. For example, in `InvocationProcessor`, instead of assigning the model manager service to a variable to be used later in the file, the service is used directly via the `Invoker`.

**Shared**

Things that are used across disparate services are in `services/shared/`:

- `default_graphs.py`: previously in `services/`
- `graphs.py`: previously in `services/`
- `paginatation`: generic pagination models used in a few services
- `sqlite`: the `SqliteDatabase` class, other sqlite-specific things
This commit is contained in:
psychedelicious 2023-09-24 18:11:07 +10:00 committed by Kent Keirsey
parent 88bee96ca3
commit 402cf9b0ee
100 changed files with 3362 additions and 2361 deletions

View File

@ -2,33 +2,34 @@
from logging import Logger from logging import Logger
from invokeai.app.services.board_image_record_storage import SqliteBoardImageRecordStorage
from invokeai.app.services.board_images import BoardImagesService
from invokeai.app.services.board_record_storage import SqliteBoardRecordStorage
from invokeai.app.services.boards import BoardService
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.app.services.image_record_storage import SqliteImageRecordStorage
from invokeai.app.services.images import ImageService
from invokeai.app.services.invocation_cache.invocation_cache_memory import MemoryInvocationCache
from invokeai.app.services.resource_name import SimpleNameService
from invokeai.app.services.session_processor.session_processor_default import DefaultSessionProcessor
from invokeai.app.services.session_queue.session_queue_sqlite import SqliteSessionQueue
from invokeai.app.services.shared.sqlite import SqliteDatabase
from invokeai.app.services.urls import LocalUrlService
from invokeai.backend.util.logging import InvokeAILogger from invokeai.backend.util.logging import InvokeAILogger
from invokeai.version.invokeai_version import __version__ from invokeai.version.invokeai_version import __version__
from ..services.default_graphs import create_system_graphs from ..services.board_image_records.board_image_records_sqlite import SqliteBoardImageRecordStorage
from ..services.graph import GraphExecutionState, LibraryGraph from ..services.board_images.board_images_default import BoardImagesService
from ..services.image_file_storage import DiskImageFileStorage from ..services.board_records.board_records_sqlite import SqliteBoardRecordStorage
from ..services.invocation_queue import MemoryInvocationQueue from ..services.boards.boards_default import BoardService
from ..services.config import InvokeAIAppConfig
from ..services.image_files.image_files_disk import DiskImageFileStorage
from ..services.image_records.image_records_sqlite import SqliteImageRecordStorage
from ..services.images.images_default import ImageService
from ..services.invocation_cache.invocation_cache_memory import MemoryInvocationCache
from ..services.invocation_processor.invocation_processor_default import DefaultInvocationProcessor
from ..services.invocation_queue.invocation_queue_memory import MemoryInvocationQueue
from ..services.invocation_services import InvocationServices from ..services.invocation_services import InvocationServices
from ..services.invocation_stats import InvocationStatsService from ..services.invocation_stats.invocation_stats_default import InvocationStatsService
from ..services.invoker import Invoker from ..services.invoker import Invoker
from ..services.latent_storage import DiskLatentsStorage, ForwardCacheLatentsStorage from ..services.item_storage.item_storage_sqlite import SqliteItemStorage
from ..services.model_manager_service import ModelManagerService from ..services.latents_storage.latents_storage_disk import DiskLatentsStorage
from ..services.processor import DefaultInvocationProcessor from ..services.latents_storage.latents_storage_forward_cache import ForwardCacheLatentsStorage
from ..services.sqlite import SqliteItemStorage from ..services.model_manager.model_manager_default import ModelManagerService
from ..services.names.names_default import SimpleNameService
from ..services.session_processor.session_processor_default import DefaultSessionProcessor
from ..services.session_queue.session_queue_sqlite import SqliteSessionQueue
from ..services.shared.default_graphs import create_system_graphs
from ..services.shared.graph import GraphExecutionState, LibraryGraph
from ..services.shared.sqlite import SqliteDatabase
from ..services.urls.urls_default import LocalUrlService
from .events import FastAPIEventService from .events import FastAPIEventService

View File

@ -7,7 +7,7 @@ from typing import Any
from fastapi_events.dispatcher import dispatch from fastapi_events.dispatcher import dispatch
from ..services.events import EventServiceBase from ..services.events.events_base import EventServiceBase
class FastAPIEventService(EventServiceBase): class FastAPIEventService(EventServiceBase):

View File

@ -4,8 +4,8 @@ from fastapi import Body, HTTPException, Path, Query
from fastapi.routing import APIRouter from fastapi.routing import APIRouter
from pydantic import BaseModel, Field from pydantic import BaseModel, Field
from invokeai.app.services.board_record_storage import BoardChanges from invokeai.app.services.board_records.board_records_common import BoardChanges
from invokeai.app.services.models.board_record import BoardDTO from invokeai.app.services.boards.boards_common import BoardDTO
from invokeai.app.services.shared.pagination import OffsetPaginatedResults from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from ..dependencies import ApiDependencies from ..dependencies import ApiDependencies

View File

@ -8,8 +8,8 @@ from PIL import Image
from pydantic import BaseModel, Field from pydantic import BaseModel, Field
from invokeai.app.invocations.metadata import ImageMetadata from invokeai.app.invocations.metadata import ImageMetadata
from invokeai.app.models.image import ImageCategory, ResourceOrigin from invokeai.app.services.image_records.image_records_common import ImageCategory, ImageRecordChanges, ResourceOrigin
from invokeai.app.services.models.image_record import ImageDTO, ImageRecordChanges, ImageUrlsDTO from invokeai.app.services.images.images_common import ImageDTO, ImageUrlsDTO
from invokeai.app.services.shared.pagination import OffsetPaginatedResults from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from ..dependencies import ApiDependencies from ..dependencies import ApiDependencies

View File

@ -18,9 +18,9 @@ from invokeai.app.services.session_queue.session_queue_common import (
SessionQueueItemDTO, SessionQueueItemDTO,
SessionQueueStatus, SessionQueueStatus,
) )
from invokeai.app.services.shared.graph import Graph
from invokeai.app.services.shared.pagination import CursorPaginatedResults from invokeai.app.services.shared.pagination import CursorPaginatedResults
from ...services.graph import Graph
from ..dependencies import ApiDependencies from ..dependencies import ApiDependencies
session_queue_router = APIRouter(prefix="/v1/queue", tags=["queue"]) session_queue_router = APIRouter(prefix="/v1/queue", tags=["queue"])

View File

@ -11,7 +11,7 @@ from invokeai.app.services.shared.pagination import PaginatedResults
# Importing * is bad karma but needed here for node detection # Importing * is bad karma but needed here for node detection
from ...invocations import * # noqa: F401 F403 from ...invocations import * # noqa: F401 F403
from ...invocations.baseinvocation import BaseInvocation from ...invocations.baseinvocation import BaseInvocation
from ...services.graph import Edge, EdgeConnection, Graph, GraphExecutionState, NodeAlreadyExecutedError from ...services.shared.graph import Edge, EdgeConnection, Graph, GraphExecutionState, NodeAlreadyExecutedError
from ..dependencies import ApiDependencies from ..dependencies import ApiDependencies
session_router = APIRouter(prefix="/v1/sessions", tags=["sessions"]) session_router = APIRouter(prefix="/v1/sessions", tags=["sessions"])

View File

@ -5,7 +5,7 @@ from fastapi_events.handlers.local import local_handler
from fastapi_events.typing import Event from fastapi_events.typing import Event
from socketio import ASGIApp, AsyncServer from socketio import ASGIApp, AsyncServer
from ..services.events import EventServiceBase from ..services.events.events_base import EventServiceBase
class SocketIO: class SocketIO:

View File

@ -28,7 +28,7 @@ from pydantic import BaseModel, Field, validator
from pydantic.fields import ModelField, Undefined from pydantic.fields import ModelField, Undefined
from pydantic.typing import NoArgAnyCallable from pydantic.typing import NoArgAnyCallable
from invokeai.app.services.config.invokeai_config import InvokeAIAppConfig from invokeai.app.services.config.config_default import InvokeAIAppConfig
if TYPE_CHECKING: if TYPE_CHECKING:
from ..services.invocation_services import InvocationServices from ..services.invocation_services import InvocationServices

View File

@ -27,9 +27,9 @@ from PIL import Image
from pydantic import BaseModel, Field, validator from pydantic import BaseModel, Field, validator
from invokeai.app.invocations.primitives import ImageField, ImageOutput from invokeai.app.invocations.primitives import ImageField, ImageOutput
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
from ...backend.model_management import BaseModelType from ...backend.model_management import BaseModelType
from ..models.image import ImageCategory, ResourceOrigin
from .baseinvocation import ( from .baseinvocation import (
BaseInvocation, BaseInvocation,
BaseInvocationOutput, BaseInvocationOutput,

View File

@ -6,7 +6,7 @@ import numpy
from PIL import Image, ImageOps from PIL import Image, ImageOps
from invokeai.app.invocations.primitives import ImageField, ImageOutput from invokeai.app.invocations.primitives import ImageField, ImageOutput
from invokeai.app.models.image import ImageCategory, ResourceOrigin from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
from .baseinvocation import BaseInvocation, InputField, InvocationContext, invocation from .baseinvocation import BaseInvocation, InputField, InvocationContext, invocation

View File

@ -9,10 +9,10 @@ from PIL import Image, ImageChops, ImageFilter, ImageOps
from invokeai.app.invocations.metadata import CoreMetadata from invokeai.app.invocations.metadata import CoreMetadata
from invokeai.app.invocations.primitives import BoardField, ColorField, ImageField, ImageOutput from invokeai.app.invocations.primitives import BoardField, ColorField, ImageField, ImageOutput
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
from invokeai.backend.image_util.invisible_watermark import InvisibleWatermark from invokeai.backend.image_util.invisible_watermark import InvisibleWatermark
from invokeai.backend.image_util.safety_checker import SafetyChecker from invokeai.backend.image_util.safety_checker import SafetyChecker
from ..models.image import ImageCategory, ResourceOrigin
from .baseinvocation import BaseInvocation, FieldDescriptions, Input, InputField, InvocationContext, invocation from .baseinvocation import BaseInvocation, FieldDescriptions, Input, InputField, InvocationContext, invocation

View File

@ -7,12 +7,12 @@ import numpy as np
from PIL import Image, ImageOps from PIL import Image, ImageOps
from invokeai.app.invocations.primitives import ColorField, ImageField, ImageOutput from invokeai.app.invocations.primitives import ColorField, ImageField, ImageOutput
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
from invokeai.app.util.misc import SEED_MAX, get_random_seed from invokeai.app.util.misc import SEED_MAX, get_random_seed
from invokeai.backend.image_util.cv2_inpaint import cv2_inpaint from invokeai.backend.image_util.cv2_inpaint import cv2_inpaint
from invokeai.backend.image_util.lama import LaMA from invokeai.backend.image_util.lama import LaMA
from invokeai.backend.image_util.patchmatch import PatchMatch from invokeai.backend.image_util.patchmatch import PatchMatch
from ..models.image import ImageCategory, ResourceOrigin
from .baseinvocation import BaseInvocation, InputField, InvocationContext, invocation from .baseinvocation import BaseInvocation, InputField, InvocationContext, invocation
from .image import PIL_RESAMPLING_MAP, PIL_RESAMPLING_MODES from .image import PIL_RESAMPLING_MAP, PIL_RESAMPLING_MODES

View File

@ -34,6 +34,7 @@ from invokeai.app.invocations.primitives import (
build_latents_output, build_latents_output,
) )
from invokeai.app.invocations.t2i_adapter import T2IAdapterField from invokeai.app.invocations.t2i_adapter import T2IAdapterField
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
from invokeai.app.util.controlnet_utils import prepare_control_image from invokeai.app.util.controlnet_utils import prepare_control_image
from invokeai.app.util.step_callback import stable_diffusion_step_callback from invokeai.app.util.step_callback import stable_diffusion_step_callback
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter, IPAdapterPlus from invokeai.backend.ip_adapter.ip_adapter import IPAdapter, IPAdapterPlus
@ -54,7 +55,6 @@ from ...backend.stable_diffusion.diffusers_pipeline import (
from ...backend.stable_diffusion.diffusion.shared_invokeai_diffusion import PostprocessingSettings from ...backend.stable_diffusion.diffusion.shared_invokeai_diffusion import PostprocessingSettings
from ...backend.stable_diffusion.schedulers import SCHEDULER_MAP from ...backend.stable_diffusion.schedulers import SCHEDULER_MAP
from ...backend.util.devices import choose_precision, choose_torch_device from ...backend.util.devices import choose_precision, choose_torch_device
from ..models.image import ImageCategory, ResourceOrigin
from .baseinvocation import ( from .baseinvocation import (
BaseInvocation, BaseInvocation,
BaseInvocationOutput, BaseInvocationOutput,

View File

@ -14,13 +14,13 @@ from tqdm import tqdm
from invokeai.app.invocations.metadata import CoreMetadata from invokeai.app.invocations.metadata import CoreMetadata
from invokeai.app.invocations.primitives import ConditioningField, ConditioningOutput, ImageField, ImageOutput from invokeai.app.invocations.primitives import ConditioningField, ConditioningOutput, ImageField, ImageOutput
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
from invokeai.app.util.step_callback import stable_diffusion_step_callback from invokeai.app.util.step_callback import stable_diffusion_step_callback
from invokeai.backend import BaseModelType, ModelType, SubModelType from invokeai.backend import BaseModelType, ModelType, SubModelType
from ...backend.model_management import ONNXModelPatcher from ...backend.model_management import ONNXModelPatcher
from ...backend.stable_diffusion import PipelineIntermediateState from ...backend.stable_diffusion import PipelineIntermediateState
from ...backend.util import choose_torch_device from ...backend.util import choose_torch_device
from ..models.image import ImageCategory, ResourceOrigin
from .baseinvocation import ( from .baseinvocation import (
BaseInvocation, BaseInvocation,
BaseInvocationOutput, BaseInvocationOutput,

View File

@ -10,7 +10,7 @@ from PIL import Image
from realesrgan import RealESRGANer from realesrgan import RealESRGANer
from invokeai.app.invocations.primitives import ImageField, ImageOutput from invokeai.app.invocations.primitives import ImageField, ImageOutput
from invokeai.app.models.image import ImageCategory, ResourceOrigin from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
from invokeai.backend.util.devices import choose_torch_device from invokeai.backend.util.devices import choose_torch_device
from .baseinvocation import BaseInvocation, InputField, InvocationContext, invocation from .baseinvocation import BaseInvocation, InputField, InvocationContext, invocation

View File

@ -1,4 +0,0 @@
class CanceledException(Exception):
"""Execution canceled by user."""
pass

View File

@ -1,71 +0,0 @@
from enum import Enum
from pydantic import BaseModel, Field
from invokeai.app.util.metaenum import MetaEnum
class ProgressImage(BaseModel):
"""The progress image sent intermittently during processing"""
width: int = Field(description="The effective width of the image in pixels")
height: int = Field(description="The effective height of the image in pixels")
dataURL: str = Field(description="The image data as a b64 data URL")
class ResourceOrigin(str, Enum, metaclass=MetaEnum):
"""The origin of a resource (eg image).
- INTERNAL: The resource was created by the application.
- EXTERNAL: The resource was not created by the application.
This may be a user-initiated upload, or an internal application upload (eg Canvas init image).
"""
INTERNAL = "internal"
"""The resource was created by the application."""
EXTERNAL = "external"
"""The resource was not created by the application.
This may be a user-initiated upload, or an internal application upload (eg Canvas init image).
"""
class InvalidOriginException(ValueError):
"""Raised when a provided value is not a valid ResourceOrigin.
Subclasses `ValueError`.
"""
def __init__(self, message="Invalid resource origin."):
super().__init__(message)
class ImageCategory(str, Enum, metaclass=MetaEnum):
"""The category of an image.
- GENERAL: The image is an output, init image, or otherwise an image without a specialized purpose.
- MASK: The image is a mask image.
- CONTROL: The image is a ControlNet control image.
- USER: The image is a user-provide image.
- OTHER: The image is some other type of image with a specialized purpose. To be used by external nodes.
"""
GENERAL = "general"
"""GENERAL: The image is an output, init image, or otherwise an image without a specialized purpose."""
MASK = "mask"
"""MASK: The image is a mask image."""
CONTROL = "control"
"""CONTROL: The image is a ControlNet control image."""
USER = "user"
"""USER: The image is a user-provide image."""
OTHER = "other"
"""OTHER: The image is some other type of image with a specialized purpose. To be used by external nodes."""
class InvalidImageCategoryException(ValueError):
"""Raised when a provided value is not a valid ImageCategory.
Subclasses `ValueError`.
"""
def __init__(self, message="Invalid image category."):
super().__init__(message)

View File

@ -0,0 +1,47 @@
from abc import ABC, abstractmethod
from typing import Optional
class BoardImageRecordStorageBase(ABC):
"""Abstract base class for the one-to-many board-image relationship record storage."""
@abstractmethod
def add_image_to_board(
self,
board_id: str,
image_name: str,
) -> None:
"""Adds an image to a board."""
pass
@abstractmethod
def remove_image_from_board(
self,
image_name: str,
) -> None:
"""Removes an image from a board."""
pass
@abstractmethod
def get_all_board_image_names_for_board(
self,
board_id: str,
) -> list[str]:
"""Gets all board images for a board, as a list of the image names."""
pass
@abstractmethod
def get_board_for_image(
self,
image_name: str,
) -> Optional[str]:
"""Gets an image's board id, if it has one."""
pass
@abstractmethod
def get_image_count_for_board(
self,
board_id: str,
) -> int:
"""Gets the number of images for a board."""
pass

View File

@ -1,56 +1,12 @@
import sqlite3 import sqlite3
import threading import threading
from abc import ABC, abstractmethod
from typing import Optional, cast from typing import Optional, cast
from invokeai.app.services.models.image_record import ImageRecord, deserialize_image_record from invokeai.app.services.image_records.image_records_common import ImageRecord, deserialize_image_record
from invokeai.app.services.shared.sqlite import SqliteDatabase
from invokeai.app.services.shared.pagination import OffsetPaginatedResults from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from invokeai.app.services.shared.sqlite import SqliteDatabase
from .board_image_records_base import BoardImageRecordStorageBase
class BoardImageRecordStorageBase(ABC):
"""Abstract base class for the one-to-many board-image relationship record storage."""
@abstractmethod
def add_image_to_board(
self,
board_id: str,
image_name: str,
) -> None:
"""Adds an image to a board."""
pass
@abstractmethod
def remove_image_from_board(
self,
image_name: str,
) -> None:
"""Removes an image from a board."""
pass
@abstractmethod
def get_all_board_image_names_for_board(
self,
board_id: str,
) -> list[str]:
"""Gets all board images for a board, as a list of the image names."""
pass
@abstractmethod
def get_board_for_image(
self,
image_name: str,
) -> Optional[str]:
"""Gets an image's board id, if it has one."""
pass
@abstractmethod
def get_image_count_for_board(
self,
board_id: str,
) -> int:
"""Gets the number of images for a board."""
pass
class SqliteBoardImageRecordStorage(BoardImageRecordStorageBase): class SqliteBoardImageRecordStorage(BoardImageRecordStorageBase):

View File

@ -1,85 +0,0 @@
from abc import ABC, abstractmethod
from typing import Optional
from invokeai.app.services.board_record_storage import BoardRecord
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.models.board_record import BoardDTO
class BoardImagesServiceABC(ABC):
"""High-level service for board-image relationship management."""
@abstractmethod
def add_image_to_board(
self,
board_id: str,
image_name: str,
) -> None:
"""Adds an image to a board."""
pass
@abstractmethod
def remove_image_from_board(
self,
image_name: str,
) -> None:
"""Removes an image from a board."""
pass
@abstractmethod
def get_all_board_image_names_for_board(
self,
board_id: str,
) -> list[str]:
"""Gets all board images for a board, as a list of the image names."""
pass
@abstractmethod
def get_board_for_image(
self,
image_name: str,
) -> Optional[str]:
"""Gets an image's board id, if it has one."""
pass
class BoardImagesService(BoardImagesServiceABC):
__invoker: Invoker
def start(self, invoker: Invoker) -> None:
self.__invoker = invoker
def add_image_to_board(
self,
board_id: str,
image_name: str,
) -> None:
self.__invoker.services.board_image_records.add_image_to_board(board_id, image_name)
def remove_image_from_board(
self,
image_name: str,
) -> None:
self.__invoker.services.board_image_records.remove_image_from_board(image_name)
def get_all_board_image_names_for_board(
self,
board_id: str,
) -> list[str]:
return self.__invoker.services.board_image_records.get_all_board_image_names_for_board(board_id)
def get_board_for_image(
self,
image_name: str,
) -> Optional[str]:
board_id = self.__invoker.services.board_image_records.get_board_for_image(image_name)
return board_id
def board_record_to_dto(board_record: BoardRecord, cover_image_name: Optional[str], image_count: int) -> BoardDTO:
"""Converts a board record to a board DTO."""
return BoardDTO(
**board_record.dict(exclude={"cover_image_name"}),
cover_image_name=cover_image_name,
image_count=image_count,
)

View File

@ -0,0 +1,39 @@
from abc import ABC, abstractmethod
from typing import Optional
class BoardImagesServiceABC(ABC):
"""High-level service for board-image relationship management."""
@abstractmethod
def add_image_to_board(
self,
board_id: str,
image_name: str,
) -> None:
"""Adds an image to a board."""
pass
@abstractmethod
def remove_image_from_board(
self,
image_name: str,
) -> None:
"""Removes an image from a board."""
pass
@abstractmethod
def get_all_board_image_names_for_board(
self,
board_id: str,
) -> list[str]:
"""Gets all board images for a board, as a list of the image names."""
pass
@abstractmethod
def get_board_for_image(
self,
image_name: str,
) -> Optional[str]:
"""Gets an image's board id, if it has one."""
pass

View File

@ -0,0 +1,38 @@
from typing import Optional
from invokeai.app.services.invoker import Invoker
from .board_images_base import BoardImagesServiceABC
class BoardImagesService(BoardImagesServiceABC):
__invoker: Invoker
def start(self, invoker: Invoker) -> None:
self.__invoker = invoker
def add_image_to_board(
self,
board_id: str,
image_name: str,
) -> None:
self.__invoker.services.board_image_records.add_image_to_board(board_id, image_name)
def remove_image_from_board(
self,
image_name: str,
) -> None:
self.__invoker.services.board_image_records.remove_image_from_board(image_name)
def get_all_board_image_names_for_board(
self,
board_id: str,
) -> list[str]:
return self.__invoker.services.board_image_records.get_all_board_image_names_for_board(board_id)
def get_board_for_image(
self,
image_name: str,
) -> Optional[str]:
board_id = self.__invoker.services.board_image_records.get_board_for_image(image_name)
return board_id

View File

@ -0,0 +1,55 @@
from abc import ABC, abstractmethod
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from .board_records_common import BoardChanges, BoardRecord
class BoardRecordStorageBase(ABC):
"""Low-level service responsible for interfacing with the board record store."""
@abstractmethod
def delete(self, board_id: str) -> None:
"""Deletes a board record."""
pass
@abstractmethod
def save(
self,
board_name: str,
) -> BoardRecord:
"""Saves a board record."""
pass
@abstractmethod
def get(
self,
board_id: str,
) -> BoardRecord:
"""Gets a board record."""
pass
@abstractmethod
def update(
self,
board_id: str,
changes: BoardChanges,
) -> BoardRecord:
"""Updates a board record."""
pass
@abstractmethod
def get_many(
self,
offset: int = 0,
limit: int = 10,
) -> OffsetPaginatedResults[BoardRecord]:
"""Gets many board records."""
pass
@abstractmethod
def get_all(
self,
) -> list[BoardRecord]:
"""Gets all board records."""
pass

View File

@ -1,7 +1,7 @@
from datetime import datetime from datetime import datetime
from typing import Optional, Union from typing import Optional, Union
from pydantic import Field from pydantic import BaseModel, Extra, Field
from invokeai.app.util.misc import get_iso_timestamp from invokeai.app.util.misc import get_iso_timestamp
from invokeai.app.util.model_exclude_null import BaseModelExcludeNull from invokeai.app.util.model_exclude_null import BaseModelExcludeNull
@ -24,15 +24,6 @@ class BoardRecord(BaseModelExcludeNull):
"""The name of the cover image of the board.""" """The name of the cover image of the board."""
class BoardDTO(BoardRecord):
"""Deserialized board record with cover image URL and image count."""
cover_image_name: Optional[str] = Field(description="The name of the board's cover image.")
"""The URL of the thumbnail of the most recent image in the board."""
image_count: int = Field(description="The number of images in the board.")
"""The number of images in the board."""
def deserialize_board_record(board_dict: dict) -> BoardRecord: def deserialize_board_record(board_dict: dict) -> BoardRecord:
"""Deserializes a board record.""" """Deserializes a board record."""
@ -53,3 +44,29 @@ def deserialize_board_record(board_dict: dict) -> BoardRecord:
updated_at=updated_at, updated_at=updated_at,
deleted_at=deleted_at, deleted_at=deleted_at,
) )
class BoardChanges(BaseModel, extra=Extra.forbid):
board_name: Optional[str] = Field(description="The board's new name.")
cover_image_name: Optional[str] = Field(description="The name of the board's new cover image.")
class BoardRecordNotFoundException(Exception):
"""Raised when an board record is not found."""
def __init__(self, message="Board record not found"):
super().__init__(message)
class BoardRecordSaveException(Exception):
"""Raised when an board record cannot be saved."""
def __init__(self, message="Board record not saved"):
super().__init__(message)
class BoardRecordDeleteException(Exception):
"""Raised when an board record cannot be deleted."""
def __init__(self, message="Board record not deleted"):
super().__init__(message)

View File

@ -1,90 +1,20 @@
import sqlite3 import sqlite3
import threading import threading
from abc import ABC, abstractmethod from typing import Union, cast
from typing import Optional, Union, cast
from pydantic import BaseModel, Extra, Field
from invokeai.app.services.models.board_record import BoardRecord, deserialize_board_record
from invokeai.app.services.shared.sqlite import SqliteDatabase
from invokeai.app.services.shared.pagination import OffsetPaginatedResults from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from invokeai.app.services.shared.sqlite import SqliteDatabase
from invokeai.app.util.misc import uuid_string from invokeai.app.util.misc import uuid_string
from .board_records_base import BoardRecordStorageBase
class BoardChanges(BaseModel, extra=Extra.forbid): from .board_records_common import (
board_name: Optional[str] = Field(description="The board's new name.") BoardChanges,
cover_image_name: Optional[str] = Field(description="The name of the board's new cover image.") BoardRecord,
BoardRecordDeleteException,
BoardRecordNotFoundException,
class BoardRecordNotFoundException(Exception): BoardRecordSaveException,
"""Raised when an board record is not found.""" deserialize_board_record,
)
def __init__(self, message="Board record not found"):
super().__init__(message)
class BoardRecordSaveException(Exception):
"""Raised when an board record cannot be saved."""
def __init__(self, message="Board record not saved"):
super().__init__(message)
class BoardRecordDeleteException(Exception):
"""Raised when an board record cannot be deleted."""
def __init__(self, message="Board record not deleted"):
super().__init__(message)
class BoardRecordStorageBase(ABC):
"""Low-level service responsible for interfacing with the board record store."""
@abstractmethod
def delete(self, board_id: str) -> None:
"""Deletes a board record."""
pass
@abstractmethod
def save(
self,
board_name: str,
) -> BoardRecord:
"""Saves a board record."""
pass
@abstractmethod
def get(
self,
board_id: str,
) -> BoardRecord:
"""Gets a board record."""
pass
@abstractmethod
def update(
self,
board_id: str,
changes: BoardChanges,
) -> BoardRecord:
"""Updates a board record."""
pass
@abstractmethod
def get_many(
self,
offset: int = 0,
limit: int = 10,
) -> OffsetPaginatedResults[BoardRecord]:
"""Gets many board records."""
pass
@abstractmethod
def get_all(
self,
) -> list[BoardRecord]:
"""Gets all board records."""
pass
class SqliteBoardRecordStorage(BoardRecordStorageBase): class SqliteBoardRecordStorage(BoardRecordStorageBase):

View File

View File

@ -0,0 +1,59 @@
from abc import ABC, abstractmethod
from invokeai.app.services.board_records.board_records_common import BoardChanges
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from .boards_common import BoardDTO
class BoardServiceABC(ABC):
"""High-level service for board management."""
@abstractmethod
def create(
self,
board_name: str,
) -> BoardDTO:
"""Creates a board."""
pass
@abstractmethod
def get_dto(
self,
board_id: str,
) -> BoardDTO:
"""Gets a board."""
pass
@abstractmethod
def update(
self,
board_id: str,
changes: BoardChanges,
) -> BoardDTO:
"""Updates a board."""
pass
@abstractmethod
def delete(
self,
board_id: str,
) -> None:
"""Deletes a board."""
pass
@abstractmethod
def get_many(
self,
offset: int = 0,
limit: int = 10,
) -> OffsetPaginatedResults[BoardDTO]:
"""Gets many boards."""
pass
@abstractmethod
def get_all(
self,
) -> list[BoardDTO]:
"""Gets all boards."""
pass

View File

@ -0,0 +1,23 @@
from typing import Optional
from pydantic import Field
from ..board_records.board_records_common import BoardRecord
class BoardDTO(BoardRecord):
"""Deserialized board record with cover image URL and image count."""
cover_image_name: Optional[str] = Field(description="The name of the board's cover image.")
"""The URL of the thumbnail of the most recent image in the board."""
image_count: int = Field(description="The number of images in the board.")
"""The number of images in the board."""
def board_record_to_dto(board_record: BoardRecord, cover_image_name: Optional[str], image_count: int) -> BoardDTO:
"""Converts a board record to a board DTO."""
return BoardDTO(
**board_record.dict(exclude={"cover_image_name"}),
cover_image_name=cover_image_name,
image_count=image_count,
)

View File

@ -1,63 +1,10 @@
from abc import ABC, abstractmethod from invokeai.app.services.board_records.board_records_common import BoardChanges
from invokeai.app.services.boards.boards_common import BoardDTO
from invokeai.app.services.board_images import board_record_to_dto
from invokeai.app.services.board_record_storage import BoardChanges
from invokeai.app.services.invoker import Invoker from invokeai.app.services.invoker import Invoker
from invokeai.app.services.models.board_record import BoardDTO
from invokeai.app.services.shared.pagination import OffsetPaginatedResults from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from .boards_base import BoardServiceABC
class BoardServiceABC(ABC): from .boards_common import board_record_to_dto
"""High-level service for board management."""
@abstractmethod
def create(
self,
board_name: str,
) -> BoardDTO:
"""Creates a board."""
pass
@abstractmethod
def get_dto(
self,
board_id: str,
) -> BoardDTO:
"""Gets a board."""
pass
@abstractmethod
def update(
self,
board_id: str,
changes: BoardChanges,
) -> BoardDTO:
"""Updates a board."""
pass
@abstractmethod
def delete(
self,
board_id: str,
) -> None:
"""Deletes a board."""
pass
@abstractmethod
def get_many(
self,
offset: int = 0,
limit: int = 10,
) -> OffsetPaginatedResults[BoardDTO]:
"""Gets many boards."""
pass
@abstractmethod
def get_all(
self,
) -> list[BoardDTO]:
"""Gets all boards."""
pass
class BoardService(BoardServiceABC): class BoardService(BoardServiceABC):

View File

@ -2,5 +2,5 @@
Init file for InvokeAI configure package Init file for InvokeAI configure package
""" """
from .base import PagingArgumentParser # noqa F401 from .config_base import PagingArgumentParser # noqa F401
from .invokeai_config import InvokeAIAppConfig, get_invokeai_config # noqa F401 from .config_default import InvokeAIAppConfig, get_invokeai_config # noqa F401

View File

@ -12,7 +12,6 @@ from __future__ import annotations
import argparse import argparse
import os import os
import pydoc
import sys import sys
from argparse import ArgumentParser from argparse import ArgumentParser
from pathlib import Path from pathlib import Path
@ -21,16 +20,7 @@ from typing import ClassVar, Dict, List, Literal, Optional, Union, get_args, get
from omegaconf import DictConfig, ListConfig, OmegaConf from omegaconf import DictConfig, ListConfig, OmegaConf
from pydantic import BaseSettings from pydantic import BaseSettings
from invokeai.app.services.config.config_common import PagingArgumentParser, int_or_float_or_str
class PagingArgumentParser(argparse.ArgumentParser):
"""
A custom ArgumentParser that uses pydoc to page its output.
It also supports reading defaults from an init file.
"""
def print_help(self, file=None):
text = self.format_help()
pydoc.pager(text)
class InvokeAISettings(BaseSettings): class InvokeAISettings(BaseSettings):
@ -223,18 +213,3 @@ class InvokeAISettings(BaseSettings):
action=argparse.BooleanOptionalAction if field.type_ == bool else "store", action=argparse.BooleanOptionalAction if field.type_ == bool else "store",
help=field.field_info.description, help=field.field_info.description,
) )
def int_or_float_or_str(value: str) -> Union[int, float, str]:
"""
Workaround for argparse type checking.
"""
try:
return int(value)
except Exception as e: # noqa F841
pass
try:
return float(value)
except Exception as e: # noqa F841
pass
return str(value)

View File

@ -0,0 +1,41 @@
# Copyright (c) 2023 Lincoln Stein (https://github.com/lstein) and the InvokeAI Development Team
"""
Base class for the InvokeAI configuration system.
It defines a type of pydantic BaseSettings object that
is able to read and write from an omegaconf-based config file,
with overriding of settings from environment variables and/or
the command line.
"""
from __future__ import annotations
import argparse
import pydoc
from typing import Union
class PagingArgumentParser(argparse.ArgumentParser):
"""
A custom ArgumentParser that uses pydoc to page its output.
It also supports reading defaults from an init file.
"""
def print_help(self, file=None):
text = self.format_help()
pydoc.pager(text)
def int_or_float_or_str(value: str) -> Union[int, float, str]:
"""
Workaround for argparse type checking.
"""
try:
return int(value)
except Exception as e: # noqa F841
pass
try:
return float(value)
except Exception as e: # noqa F841
pass
return str(value)

View File

@ -177,7 +177,7 @@ from typing import ClassVar, Dict, List, Literal, Optional, Union, get_type_hint
from omegaconf import DictConfig, OmegaConf from omegaconf import DictConfig, OmegaConf
from pydantic import Field, parse_obj_as from pydantic import Field, parse_obj_as
from .base import InvokeAISettings from .config_base import InvokeAISettings
INIT_FILE = Path("invokeai.yaml") INIT_FILE = Path("invokeai.yaml")
DB_FILE = Path("invokeai.db") DB_FILE = Path("invokeai.db")

View File

View File

@ -2,8 +2,8 @@
from typing import Any, Optional from typing import Any, Optional
from invokeai.app.models.image import ProgressImage from invokeai.app.invocations.model import ModelInfo
from invokeai.app.services.model_manager_service import BaseModelType, ModelInfo, ModelType, SubModelType from invokeai.app.services.invocation_processor.invocation_processor_common import ProgressImage
from invokeai.app.services.session_queue.session_queue_common import ( from invokeai.app.services.session_queue.session_queue_common import (
BatchStatus, BatchStatus,
EnqueueBatchResult, EnqueueBatchResult,
@ -11,6 +11,7 @@ from invokeai.app.services.session_queue.session_queue_common import (
SessionQueueStatus, SessionQueueStatus,
) )
from invokeai.app.util.misc import get_timestamp from invokeai.app.util.misc import get_timestamp
from invokeai.backend.model_management.models.base import BaseModelType, ModelType, SubModelType
class EventServiceBase: class EventServiceBase:

View File

@ -0,0 +1,42 @@
from abc import ABC, abstractmethod
from typing import Optional
from PIL.Image import Image as PILImageType
class ImageFileStorageBase(ABC):
"""Low-level service responsible for storing and retrieving image files."""
@abstractmethod
def get(self, image_name: str) -> PILImageType:
"""Retrieves an image as PIL Image."""
pass
@abstractmethod
def get_path(self, image_name: str, thumbnail: bool = False) -> str:
"""Gets the internal path to an image or thumbnail."""
pass
# TODO: We need to validate paths before starlette makes the FileResponse, else we get a
# 500 internal server error. I don't like having this method on the service.
@abstractmethod
def validate_path(self, path: str) -> bool:
"""Validates the path given for an image or thumbnail."""
pass
@abstractmethod
def save(
self,
image: PILImageType,
image_name: str,
metadata: Optional[dict] = None,
workflow: Optional[str] = None,
thumbnail_size: int = 256,
) -> None:
"""Saves an image and a 256x256 WEBP thumbnail. Returns a tuple of the image name, thumbnail name, and created timestamp."""
pass
@abstractmethod
def delete(self, image_name: str) -> None:
"""Deletes an image and its thumbnail (if one exists)."""
pass

View File

@ -0,0 +1,20 @@
# TODO: Should these excpetions subclass existing python exceptions?
class ImageFileNotFoundException(Exception):
"""Raised when an image file is not found in storage."""
def __init__(self, message="Image file not found"):
super().__init__(message)
class ImageFileSaveException(Exception):
"""Raised when an image cannot be saved."""
def __init__(self, message="Image file not saved"):
super().__init__(message)
class ImageFileDeleteException(Exception):
"""Raised when an image cannot be deleted."""
def __init__(self, message="Image file not deleted"):
super().__init__(message)

View File

@ -1,6 +1,5 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) and the InvokeAI Team # Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) and the InvokeAI Team
import json import json
from abc import ABC, abstractmethod
from pathlib import Path from pathlib import Path
from queue import Queue from queue import Queue
from typing import Dict, Optional, Union from typing import Dict, Optional, Union
@ -12,65 +11,8 @@ from send2trash import send2trash
from invokeai.app.services.config.invokeai_config import InvokeAIAppConfig from invokeai.app.services.config.invokeai_config import InvokeAIAppConfig
from invokeai.app.util.thumbnails import get_thumbnail_name, make_thumbnail from invokeai.app.util.thumbnails import get_thumbnail_name, make_thumbnail
from .image_files_base import ImageFileStorageBase
# TODO: Should these excpetions subclass existing python exceptions? from .image_files_common import ImageFileDeleteException, ImageFileNotFoundException, ImageFileSaveException
class ImageFileNotFoundException(Exception):
"""Raised when an image file is not found in storage."""
def __init__(self, message="Image file not found"):
super().__init__(message)
class ImageFileSaveException(Exception):
"""Raised when an image cannot be saved."""
def __init__(self, message="Image file not saved"):
super().__init__(message)
class ImageFileDeleteException(Exception):
"""Raised when an image cannot be deleted."""
def __init__(self, message="Image file not deleted"):
super().__init__(message)
class ImageFileStorageBase(ABC):
"""Low-level service responsible for storing and retrieving image files."""
@abstractmethod
def get(self, image_name: str) -> PILImageType:
"""Retrieves an image as PIL Image."""
pass
@abstractmethod
def get_path(self, image_name: str, thumbnail: bool = False) -> str:
"""Gets the internal path to an image or thumbnail."""
pass
# TODO: We need to validate paths before starlette makes the FileResponse, else we get a
# 500 internal server error. I don't like having this method on the service.
@abstractmethod
def validate_path(self, path: str) -> bool:
"""Validates the path given for an image or thumbnail."""
pass
@abstractmethod
def save(
self,
image: PILImageType,
image_name: str,
metadata: Optional[dict] = None,
workflow: Optional[str] = None,
thumbnail_size: int = 256,
) -> None:
"""Saves an image and a 256x256 WEBP thumbnail. Returns a tuple of the image name, thumbnail name, and created timestamp."""
pass
@abstractmethod
def delete(self, image_name: str) -> None:
"""Deletes an image and its thumbnail (if one exists)."""
pass
class DiskImageFileStorage(ImageFileStorageBase): class DiskImageFileStorage(ImageFileStorageBase):

View File

@ -0,0 +1,84 @@
from abc import ABC, abstractmethod
from datetime import datetime
from typing import Optional
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from .image_records_common import ImageCategory, ImageRecord, ImageRecordChanges, ResourceOrigin
class ImageRecordStorageBase(ABC):
"""Low-level service responsible for interfacing with the image record store."""
# TODO: Implement an `update()` method
@abstractmethod
def get(self, image_name: str) -> ImageRecord:
"""Gets an image record."""
pass
@abstractmethod
def get_metadata(self, image_name: str) -> Optional[dict]:
"""Gets an image's metadata'."""
pass
@abstractmethod
def update(
self,
image_name: str,
changes: ImageRecordChanges,
) -> None:
"""Updates an image record."""
pass
@abstractmethod
def get_many(
self,
offset: Optional[int] = None,
limit: Optional[int] = None,
image_origin: Optional[ResourceOrigin] = None,
categories: Optional[list[ImageCategory]] = None,
is_intermediate: Optional[bool] = None,
board_id: Optional[str] = None,
) -> OffsetPaginatedResults[ImageRecord]:
"""Gets a page of image records."""
pass
# TODO: The database has a nullable `deleted_at` column, currently unused.
# Should we implement soft deletes? Would need coordination with ImageFileStorage.
@abstractmethod
def delete(self, image_name: str) -> None:
"""Deletes an image record."""
pass
@abstractmethod
def delete_many(self, image_names: list[str]) -> None:
"""Deletes many image records."""
pass
@abstractmethod
def delete_intermediates(self) -> list[str]:
"""Deletes all intermediate image records, returning a list of deleted image names."""
pass
@abstractmethod
def save(
self,
image_name: str,
image_origin: ResourceOrigin,
image_category: ImageCategory,
width: int,
height: int,
session_id: Optional[str],
node_id: Optional[str],
metadata: Optional[dict],
is_intermediate: bool = False,
starred: bool = False,
) -> datetime:
"""Saves an image record."""
pass
@abstractmethod
def get_most_recent_image_for_board(self, board_id: str) -> Optional[ImageRecord]:
"""Gets the most recent image for a board."""
pass

View File

@ -1,13 +1,117 @@
# TODO: Should these excpetions subclass existing python exceptions?
import datetime import datetime
from enum import Enum
from typing import Optional, Union from typing import Optional, Union
from pydantic import Extra, Field, StrictBool, StrictStr from pydantic import Extra, Field, StrictBool, StrictStr
from invokeai.app.models.image import ImageCategory, ResourceOrigin from invokeai.app.util.metaenum import MetaEnum
from invokeai.app.util.misc import get_iso_timestamp from invokeai.app.util.misc import get_iso_timestamp
from invokeai.app.util.model_exclude_null import BaseModelExcludeNull from invokeai.app.util.model_exclude_null import BaseModelExcludeNull
class ResourceOrigin(str, Enum, metaclass=MetaEnum):
"""The origin of a resource (eg image).
- INTERNAL: The resource was created by the application.
- EXTERNAL: The resource was not created by the application.
This may be a user-initiated upload, or an internal application upload (eg Canvas init image).
"""
INTERNAL = "internal"
"""The resource was created by the application."""
EXTERNAL = "external"
"""The resource was not created by the application.
This may be a user-initiated upload, or an internal application upload (eg Canvas init image).
"""
class InvalidOriginException(ValueError):
"""Raised when a provided value is not a valid ResourceOrigin.
Subclasses `ValueError`.
"""
def __init__(self, message="Invalid resource origin."):
super().__init__(message)
class ImageCategory(str, Enum, metaclass=MetaEnum):
"""The category of an image.
- GENERAL: The image is an output, init image, or otherwise an image without a specialized purpose.
- MASK: The image is a mask image.
- CONTROL: The image is a ControlNet control image.
- USER: The image is a user-provide image.
- OTHER: The image is some other type of image with a specialized purpose. To be used by external nodes.
"""
GENERAL = "general"
"""GENERAL: The image is an output, init image, or otherwise an image without a specialized purpose."""
MASK = "mask"
"""MASK: The image is a mask image."""
CONTROL = "control"
"""CONTROL: The image is a ControlNet control image."""
USER = "user"
"""USER: The image is a user-provide image."""
OTHER = "other"
"""OTHER: The image is some other type of image with a specialized purpose. To be used by external nodes."""
class InvalidImageCategoryException(ValueError):
"""Raised when a provided value is not a valid ImageCategory.
Subclasses `ValueError`.
"""
def __init__(self, message="Invalid image category."):
super().__init__(message)
class ImageRecordNotFoundException(Exception):
"""Raised when an image record is not found."""
def __init__(self, message="Image record not found"):
super().__init__(message)
class ImageRecordSaveException(Exception):
"""Raised when an image record cannot be saved."""
def __init__(self, message="Image record not saved"):
super().__init__(message)
class ImageRecordDeleteException(Exception):
"""Raised when an image record cannot be deleted."""
def __init__(self, message="Image record not deleted"):
super().__init__(message)
IMAGE_DTO_COLS = ", ".join(
list(
map(
lambda c: "images." + c,
[
"image_name",
"image_origin",
"image_category",
"width",
"height",
"session_id",
"node_id",
"is_intermediate",
"created_at",
"updated_at",
"deleted_at",
"starred",
],
)
)
)
class ImageRecord(BaseModelExcludeNull): class ImageRecord(BaseModelExcludeNull):
"""Deserialized image record without metadata.""" """Deserialized image record without metadata."""
@ -66,41 +170,6 @@ class ImageRecordChanges(BaseModelExcludeNull, extra=Extra.forbid):
"""The image's new `starred` state.""" """The image's new `starred` state."""
class ImageUrlsDTO(BaseModelExcludeNull):
"""The URLs for an image and its thumbnail."""
image_name: str = Field(description="The unique name of the image.")
"""The unique name of the image."""
image_url: str = Field(description="The URL of the image.")
"""The URL of the image."""
thumbnail_url: str = Field(description="The URL of the image's thumbnail.")
"""The URL of the image's thumbnail."""
class ImageDTO(ImageRecord, ImageUrlsDTO):
"""Deserialized image record, enriched for the frontend."""
board_id: Optional[str] = Field(description="The id of the board the image belongs to, if one exists.")
"""The id of the board the image belongs to, if one exists."""
pass
def image_record_to_dto(
image_record: ImageRecord,
image_url: str,
thumbnail_url: str,
board_id: Optional[str],
) -> ImageDTO:
"""Converts an image record to an image DTO."""
return ImageDTO(
**image_record.dict(),
image_url=image_url,
thumbnail_url=thumbnail_url,
board_id=board_id,
)
def deserialize_image_record(image_dict: dict) -> ImageRecord: def deserialize_image_record(image_dict: dict) -> ImageRecord:
"""Deserializes an image record.""" """Deserializes an image record."""

View File

@ -1,136 +1,24 @@
import json import json
import sqlite3 import sqlite3
import threading import threading
from abc import ABC, abstractmethod
from datetime import datetime from datetime import datetime
from typing import Optional, cast from typing import Optional, cast
from invokeai.app.models.image import ImageCategory, ResourceOrigin
from invokeai.app.services.models.image_record import ImageRecord, ImageRecordChanges, deserialize_image_record
from invokeai.app.services.shared.sqlite import SqliteDatabase
from invokeai.app.services.shared.pagination import OffsetPaginatedResults from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from invokeai.app.services.shared.sqlite import SqliteDatabase
from .image_records_base import ImageRecordStorageBase
# TODO: Should these excpetions subclass existing python exceptions? from .image_records_common import (
class ImageRecordNotFoundException(Exception): IMAGE_DTO_COLS,
"""Raised when an image record is not found.""" ImageCategory,
ImageRecord,
def __init__(self, message="Image record not found"): ImageRecordChanges,
super().__init__(message) ImageRecordDeleteException,
ImageRecordNotFoundException,
ImageRecordSaveException,
class ImageRecordSaveException(Exception): ResourceOrigin,
"""Raised when an image record cannot be saved.""" deserialize_image_record,
def __init__(self, message="Image record not saved"):
super().__init__(message)
class ImageRecordDeleteException(Exception):
"""Raised when an image record cannot be deleted."""
def __init__(self, message="Image record not deleted"):
super().__init__(message)
IMAGE_DTO_COLS = ", ".join(
list(
map(
lambda c: "images." + c,
[
"image_name",
"image_origin",
"image_category",
"width",
"height",
"session_id",
"node_id",
"is_intermediate",
"created_at",
"updated_at",
"deleted_at",
"starred",
],
) )
)
)
class ImageRecordStorageBase(ABC):
"""Low-level service responsible for interfacing with the image record store."""
# TODO: Implement an `update()` method
@abstractmethod
def get(self, image_name: str) -> ImageRecord:
"""Gets an image record."""
pass
@abstractmethod
def get_metadata(self, image_name: str) -> Optional[dict]:
"""Gets an image's metadata'."""
pass
@abstractmethod
def update(
self,
image_name: str,
changes: ImageRecordChanges,
) -> None:
"""Updates an image record."""
pass
@abstractmethod
def get_many(
self,
offset: Optional[int] = None,
limit: Optional[int] = None,
image_origin: Optional[ResourceOrigin] = None,
categories: Optional[list[ImageCategory]] = None,
is_intermediate: Optional[bool] = None,
board_id: Optional[str] = None,
) -> OffsetPaginatedResults[ImageRecord]:
"""Gets a page of image records."""
pass
# TODO: The database has a nullable `deleted_at` column, currently unused.
# Should we implement soft deletes? Would need coordination with ImageFileStorage.
@abstractmethod
def delete(self, image_name: str) -> None:
"""Deletes an image record."""
pass
@abstractmethod
def delete_many(self, image_names: list[str]) -> None:
"""Deletes many image records."""
pass
@abstractmethod
def delete_intermediates(self) -> list[str]:
"""Deletes all intermediate image records, returning a list of deleted image names."""
pass
@abstractmethod
def save(
self,
image_name: str,
image_origin: ResourceOrigin,
image_category: ImageCategory,
width: int,
height: int,
session_id: Optional[str],
node_id: Optional[str],
metadata: Optional[dict],
is_intermediate: bool = False,
starred: bool = False,
) -> datetime:
"""Saves an image record."""
pass
@abstractmethod
def get_most_recent_image_for_board(self, board_id: str) -> Optional[ImageRecord]:
"""Gets the most recent image for a board."""
pass
class SqliteImageRecordStorage(ImageRecordStorageBase): class SqliteImageRecordStorage(ImageRecordStorageBase):

View File

View File

@ -0,0 +1,129 @@
from abc import ABC, abstractmethod
from typing import Callable, Optional
from PIL.Image import Image as PILImageType
from invokeai.app.invocations.metadata import ImageMetadata
from invokeai.app.services.image_records.image_records_common import (
ImageCategory,
ImageRecord,
ImageRecordChanges,
ResourceOrigin,
)
from invokeai.app.services.images.images_common import ImageDTO
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
class ImageServiceABC(ABC):
"""High-level service for image management."""
_on_changed_callbacks: list[Callable[[ImageDTO], None]]
_on_deleted_callbacks: list[Callable[[str], None]]
def __init__(self) -> None:
self._on_changed_callbacks = list()
self._on_deleted_callbacks = list()
def on_changed(self, on_changed: Callable[[ImageDTO], None]) -> None:
"""Register a callback for when an image is changed"""
self._on_changed_callbacks.append(on_changed)
def on_deleted(self, on_deleted: Callable[[str], None]) -> None:
"""Register a callback for when an image is deleted"""
self._on_deleted_callbacks.append(on_deleted)
def _on_changed(self, item: ImageDTO) -> None:
for callback in self._on_changed_callbacks:
callback(item)
def _on_deleted(self, item_id: str) -> None:
for callback in self._on_deleted_callbacks:
callback(item_id)
@abstractmethod
def create(
self,
image: PILImageType,
image_origin: ResourceOrigin,
image_category: ImageCategory,
node_id: Optional[str] = None,
session_id: Optional[str] = None,
board_id: Optional[str] = None,
is_intermediate: bool = False,
metadata: Optional[dict] = None,
workflow: Optional[str] = None,
) -> ImageDTO:
"""Creates an image, storing the file and its metadata."""
pass
@abstractmethod
def update(
self,
image_name: str,
changes: ImageRecordChanges,
) -> ImageDTO:
"""Updates an image."""
pass
@abstractmethod
def get_pil_image(self, image_name: str) -> PILImageType:
"""Gets an image as a PIL image."""
pass
@abstractmethod
def get_record(self, image_name: str) -> ImageRecord:
"""Gets an image record."""
pass
@abstractmethod
def get_dto(self, image_name: str) -> ImageDTO:
"""Gets an image DTO."""
pass
@abstractmethod
def get_metadata(self, image_name: str) -> ImageMetadata:
"""Gets an image's metadata."""
pass
@abstractmethod
def get_path(self, image_name: str, thumbnail: bool = False) -> str:
"""Gets an image's path."""
pass
@abstractmethod
def validate_path(self, path: str) -> bool:
"""Validates an image's path."""
pass
@abstractmethod
def get_url(self, image_name: str, thumbnail: bool = False) -> str:
"""Gets an image's or thumbnail's URL."""
pass
@abstractmethod
def get_many(
self,
offset: int = 0,
limit: int = 10,
image_origin: Optional[ResourceOrigin] = None,
categories: Optional[list[ImageCategory]] = None,
is_intermediate: Optional[bool] = None,
board_id: Optional[str] = None,
) -> OffsetPaginatedResults[ImageDTO]:
"""Gets a paginated list of image DTOs."""
pass
@abstractmethod
def delete(self, image_name: str):
"""Deletes an image."""
pass
@abstractmethod
def delete_intermediates(self) -> int:
"""Deletes all intermediate images."""
pass
@abstractmethod
def delete_images_on_board(self, board_id: str):
"""Deletes all images on a board."""
pass

View File

@ -0,0 +1,41 @@
from typing import Optional
from pydantic import Field
from invokeai.app.services.image_records.image_records_common import ImageRecord
from invokeai.app.util.model_exclude_null import BaseModelExcludeNull
class ImageUrlsDTO(BaseModelExcludeNull):
"""The URLs for an image and its thumbnail."""
image_name: str = Field(description="The unique name of the image.")
"""The unique name of the image."""
image_url: str = Field(description="The URL of the image.")
"""The URL of the image."""
thumbnail_url: str = Field(description="The URL of the image's thumbnail.")
"""The URL of the image's thumbnail."""
class ImageDTO(ImageRecord, ImageUrlsDTO):
"""Deserialized image record, enriched for the frontend."""
board_id: Optional[str] = Field(description="The id of the board the image belongs to, if one exists.")
"""The id of the board the image belongs to, if one exists."""
pass
def image_record_to_dto(
image_record: ImageRecord,
image_url: str,
thumbnail_url: str,
board_id: Optional[str],
) -> ImageDTO:
"""Converts an image record to an image DTO."""
return ImageDTO(
**image_record.dict(),
image_url=image_url,
thumbnail_url=thumbnail_url,
board_id=board_id,
)

View File

@ -1,144 +1,30 @@
from abc import ABC, abstractmethod from typing import Optional
from typing import Callable, Optional
from PIL.Image import Image as PILImageType from PIL.Image import Image as PILImageType
from invokeai.app.invocations.metadata import ImageMetadata from invokeai.app.invocations.metadata import ImageMetadata
from invokeai.app.models.image import ( from invokeai.app.services.invoker import Invoker
ImageCategory, from invokeai.app.services.shared.pagination import OffsetPaginatedResults
InvalidImageCategoryException, from invokeai.app.util.metadata import get_metadata_graph_from_raw_session
InvalidOriginException,
ResourceOrigin, from ..image_files.image_files_common import (
)
from invokeai.app.services.image_file_storage import (
ImageFileDeleteException, ImageFileDeleteException,
ImageFileNotFoundException, ImageFileNotFoundException,
ImageFileSaveException, ImageFileSaveException,
) )
from invokeai.app.services.image_record_storage import ( from ..image_records.image_records_common import (
ImageCategory,
ImageRecord,
ImageRecordChanges,
ImageRecordDeleteException, ImageRecordDeleteException,
ImageRecordNotFoundException, ImageRecordNotFoundException,
ImageRecordSaveException, ImageRecordSaveException,
InvalidImageCategoryException,
InvalidOriginException,
ResourceOrigin,
) )
from invokeai.app.services.invoker import Invoker from .images_base import ImageServiceABC
from invokeai.app.services.models.image_record import ImageDTO, ImageRecord, ImageRecordChanges, image_record_to_dto from .images_common import ImageDTO, image_record_to_dto
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from invokeai.app.util.metadata import get_metadata_graph_from_raw_session
class ImageServiceABC(ABC):
"""High-level service for image management."""
_on_changed_callbacks: list[Callable[[ImageDTO], None]]
_on_deleted_callbacks: list[Callable[[str], None]]
def __init__(self) -> None:
self._on_changed_callbacks = list()
self._on_deleted_callbacks = list()
def on_changed(self, on_changed: Callable[[ImageDTO], None]) -> None:
"""Register a callback for when an image is changed"""
self._on_changed_callbacks.append(on_changed)
def on_deleted(self, on_deleted: Callable[[str], None]) -> None:
"""Register a callback for when an image is deleted"""
self._on_deleted_callbacks.append(on_deleted)
def _on_changed(self, item: ImageDTO) -> None:
for callback in self._on_changed_callbacks:
callback(item)
def _on_deleted(self, item_id: str) -> None:
for callback in self._on_deleted_callbacks:
callback(item_id)
@abstractmethod
def create(
self,
image: PILImageType,
image_origin: ResourceOrigin,
image_category: ImageCategory,
node_id: Optional[str] = None,
session_id: Optional[str] = None,
board_id: Optional[str] = None,
is_intermediate: bool = False,
metadata: Optional[dict] = None,
workflow: Optional[str] = None,
) -> ImageDTO:
"""Creates an image, storing the file and its metadata."""
pass
@abstractmethod
def update(
self,
image_name: str,
changes: ImageRecordChanges,
) -> ImageDTO:
"""Updates an image."""
pass
@abstractmethod
def get_pil_image(self, image_name: str) -> PILImageType:
"""Gets an image as a PIL image."""
pass
@abstractmethod
def get_record(self, image_name: str) -> ImageRecord:
"""Gets an image record."""
pass
@abstractmethod
def get_dto(self, image_name: str) -> ImageDTO:
"""Gets an image DTO."""
pass
@abstractmethod
def get_metadata(self, image_name: str) -> ImageMetadata:
"""Gets an image's metadata."""
pass
@abstractmethod
def get_path(self, image_name: str, thumbnail: bool = False) -> str:
"""Gets an image's path."""
pass
@abstractmethod
def validate_path(self, path: str) -> bool:
"""Validates an image's path."""
pass
@abstractmethod
def get_url(self, image_name: str, thumbnail: bool = False) -> str:
"""Gets an image's or thumbnail's URL."""
pass
@abstractmethod
def get_many(
self,
offset: int = 0,
limit: int = 10,
image_origin: Optional[ResourceOrigin] = None,
categories: Optional[list[ImageCategory]] = None,
is_intermediate: Optional[bool] = None,
board_id: Optional[str] = None,
) -> OffsetPaginatedResults[ImageDTO]:
"""Gets a paginated list of image DTOs."""
pass
@abstractmethod
def delete(self, image_name: str):
"""Deletes an image."""
pass
@abstractmethod
def delete_intermediates(self) -> int:
"""Deletes all intermediate images."""
pass
@abstractmethod
def delete_images_on_board(self, board_id: str):
"""Deletes all images on a board."""
pass
class ImageService(ImageServiceABC): class ImageService(ImageServiceABC):

View File

@ -0,0 +1,5 @@
from abc import ABC
class InvocationProcessorABC(ABC):
pass

View File

@ -0,0 +1,15 @@
from pydantic import BaseModel, Field
class ProgressImage(BaseModel):
"""The progress image sent intermittently during processing"""
width: int = Field(description="The effective width of the image in pixels")
height: int = Field(description="The effective height of the image in pixels")
dataURL: str = Field(description="The image data as a b64 data URL")
class CanceledException(Exception):
"""Execution canceled by user."""
pass

View File

@ -4,11 +4,12 @@ from threading import BoundedSemaphore, Event, Thread
from typing import Optional from typing import Optional
import invokeai.backend.util.logging as logger import invokeai.backend.util.logging as logger
from invokeai.app.invocations.baseinvocation import InvocationContext
from invokeai.app.services.invocation_queue.invocation_queue_common import InvocationQueueItem
from ..invocations.baseinvocation import InvocationContext from ..invoker import Invoker
from ..models.exceptions import CanceledException from .invocation_processor_base import InvocationProcessorABC
from .invocation_queue import InvocationQueueItem from .invocation_processor_common import CanceledException
from .invoker import InvocationProcessorABC, Invoker
class DefaultInvocationProcessor(InvocationProcessorABC): class DefaultInvocationProcessor(InvocationProcessorABC):

View File

@ -0,0 +1,26 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from abc import ABC, abstractmethod
from typing import Optional
from .invocation_queue_common import InvocationQueueItem
class InvocationQueueABC(ABC):
"""Abstract base class for all invocation queues"""
@abstractmethod
def get(self) -> InvocationQueueItem:
pass
@abstractmethod
def put(self, item: Optional[InvocationQueueItem]) -> None:
pass
@abstractmethod
def cancel(self, graph_execution_state_id: str) -> None:
pass
@abstractmethod
def is_canceled(self, graph_execution_state_id: str) -> bool:
pass

View File

@ -0,0 +1,19 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
import time
from pydantic import BaseModel, Field
class InvocationQueueItem(BaseModel):
graph_execution_state_id: str = Field(description="The ID of the graph execution state")
invocation_id: str = Field(description="The ID of the node being invoked")
session_queue_id: str = Field(description="The ID of the session queue from which this invocation queue item came")
session_queue_item_id: int = Field(
description="The ID of session queue item from which this invocation queue item came"
)
session_queue_batch_id: str = Field(
description="The ID of the session batch from which this invocation queue item came"
)
invoke_all: bool = Field(default=False)
timestamp: float = Field(default_factory=time.time)

View File

@ -1,45 +1,11 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) # Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
import time import time
from abc import ABC, abstractmethod
from queue import Queue from queue import Queue
from typing import Optional from typing import Optional
from pydantic import BaseModel, Field from .invocation_queue_base import InvocationQueueABC
from .invocation_queue_common import InvocationQueueItem
class InvocationQueueItem(BaseModel):
graph_execution_state_id: str = Field(description="The ID of the graph execution state")
invocation_id: str = Field(description="The ID of the node being invoked")
session_queue_id: str = Field(description="The ID of the session queue from which this invocation queue item came")
session_queue_item_id: int = Field(
description="The ID of session queue item from which this invocation queue item came"
)
session_queue_batch_id: str = Field(
description="The ID of the session batch from which this invocation queue item came"
)
invoke_all: bool = Field(default=False)
timestamp: float = Field(default_factory=time.time)
class InvocationQueueABC(ABC):
"""Abstract base class for all invocation queues"""
@abstractmethod
def get(self) -> InvocationQueueItem:
pass
@abstractmethod
def put(self, item: Optional[InvocationQueueItem]) -> None:
pass
@abstractmethod
def cancel(self, graph_execution_state_id: str) -> None:
pass
@abstractmethod
def is_canceled(self, graph_execution_state_id: str) -> bool:
pass
class MemoryInvocationQueue(InvocationQueueABC): class MemoryInvocationQueue(InvocationQueueABC):

View File

@ -6,27 +6,27 @@ from typing import TYPE_CHECKING
if TYPE_CHECKING: if TYPE_CHECKING:
from logging import Logger from logging import Logger
from invokeai.app.services.board_image_record_storage import BoardImageRecordStorageBase from .board_image_records.board_image_records_base import BoardImageRecordStorageBase
from invokeai.app.services.board_images import BoardImagesServiceABC from .board_images.board_images_base import BoardImagesServiceABC
from invokeai.app.services.board_record_storage import BoardRecordStorageBase from .board_records.board_records_base import BoardRecordStorageBase
from invokeai.app.services.boards import BoardServiceABC from .boards.boards_base import BoardServiceABC
from invokeai.app.services.config import InvokeAIAppConfig from .config import InvokeAIAppConfig
from invokeai.app.services.events import EventServiceBase from .events.events_base import EventServiceBase
from invokeai.app.services.graph import GraphExecutionState, LibraryGraph from .image_files.image_files_base import ImageFileStorageBase
from invokeai.app.services.image_file_storage import ImageFileStorageBase from .image_records.image_records_base import ImageRecordStorageBase
from invokeai.app.services.image_record_storage import ImageRecordStorageBase from .images.images_base import ImageServiceABC
from invokeai.app.services.images import ImageServiceABC from .invocation_cache.invocation_cache_base import InvocationCacheBase
from invokeai.app.services.invocation_cache.invocation_cache_base import InvocationCacheBase from .invocation_processor.invocation_processor_base import InvocationProcessorABC
from invokeai.app.services.invocation_queue import InvocationQueueABC from .invocation_queue.invocation_queue_base import InvocationQueueABC
from invokeai.app.services.invocation_stats import InvocationStatsServiceBase from .invocation_stats.invocation_stats_base import InvocationStatsServiceBase
from invokeai.app.services.invoker import InvocationProcessorABC from .item_storage.item_storage_base import ItemStorageABC
from invokeai.app.services.item_storage import ItemStorageABC from .latents_storage.latents_storage_base import LatentsStorageBase
from invokeai.app.services.latent_storage import LatentsStorageBase from .model_manager.model_manager_base import ModelManagerServiceBase
from invokeai.app.services.model_manager_service import ModelManagerServiceBase from .names.names_base import NameServiceBase
from invokeai.app.services.resource_name import NameServiceBase from .session_processor.session_processor_base import SessionProcessorBase
from invokeai.app.services.session_processor.session_processor_base import SessionProcessorBase from .session_queue.session_queue_base import SessionQueueBase
from invokeai.app.services.session_queue.session_queue_base import SessionQueueBase from .shared.graph import GraphExecutionState, LibraryGraph
from invokeai.app.services.urls import UrlServiceBase from .urls.urls_base import UrlServiceBase
class InvocationServices: class InvocationServices:

View File

@ -0,0 +1,121 @@
# Copyright 2023 Lincoln D. Stein <lincoln.stein@gmail.com>
"""Utility to collect execution time and GPU usage stats on invocations in flight
Usage:
statistics = InvocationStatsService(graph_execution_manager)
with statistics.collect_stats(invocation, graph_execution_state.id):
... execute graphs...
statistics.log_stats()
Typical output:
[2023-08-02 18:03:04,507]::[InvokeAI]::INFO --> Graph stats: c7764585-9c68-4d9d-a199-55e8186790f3
[2023-08-02 18:03:04,507]::[InvokeAI]::INFO --> Node Calls Seconds VRAM Used
[2023-08-02 18:03:04,507]::[InvokeAI]::INFO --> main_model_loader 1 0.005s 0.01G
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> clip_skip 1 0.004s 0.01G
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> compel 2 0.512s 0.26G
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> rand_int 1 0.001s 0.01G
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> range_of_size 1 0.001s 0.01G
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> iterate 1 0.001s 0.01G
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> metadata_accumulator 1 0.002s 0.01G
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> noise 1 0.002s 0.01G
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> t2l 1 3.541s 1.93G
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> l2i 1 0.679s 0.58G
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> TOTAL GRAPH EXECUTION TIME: 4.749s
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> Current VRAM utilization 0.01G
The abstract base class for this class is InvocationStatsServiceBase. An implementing class which
writes to the system log is stored in InvocationServices.performance_statistics.
"""
from abc import ABC, abstractmethod
from contextlib import AbstractContextManager
from typing import Dict
from invokeai.app.invocations.baseinvocation import BaseInvocation
from invokeai.backend.model_management.model_cache import CacheStats
from .invocation_stats_common import NodeLog
class InvocationStatsServiceBase(ABC):
"Abstract base class for recording node memory/time performance statistics"
# {graph_id => NodeLog}
_stats: Dict[str, NodeLog]
_cache_stats: Dict[str, CacheStats]
ram_used: float
ram_changed: float
@abstractmethod
def __init__(self):
"""
Initialize the InvocationStatsService and reset counters to zero
"""
pass
@abstractmethod
def collect_stats(
self,
invocation: BaseInvocation,
graph_execution_state_id: str,
) -> AbstractContextManager:
"""
Return a context object that will capture the statistics on the execution
of invocaation. Use with: to place around the part of the code that executes the invocation.
:param invocation: BaseInvocation object from the current graph.
:param graph_execution_state_id: The id of the current session.
"""
pass
@abstractmethod
def reset_stats(self, graph_execution_state_id: str):
"""
Reset all statistics for the indicated graph
:param graph_execution_state_id
"""
pass
@abstractmethod
def reset_all_stats(self):
"""Zero all statistics"""
pass
@abstractmethod
def update_invocation_stats(
self,
graph_id: str,
invocation_type: str,
time_used: float,
vram_used: float,
):
"""
Add timing information on execution of a node. Usually
used internally.
:param graph_id: ID of the graph that is currently executing
:param invocation_type: String literal type of the node
:param time_used: Time used by node's exection (sec)
:param vram_used: Maximum VRAM used during exection (GB)
"""
pass
@abstractmethod
def log_stats(self):
"""
Write out the accumulated statistics to the log or somewhere else.
"""
pass
@abstractmethod
def update_mem_stats(
self,
ram_used: float,
ram_changed: float,
):
"""
Update the collector with RAM memory usage info.
:param ram_used: How much RAM is currently in use.
:param ram_changed: How much RAM changed since last generation.
"""
pass

View File

@ -0,0 +1,25 @@
from dataclasses import dataclass, field
from typing import Dict
# size of GIG in bytes
GIG = 1073741824
@dataclass
class NodeStats:
"""Class for tracking execution stats of an invocation node"""
calls: int = 0
time_used: float = 0.0 # seconds
max_vram: float = 0.0 # GB
cache_hits: int = 0
cache_misses: int = 0
cache_high_watermark: int = 0
@dataclass
class NodeLog:
"""Class for tracking node usage"""
# {node_type => NodeStats}
nodes: Dict[str, NodeStats] = field(default_factory=dict)

View File

@ -1,154 +1,17 @@
# Copyright 2023 Lincoln D. Stein <lincoln.stein@gmail.com>
"""Utility to collect execution time and GPU usage stats on invocations in flight
Usage:
statistics = InvocationStatsService(graph_execution_manager)
with statistics.collect_stats(invocation, graph_execution_state.id):
... execute graphs...
statistics.log_stats()
Typical output:
[2023-08-02 18:03:04,507]::[InvokeAI]::INFO --> Graph stats: c7764585-9c68-4d9d-a199-55e8186790f3
[2023-08-02 18:03:04,507]::[InvokeAI]::INFO --> Node Calls Seconds VRAM Used
[2023-08-02 18:03:04,507]::[InvokeAI]::INFO --> main_model_loader 1 0.005s 0.01G
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> clip_skip 1 0.004s 0.01G
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> compel 2 0.512s 0.26G
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> rand_int 1 0.001s 0.01G
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> range_of_size 1 0.001s 0.01G
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> iterate 1 0.001s 0.01G
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> metadata_accumulator 1 0.002s 0.01G
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> noise 1 0.002s 0.01G
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> t2l 1 3.541s 1.93G
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> l2i 1 0.679s 0.58G
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> TOTAL GRAPH EXECUTION TIME: 4.749s
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> Current VRAM utilization 0.01G
The abstract base class for this class is InvocationStatsServiceBase. An implementing class which
writes to the system log is stored in InvocationServices.performance_statistics.
"""
import time import time
from abc import ABC, abstractmethod
from contextlib import AbstractContextManager
from dataclasses import dataclass, field
from typing import Dict from typing import Dict
import psutil import psutil
import torch import torch
import invokeai.backend.util.logging as logger import invokeai.backend.util.logging as logger
from invokeai.app.invocations.baseinvocation import BaseInvocation
from invokeai.app.services.invoker import Invoker from invokeai.app.services.invoker import Invoker
from invokeai.app.services.model_manager.model_manager_base import ModelManagerServiceBase
from invokeai.backend.model_management.model_cache import CacheStats from invokeai.backend.model_management.model_cache import CacheStats
from ..invocations.baseinvocation import BaseInvocation from .invocation_stats_base import InvocationStatsServiceBase
from .model_manager_service import ModelManagerServiceBase from .invocation_stats_common import GIG, NodeLog, NodeStats
# size of GIG in bytes
GIG = 1073741824
@dataclass
class NodeStats:
"""Class for tracking execution stats of an invocation node"""
calls: int = 0
time_used: float = 0.0 # seconds
max_vram: float = 0.0 # GB
cache_hits: int = 0
cache_misses: int = 0
cache_high_watermark: int = 0
@dataclass
class NodeLog:
"""Class for tracking node usage"""
# {node_type => NodeStats}
nodes: Dict[str, NodeStats] = field(default_factory=dict)
class InvocationStatsServiceBase(ABC):
"Abstract base class for recording node memory/time performance statistics"
# {graph_id => NodeLog}
_stats: Dict[str, NodeLog]
_cache_stats: Dict[str, CacheStats]
ram_used: float
ram_changed: float
@abstractmethod
def __init__(self):
"""
Initialize the InvocationStatsService and reset counters to zero
"""
pass
@abstractmethod
def collect_stats(
self,
invocation: BaseInvocation,
graph_execution_state_id: str,
) -> AbstractContextManager:
"""
Return a context object that will capture the statistics on the execution
of invocaation. Use with: to place around the part of the code that executes the invocation.
:param invocation: BaseInvocation object from the current graph.
:param graph_execution_state: GraphExecutionState object from the current session.
"""
pass
@abstractmethod
def reset_stats(self, graph_execution_state_id: str):
"""
Reset all statistics for the indicated graph
:param graph_execution_state_id
"""
pass
@abstractmethod
def reset_all_stats(self):
"""Zero all statistics"""
pass
@abstractmethod
def update_invocation_stats(
self,
graph_id: str,
invocation_type: str,
time_used: float,
vram_used: float,
):
"""
Add timing information on execution of a node. Usually
used internally.
:param graph_id: ID of the graph that is currently executing
:param invocation_type: String literal type of the node
:param time_used: Time used by node's exection (sec)
:param vram_used: Maximum VRAM used during exection (GB)
"""
pass
@abstractmethod
def log_stats(self):
"""
Write out the accumulated statistics to the log or somewhere else.
"""
pass
@abstractmethod
def update_mem_stats(
self,
ram_used: float,
ram_changed: float,
):
"""
Update the collector with RAM memory usage info.
:param ram_used: How much RAM is currently in use.
:param ram_changed: How much RAM changed since last generation.
"""
pass
class InvocationStatsService(InvocationStatsServiceBase): class InvocationStatsService(InvocationStatsServiceBase):

View File

@ -1,11 +1,10 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) # Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from abc import ABC
from typing import Optional from typing import Optional
from .graph import Graph, GraphExecutionState from .invocation_queue.invocation_queue_common import InvocationQueueItem
from .invocation_queue import InvocationQueueItem
from .invocation_services import InvocationServices from .invocation_services import InvocationServices
from .shared.graph import Graph, GraphExecutionState
class Invoker: class Invoker:
@ -84,7 +83,3 @@ class Invoker:
self.__stop_service(getattr(self.services, service)) self.__stop_service(getattr(self.services, service))
self.services.queue.put(None) self.services.queue.put(None)
class InvocationProcessorABC(ABC):
pass

View File

@ -9,6 +9,8 @@ T = TypeVar("T", bound=BaseModel)
class ItemStorageABC(ABC, Generic[T]): class ItemStorageABC(ABC, Generic[T]):
"""Provides storage for a single type of item. The type must be a Pydantic model."""
_on_changed_callbacks: list[Callable[[T], None]] _on_changed_callbacks: list[Callable[[T], None]]
_on_deleted_callbacks: list[Callable[[str], None]] _on_deleted_callbacks: list[Callable[[str], None]]

View File

@ -4,15 +4,13 @@ from typing import Generic, Optional, TypeVar, get_args
from pydantic import BaseModel, parse_raw_as from pydantic import BaseModel, parse_raw_as
from invokeai.app.services.shared.sqlite import SqliteDatabase
from invokeai.app.services.shared.pagination import PaginatedResults from invokeai.app.services.shared.pagination import PaginatedResults
from invokeai.app.services.shared.sqlite import SqliteDatabase
from .item_storage import ItemStorageABC from .item_storage_base import ItemStorageABC
T = TypeVar("T", bound=BaseModel) T = TypeVar("T", bound=BaseModel)
sqlite_memory = ":memory:"
class SqliteItemStorage(ItemStorageABC, Generic[T]): class SqliteItemStorage(ItemStorageABC, Generic[T]):
_table_name: str _table_name: str
@ -47,7 +45,8 @@ class SqliteItemStorage(ItemStorageABC, Generic[T]):
self._lock.release() self._lock.release()
def _parse_item(self, item: str) -> T: def _parse_item(self, item: str) -> T:
item_type = get_args(self.__orig_class__)[0] # __orig_class__ is technically an implementation detail of the typing module, not a supported API
item_type = get_args(self.__orig_class__)[0] # type: ignore
return parse_raw_as(item_type, item) return parse_raw_as(item_type, item)
def set(self, item: T): def set(self, item: T):

View File

@ -1,119 +0,0 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
from abc import ABC, abstractmethod
from pathlib import Path
from queue import Queue
from typing import Callable, Dict, Optional, Union
import torch
class LatentsStorageBase(ABC):
"""Responsible for storing and retrieving latents."""
_on_changed_callbacks: list[Callable[[torch.Tensor], None]]
_on_deleted_callbacks: list[Callable[[str], None]]
def __init__(self) -> None:
self._on_changed_callbacks = list()
self._on_deleted_callbacks = list()
@abstractmethod
def get(self, name: str) -> torch.Tensor:
pass
@abstractmethod
def save(self, name: str, data: torch.Tensor) -> None:
pass
@abstractmethod
def delete(self, name: str) -> None:
pass
def on_changed(self, on_changed: Callable[[torch.Tensor], None]) -> None:
"""Register a callback for when an item is changed"""
self._on_changed_callbacks.append(on_changed)
def on_deleted(self, on_deleted: Callable[[str], None]) -> None:
"""Register a callback for when an item is deleted"""
self._on_deleted_callbacks.append(on_deleted)
def _on_changed(self, item: torch.Tensor) -> None:
for callback in self._on_changed_callbacks:
callback(item)
def _on_deleted(self, item_id: str) -> None:
for callback in self._on_deleted_callbacks:
callback(item_id)
class ForwardCacheLatentsStorage(LatentsStorageBase):
"""Caches the latest N latents in memory, writing-thorugh to and reading from underlying storage"""
__cache: Dict[str, torch.Tensor]
__cache_ids: Queue
__max_cache_size: int
__underlying_storage: LatentsStorageBase
def __init__(self, underlying_storage: LatentsStorageBase, max_cache_size: int = 20):
super().__init__()
self.__underlying_storage = underlying_storage
self.__cache = dict()
self.__cache_ids = Queue()
self.__max_cache_size = max_cache_size
def get(self, name: str) -> torch.Tensor:
cache_item = self.__get_cache(name)
if cache_item is not None:
return cache_item
latent = self.__underlying_storage.get(name)
self.__set_cache(name, latent)
return latent
def save(self, name: str, data: torch.Tensor) -> None:
self.__underlying_storage.save(name, data)
self.__set_cache(name, data)
self._on_changed(data)
def delete(self, name: str) -> None:
self.__underlying_storage.delete(name)
if name in self.__cache:
del self.__cache[name]
self._on_deleted(name)
def __get_cache(self, name: str) -> Optional[torch.Tensor]:
return None if name not in self.__cache else self.__cache[name]
def __set_cache(self, name: str, data: torch.Tensor):
if name not in self.__cache:
self.__cache[name] = data
self.__cache_ids.put(name)
if self.__cache_ids.qsize() > self.__max_cache_size:
self.__cache.pop(self.__cache_ids.get())
class DiskLatentsStorage(LatentsStorageBase):
"""Stores latents in a folder on disk without caching"""
__output_folder: Union[str, Path]
def __init__(self, output_folder: Union[str, Path]):
self.__output_folder = output_folder if isinstance(output_folder, Path) else Path(output_folder)
self.__output_folder.mkdir(parents=True, exist_ok=True)
def get(self, name: str) -> torch.Tensor:
latent_path = self.get_path(name)
return torch.load(latent_path)
def save(self, name: str, data: torch.Tensor) -> None:
self.__output_folder.mkdir(parents=True, exist_ok=True)
latent_path = self.get_path(name)
torch.save(data, latent_path)
def delete(self, name: str) -> None:
latent_path = self.get_path(name)
latent_path.unlink()
def get_path(self, name: str) -> Path:
return self.__output_folder / name

View File

@ -0,0 +1,45 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
from abc import ABC, abstractmethod
from typing import Callable
import torch
class LatentsStorageBase(ABC):
"""Responsible for storing and retrieving latents."""
_on_changed_callbacks: list[Callable[[torch.Tensor], None]]
_on_deleted_callbacks: list[Callable[[str], None]]
def __init__(self) -> None:
self._on_changed_callbacks = list()
self._on_deleted_callbacks = list()
@abstractmethod
def get(self, name: str) -> torch.Tensor:
pass
@abstractmethod
def save(self, name: str, data: torch.Tensor) -> None:
pass
@abstractmethod
def delete(self, name: str) -> None:
pass
def on_changed(self, on_changed: Callable[[torch.Tensor], None]) -> None:
"""Register a callback for when an item is changed"""
self._on_changed_callbacks.append(on_changed)
def on_deleted(self, on_deleted: Callable[[str], None]) -> None:
"""Register a callback for when an item is deleted"""
self._on_deleted_callbacks.append(on_deleted)
def _on_changed(self, item: torch.Tensor) -> None:
for callback in self._on_changed_callbacks:
callback(item)
def _on_deleted(self, item_id: str) -> None:
for callback in self._on_deleted_callbacks:
callback(item_id)

View File

@ -0,0 +1,34 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
from pathlib import Path
from typing import Union
import torch
from .latents_storage_base import LatentsStorageBase
class DiskLatentsStorage(LatentsStorageBase):
"""Stores latents in a folder on disk without caching"""
__output_folder: Path
def __init__(self, output_folder: Union[str, Path]):
self.__output_folder = output_folder if isinstance(output_folder, Path) else Path(output_folder)
self.__output_folder.mkdir(parents=True, exist_ok=True)
def get(self, name: str) -> torch.Tensor:
latent_path = self.get_path(name)
return torch.load(latent_path)
def save(self, name: str, data: torch.Tensor) -> None:
self.__output_folder.mkdir(parents=True, exist_ok=True)
latent_path = self.get_path(name)
torch.save(data, latent_path)
def delete(self, name: str) -> None:
latent_path = self.get_path(name)
latent_path.unlink()
def get_path(self, name: str) -> Path:
return self.__output_folder / name

View File

@ -0,0 +1,54 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
from queue import Queue
from typing import Dict, Optional
import torch
from .latents_storage_base import LatentsStorageBase
class ForwardCacheLatentsStorage(LatentsStorageBase):
"""Caches the latest N latents in memory, writing-thorugh to and reading from underlying storage"""
__cache: Dict[str, torch.Tensor]
__cache_ids: Queue
__max_cache_size: int
__underlying_storage: LatentsStorageBase
def __init__(self, underlying_storage: LatentsStorageBase, max_cache_size: int = 20):
super().__init__()
self.__underlying_storage = underlying_storage
self.__cache = dict()
self.__cache_ids = Queue()
self.__max_cache_size = max_cache_size
def get(self, name: str) -> torch.Tensor:
cache_item = self.__get_cache(name)
if cache_item is not None:
return cache_item
latent = self.__underlying_storage.get(name)
self.__set_cache(name, latent)
return latent
def save(self, name: str, data: torch.Tensor) -> None:
self.__underlying_storage.save(name, data)
self.__set_cache(name, data)
self._on_changed(data)
def delete(self, name: str) -> None:
self.__underlying_storage.delete(name)
if name in self.__cache:
del self.__cache[name]
self._on_deleted(name)
def __get_cache(self, name: str) -> Optional[torch.Tensor]:
return None if name not in self.__cache else self.__cache[name]
def __set_cache(self, name: str, data: torch.Tensor):
if name not in self.__cache:
self.__cache[name] = data
self.__cache_ids.put(name)
if self.__cache_ids.qsize() > self.__max_cache_size:
self.__cache.pop(self.__cache_ids.get())

View File

@ -0,0 +1,286 @@
# Copyright (c) 2023 Lincoln D. Stein and the InvokeAI Team
from __future__ import annotations
from abc import ABC, abstractmethod
from logging import Logger
from pathlib import Path
from typing import TYPE_CHECKING, Callable, List, Literal, Optional, Tuple, Union
from pydantic import Field
from invokeai.app.services.config.config_default import InvokeAIAppConfig
from invokeai.backend.model_management import (
AddModelResult,
BaseModelType,
MergeInterpolationMethod,
ModelInfo,
ModelType,
SchedulerPredictionType,
SubModelType,
)
from invokeai.backend.model_management.model_cache import CacheStats
if TYPE_CHECKING:
from invokeai.app.invocations.baseinvocation import BaseInvocation, InvocationContext
class ModelManagerServiceBase(ABC):
"""Responsible for managing models on disk and in memory"""
@abstractmethod
def __init__(
self,
config: InvokeAIAppConfig,
logger: Logger,
):
"""
Initialize with the path to the models.yaml config file.
Optional parameters are the torch device type, precision, max_models,
and sequential_offload boolean. Note that the default device
type and precision are set up for a CUDA system running at half precision.
"""
pass
@abstractmethod
def get_model(
self,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
submodel: Optional[SubModelType] = None,
node: Optional[BaseInvocation] = None,
context: Optional[InvocationContext] = None,
) -> ModelInfo:
"""Retrieve the indicated model with name and type.
submodel can be used to get a part (such as the vae)
of a diffusers pipeline."""
pass
@property
@abstractmethod
def logger(self):
pass
@abstractmethod
def model_exists(
self,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
) -> bool:
pass
@abstractmethod
def model_info(self, model_name: str, base_model: BaseModelType, model_type: ModelType) -> dict:
"""
Given a model name returns a dict-like (OmegaConf) object describing it.
Uses the exact format as the omegaconf stanza.
"""
pass
@abstractmethod
def list_models(self, base_model: Optional[BaseModelType] = None, model_type: Optional[ModelType] = None) -> dict:
"""
Return a dict of models in the format:
{ model_type1:
{ model_name1: {'status': 'active'|'cached'|'not loaded',
'model_name' : name,
'model_type' : SDModelType,
'description': description,
'format': 'folder'|'safetensors'|'ckpt'
},
model_name2: { etc }
},
model_type2:
{ model_name_n: etc
}
"""
pass
@abstractmethod
def list_model(self, model_name: str, base_model: BaseModelType, model_type: ModelType) -> dict:
"""
Return information about the model using the same format as list_models()
"""
pass
@abstractmethod
def model_names(self) -> List[Tuple[str, BaseModelType, ModelType]]:
"""
Returns a list of all the model names known.
"""
pass
@abstractmethod
def add_model(
self,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
model_attributes: dict,
clobber: bool = False,
) -> AddModelResult:
"""
Update the named model with a dictionary of attributes. Will fail with an
assertion error if the name already exists. Pass clobber=True to overwrite.
On a successful update, the config will be changed in memory. Will fail
with an assertion error if provided attributes are incorrect or
the model name is missing. Call commit() to write changes to disk.
"""
pass
@abstractmethod
def update_model(
self,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
model_attributes: dict,
) -> AddModelResult:
"""
Update the named model with a dictionary of attributes. Will fail with a
ModelNotFoundException if the name does not already exist.
On a successful update, the config will be changed in memory. Will fail
with an assertion error if provided attributes are incorrect or
the model name is missing. Call commit() to write changes to disk.
"""
pass
@abstractmethod
def del_model(
self,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
):
"""
Delete the named model from configuration. If delete_files is true,
then the underlying weight file or diffusers directory will be deleted
as well. Call commit() to write to disk.
"""
pass
@abstractmethod
def rename_model(
self,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
new_name: str,
):
"""
Rename the indicated model.
"""
pass
@abstractmethod
def list_checkpoint_configs(self) -> List[Path]:
"""
List the checkpoint config paths from ROOT/configs/stable-diffusion.
"""
pass
@abstractmethod
def convert_model(
self,
model_name: str,
base_model: BaseModelType,
model_type: Literal[ModelType.Main, ModelType.Vae],
) -> AddModelResult:
"""
Convert a checkpoint file into a diffusers folder, deleting the cached
version and deleting the original checkpoint file if it is in the models
directory.
:param model_name: Name of the model to convert
:param base_model: Base model type
:param model_type: Type of model ['vae' or 'main']
This will raise a ValueError unless the model is not a checkpoint. It will
also raise a ValueError in the event that there is a similarly-named diffusers
directory already in place.
"""
pass
@abstractmethod
def heuristic_import(
self,
items_to_import: set[str],
prediction_type_helper: Optional[Callable[[Path], SchedulerPredictionType]] = None,
) -> dict[str, AddModelResult]:
"""Import a list of paths, repo_ids or URLs. Returns the set of
successfully imported items.
:param items_to_import: Set of strings corresponding to models to be imported.
:param prediction_type_helper: A callback that receives the Path of a Stable Diffusion 2 checkpoint model and returns a SchedulerPredictionType.
The prediction type helper is necessary to distinguish between
models based on Stable Diffusion 2 Base (requiring
SchedulerPredictionType.Epsilson) and Stable Diffusion 768
(requiring SchedulerPredictionType.VPrediction). It is
generally impossible to do this programmatically, so the
prediction_type_helper usually asks the user to choose.
The result is a set of successfully installed models. Each element
of the set is a dict corresponding to the newly-created OmegaConf stanza for
that model.
"""
pass
@abstractmethod
def merge_models(
self,
model_names: List[str] = Field(
default=None, min_items=2, max_items=3, description="List of model names to merge"
),
base_model: Union[BaseModelType, str] = Field(
default=None, description="Base model shared by all models to be merged"
),
merged_model_name: str = Field(default=None, description="Name of destination model after merging"),
alpha: Optional[float] = 0.5,
interp: Optional[MergeInterpolationMethod] = None,
force: Optional[bool] = False,
merge_dest_directory: Optional[Path] = None,
) -> AddModelResult:
"""
Merge two to three diffusrs pipeline models and save as a new model.
:param model_names: List of 2-3 models to merge
:param base_model: Base model to use for all models
:param merged_model_name: Name of destination merged model
:param alpha: Alpha strength to apply to 2d and 3d model
:param interp: Interpolation method. None (default)
:param merge_dest_directory: Save the merged model to the designated directory (with 'merged_model_name' appended)
"""
pass
@abstractmethod
def search_for_models(self, directory: Path) -> List[Path]:
"""
Return list of all models found in the designated directory.
"""
pass
@abstractmethod
def sync_to_config(self):
"""
Re-read models.yaml, rescan the models directory, and reimport models
in the autoimport directories. Call after making changes outside the
model manager API.
"""
pass
@abstractmethod
def collect_cache_stats(self, cache_stats: CacheStats):
"""
Reset model cache statistics for graph with graph_id.
"""
pass
@abstractmethod
def commit(self, conf_file: Optional[Path] = None) -> None:
"""
Write current configuration out to the indicated file.
If no conf_file is provided, then replaces the
original file/database used to initialize the object.
"""
pass

View File

@ -2,16 +2,15 @@
from __future__ import annotations from __future__ import annotations
from abc import ABC, abstractmethod
from logging import Logger from logging import Logger
from pathlib import Path from pathlib import Path
from types import ModuleType
from typing import TYPE_CHECKING, Callable, List, Literal, Optional, Tuple, Union from typing import TYPE_CHECKING, Callable, List, Literal, Optional, Tuple, Union
import torch import torch
from pydantic import Field from pydantic import Field
from invokeai.app.models.exceptions import CanceledException from invokeai.app.services.config.config_default import InvokeAIAppConfig
from invokeai.app.services.invocation_processor.invocation_processor_common import CanceledException
from invokeai.backend.model_management import ( from invokeai.backend.model_management import (
AddModelResult, AddModelResult,
BaseModelType, BaseModelType,
@ -26,273 +25,12 @@ from invokeai.backend.model_management import (
) )
from invokeai.backend.model_management.model_cache import CacheStats from invokeai.backend.model_management.model_cache import CacheStats
from invokeai.backend.model_management.model_search import FindModels from invokeai.backend.model_management.model_search import FindModels
from invokeai.backend.util import choose_precision, choose_torch_device
from ...backend.util import choose_precision, choose_torch_device from .model_manager_base import ModelManagerServiceBase
from .config import InvokeAIAppConfig
if TYPE_CHECKING: if TYPE_CHECKING:
from ..invocations.baseinvocation import BaseInvocation, InvocationContext from invokeai.app.invocations.baseinvocation import InvocationContext
class ModelManagerServiceBase(ABC):
"""Responsible for managing models on disk and in memory"""
@abstractmethod
def __init__(
self,
config: InvokeAIAppConfig,
logger: ModuleType,
):
"""
Initialize with the path to the models.yaml config file.
Optional parameters are the torch device type, precision, max_models,
and sequential_offload boolean. Note that the default device
type and precision are set up for a CUDA system running at half precision.
"""
pass
@abstractmethod
def get_model(
self,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
submodel: Optional[SubModelType] = None,
node: Optional[BaseInvocation] = None,
context: Optional[InvocationContext] = None,
) -> ModelInfo:
"""Retrieve the indicated model with name and type.
submodel can be used to get a part (such as the vae)
of a diffusers pipeline."""
pass
@property
@abstractmethod
def logger(self):
pass
@abstractmethod
def model_exists(
self,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
) -> bool:
pass
@abstractmethod
def model_info(self, model_name: str, base_model: BaseModelType, model_type: ModelType) -> dict:
"""
Given a model name returns a dict-like (OmegaConf) object describing it.
Uses the exact format as the omegaconf stanza.
"""
pass
@abstractmethod
def list_models(self, base_model: Optional[BaseModelType] = None, model_type: Optional[ModelType] = None) -> dict:
"""
Return a dict of models in the format:
{ model_type1:
{ model_name1: {'status': 'active'|'cached'|'not loaded',
'model_name' : name,
'model_type' : SDModelType,
'description': description,
'format': 'folder'|'safetensors'|'ckpt'
},
model_name2: { etc }
},
model_type2:
{ model_name_n: etc
}
"""
pass
@abstractmethod
def list_model(self, model_name: str, base_model: BaseModelType, model_type: ModelType) -> dict:
"""
Return information about the model using the same format as list_models()
"""
pass
@abstractmethod
def model_names(self) -> List[Tuple[str, BaseModelType, ModelType]]:
"""
Returns a list of all the model names known.
"""
pass
@abstractmethod
def add_model(
self,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
model_attributes: dict,
clobber: bool = False,
) -> AddModelResult:
"""
Update the named model with a dictionary of attributes. Will fail with an
assertion error if the name already exists. Pass clobber=True to overwrite.
On a successful update, the config will be changed in memory. Will fail
with an assertion error if provided attributes are incorrect or
the model name is missing. Call commit() to write changes to disk.
"""
pass
@abstractmethod
def update_model(
self,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
model_attributes: dict,
) -> AddModelResult:
"""
Update the named model with a dictionary of attributes. Will fail with a
ModelNotFoundException if the name does not already exist.
On a successful update, the config will be changed in memory. Will fail
with an assertion error if provided attributes are incorrect or
the model name is missing. Call commit() to write changes to disk.
"""
pass
@abstractmethod
def del_model(
self,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
):
"""
Delete the named model from configuration. If delete_files is true,
then the underlying weight file or diffusers directory will be deleted
as well. Call commit() to write to disk.
"""
pass
@abstractmethod
def rename_model(
self,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
new_name: str,
):
"""
Rename the indicated model.
"""
pass
@abstractmethod
def list_checkpoint_configs(self) -> List[Path]:
"""
List the checkpoint config paths from ROOT/configs/stable-diffusion.
"""
pass
@abstractmethod
def convert_model(
self,
model_name: str,
base_model: BaseModelType,
model_type: Literal[ModelType.Main, ModelType.Vae],
) -> AddModelResult:
"""
Convert a checkpoint file into a diffusers folder, deleting the cached
version and deleting the original checkpoint file if it is in the models
directory.
:param model_name: Name of the model to convert
:param base_model: Base model type
:param model_type: Type of model ['vae' or 'main']
This will raise a ValueError unless the model is not a checkpoint. It will
also raise a ValueError in the event that there is a similarly-named diffusers
directory already in place.
"""
pass
@abstractmethod
def heuristic_import(
self,
items_to_import: set[str],
prediction_type_helper: Optional[Callable[[Path], SchedulerPredictionType]] = None,
) -> dict[str, AddModelResult]:
"""Import a list of paths, repo_ids or URLs. Returns the set of
successfully imported items.
:param items_to_import: Set of strings corresponding to models to be imported.
:param prediction_type_helper: A callback that receives the Path of a Stable Diffusion 2 checkpoint model and returns a SchedulerPredictionType.
The prediction type helper is necessary to distinguish between
models based on Stable Diffusion 2 Base (requiring
SchedulerPredictionType.Epsilson) and Stable Diffusion 768
(requiring SchedulerPredictionType.VPrediction). It is
generally impossible to do this programmatically, so the
prediction_type_helper usually asks the user to choose.
The result is a set of successfully installed models. Each element
of the set is a dict corresponding to the newly-created OmegaConf stanza for
that model.
"""
pass
@abstractmethod
def merge_models(
self,
model_names: List[str] = Field(
default=None, min_items=2, max_items=3, description="List of model names to merge"
),
base_model: Union[BaseModelType, str] = Field(
default=None, description="Base model shared by all models to be merged"
),
merged_model_name: str = Field(default=None, description="Name of destination model after merging"),
alpha: Optional[float] = 0.5,
interp: Optional[MergeInterpolationMethod] = None,
force: Optional[bool] = False,
merge_dest_directory: Optional[Path] = None,
) -> AddModelResult:
"""
Merge two to three diffusrs pipeline models and save as a new model.
:param model_names: List of 2-3 models to merge
:param base_model: Base model to use for all models
:param merged_model_name: Name of destination merged model
:param alpha: Alpha strength to apply to 2d and 3d model
:param interp: Interpolation method. None (default)
:param merge_dest_directory: Save the merged model to the designated directory (with 'merged_model_name' appended)
"""
pass
@abstractmethod
def search_for_models(self, directory: Path) -> List[Path]:
"""
Return list of all models found in the designated directory.
"""
pass
@abstractmethod
def sync_to_config(self):
"""
Re-read models.yaml, rescan the models directory, and reimport models
in the autoimport directories. Call after making changes outside the
model manager API.
"""
pass
@abstractmethod
def collect_cache_stats(self, cache_stats: CacheStats):
"""
Reset model cache statistics for graph with graph_id.
"""
pass
@abstractmethod
def commit(self, conf_file: Optional[Path] = None) -> None:
"""
Write current configuration out to the indicated file.
If no conf_file is provided, then replaces the
original file/database used to initialize the object.
"""
pass
# simple implementation # simple implementation

View File

View File

@ -0,0 +1,11 @@
from abc import ABC, abstractmethod
class NameServiceBase(ABC):
"""Low-level service responsible for naming resources (images, latents, etc)."""
# TODO: Add customizable naming schemes
@abstractmethod
def create_image_name(self) -> str:
"""Creates a name for an image."""
pass

View File

@ -0,0 +1,8 @@
from enum import Enum, EnumMeta
class ResourceType(str, Enum, metaclass=EnumMeta):
"""Enum for resource types."""
IMAGE = "image"
LATENT = "latent"

View File

@ -0,0 +1,13 @@
from invokeai.app.util.misc import uuid_string
from .names_base import NameServiceBase
class SimpleNameService(NameServiceBase):
"""Creates image names from UUIDs."""
# TODO: Add customizable naming schemes
def create_image_name(self) -> str:
uuid_str = uuid_string()
filename = f"{uuid_str}.png"
return filename

View File

@ -1,31 +0,0 @@
from abc import ABC, abstractmethod
from enum import Enum, EnumMeta
from invokeai.app.util.misc import uuid_string
class ResourceType(str, Enum, metaclass=EnumMeta):
"""Enum for resource types."""
IMAGE = "image"
LATENT = "latent"
class NameServiceBase(ABC):
"""Low-level service responsible for naming resources (images, latents, etc)."""
# TODO: Add customizable naming schemes
@abstractmethod
def create_image_name(self) -> str:
"""Creates a name for an image."""
pass
class SimpleNameService(NameServiceBase):
"""Creates image names from UUIDs."""
# TODO: Add customizable naming schemes
def create_image_name(self) -> str:
uuid_str = uuid_string()
filename = f"{uuid_str}.png"
return filename

View File

@ -7,7 +7,7 @@ from typing import Optional
from fastapi_events.handlers.local import local_handler from fastapi_events.handlers.local import local_handler
from fastapi_events.typing import Event as FastAPIEvent from fastapi_events.typing import Event as FastAPIEvent
from invokeai.app.services.events import EventServiceBase from invokeai.app.services.events.events_base import EventServiceBase
from invokeai.app.services.session_queue.session_queue_common import SessionQueueItem from invokeai.app.services.session_queue.session_queue_common import SessionQueueItem
from ..invoker import Invoker from ..invoker import Invoker

View File

@ -1,7 +1,6 @@
from abc import ABC, abstractmethod from abc import ABC, abstractmethod
from typing import Optional from typing import Optional
from invokeai.app.services.graph import Graph
from invokeai.app.services.session_queue.session_queue_common import ( from invokeai.app.services.session_queue.session_queue_common import (
QUEUE_ITEM_STATUS, QUEUE_ITEM_STATUS,
Batch, Batch,
@ -18,6 +17,7 @@ from invokeai.app.services.session_queue.session_queue_common import (
SessionQueueItemDTO, SessionQueueItemDTO,
SessionQueueStatus, SessionQueueStatus,
) )
from invokeai.app.services.shared.graph import Graph
from invokeai.app.services.shared.pagination import CursorPaginatedResults from invokeai.app.services.shared.pagination import CursorPaginatedResults

View File

@ -7,7 +7,7 @@ from pydantic import BaseModel, Field, StrictStr, parse_raw_as, root_validator,
from pydantic.json import pydantic_encoder from pydantic.json import pydantic_encoder
from invokeai.app.invocations.baseinvocation import BaseInvocation from invokeai.app.invocations.baseinvocation import BaseInvocation
from invokeai.app.services.graph import Graph, GraphExecutionState, NodeNotFoundError from invokeai.app.services.shared.graph import Graph, GraphExecutionState, NodeNotFoundError
from invokeai.app.util.misc import uuid_string from invokeai.app.util.misc import uuid_string
# region Errors # region Errors

View File

@ -5,8 +5,7 @@ from typing import Optional, Union, cast
from fastapi_events.handlers.local import local_handler from fastapi_events.handlers.local import local_handler
from fastapi_events.typing import Event as FastAPIEvent from fastapi_events.typing import Event as FastAPIEvent
from invokeai.app.services.events import EventServiceBase from invokeai.app.services.events.events_base import EventServiceBase
from invokeai.app.services.graph import Graph
from invokeai.app.services.invoker import Invoker from invokeai.app.services.invoker import Invoker
from invokeai.app.services.session_queue.session_queue_base import SessionQueueBase from invokeai.app.services.session_queue.session_queue_base import SessionQueueBase
from invokeai.app.services.session_queue.session_queue_common import ( from invokeai.app.services.session_queue.session_queue_common import (
@ -29,8 +28,9 @@ from invokeai.app.services.session_queue.session_queue_common import (
calc_session_count, calc_session_count,
prepare_values_to_insert, prepare_values_to_insert,
) )
from invokeai.app.services.shared.sqlite import SqliteDatabase from invokeai.app.services.shared.graph import Graph
from invokeai.app.services.shared.pagination import CursorPaginatedResults from invokeai.app.services.shared.pagination import CursorPaginatedResults
from invokeai.app.services.shared.sqlite import SqliteDatabase
class SqliteSessionQueue(SessionQueueBase): class SqliteSessionQueue(SessionQueueBase):

View File

@ -1,10 +1,11 @@
from ..invocations.compel import CompelInvocation from invokeai.app.services.item_storage.item_storage_base import ItemStorageABC
from ..invocations.image import ImageNSFWBlurInvocation
from ..invocations.latent import DenoiseLatentsInvocation, LatentsToImageInvocation from ...invocations.compel import CompelInvocation
from ..invocations.noise import NoiseInvocation from ...invocations.image import ImageNSFWBlurInvocation
from ..invocations.primitives import IntegerInvocation from ...invocations.latent import DenoiseLatentsInvocation, LatentsToImageInvocation
from ...invocations.noise import NoiseInvocation
from ...invocations.primitives import IntegerInvocation
from .graph import Edge, EdgeConnection, ExposedNodeInput, ExposedNodeOutput, Graph, LibraryGraph from .graph import Edge, EdgeConnection, ExposedNodeInput, ExposedNodeOutput, Graph, LibraryGraph
from .item_storage import ItemStorageABC
default_text_to_image_graph_id = "539b2af5-2b4d-4d8c-8071-e54a3255fc74" default_text_to_image_graph_id = "539b2af5-2b4d-4d8c-8071-e54a3255fc74"

View File

@ -8,11 +8,9 @@ import networkx as nx
from pydantic import BaseModel, root_validator, validator from pydantic import BaseModel, root_validator, validator
from pydantic.fields import Field from pydantic.fields import Field
from invokeai.app.util.misc import uuid_string
# Importing * is bad karma but needed here for node detection # Importing * is bad karma but needed here for node detection
from ..invocations import * # noqa: F401 F403 from invokeai.app.invocations import * # noqa: F401 F403
from ..invocations.baseinvocation import ( from invokeai.app.invocations.baseinvocation import (
BaseInvocation, BaseInvocation,
BaseInvocationOutput, BaseInvocationOutput,
Input, Input,
@ -23,6 +21,7 @@ from ..invocations.baseinvocation import (
invocation, invocation,
invocation_output, invocation_output,
) )
from invokeai.app.util.misc import uuid_string
# in 3.10 this would be "from types import NoneType" # in 3.10 this would be "from types import NoneType"
NoneType = type(None) NoneType = type(None)

View File

@ -4,6 +4,8 @@ from logging import Logger
from invokeai.app.services.config import InvokeAIAppConfig from invokeai.app.services.config import InvokeAIAppConfig
sqlite_memory = ":memory:"
class SqliteDatabase: class SqliteDatabase:
conn: sqlite3.Connection conn: sqlite3.Connection
@ -16,7 +18,7 @@ class SqliteDatabase:
self._config = config self._config = config
if self._config.use_memory_db: if self._config.use_memory_db:
location = ":memory:" location = sqlite_memory
logger.info("Using in-memory database") logger.info("Using in-memory database")
else: else:
db_path = self._config.db_path db_path = self._config.db_path

View File

View File

@ -0,0 +1,10 @@
from abc import ABC, abstractmethod
class UrlServiceBase(ABC):
"""Responsible for building URLs for resources."""
@abstractmethod
def get_image_url(self, image_name: str, thumbnail: bool = False) -> str:
"""Gets the URL for an image or thumbnail."""
pass

View File

@ -1,14 +1,6 @@
import os import os
from abc import ABC, abstractmethod
from .urls_base import UrlServiceBase
class UrlServiceBase(ABC):
"""Responsible for building URLs for resources."""
@abstractmethod
def get_image_url(self, image_name: str, thumbnail: bool = False) -> str:
"""Gets the URL for an image or thumbnail."""
pass
class LocalUrlService(UrlServiceBase): class LocalUrlService(UrlServiceBase):

View File

@ -3,7 +3,7 @@ from typing import Optional
from pydantic import ValidationError from pydantic import ValidationError
from invokeai.app.services.graph import Edge from invokeai.app.services.shared.graph import Edge
def get_metadata_graph_from_raw_session(session_raw: str) -> Optional[dict]: def get_metadata_graph_from_raw_session(session_raw: str) -> Optional[dict]:

View File

@ -1,8 +1,7 @@
import torch import torch
from PIL import Image from PIL import Image
from invokeai.app.models.exceptions import CanceledException from invokeai.app.services.invocation_processor.invocation_processor_common import CanceledException, ProgressImage
from invokeai.app.models.image import ProgressImage
from ...backend.model_management.models import BaseModelType from ...backend.model_management.models import BaseModelType
from ...backend.stable_diffusion import PipelineIntermediateState from ...backend.stable_diffusion import PipelineIntermediateState

File diff suppressed because one or more lines are too long

View File

@ -1,5 +1,4 @@
import logging import logging
import threading
import pytest import pytest
@ -10,20 +9,27 @@ from .test_nodes import ( # isort: split
TestEventService, TestEventService,
TextToImageTestInvocation, TextToImageTestInvocation,
) )
import sqlite3
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext
from invokeai.app.invocations.collections import RangeInvocation from invokeai.app.invocations.collections import RangeInvocation
from invokeai.app.invocations.math import AddInvocation, MultiplyInvocation from invokeai.app.invocations.math import AddInvocation, MultiplyInvocation
from invokeai.app.services.config.invokeai_config import InvokeAIAppConfig from invokeai.app.services.config.config_default import InvokeAIAppConfig
from invokeai.app.services.graph import CollectInvocation, Graph, GraphExecutionState, IterateInvocation, LibraryGraph
from invokeai.app.services.invocation_cache.invocation_cache_memory import MemoryInvocationCache from invokeai.app.services.invocation_cache.invocation_cache_memory import MemoryInvocationCache
from invokeai.app.services.invocation_queue import MemoryInvocationQueue from invokeai.app.services.invocation_processor.invocation_processor_default import DefaultInvocationProcessor
from invokeai.app.services.invocation_queue.invocation_queue_memory import MemoryInvocationQueue
from invokeai.app.services.invocation_services import InvocationServices from invokeai.app.services.invocation_services import InvocationServices
from invokeai.app.services.invocation_stats import InvocationStatsService from invokeai.app.services.invocation_stats.invocation_stats_default import InvocationStatsService
from invokeai.app.services.processor import DefaultInvocationProcessor from invokeai.app.services.item_storage.item_storage_sqlite import SqliteItemStorage
from invokeai.app.services.session_queue.session_queue_common import DEFAULT_QUEUE_ID from invokeai.app.services.session_queue.session_queue_common import DEFAULT_QUEUE_ID
from invokeai.app.services.sqlite import SqliteItemStorage, sqlite_memory from invokeai.app.services.shared.graph import (
CollectInvocation,
Graph,
GraphExecutionState,
IterateInvocation,
LibraryGraph,
)
from invokeai.app.services.shared.sqlite import SqliteDatabase
from invokeai.backend.util.logging import InvokeAILogger
from .test_invoker import create_edge from .test_invoker import create_edge
@ -42,29 +48,33 @@ def simple_graph():
# the test invocations. # the test invocations.
@pytest.fixture @pytest.fixture
def mock_services() -> InvocationServices: def mock_services() -> InvocationServices:
lock = threading.Lock() configuration = InvokeAIAppConfig(use_memory_db=True, node_cache_size=0)
db = SqliteDatabase(configuration, InvokeAILogger.get_logger())
# NOTE: none of these are actually called by the test invocations # NOTE: none of these are actually called by the test invocations
db_conn = sqlite3.connect(sqlite_memory, check_same_thread=False) graph_execution_manager = SqliteItemStorage[GraphExecutionState](db=db, table_name="graph_executions")
graph_execution_manager = SqliteItemStorage[GraphExecutionState](
conn=db_conn, table_name="graph_executions", lock=lock
)
return InvocationServices( return InvocationServices(
model_manager=None, # type: ignore board_image_records=None, # type: ignore
events=TestEventService(),
logger=logging, # type: ignore
images=None, # type: ignore
latents=None, # type: ignore
boards=None, # type: ignore
board_images=None, # type: ignore board_images=None, # type: ignore
queue=MemoryInvocationQueue(), board_records=None, # type: ignore
graph_library=SqliteItemStorage[LibraryGraph](conn=db_conn, table_name="graphs", lock=lock), boards=None, # type: ignore
configuration=configuration,
events=TestEventService(),
graph_execution_manager=graph_execution_manager, graph_execution_manager=graph_execution_manager,
performance_statistics=InvocationStatsService(graph_execution_manager), graph_library=SqliteItemStorage[LibraryGraph](db=db, table_name="graphs"),
image_files=None, # type: ignore
image_records=None, # type: ignore
images=None, # type: ignore
invocation_cache=MemoryInvocationCache(max_cache_size=0),
latents=None, # type: ignore
logger=logging, # type: ignore
model_manager=None, # type: ignore
names=None, # type: ignore
performance_statistics=InvocationStatsService(),
processor=DefaultInvocationProcessor(), processor=DefaultInvocationProcessor(),
configuration=InvokeAIAppConfig(node_cache_size=0), # type: ignore queue=MemoryInvocationQueue(),
session_queue=None, # type: ignore
session_processor=None, # type: ignore session_processor=None, # type: ignore
invocation_cache=MemoryInvocationCache(), # type: ignore session_queue=None, # type: ignore
urls=None, # type: ignore
) )

View File

@ -1,10 +1,9 @@
import logging import logging
import sqlite3
import threading
import pytest import pytest
from invokeai.app.services.config.invokeai_config import InvokeAIAppConfig from invokeai.app.services.config.config_default import InvokeAIAppConfig
from invokeai.backend.util.logging import InvokeAILogger
# This import must happen before other invoke imports or test in other files(!!) break # This import must happen before other invoke imports or test in other files(!!) break
from .test_nodes import ( # isort: split from .test_nodes import ( # isort: split
@ -16,15 +15,16 @@ from .test_nodes import ( # isort: split
wait_until, wait_until,
) )
from invokeai.app.services.graph import Graph, GraphExecutionState, GraphInvocation, LibraryGraph
from invokeai.app.services.invocation_cache.invocation_cache_memory import MemoryInvocationCache from invokeai.app.services.invocation_cache.invocation_cache_memory import MemoryInvocationCache
from invokeai.app.services.invocation_queue import MemoryInvocationQueue from invokeai.app.services.invocation_processor.invocation_processor_default import DefaultInvocationProcessor
from invokeai.app.services.invocation_queue.invocation_queue_memory import MemoryInvocationQueue
from invokeai.app.services.invocation_services import InvocationServices from invokeai.app.services.invocation_services import InvocationServices
from invokeai.app.services.invocation_stats import InvocationStatsService from invokeai.app.services.invocation_stats.invocation_stats_default import InvocationStatsService
from invokeai.app.services.invoker import Invoker from invokeai.app.services.invoker import Invoker
from invokeai.app.services.processor import DefaultInvocationProcessor from invokeai.app.services.item_storage.item_storage_sqlite import SqliteItemStorage
from invokeai.app.services.session_queue.session_queue_common import DEFAULT_QUEUE_ID from invokeai.app.services.session_queue.session_queue_common import DEFAULT_QUEUE_ID
from invokeai.app.services.sqlite import SqliteItemStorage, sqlite_memory from invokeai.app.services.shared.graph import Graph, GraphExecutionState, GraphInvocation, LibraryGraph
from invokeai.app.services.shared.sqlite import SqliteDatabase
@pytest.fixture @pytest.fixture
@ -52,29 +52,34 @@ def graph_with_subgraph():
# the test invocations. # the test invocations.
@pytest.fixture @pytest.fixture
def mock_services() -> InvocationServices: def mock_services() -> InvocationServices:
lock = threading.Lock() db = SqliteDatabase(InvokeAIAppConfig(use_memory_db=True), InvokeAILogger.get_logger())
configuration = InvokeAIAppConfig(use_memory_db=True, node_cache_size=0)
# NOTE: none of these are actually called by the test invocations # NOTE: none of these are actually called by the test invocations
db_conn = sqlite3.connect(sqlite_memory, check_same_thread=False) graph_execution_manager = SqliteItemStorage[GraphExecutionState](db=db, table_name="graph_executions")
graph_execution_manager = SqliteItemStorage[GraphExecutionState](
conn=db_conn, table_name="graph_executions", lock=lock
)
return InvocationServices( return InvocationServices(
model_manager=None, # type: ignore board_image_records=None, # type: ignore
events=TestEventService(),
logger=logging, # type: ignore
images=None, # type: ignore
latents=None, # type: ignore
boards=None, # type: ignore
board_images=None, # type: ignore board_images=None, # type: ignore
queue=MemoryInvocationQueue(), board_records=None, # type: ignore
graph_library=SqliteItemStorage[LibraryGraph](conn=db_conn, table_name="graphs", lock=lock), boards=None, # type: ignore
configuration=configuration,
events=TestEventService(),
graph_execution_manager=graph_execution_manager, graph_execution_manager=graph_execution_manager,
processor=DefaultInvocationProcessor(), graph_library=SqliteItemStorage[LibraryGraph](db=db, table_name="graphs"),
performance_statistics=InvocationStatsService(graph_execution_manager), image_files=None, # type: ignore
configuration=InvokeAIAppConfig(node_cache_size=0), # type: ignore image_records=None, # type: ignore
session_queue=None, # type: ignore images=None, # type: ignore
session_processor=None, # type: ignore
invocation_cache=MemoryInvocationCache(max_cache_size=0), invocation_cache=MemoryInvocationCache(max_cache_size=0),
latents=None, # type: ignore
logger=logging, # type: ignore
model_manager=None, # type: ignore
names=None, # type: ignore
performance_statistics=InvocationStatsService(),
processor=DefaultInvocationProcessor(),
queue=MemoryInvocationQueue(),
session_processor=None, # type: ignore
session_queue=None, # type: ignore
urls=None, # type: ignore
) )

View File

@ -11,8 +11,8 @@ from invokeai.app.invocations.image import ShowImageInvocation
from invokeai.app.invocations.math import AddInvocation, SubtractInvocation from invokeai.app.invocations.math import AddInvocation, SubtractInvocation
from invokeai.app.invocations.primitives import FloatInvocation, IntegerInvocation from invokeai.app.invocations.primitives import FloatInvocation, IntegerInvocation
from invokeai.app.invocations.upscale import ESRGANInvocation from invokeai.app.invocations.upscale import ESRGANInvocation
from invokeai.app.services.default_graphs import create_text_to_image from invokeai.app.services.shared.default_graphs import create_text_to_image
from invokeai.app.services.graph import ( from invokeai.app.services.shared.graph import (
CollectInvocation, CollectInvocation,
Edge, Edge,
EdgeConnection, EdgeConnection,

View File

@ -82,8 +82,8 @@ class PromptCollectionTestInvocation(BaseInvocation):
# Importing these must happen after test invocations are defined or they won't register # Importing these must happen after test invocations are defined or they won't register
from invokeai.app.services.events import EventServiceBase # noqa: E402 from invokeai.app.services.events.events_base import EventServiceBase # noqa: E402
from invokeai.app.services.graph import Edge, EdgeConnection # noqa: E402 from invokeai.app.services.shared.graph import Edge, EdgeConnection # noqa: E402
def create_edge(from_id: str, from_field: str, to_id: str, to_field: str) -> Edge: def create_edge(from_id: str, from_field: str, to_id: str, to_field: str) -> Edge:

View File

@ -1,7 +1,6 @@
import pytest import pytest
from pydantic import ValidationError, parse_raw_as from pydantic import ValidationError, parse_raw_as
from invokeai.app.services.graph import Graph, GraphExecutionState, GraphInvocation
from invokeai.app.services.session_queue.session_queue_common import ( from invokeai.app.services.session_queue.session_queue_common import (
Batch, Batch,
BatchDataCollection, BatchDataCollection,
@ -12,6 +11,7 @@ from invokeai.app.services.session_queue.session_queue_common import (
populate_graph, populate_graph,
prepare_values_to_insert, prepare_values_to_insert,
) )
from invokeai.app.services.shared.graph import Graph, GraphExecutionState, GraphInvocation
from tests.nodes.test_nodes import PromptTestInvocation from tests.nodes.test_nodes import PromptTestInvocation

View File

@ -1,10 +1,10 @@
import sqlite3
import threading
import pytest import pytest
from pydantic import BaseModel, Field from pydantic import BaseModel, Field
from invokeai.app.services.sqlite import SqliteItemStorage, sqlite_memory from invokeai.app.services.config.config_default import InvokeAIAppConfig
from invokeai.app.services.item_storage.item_storage_sqlite import SqliteItemStorage
from invokeai.app.services.shared.sqlite import SqliteDatabase
from invokeai.backend.util.logging import InvokeAILogger
class TestModel(BaseModel): class TestModel(BaseModel):
@ -14,8 +14,8 @@ class TestModel(BaseModel):
@pytest.fixture @pytest.fixture
def db() -> SqliteItemStorage[TestModel]: def db() -> SqliteItemStorage[TestModel]:
db_conn = sqlite3.connect(sqlite_memory, check_same_thread=False) sqlite_db = SqliteDatabase(InvokeAIAppConfig(use_memory_db=True), InvokeAILogger.get_logger())
return SqliteItemStorage[TestModel](db_conn, table_name="test", id_field="id", lock=threading.Lock()) return SqliteItemStorage[TestModel](db=sqlite_db, table_name="test", id_field="id")
def test_sqlite_service_can_create_and_get(db: SqliteItemStorage[TestModel]): def test_sqlite_service_can_create_and_get(db: SqliteItemStorage[TestModel]):

View File

@ -2,7 +2,7 @@ from pathlib import Path
import pytest import pytest
from invokeai.app.services.config import InvokeAIAppConfig from invokeai.app.services.config.config_default import InvokeAIAppConfig
from invokeai.backend import BaseModelType, ModelManager, ModelType, SubModelType from invokeai.backend import BaseModelType, ModelManager, ModelType, SubModelType
BASIC_MODEL_NAME = ("SDXL base", BaseModelType.StableDiffusionXL, ModelType.Main) BASIC_MODEL_NAME = ("SDXL base", BaseModelType.StableDiffusionXL, ModelType.Main)