Update load_flux_model_bnb_llm_int8.py to work with a single-file FLUX transformer checkpoint.

This commit is contained in:
Ryan Dick 2024-08-21 19:03:09 +00:00 committed by Brandon
parent 19a68afb3a
commit 4105a78b83

View File

@ -1,7 +1,8 @@
from pathlib import Path
import accelerate
from diffusers.models.transformers.transformer_flux import FluxTransformer2DModel
from flux.model import Flux
from flux.util import configs as flux_configs
from safetensors.torch import load_file, save_file
from invokeai.backend.quantization.bnb_llm_int8 import quantize_model_llm_int8
@ -11,30 +12,32 @@ from invokeai.backend.quantization.load_flux_model_bnb_nf4 import log_time
def main():
# Load the FLUX transformer model onto the meta device.
model_path = Path(
"/data/invokeai/models/.download_cache/black-forest-labs_flux.1-schnell/FLUX.1-schnell/transformer/"
"/data/invokeai/models/.download_cache/https__huggingface.co_black-forest-labs_flux.1-schnell_resolve_main_flux1-schnell.safetensors/flux1-schnell.safetensors"
)
with log_time("Initialize FLUX transformer on meta device"):
model_config = FluxTransformer2DModel.load_config(model_path, local_files_only=True)
with log_time("Intialize FLUX transformer on meta device"):
# TODO(ryand): Determine if this is a schnell model or a dev model and load the appropriate config.
params = flux_configs["flux-schnell"].params
# Initialize the model on the "meta" device.
with accelerate.init_empty_weights():
empty_model = FluxTransformer2DModel.from_config(model_config)
assert isinstance(empty_model, FluxTransformer2DModel)
model = Flux(params)
# TODO(ryand): We may want to add some modules to not quantize here (e.g. the proj_out layer). See the accelerate
# `get_keys_to_not_convert(...)` function for a heuristic to determine which modules to not quantize.
modules_to_not_convert: set[str] = set()
model_int8_path = model_path / "bnb_llm_int8"
model_int8_path = model_path.parent / "bnb_llm_int8.safetensors"
if model_int8_path.exists():
# The quantized model already exists, load it and return it.
print(f"A pre-quantized model already exists at '{model_int8_path}'. Attempting to load it...")
# Replace the linear layers with LLM.int8() quantized linear layers (still on the meta device).
with log_time("Replace linear layers with LLM.int8() layers"), accelerate.init_empty_weights():
model = quantize_model_llm_int8(empty_model, modules_to_not_convert=modules_to_not_convert)
model = quantize_model_llm_int8(model, modules_to_not_convert=modules_to_not_convert)
with log_time("Load state dict into model"):
sd = load_file(model_int8_path / "model.safetensors")
sd = load_file(model_int8_path)
model.load_state_dict(sd, strict=True, assign=True)
with log_time("Move model to cuda"):
@ -47,29 +50,23 @@ def main():
print(f"No pre-quantized model found at '{model_int8_path}'. Quantizing the model...")
with log_time("Replace linear layers with LLM.int8() layers"), accelerate.init_empty_weights():
model = quantize_model_llm_int8(empty_model, modules_to_not_convert=modules_to_not_convert)
model = quantize_model_llm_int8(model, modules_to_not_convert=modules_to_not_convert)
with log_time("Load state dict into model"):
# Load sharded state dict.
files = list(model_path.glob("*.safetensors"))
state_dict = {}
for file in files:
sd = load_file(file)
state_dict.update(sd)
state_dict = load_file(model_path)
# TODO(ryand): Cast the state_dict to the appropriate dtype?
model.load_state_dict(state_dict, strict=True, assign=True)
with log_time("Move model to cuda and quantize"):
model = model.to("cuda")
with log_time("Save quantized model"):
model_int8_path.mkdir(parents=True, exist_ok=True)
output_path = model_int8_path / "model.safetensors"
save_file(model.state_dict(), output_path)
model_int8_path.parent.mkdir(parents=True, exist_ok=True)
save_file(model.state_dict(), model_int8_path)
print(f"Successfully quantized and saved model to '{output_path}'.")
print(f"Successfully quantized and saved model to '{model_int8_path}'.")
assert isinstance(model, FluxTransformer2DModel)
assert isinstance(model, Flux)
return model