mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
* Feature complete for #266 with exception of several small deviations: 1. initial image and model weight hashes use full sha256 hash rather than first 8 digits 2. Initialization parameters for post-processing steps not provided 3. Uses top-level "images" tags for both a single image and a grid of images. This change was suggested in a comment. * Added scripts/sd_metadata.py to retrieve and print metadata from PNG files * New ldm.dream.args.Args class is a namespace like object which holds all defaults and can be modified during exection to hold current settings. * Modified dream.py and server.py to accommodate Args class.
This commit is contained in:
parent
45af30f3a4
commit
403d02d94f
619
ldm/dream/args.py
Normal file
619
ldm/dream/args.py
Normal file
@ -0,0 +1,619 @@
|
||||
"""Helper class for dealing with image generation arguments.
|
||||
|
||||
The Args class parses both the command line (shell) arguments, as well as the
|
||||
command string passed at the dream> prompt. It serves as the definitive repository
|
||||
of all the arguments used by Generate and their default values.
|
||||
|
||||
To use:
|
||||
opt = Args()
|
||||
|
||||
# Read in the command line options:
|
||||
# this returns a namespace object like the underlying argparse library)
|
||||
# You do not have to use the return value, but you can check it against None
|
||||
# to detect illegal arguments on the command line.
|
||||
args = opt.parse_args()
|
||||
if not args:
|
||||
print('oops')
|
||||
sys.exit(-1)
|
||||
|
||||
# read in a command passed to the dream> prompt:
|
||||
opts = opt.parse_cmd('do androids dream of electric sheep? -H256 -W1024 -n4')
|
||||
|
||||
# The Args object acts like a namespace object
|
||||
print(opt.model)
|
||||
|
||||
You can set attributes in the usual way, use vars(), etc.:
|
||||
|
||||
opt.model = 'something-else'
|
||||
do_something(**vars(a))
|
||||
|
||||
It is helpful in saving metadata:
|
||||
|
||||
# To get a json representation of all the values, allowing
|
||||
# you to override any values dynamically
|
||||
j = opt.json(seed=42)
|
||||
|
||||
# To get the prompt string with the switches, allowing you
|
||||
# to override any values dynamically
|
||||
j = opt.dream_prompt_str(seed=42)
|
||||
|
||||
If you want to access the namespace objects from the shell args or the
|
||||
parsed command directly, you may use the values returned from the
|
||||
original calls to parse_args() and parse_cmd(), or get them later
|
||||
using the _arg_switches and _cmd_switches attributes. This can be
|
||||
useful if both the args and the command contain the same attribute and
|
||||
you wish to apply logic as to which one to use. For example:
|
||||
|
||||
a = Args()
|
||||
args = a.parse_args()
|
||||
opts = a.parse_cmd(string)
|
||||
do_grid = args.grid or opts.grid
|
||||
|
||||
To add new attributes, edit the _create_arg_parser() and
|
||||
_create_dream_cmd_parser() methods.
|
||||
|
||||
We also export the function build_metadata
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import shlex
|
||||
import json
|
||||
import hashlib
|
||||
import os
|
||||
import copy
|
||||
from ldm.dream.conditioning import split_weighted_subprompts
|
||||
|
||||
SAMPLER_CHOICES = [
|
||||
'ddim',
|
||||
'k_dpm_2_a',
|
||||
'k_dpm_2',
|
||||
'k_euler_a',
|
||||
'k_euler',
|
||||
'k_heun',
|
||||
'k_lms',
|
||||
'plms',
|
||||
]
|
||||
|
||||
# is there a way to pick this up during git commits?
|
||||
APP_ID = 'lstein/stable-diffusion'
|
||||
APP_VERSION = 'v1.15'
|
||||
|
||||
class Args(object):
|
||||
def __init__(self,arg_parser=None,cmd_parser=None):
|
||||
'''
|
||||
Initialize new Args class. It takes two optional arguments, an argparse
|
||||
parser for switches given on the shell command line, and an argparse
|
||||
parser for switches given on the dream> CLI line. If one or both are
|
||||
missing, it creates appropriate parsers internally.
|
||||
'''
|
||||
self._arg_parser = arg_parser or self._create_arg_parser()
|
||||
self._cmd_parser = cmd_parser or self._create_dream_cmd_parser()
|
||||
self._arg_switches = self.parse_cmd('') # fill in defaults
|
||||
self._cmd_switches = self.parse_cmd('') # fill in defaults
|
||||
|
||||
def parse_args(self):
|
||||
'''Parse the shell switches and store.'''
|
||||
try:
|
||||
self._arg_switches = self._arg_parser.parse_args()
|
||||
return self._arg_switches
|
||||
except:
|
||||
return None
|
||||
|
||||
def parse_cmd(self,cmd_string):
|
||||
'''Parse a dream>-style command string '''
|
||||
command = cmd_string.replace("'", "\\'")
|
||||
try:
|
||||
elements = shlex.split(command)
|
||||
except ValueError:
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
return
|
||||
switches = ['']
|
||||
switches_started = False
|
||||
|
||||
for element in elements:
|
||||
if element[0] == '-' and not switches_started:
|
||||
switches_started = True
|
||||
if switches_started:
|
||||
switches.append(element)
|
||||
else:
|
||||
switches[0] += element
|
||||
switches[0] += ' '
|
||||
switches[0] = switches[0][: len(switches[0]) - 1]
|
||||
try:
|
||||
self._cmd_switches = self._cmd_parser.parse_args(switches)
|
||||
return self._cmd_switches
|
||||
except:
|
||||
return None
|
||||
|
||||
def json(self,**kwargs):
|
||||
return json.dumps(self.to_dict(**kwargs))
|
||||
|
||||
def to_dict(self,**kwargs):
|
||||
a = vars(self)
|
||||
a.update(kwargs)
|
||||
return a
|
||||
|
||||
# Isn't there a more automated way of doing this?
|
||||
# Ideally we get the switch strings out of the argparse objects,
|
||||
# but I don't see a documented API for this.
|
||||
def dream_prompt_str(self,**kwargs):
|
||||
"""Normalized dream_prompt."""
|
||||
a = vars(self)
|
||||
a.update(kwargs)
|
||||
switches = list()
|
||||
switches.append(f'"{a["prompt"]}')
|
||||
switches.append(f'-s {a["steps"]}')
|
||||
switches.append(f'-W {a["width"]}')
|
||||
switches.append(f'-H {a["height"]}')
|
||||
switches.append(f'-C {a["cfg_scale"]}')
|
||||
switches.append(f'-A {a["sampler_name"]}')
|
||||
switches.append(f'-S {a["seed"]}')
|
||||
if a['grid']:
|
||||
switches.append('--grid')
|
||||
if a['iterations'] and a['iterations']>0:
|
||||
switches.append(f'-n {a["iterations"]}')
|
||||
if a['seamless']:
|
||||
switches.append('--seamless')
|
||||
if a['init_img'] and len(a['init_img'])>0:
|
||||
switches.append(f'-I {a["init_img"]}')
|
||||
if a['fit']:
|
||||
switches.append(f'--fit')
|
||||
if a['strength'] and a['strength']>0:
|
||||
switches.append(f'-f {a["strength"]}')
|
||||
if a['gfpgan_strength']:
|
||||
switches.append(f'-G {a["gfpgan_strength"]}')
|
||||
if a['upscale']:
|
||||
switches.append(f'-U {" ".join([str(u) for u in a["upscale"]])}')
|
||||
if a['embiggen']:
|
||||
switches.append(f'--embiggen {" ".join([str(u) for u in a["embiggen"]])}')
|
||||
if a['embiggen_tiles']:
|
||||
switches.append(f'--embiggen_tiles {" ".join([str(u) for u in a["embiggen_tiles"]])}')
|
||||
if a['variation_amount'] > 0:
|
||||
switches.append(f'-v {a["variation_amount"]}')
|
||||
if a['with_variations']:
|
||||
formatted_variations = ','.join(f'{seed}:{weight}' for seed, weight in (a["with_variations"]))
|
||||
switches.append(f'-V {formatted_variations}')
|
||||
return ' '.join(switches)
|
||||
|
||||
def __getattribute__(self,name):
|
||||
'''
|
||||
Returns union of command-line arguments and dream_prompt arguments,
|
||||
with the latter superseding the former.
|
||||
'''
|
||||
cmd_switches = None
|
||||
arg_switches = None
|
||||
try:
|
||||
cmd_switches = object.__getattribute__(self,'_cmd_switches')
|
||||
arg_switches = object.__getattribute__(self,'_arg_switches')
|
||||
except AttributeError:
|
||||
pass
|
||||
|
||||
if cmd_switches and arg_switches and name=='__dict__':
|
||||
a = arg_switches.__dict__
|
||||
a.update(cmd_switches.__dict__)
|
||||
return a
|
||||
|
||||
try:
|
||||
return object.__getattribute__(self,name)
|
||||
except AttributeError:
|
||||
pass
|
||||
|
||||
if not hasattr(cmd_switches,name) and not hasattr(arg_switches,name):
|
||||
raise AttributeError
|
||||
|
||||
value_arg,value_cmd = (None,None)
|
||||
try:
|
||||
value_cmd = getattr(cmd_switches,name)
|
||||
except AttributeError:
|
||||
pass
|
||||
try:
|
||||
value_arg = getattr(arg_switches,name)
|
||||
except AttributeError:
|
||||
pass
|
||||
|
||||
# here is where we can pick and choose which to use
|
||||
# default behavior is to choose the dream_command value over
|
||||
# the arg value. For example, the --grid and --individual options are a little
|
||||
# funny because of their push/pull relationship. This is how to handle it.
|
||||
if name=='grid':
|
||||
return value_arg or value_cmd # arg supersedes cmd
|
||||
if name=='individual':
|
||||
return value_cmd or value_arg # cmd supersedes arg
|
||||
if value_cmd is not None:
|
||||
return value_cmd
|
||||
else:
|
||||
return value_arg
|
||||
|
||||
def __setattr__(self,name,value):
|
||||
if name.startswith('_'):
|
||||
object.__setattr__(self,name,value)
|
||||
else:
|
||||
self._cmd_switches.__dict__[name] = value
|
||||
|
||||
def _create_arg_parser(self):
|
||||
'''
|
||||
This defines all the arguments used on the command line when you launch
|
||||
the CLI or web backend.
|
||||
'''
|
||||
parser = argparse.ArgumentParser(
|
||||
description=
|
||||
"""
|
||||
Generate images using Stable Diffusion.
|
||||
Use --web to launch the web interface.
|
||||
Use --from_file to load prompts from a file path or standard input ("-").
|
||||
Otherwise you will be dropped into an interactive command prompt (type -h for help.)
|
||||
Other command-line arguments are defaults that can usually be overridden
|
||||
prompt the command prompt.
|
||||
""",
|
||||
)
|
||||
model_group = parser.add_argument_group('Model selection')
|
||||
file_group = parser.add_argument_group('Input/output')
|
||||
web_server_group = parser.add_argument_group('Web server')
|
||||
render_group = parser.add_argument_group('Rendering')
|
||||
postprocessing_group = parser.add_argument_group('Postprocessing')
|
||||
deprecated_group = parser.add_argument_group('Deprecated options')
|
||||
|
||||
deprecated_group.add_argument('--laion400m')
|
||||
deprecated_group.add_argument('--weights') # deprecated
|
||||
model_group.add_argument(
|
||||
'--conf',
|
||||
'-c',
|
||||
'-conf',
|
||||
dest='conf',
|
||||
default='./configs/models.yaml',
|
||||
help='Path to configuration file for alternate models.',
|
||||
)
|
||||
model_group.add_argument(
|
||||
'--model',
|
||||
default='stable-diffusion-1.4',
|
||||
help='Indicates which diffusion model to load. (currently "stable-diffusion-1.4" (default) or "laion400m")',
|
||||
)
|
||||
model_group.add_argument(
|
||||
'-F',
|
||||
'--full_precision',
|
||||
dest='full_precision',
|
||||
action='store_true',
|
||||
help='Use more memory-intensive full precision math for calculations',
|
||||
)
|
||||
file_group.add_argument(
|
||||
'--from_file',
|
||||
dest='infile',
|
||||
type=str,
|
||||
help='If specified, load prompts from this file',
|
||||
)
|
||||
file_group.add_argument(
|
||||
'--outdir',
|
||||
'-o',
|
||||
type=str,
|
||||
help='Directory to save generated images and a log of prompts and seeds. Default: outputs/img-samples',
|
||||
default='outputs/img-samples',
|
||||
)
|
||||
file_group.add_argument(
|
||||
'--prompt_as_dir',
|
||||
'-p',
|
||||
action='store_true',
|
||||
help='Place images in subdirectories named after the prompt.',
|
||||
)
|
||||
render_group.add_argument(
|
||||
'--seamless',
|
||||
action='store_true',
|
||||
help='Change the model to seamless tiling (circular) mode',
|
||||
)
|
||||
render_group.add_argument(
|
||||
'--grid',
|
||||
'-g',
|
||||
action='store_true',
|
||||
help='generate a grid'
|
||||
)
|
||||
render_group.add_argument(
|
||||
'--embedding_path',
|
||||
type=str,
|
||||
help='Path to a pre-trained embedding manager checkpoint - can only be set on command line',
|
||||
)
|
||||
# GFPGAN related args
|
||||
postprocessing_group.add_argument(
|
||||
'--gfpgan_bg_upsampler',
|
||||
type=str,
|
||||
default='realesrgan',
|
||||
help='Background upsampler. Default: realesrgan. Options: realesrgan, none.',
|
||||
|
||||
)
|
||||
postprocessing_group.add_argument(
|
||||
'--gfpgan_bg_tile',
|
||||
type=int,
|
||||
default=400,
|
||||
help='Tile size for background sampler, 0 for no tile during testing. Default: 400.',
|
||||
)
|
||||
postprocessing_group.add_argument(
|
||||
'--gfpgan_model_path',
|
||||
type=str,
|
||||
default='experiments/pretrained_models/GFPGANv1.3.pth',
|
||||
help='Indicates the path to the GFPGAN model, relative to --gfpgan_dir.',
|
||||
)
|
||||
postprocessing_group.add_argument(
|
||||
'--gfpgan_dir',
|
||||
type=str,
|
||||
default='./src/gfpgan',
|
||||
help='Indicates the directory containing the GFPGAN code.',
|
||||
)
|
||||
web_server_group.add_argument(
|
||||
'--web',
|
||||
dest='web',
|
||||
action='store_true',
|
||||
help='Start in web server mode.',
|
||||
)
|
||||
web_server_group.add_argument(
|
||||
'--host',
|
||||
type=str,
|
||||
default='127.0.0.1',
|
||||
help='Web server: Host or IP to listen on. Set to 0.0.0.0 to accept traffic from other devices on your network.'
|
||||
)
|
||||
web_server_group.add_argument(
|
||||
'--port',
|
||||
type=int,
|
||||
default='9090',
|
||||
help='Web server: Port to listen on'
|
||||
)
|
||||
return parser
|
||||
|
||||
# This creates the parser that processes commands on the dream> command line
|
||||
def _create_dream_cmd_parser(self):
|
||||
parser = argparse.ArgumentParser(
|
||||
description='Example: dream> a fantastic alien landscape -W1024 -H960 -s100 -n12'
|
||||
)
|
||||
render_group = parser.add_argument_group('General rendering')
|
||||
img2img_group = parser.add_argument_group('Image-to-image and inpainting')
|
||||
variation_group = parser.add_argument_group('Creating and combining variations')
|
||||
postprocessing_group = parser.add_argument_group('Post-processing')
|
||||
special_effects_group = parser.add_argument_group('Special effects')
|
||||
render_group.add_argument('prompt')
|
||||
render_group.add_argument(
|
||||
'-s',
|
||||
'--steps',
|
||||
type=int,
|
||||
default=50,
|
||||
help='Number of steps'
|
||||
)
|
||||
render_group.add_argument(
|
||||
'-S',
|
||||
'--seed',
|
||||
type=int,
|
||||
default=None,
|
||||
help='Image seed; a +ve integer, or use -1 for the previous seed, -2 for the one before that, etc',
|
||||
)
|
||||
render_group.add_argument(
|
||||
'-n',
|
||||
'--iterations',
|
||||
type=int,
|
||||
default=1,
|
||||
help='Number of samplings to perform (slower, but will provide seeds for individual images)',
|
||||
)
|
||||
render_group.add_argument(
|
||||
'-W',
|
||||
'--width',
|
||||
type=int,
|
||||
help='Image width, multiple of 64',
|
||||
default=512
|
||||
)
|
||||
render_group.add_argument(
|
||||
'-H',
|
||||
'--height',
|
||||
type=int,
|
||||
help='Image height, multiple of 64',
|
||||
default=512,
|
||||
)
|
||||
render_group.add_argument(
|
||||
'-C',
|
||||
'--cfg_scale',
|
||||
default=7.5,
|
||||
type=float,
|
||||
help='Classifier free guidance (CFG) scale - higher numbers cause generator to "try" harder.',
|
||||
)
|
||||
render_group.add_argument(
|
||||
'--grid',
|
||||
'-g',
|
||||
action='store_true',
|
||||
help='generate a grid'
|
||||
)
|
||||
render_group.add_argument(
|
||||
'--individual',
|
||||
'-i',
|
||||
action='store_true',
|
||||
help='override command-line --grid setting and generate individual images'
|
||||
)
|
||||
render_group.add_argument(
|
||||
'-x',
|
||||
'--skip_normalize',
|
||||
action='store_true',
|
||||
help='Skip subprompt weight normalization',
|
||||
)
|
||||
render_group.add_argument(
|
||||
'-A',
|
||||
'-m',
|
||||
'--sampler',
|
||||
dest='sampler_name',
|
||||
type=str,
|
||||
choices=SAMPLER_CHOICES,
|
||||
metavar='SAMPLER_NAME',
|
||||
help=f'Switch to a different sampler. Supported samplers: {", ".join(SAMPLER_CHOICES)}',
|
||||
default='k_lms',
|
||||
)
|
||||
render_group.add_argument(
|
||||
'-t',
|
||||
'--log_tokenization',
|
||||
action='store_true',
|
||||
help='shows how the prompt is split into tokens'
|
||||
)
|
||||
render_group.add_argument(
|
||||
'--outdir',
|
||||
'-o',
|
||||
type=str,
|
||||
default='outputs/img-samples',
|
||||
help='Directory to save generated images and a log of prompts and seeds',
|
||||
)
|
||||
img2img_group.add_argument(
|
||||
'-I',
|
||||
'--init_img',
|
||||
type=str,
|
||||
help='Path to input image for img2img mode (supersedes width and height)',
|
||||
)
|
||||
img2img_group.add_argument(
|
||||
'-M',
|
||||
'--init_mask',
|
||||
type=str,
|
||||
help='Path to input mask for inpainting mode (supersedes width and height)',
|
||||
)
|
||||
img2img_group.add_argument(
|
||||
'-T',
|
||||
'-fit',
|
||||
'--fit',
|
||||
action='store_true',
|
||||
help='If specified, will resize the input image to fit within the dimensions of width x height (512x512 default)',
|
||||
)
|
||||
img2img_group.add_argument(
|
||||
'-f',
|
||||
'--strength',
|
||||
type=float,
|
||||
help='Strength for noising/unnoising. 0.0 preserves image exactly, 1.0 replaces it completely',
|
||||
default=0.75,
|
||||
)
|
||||
postprocessing_group.add_argument(
|
||||
'-G',
|
||||
'--gfpgan_strength',
|
||||
type=float,
|
||||
help='The strength at which to apply the GFPGAN model to the result, in order to improve faces.',
|
||||
default=0,
|
||||
)
|
||||
postprocessing_group.add_argument(
|
||||
'-U',
|
||||
'--upscale',
|
||||
nargs='+',
|
||||
type=float,
|
||||
help='Scale factor (2, 4) for upscaling final output followed by upscaling strength (0-1.0). If strength not specified, defaults to 0.75',
|
||||
default=None,
|
||||
)
|
||||
postprocessing_group.add_argument(
|
||||
'--save_original',
|
||||
'-save_orig',
|
||||
action='store_true',
|
||||
help='Save original. Use it when upscaling to save both versions.',
|
||||
)
|
||||
postprocessing_group.add_argument(
|
||||
'--embiggen',
|
||||
'-embiggen',
|
||||
nargs='+',
|
||||
type=float,
|
||||
help='Embiggen tiled img2img for higher resolution and detail without extra VRAM usage. Takes scale factor relative to the size of the --init_img (-I), followed by ESRGAN upscaling strength (0-1.0), followed by minimum amount of overlap between tiles as a decimal ratio (0 - 1.0) or number of pixels. ESRGAN strength defaults to 0.75, and overlap defaults to 0.25 . ESRGAN is used to upscale the init prior to cutting it into tiles/pieces to run through img2img and then stitch back togeather.',
|
||||
default=None,
|
||||
)
|
||||
postprocessing_group.add_argument(
|
||||
'--embiggen_tiles',
|
||||
'-embiggen_tiles',
|
||||
nargs='+',
|
||||
type=int,
|
||||
help='If while doing Embiggen we are altering only parts of the image, takes a list of tiles by number to process and replace onto the image e.g. `1 3 5`, useful for redoing problematic spots from a prior Embiggen run',
|
||||
default=None,
|
||||
)
|
||||
special_effects_group.add_argument(
|
||||
'--seamless',
|
||||
action='store_true',
|
||||
help='Change the model to seamless tiling (circular) mode',
|
||||
)
|
||||
variation_group.add_argument(
|
||||
'-v',
|
||||
'--variation_amount',
|
||||
default=0.0,
|
||||
type=float,
|
||||
help='If > 0, generates variations on the initial seed instead of random seeds per iteration. Must be between 0 and 1. Higher values will be more different.'
|
||||
)
|
||||
variation_group.add_argument(
|
||||
'-V',
|
||||
'--with_variations',
|
||||
default=None,
|
||||
type=str,
|
||||
help='list of variations to apply, in the format `seed:weight,seed:weight,...'
|
||||
)
|
||||
return parser
|
||||
|
||||
# very partial implementation of https://github.com/lstein/stable-diffusion/issues/266
|
||||
# it does not write all the required top-level metadata, writes too much image
|
||||
# data, and doesn't support grids yet. But you gotta start somewhere, no?
|
||||
def format_metadata(opt,
|
||||
seeds=[],
|
||||
weights=None,
|
||||
model_hash=None,
|
||||
postprocessing=None):
|
||||
'''
|
||||
Given an Args object, returns a partial implementation of
|
||||
the stable diffusion metadata standard
|
||||
'''
|
||||
# add some RFC266 fields that are generated internally, and not as
|
||||
# user args
|
||||
image_dict = opt.to_dict(
|
||||
postprocessing=postprocessing
|
||||
)
|
||||
|
||||
# TODO: This is just a hack until postprocessing pipeline work completed
|
||||
image_dict['postprocessing'] = []
|
||||
if image_dict['gfpgan_strength'] and image_dict['gfpgan_strength'] > 0:
|
||||
image_dict['postprocessing'].append('GFPGAN (not RFC compliant)')
|
||||
if image_dict['upscale'] and image_dict['upscale'][0] > 0:
|
||||
image_dict['postprocessing'].append('ESRGAN (not RFC compliant)')
|
||||
|
||||
# remove any image keys not mentioned in RFC #266
|
||||
rfc266_img_fields = ['type','postprocessing','sampler','prompt','seed','variations','steps',
|
||||
'cfg_scale','step_number','width','height','extra','strength']
|
||||
|
||||
rfc_dict ={}
|
||||
for item in image_dict.items():
|
||||
key,value = item
|
||||
if key in rfc266_img_fields:
|
||||
rfc_dict[key] = value
|
||||
|
||||
# semantic drift
|
||||
rfc_dict['sampler'] = image_dict.get('sampler_name',None)
|
||||
|
||||
# display weighted subprompts (liable to change)
|
||||
if opt.prompt:
|
||||
subprompts = split_weighted_subprompts(opt.prompt)
|
||||
subprompts = [{'prompt':x[0],'weight':x[1]} for x in subprompts]
|
||||
rfc_dict['prompt'] = subprompts
|
||||
|
||||
# variations
|
||||
if opt.with_variations:
|
||||
variations = [{'seed':x[0],'weight':x[1]} for x in opt.with_variations]
|
||||
rfc_dict['variations'] = variations
|
||||
|
||||
if opt.init_img:
|
||||
rfc_dict['type'] = 'img2img'
|
||||
rfc_dict['strength_steps'] = rfc_dict.pop('strength')
|
||||
rfc_dict['orig_hash'] = sha256(image_dict['init_img'])
|
||||
rfc_dict['sampler'] = 'ddim' # FIX ME WHEN IMG2IMG SUPPORTS ALL SAMPLERS
|
||||
else:
|
||||
rfc_dict['type'] = 'txt2img'
|
||||
|
||||
images = []
|
||||
for seed in seeds:
|
||||
rfc_dict['seed'] = seed
|
||||
images.append(copy.copy(rfc_dict))
|
||||
|
||||
return {
|
||||
'model' : 'stable diffusion',
|
||||
'model_id' : opt.model,
|
||||
'model_hash' : model_hash,
|
||||
'app_id' : APP_ID,
|
||||
'app_version' : APP_VERSION,
|
||||
'images' : images,
|
||||
}
|
||||
|
||||
# Bah. This should be moved somewhere else...
|
||||
def sha256(path):
|
||||
sha = hashlib.sha256()
|
||||
with open(path,'rb') as f:
|
||||
while True:
|
||||
data = f.read(65536)
|
||||
if not data:
|
||||
break
|
||||
sha.update(data)
|
||||
return sha.hexdigest()
|
||||
|
@ -3,12 +3,13 @@ Two helper classes for dealing with PNG images and their path names.
|
||||
PngWriter -- Converts Images generated by T2I into PNGs, finds
|
||||
appropriate names for them, and writes prompt metadata
|
||||
into the PNG.
|
||||
PromptFormatter -- Utility for converting a Namespace of prompt parameters
|
||||
back into a formatted prompt string with command-line switches.
|
||||
|
||||
Exports function retrieve_metadata(path)
|
||||
"""
|
||||
import os
|
||||
import re
|
||||
from PIL import PngImagePlugin
|
||||
import json
|
||||
from PIL import PngImagePlugin, Image
|
||||
|
||||
# -------------------image generation utils-----
|
||||
|
||||
@ -32,54 +33,31 @@ class PngWriter:
|
||||
|
||||
# saves image named _image_ to outdir/name, writing metadata from prompt
|
||||
# returns full path of output
|
||||
def save_image_and_prompt_to_png(self, image, prompt, name):
|
||||
def save_image_and_prompt_to_png(self, image, dream_prompt, metadata, name):
|
||||
path = os.path.join(self.outdir, name)
|
||||
info = PngImagePlugin.PngInfo()
|
||||
info.add_text('Dream', prompt)
|
||||
info.add_text('Dream', dream_prompt)
|
||||
info.add_text('sd-metadata', json.dumps(metadata))
|
||||
image.save(path, 'PNG', pnginfo=info)
|
||||
return path
|
||||
|
||||
def retrieve_metadata(self,img_basename):
|
||||
'''
|
||||
Given a PNG filename stored in outdir, returns the "sd-metadata"
|
||||
metadata stored there, as a dict
|
||||
'''
|
||||
path = os.path.join(self.outdir,img_basename)
|
||||
return retrieve_metadata(path)
|
||||
|
||||
class PromptFormatter:
|
||||
def __init__(self, t2i, opt):
|
||||
self.t2i = t2i
|
||||
self.opt = opt
|
||||
def retrieve_metadata(img_path):
|
||||
'''
|
||||
Given a path to a PNG image, returns the "sd-metadata"
|
||||
metadata stored there, as a dict
|
||||
'''
|
||||
im = Image.open(img_path)
|
||||
md = im.text.get('sd-metadata',{})
|
||||
return json.loads(md)
|
||||
|
||||
# note: the t2i object should provide all these values.
|
||||
# there should be no need to or against opt values
|
||||
def normalize_prompt(self):
|
||||
"""Normalize the prompt and switches"""
|
||||
t2i = self.t2i
|
||||
opt = self.opt
|
||||
|
||||
switches = list()
|
||||
switches.append(f'"{opt.prompt}"')
|
||||
switches.append(f'-s{opt.steps or t2i.steps}')
|
||||
switches.append(f'-W{opt.width or t2i.width}')
|
||||
switches.append(f'-H{opt.height or t2i.height}')
|
||||
switches.append(f'-C{opt.cfg_scale or t2i.cfg_scale}')
|
||||
switches.append(f'-A{opt.sampler_name or t2i.sampler_name}')
|
||||
# to do: put model name into the t2i object
|
||||
# switches.append(f'--model{t2i.model_name}')
|
||||
if opt.seamless or t2i.seamless:
|
||||
switches.append(f'--seamless')
|
||||
if opt.init_img:
|
||||
switches.append(f'-I{opt.init_img}')
|
||||
if opt.fit:
|
||||
switches.append(f'--fit')
|
||||
if opt.strength and opt.init_img is not None:
|
||||
switches.append(f'-f{opt.strength or t2i.strength}')
|
||||
if opt.gfpgan_strength:
|
||||
switches.append(f'-G{opt.gfpgan_strength}')
|
||||
if opt.upscale:
|
||||
switches.append(f'-U {" ".join([str(u) for u in opt.upscale])}')
|
||||
if hasattr(opt, 'embiggen') and opt.embiggen:
|
||||
switches.append(f'-embiggen {" ".join([str(u) for u in opt.embiggen])}')
|
||||
if hasattr(opt, 'embiggen_tiles') and opt.embiggen_tiles:
|
||||
switches.append(f'-embiggen_tiles {" ".join([str(u) for u in opt.embiggen_tiles])}')
|
||||
if opt.variation_amount > 0:
|
||||
switches.append(f'-v{opt.variation_amount}')
|
||||
if opt.with_variations:
|
||||
formatted_variations = ','.join(f'{seed}:{weight}' for seed, weight in opt.with_variations)
|
||||
switches.append(f'-V{formatted_variations}')
|
||||
return ' '.join(switches)
|
||||
|
||||
|
||||
|
@ -1,14 +1,17 @@
|
||||
import argparse
|
||||
import json
|
||||
import copy
|
||||
import base64
|
||||
import mimetypes
|
||||
import os
|
||||
from ldm.dream.args import Args, format_metadata
|
||||
from http.server import BaseHTTPRequestHandler, ThreadingHTTPServer
|
||||
from ldm.dream.pngwriter import PngWriter, PromptFormatter
|
||||
from ldm.dream.pngwriter import PngWriter
|
||||
from threading import Event
|
||||
|
||||
def build_opt(post_data, seed, gfpgan_model_exists):
|
||||
opt = argparse.Namespace()
|
||||
opt = Args()
|
||||
opt.parse_args() # initialize defaults
|
||||
setattr(opt, 'prompt', post_data['prompt'])
|
||||
setattr(opt, 'init_img', post_data['initimg'])
|
||||
setattr(opt, 'strength', float(post_data['strength']))
|
||||
@ -40,7 +43,7 @@ def build_opt(post_data, seed, gfpgan_model_exists):
|
||||
for part in post_data['with_variations'].split(','):
|
||||
seed_and_weight = part.split(':')
|
||||
if len(seed_and_weight) != 2:
|
||||
print(f'could not parse with_variation part "{part}"')
|
||||
print(f'could not parse WITH_variation part "{part}"')
|
||||
broken = True
|
||||
break
|
||||
try:
|
||||
@ -158,10 +161,10 @@ class DreamServer(BaseHTTPRequestHandler):
|
||||
# the images are first generated, and then again when after upscaling
|
||||
# is complete. The upscaling replaces the original file, so the second
|
||||
# entry should not be inserted into the image list.
|
||||
# LS: This repeats code in dream.py
|
||||
def image_done(image, seed, upscaled=False):
|
||||
name = f'{prefix}.{seed}.png'
|
||||
iter_opt = argparse.Namespace(**vars(opt)) # copy
|
||||
print(f'iter_opt = {iter_opt}')
|
||||
iter_opt = copy.copy(opt)
|
||||
if opt.variation_amount > 0:
|
||||
this_variation = [[seed, opt.variation_amount]]
|
||||
if opt.with_variations is None:
|
||||
@ -169,10 +172,17 @@ class DreamServer(BaseHTTPRequestHandler):
|
||||
else:
|
||||
iter_opt.with_variations = opt.with_variations + this_variation
|
||||
iter_opt.variation_amount = 0
|
||||
elif opt.with_variations is None:
|
||||
iter_opt.seed = seed
|
||||
normalized_prompt = PromptFormatter(self.model, iter_opt).normalize_prompt()
|
||||
path = pngwriter.save_image_and_prompt_to_png(image, f'{normalized_prompt} -S{iter_opt.seed}', name)
|
||||
formatted_prompt = opt.dream_prompt_str(seed=seed)
|
||||
path = pngwriter.save_image_and_prompt_to_png(
|
||||
image,
|
||||
dream_prompt = formatted_prompt,
|
||||
metadata = format_metadata(iter_opt,
|
||||
seeds = [seed],
|
||||
weights = self.model.weights,
|
||||
model_hash = self.model.model_hash
|
||||
),
|
||||
name = name,
|
||||
)
|
||||
|
||||
if int(config['seed']) == -1:
|
||||
config['seed'] = seed
|
||||
|
@ -13,6 +13,8 @@ import re
|
||||
import sys
|
||||
import traceback
|
||||
import transformers
|
||||
import io
|
||||
import hashlib
|
||||
|
||||
from omegaconf import OmegaConf
|
||||
from PIL import Image, ImageOps
|
||||
@ -567,7 +569,11 @@ class Generate:
|
||||
|
||||
# this does the work
|
||||
c = OmegaConf.load(config)
|
||||
pl_sd = torch.load(weights, map_location='cpu')
|
||||
with open(weights,'rb') as f:
|
||||
weight_bytes = f.read()
|
||||
self.model_hash = self._cached_sha256(weights,weight_bytes)
|
||||
pl_sd = torch.load(io.BytesIO(weight_bytes), map_location='cpu')
|
||||
del weight_bytes
|
||||
sd = pl_sd['state_dict']
|
||||
model = instantiate_from_config(c.model)
|
||||
m, u = model.load_state_dict(sd, strict=False)
|
||||
@ -728,3 +734,24 @@ class Generate:
|
||||
|
||||
def _has_cuda(self):
|
||||
return self.device.type == 'cuda'
|
||||
|
||||
def _cached_sha256(self,path,data):
|
||||
dirname = os.path.dirname(path)
|
||||
basename = os.path.basename(path)
|
||||
base, _ = os.path.splitext(basename)
|
||||
hashpath = os.path.join(dirname,base+'.sha256')
|
||||
if os.path.exists(hashpath) and os.path.getmtime(path) <= os.path.getmtime(hashpath):
|
||||
with open(hashpath) as f:
|
||||
hash = f.read()
|
||||
return hash
|
||||
print(f'>> Calculating sha256 hash of weights file')
|
||||
tic = time.time()
|
||||
sha = hashlib.sha256()
|
||||
sha.update(data)
|
||||
hash = sha.hexdigest()
|
||||
toc = time.time()
|
||||
print(f'>> sha256 = {hash}','(%4.2fs)' % (toc - tic))
|
||||
with open(hashpath,'w') as f:
|
||||
f.write(hash)
|
||||
return hash
|
||||
|
||||
|
@ -5,10 +5,11 @@ import sys
|
||||
import numpy as np
|
||||
|
||||
from PIL import Image
|
||||
from scripts.dream import create_argv_parser
|
||||
#from scripts.dream import create_argv_parser
|
||||
from ldm.dream.args import Args
|
||||
|
||||
arg_parser = create_argv_parser()
|
||||
opt = arg_parser.parse_args()
|
||||
opt = Args()
|
||||
opt.parse_args()
|
||||
model_path = os.path.join(opt.gfpgan_dir, opt.gfpgan_model_path)
|
||||
gfpgan_model_exists = os.path.isfile(model_path)
|
||||
|
||||
|
426
scripts/dream.py
Executable file → Normal file
426
scripts/dream.py
Executable file → Normal file
@ -1,8 +1,6 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright (c) 2022 Lincoln D. Stein (https://github.com/lstein)
|
||||
|
||||
import argparse
|
||||
import shlex
|
||||
import os
|
||||
import re
|
||||
import sys
|
||||
@ -10,7 +8,8 @@ import copy
|
||||
import warnings
|
||||
import time
|
||||
import ldm.dream.readline
|
||||
from ldm.dream.pngwriter import PngWriter, PromptFormatter
|
||||
from ldm.dream.args import Args, format_metadata
|
||||
from ldm.dream.pngwriter import PngWriter
|
||||
from ldm.dream.server import DreamServer, ThreadingDreamServer
|
||||
from ldm.dream.image_util import make_grid
|
||||
from omegaconf import OmegaConf
|
||||
@ -22,14 +21,16 @@ output_cntr = 0
|
||||
|
||||
def main():
|
||||
"""Initialize command-line parsers and the diffusion model"""
|
||||
arg_parser = create_argv_parser()
|
||||
opt = arg_parser.parse_args()
|
||||
opt = Args()
|
||||
args = opt.parse_args()
|
||||
if not args:
|
||||
sys.exit(-1)
|
||||
|
||||
if opt.laion400m:
|
||||
if args.laion400m:
|
||||
print('--laion400m flag has been deprecated. Please use --model laion400m instead.')
|
||||
sys.exit(-1)
|
||||
if opt.weights != 'model':
|
||||
print('--weights argument has been deprecated. Please configure ./configs/models.yaml, and call it using --model instead.')
|
||||
if args.weights:
|
||||
print('--weights argument has been deprecated. Please edit ./configs/models.yaml, and select the weights using --model instead.')
|
||||
sys.exit(-1)
|
||||
|
||||
print('* Initializing, be patient...\n')
|
||||
@ -47,7 +48,7 @@ def main():
|
||||
# the user input loop
|
||||
try:
|
||||
gen = Generate(
|
||||
conf = opt.config,
|
||||
conf = opt.conf,
|
||||
model = opt.model,
|
||||
sampler_name = opt.sampler_name,
|
||||
embedding_path = opt.embedding_path,
|
||||
@ -91,11 +92,10 @@ def main():
|
||||
dream_server_loop(gen, opt.host, opt.port, opt.outdir)
|
||||
sys.exit(0)
|
||||
|
||||
cmd_parser = create_cmd_parser()
|
||||
main_loop(gen, opt.outdir, opt.prompt_as_dir, cmd_parser, infile)
|
||||
main_loop(gen, opt, infile)
|
||||
|
||||
# TODO: main_loop() has gotten busy. Needs to be refactored.
|
||||
def main_loop(gen, outdir, prompt_as_dir, parser, infile):
|
||||
def main_loop(gen, opt, infile):
|
||||
"""prompt/read/execute loop"""
|
||||
done = False
|
||||
path_filter = re.compile(r'[<>:"/\\|?*]')
|
||||
@ -103,8 +103,8 @@ def main_loop(gen, outdir, prompt_as_dir, parser, infile):
|
||||
|
||||
# os.pathconf is not available on Windows
|
||||
if hasattr(os, 'pathconf'):
|
||||
path_max = os.pathconf(outdir, 'PC_PATH_MAX')
|
||||
name_max = os.pathconf(outdir, 'PC_NAME_MAX')
|
||||
path_max = os.pathconf(opt.outdir, 'PC_PATH_MAX')
|
||||
name_max = os.pathconf(opt.outdir, 'PC_NAME_MAX')
|
||||
else:
|
||||
path_max = 260
|
||||
name_max = 255
|
||||
@ -123,41 +123,17 @@ def main_loop(gen, outdir, prompt_as_dir, parser, infile):
|
||||
if command.startswith(('#', '//')):
|
||||
continue
|
||||
|
||||
# before splitting, escape single quotes so as not to mess
|
||||
# up the parser
|
||||
command = command.replace("'", "\\'")
|
||||
|
||||
try:
|
||||
elements = shlex.split(command)
|
||||
except ValueError as e:
|
||||
print(str(e))
|
||||
continue
|
||||
|
||||
if elements[0] == 'q':
|
||||
if command.startswith('q '):
|
||||
done = True
|
||||
break
|
||||
|
||||
if elements[0].startswith(
|
||||
if command.startswith(
|
||||
'!dream'
|
||||
): # in case a stored prompt still contains the !dream command
|
||||
elements.pop(0)
|
||||
|
||||
# rearrange the arguments to mimic how it works in the Dream bot.
|
||||
switches = ['']
|
||||
switches_started = False
|
||||
|
||||
for el in elements:
|
||||
if el[0] == '-' and not switches_started:
|
||||
switches_started = True
|
||||
if switches_started:
|
||||
switches.append(el)
|
||||
else:
|
||||
switches[0] += el
|
||||
switches[0] += ' '
|
||||
switches[0] = switches[0][: len(switches[0]) - 1]
|
||||
command.replace('!dream','',1)
|
||||
|
||||
try:
|
||||
opt = parser.parse_args(switches)
|
||||
parser = opt.parse_cmd(command)
|
||||
except SystemExit:
|
||||
parser.print_help()
|
||||
continue
|
||||
@ -185,6 +161,7 @@ def main_loop(gen, outdir, prompt_as_dir, parser, infile):
|
||||
opt.seed = None
|
||||
continue
|
||||
|
||||
# TODO - move this into a module
|
||||
if opt.with_variations is not None:
|
||||
# shotgun parsing, woo
|
||||
parts = []
|
||||
@ -220,7 +197,7 @@ def main_loop(gen, outdir, prompt_as_dir, parser, infile):
|
||||
|
||||
# truncate path to maximum allowed length
|
||||
# 27 is the length of '######.##########.##.png', plus two separators and a NUL
|
||||
subdir = subdir[:(path_max - 27 - len(os.path.abspath(outdir)))]
|
||||
subdir = subdir[:(path_max - 27 - len(os.path.abspath(opt.outdir)))]
|
||||
current_outdir = os.path.join(outdir, subdir)
|
||||
|
||||
print('Writing files to directory: "' + current_outdir + '"')
|
||||
@ -248,31 +225,36 @@ def main_loop(gen, outdir, prompt_as_dir, parser, infile):
|
||||
filename = f'{prefix}.{seed}.postprocessed.png'
|
||||
else:
|
||||
filename = f'{prefix}.{seed}.png'
|
||||
# the handling of variations is probably broken
|
||||
# Also, given the ability to add stuff to the dream_prompt_str, it isn't
|
||||
# necessary to make a copy of the opt option just to change its attributes
|
||||
if opt.variation_amount > 0:
|
||||
iter_opt = argparse.Namespace(**vars(opt)) # copy
|
||||
iter_opt = copy.copy(opt)
|
||||
this_variation = [[seed, opt.variation_amount]]
|
||||
if opt.with_variations is None:
|
||||
iter_opt.with_variations = this_variation
|
||||
else:
|
||||
iter_opt.with_variations = opt.with_variations + this_variation
|
||||
iter_opt.variation_amount = 0
|
||||
normalized_prompt = PromptFormatter(
|
||||
gen, iter_opt).normalize_prompt()
|
||||
metadata_prompt = f'{normalized_prompt} -S{iter_opt.seed}'
|
||||
formatted_dream_prompt = iter_opt.dream_prompt_str(seed=seed)
|
||||
elif opt.with_variations is not None:
|
||||
normalized_prompt = PromptFormatter(
|
||||
gen, opt).normalize_prompt()
|
||||
# use the original seed - the per-iteration value is the last variation-seed
|
||||
metadata_prompt = f'{normalized_prompt} -S{opt.seed}'
|
||||
formatted_dream_prompt = opt.dream_prompt_str(seed=seed)
|
||||
else:
|
||||
normalized_prompt = PromptFormatter(
|
||||
gen, opt).normalize_prompt()
|
||||
metadata_prompt = f'{normalized_prompt} -S{seed}'
|
||||
formatted_dream_prompt = opt.dream_prompt_str(seed=seed)
|
||||
path = file_writer.save_image_and_prompt_to_png(
|
||||
image, metadata_prompt, filename)
|
||||
image = image,
|
||||
dream_prompt = formatted_dream_prompt,
|
||||
metadata = format_metadata(
|
||||
opt,
|
||||
seeds = [seed],
|
||||
weights = gen.weights,
|
||||
model_hash = gen.model_hash,
|
||||
),
|
||||
name = filename,
|
||||
)
|
||||
if (not upscaled) or opt.save_original:
|
||||
# only append to results if we didn't overwrite an earlier output
|
||||
results.append([path, metadata_prompt])
|
||||
results.append([path, formatted_dream_prompt])
|
||||
last_results.append([path, seed])
|
||||
|
||||
catch_ctrl_c = infile is None # if running interactively, we catch keyboard interrupts
|
||||
@ -286,15 +268,22 @@ def main_loop(gen, outdir, prompt_as_dir, parser, infile):
|
||||
grid_img = make_grid(list(grid_images.values()))
|
||||
grid_seeds = list(grid_images.keys())
|
||||
first_seed = last_results[0][1]
|
||||
filename = f'{prefix}.{first_seed}.png'
|
||||
# TODO better metadata for grid images
|
||||
normalized_prompt = PromptFormatter(
|
||||
gen, opt).normalize_prompt()
|
||||
metadata_prompt = f'{normalized_prompt} -S{first_seed} --grid -n{len(grid_images)} # {grid_seeds}'
|
||||
filename = f'{prefix}.{first_seed}.png'
|
||||
formatted_dream_prompt = opt.dream_prompt_str(seed=first_seed,grid=True,iterations=len(grid_images))
|
||||
formatted_dream_prompt += f' # {grid_seeds}'
|
||||
metadata = format_metadata(
|
||||
opt,
|
||||
seeds = grid_seeds,
|
||||
weights = gen.weights,
|
||||
model_hash = gen.model_hash
|
||||
)
|
||||
path = file_writer.save_image_and_prompt_to_png(
|
||||
grid_img, metadata_prompt, filename
|
||||
image = grid_img,
|
||||
dream_prompt = formatted_dream_prompt,
|
||||
metadata = metadata,
|
||||
name = filename
|
||||
)
|
||||
results = [[path, metadata_prompt]]
|
||||
results = [[path, formatted_dream_prompt]]
|
||||
|
||||
except AssertionError as e:
|
||||
print(e)
|
||||
@ -325,7 +314,6 @@ def get_next_command(infile=None) -> str: # command string
|
||||
print(f'#{command}')
|
||||
return command
|
||||
|
||||
|
||||
def dream_server_loop(gen, host, port, outdir):
|
||||
print('\n* --web was specified, starting web server...')
|
||||
# Change working directory to the stable-diffusion directory
|
||||
@ -365,315 +353,5 @@ def write_log_message(results, log_path):
|
||||
with open(log_path, 'a', encoding='utf-8') as file:
|
||||
file.writelines(log_lines)
|
||||
|
||||
|
||||
SAMPLER_CHOICES = [
|
||||
'ddim',
|
||||
'k_dpm_2_a',
|
||||
'k_dpm_2',
|
||||
'k_euler_a',
|
||||
'k_euler',
|
||||
'k_heun',
|
||||
'k_lms',
|
||||
'plms',
|
||||
]
|
||||
|
||||
|
||||
def create_argv_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
description="""Generate images using Stable Diffusion.
|
||||
Use --web to launch the web interface.
|
||||
Use --from_file to load prompts from a file path or standard input ("-").
|
||||
Otherwise you will be dropped into an interactive command prompt (type -h for help.)
|
||||
Other command-line arguments are defaults that can usually be overridden
|
||||
prompt the command prompt.
|
||||
"""
|
||||
)
|
||||
parser.add_argument(
|
||||
'--laion400m',
|
||||
'--latent_diffusion',
|
||||
'-l',
|
||||
dest='laion400m',
|
||||
action='store_true',
|
||||
help='Fallback to the latent diffusion (laion400m) weights and config',
|
||||
)
|
||||
parser.add_argument(
|
||||
'--from_file',
|
||||
dest='infile',
|
||||
type=str,
|
||||
help='If specified, load prompts from this file',
|
||||
)
|
||||
parser.add_argument(
|
||||
'-n',
|
||||
'--iterations',
|
||||
type=int,
|
||||
default=1,
|
||||
help='Number of images to generate',
|
||||
)
|
||||
parser.add_argument(
|
||||
'-F',
|
||||
'--full_precision',
|
||||
dest='full_precision',
|
||||
action='store_true',
|
||||
help='Use more memory-intensive full precision math for calculations',
|
||||
)
|
||||
parser.add_argument(
|
||||
'-g',
|
||||
'--grid',
|
||||
action='store_true',
|
||||
help='Generate a grid instead of individual images',
|
||||
)
|
||||
parser.add_argument(
|
||||
'-A',
|
||||
'-m',
|
||||
'--sampler',
|
||||
dest='sampler_name',
|
||||
choices=SAMPLER_CHOICES,
|
||||
metavar='SAMPLER_NAME',
|
||||
default='k_lms',
|
||||
help=f'Set the initial sampler. Default: k_lms. Supported samplers: {", ".join(SAMPLER_CHOICES)}',
|
||||
)
|
||||
parser.add_argument(
|
||||
'--outdir',
|
||||
'-o',
|
||||
type=str,
|
||||
default='outputs/img-samples',
|
||||
help='Directory to save generated images and a log of prompts and seeds. Default: outputs/img-samples',
|
||||
)
|
||||
parser.add_argument(
|
||||
'--seamless',
|
||||
action='store_true',
|
||||
help='Change the model to seamless tiling (circular) mode',
|
||||
)
|
||||
parser.add_argument(
|
||||
'--embedding_path',
|
||||
type=str,
|
||||
help='Path to a pre-trained embedding manager checkpoint - can only be set on command line',
|
||||
)
|
||||
parser.add_argument(
|
||||
'--prompt_as_dir',
|
||||
'-p',
|
||||
action='store_true',
|
||||
help='Place images in subdirectories named after the prompt.',
|
||||
)
|
||||
# GFPGAN related args
|
||||
parser.add_argument(
|
||||
'--gfpgan_bg_upsampler',
|
||||
type=str,
|
||||
default='realesrgan',
|
||||
help='Background upsampler. Default: realesrgan. Options: realesrgan, none.',
|
||||
|
||||
)
|
||||
parser.add_argument(
|
||||
'--gfpgan_bg_tile',
|
||||
type=int,
|
||||
default=400,
|
||||
help='Tile size for background sampler, 0 for no tile during testing. Default: 400.',
|
||||
)
|
||||
parser.add_argument(
|
||||
'--gfpgan_model_path',
|
||||
type=str,
|
||||
default='experiments/pretrained_models/GFPGANv1.3.pth',
|
||||
help='Indicates the path to the GFPGAN model, relative to --gfpgan_dir.',
|
||||
)
|
||||
parser.add_argument(
|
||||
'--gfpgan_dir',
|
||||
type=str,
|
||||
default='./src/gfpgan',
|
||||
help='Indicates the directory containing the GFPGAN code.',
|
||||
)
|
||||
parser.add_argument(
|
||||
'--web',
|
||||
dest='web',
|
||||
action='store_true',
|
||||
help='Start in web server mode.',
|
||||
)
|
||||
parser.add_argument(
|
||||
'--host',
|
||||
type=str,
|
||||
default='127.0.0.1',
|
||||
help='Web server: Host or IP to listen on. Set to 0.0.0.0 to accept traffic from other devices on your network.'
|
||||
)
|
||||
parser.add_argument(
|
||||
'--port',
|
||||
type=int,
|
||||
default='9090',
|
||||
help='Web server: Port to listen on'
|
||||
)
|
||||
parser.add_argument(
|
||||
'--weights',
|
||||
default='model',
|
||||
help='Indicates the Stable Diffusion model to use.',
|
||||
)
|
||||
parser.add_argument(
|
||||
'--model',
|
||||
default='stable-diffusion-1.4',
|
||||
help='Indicates which diffusion model to load. (currently "stable-diffusion-1.4" (default) or "laion400m")',
|
||||
)
|
||||
parser.add_argument(
|
||||
'--config',
|
||||
default='configs/models.yaml',
|
||||
help='Path to configuration file for alternate models.',
|
||||
)
|
||||
return parser
|
||||
|
||||
|
||||
def create_cmd_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
description='Example: dream> a fantastic alien landscape -W1024 -H960 -s100 -n12'
|
||||
)
|
||||
parser.add_argument('prompt')
|
||||
parser.add_argument('-s', '--steps', type=int, help='Number of steps')
|
||||
parser.add_argument(
|
||||
'-S',
|
||||
'--seed',
|
||||
type=int,
|
||||
help='Image seed; a +ve integer, or use -1 for the previous seed, -2 for the one before that, etc',
|
||||
)
|
||||
parser.add_argument(
|
||||
'-n',
|
||||
'--iterations',
|
||||
type=int,
|
||||
default=1,
|
||||
help='Number of samplings to perform (slower, but will provide seeds for individual images)',
|
||||
)
|
||||
parser.add_argument(
|
||||
'-W', '--width', type=int, help='Image width, multiple of 64'
|
||||
)
|
||||
parser.add_argument(
|
||||
'-H', '--height', type=int, help='Image height, multiple of 64'
|
||||
)
|
||||
parser.add_argument(
|
||||
'-C',
|
||||
'--cfg_scale',
|
||||
default=7.5,
|
||||
type=float,
|
||||
help='Classifier free guidance (CFG) scale - higher numbers cause generator to "try" harder.',
|
||||
)
|
||||
parser.add_argument(
|
||||
'-g', '--grid', action='store_true', help='generate a grid'
|
||||
)
|
||||
parser.add_argument(
|
||||
'--outdir',
|
||||
'-o',
|
||||
type=str,
|
||||
default=None,
|
||||
help='Directory to save generated images and a log of prompts and seeds',
|
||||
)
|
||||
parser.add_argument(
|
||||
'--seamless',
|
||||
action='store_true',
|
||||
help='Change the model to seamless tiling (circular) mode',
|
||||
)
|
||||
parser.add_argument(
|
||||
'-i',
|
||||
'--individual',
|
||||
action='store_true',
|
||||
help='Generate individual files (default)',
|
||||
)
|
||||
parser.add_argument(
|
||||
'-I',
|
||||
'--init_img',
|
||||
type=str,
|
||||
help='Path to input image for img2img mode (supersedes width and height)',
|
||||
)
|
||||
parser.add_argument(
|
||||
'-M',
|
||||
'--init_mask',
|
||||
type=str,
|
||||
help='Path to input mask for inpainting mode (supersedes width and height)',
|
||||
)
|
||||
parser.add_argument(
|
||||
'-T',
|
||||
'-fit',
|
||||
'--fit',
|
||||
action='store_true',
|
||||
help='If specified, will resize the input image to fit within the dimensions of width x height (512x512 default)',
|
||||
)
|
||||
parser.add_argument(
|
||||
'-f',
|
||||
'--strength',
|
||||
default=0.75,
|
||||
type=float,
|
||||
help='Strength for noising/unnoising. 0.0 preserves image exactly, 1.0 replaces it completely',
|
||||
)
|
||||
parser.add_argument(
|
||||
'-G',
|
||||
'--gfpgan_strength',
|
||||
default=0,
|
||||
type=float,
|
||||
help='The strength at which to apply the GFPGAN model to the result, in order to improve faces.',
|
||||
)
|
||||
parser.add_argument(
|
||||
'-U',
|
||||
'--upscale',
|
||||
nargs='+',
|
||||
default=None,
|
||||
type=float,
|
||||
help='Scale factor (2, 4) for upscaling final output followed by upscaling strength (0-1.0). If strength not specified, defaults to 0.75'
|
||||
)
|
||||
parser.add_argument(
|
||||
'-save_orig',
|
||||
'--save_original',
|
||||
action='store_true',
|
||||
help='Save original. Use it when upscaling to save both versions.',
|
||||
)
|
||||
parser.add_argument(
|
||||
'-embiggen',
|
||||
'--embiggen',
|
||||
nargs='+',
|
||||
default=None,
|
||||
type=float,
|
||||
help='Embiggen tiled img2img for higher resolution and detail without extra VRAM usage. Takes scale factor relative to the size of the --init_img (-I), followed by ESRGAN upscaling strength (0-1.0), followed by minimum amount of overlap between tiles as a decimal ratio (0 - 1.0) or number of pixels. ESRGAN strength defaults to 0.75, and overlap defaults to 0.25 . ESRGAN is used to upscale the init prior to cutting it into tiles/pieces to run through img2img and then stitch back togeather.',
|
||||
)
|
||||
parser.add_argument(
|
||||
'-embiggen_tiles',
|
||||
'--embiggen_tiles',
|
||||
nargs='+',
|
||||
default=None,
|
||||
type=int,
|
||||
help='If while doing Embiggen we are altering only parts of the image, takes a list of tiles by number to process and replace onto the image e.g. `1 3 5`, useful for redoing problematic spots from a prior Embiggen run',
|
||||
)
|
||||
# variants is going to be superseded by a generalized "prompt-morph" function
|
||||
# parser.add_argument('-v','--variants',type=int,help="in img2img mode, the first generated image will get passed back to img2img to generate the requested number of variants")
|
||||
parser.add_argument(
|
||||
'-x',
|
||||
'--skip_normalize',
|
||||
action='store_true',
|
||||
help='Skip subprompt weight normalization',
|
||||
)
|
||||
parser.add_argument(
|
||||
'-A',
|
||||
'-m',
|
||||
'--sampler',
|
||||
dest='sampler_name',
|
||||
default=None,
|
||||
type=str,
|
||||
choices=SAMPLER_CHOICES,
|
||||
metavar='SAMPLER_NAME',
|
||||
help=f'Switch to a different sampler. Supported samplers: {", ".join(SAMPLER_CHOICES)}',
|
||||
)
|
||||
parser.add_argument(
|
||||
'-t',
|
||||
'--log_tokenization',
|
||||
action='store_true',
|
||||
help='shows how the prompt is split into tokens'
|
||||
)
|
||||
parser.add_argument(
|
||||
'-v',
|
||||
'--variation_amount',
|
||||
default=0.0,
|
||||
type=float,
|
||||
help='If > 0, generates variations on the initial seed instead of random seeds per iteration. Must be between 0 and 1. Higher values will be more different.'
|
||||
)
|
||||
parser.add_argument(
|
||||
'-V',
|
||||
'--with_variations',
|
||||
default=None,
|
||||
type=str,
|
||||
help='list of variations to apply, in the format `seed:weight,seed:weight,...'
|
||||
)
|
||||
return parser
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
|
22
scripts/sd-metadata.py
Normal file
22
scripts/sd-metadata.py
Normal file
@ -0,0 +1,22 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
import sys
|
||||
import json
|
||||
from ldm.dream.pngwriter import retrieve_metadata
|
||||
|
||||
if len(sys.argv) < 2:
|
||||
print("Usage: file2prompt.py <file1.png> <file2.png> <file3.png>...")
|
||||
print("This script opens up the indicated dream.py-generated PNG file(s) and prints out their metadata.")
|
||||
exit(-1)
|
||||
|
||||
filenames = sys.argv[1:]
|
||||
for f in filenames:
|
||||
try:
|
||||
metadata = retrieve_metadata(f)
|
||||
print(f'{f}:\n',json.dumps(metadata, indent=4))
|
||||
except FileNotFoundError:
|
||||
sys.stderr.write(f'{f} not found\n')
|
||||
continue
|
||||
except PermissionError:
|
||||
sys.stderr.write(f'{f} could not be opened due to inadequate permissions\n')
|
||||
continue
|
Loading…
Reference in New Issue
Block a user