mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Support Python 3.11 (#3966)
## What type of PR is this? (check all applicable) - [ ] Refactor - [X ] Feature - [ ] Bug Fix - [ ] Optimization - [ ] Documentation Update - [ ] Community Node Submission ## Have you discussed this change with the InvokeAI team? - [X ] Yes - [ ] No, because: ## Have you updated all relevant documentation? - [X ] Yes - [ ] No ## Description This updates InvokeAI's pyproject.toml to the minimum library versions needed to support Python 3.11. It updates the installer to find and allow for 3.11, and the documentation. Between 3.10 and 3.11 there was a change to the handling of `enum` interpolation into strings that caused the model manager to break. I think I have fixed the places where this was a problem, but there may be other instances in which this will cause problems. Please be alert for errors involving `ModelType` or `BaseModelType`. I also took the opportunity to add a `SilenceWarnings()` context to the t2i and i2i invocations. This quenches nags from diffusers about the HuggingFace NSFW library. I have tested basic functionality (t2i, i2i, inpaint, lora, controlnet, nodes) on 3.10 and 3.11 and all seems good. Please test more extensively! ## Added/updated tests? - [ X ] Yes - existing tests run to completion - [ ] No ## [optional] Are there any post deployment tasks we need to perform? Should be a drop-in replacement.
This commit is contained in:
commit
41b13e83a5
@ -123,7 +123,7 @@ and go to http://localhost:9090.
|
||||
|
||||
### Command-Line Installation (for developers and users familiar with Terminals)
|
||||
|
||||
You must have Python 3.9 or 3.10 installed on your machine. Earlier or
|
||||
You must have Python 3.9 through 3.11 installed on your machine. Earlier or
|
||||
later versions are not supported.
|
||||
Node.js also needs to be installed along with yarn (can be installed with
|
||||
the command `npm install -g yarn` if needed)
|
||||
|
@ -40,10 +40,8 @@ experimental versions later.
|
||||
this, open up a command-line window ("Terminal" on Linux and
|
||||
Macintosh, "Command" or "Powershell" on Windows) and type `python
|
||||
--version`. If Python is installed, it will print out the version
|
||||
number. If it is version `3.9.*` or `3.10.*`, you meet
|
||||
requirements. We do not recommend using Python 3.11 or higher,
|
||||
as not all the libraries that InvokeAI depends on work properly
|
||||
with this version.
|
||||
number. If it is version `3.9.*`, `3.10.*` or `3.11.*` you meet
|
||||
requirements.
|
||||
|
||||
!!! warning "What to do if you have an unsupported version"
|
||||
|
||||
|
@ -32,7 +32,7 @@ gaming):
|
||||
|
||||
* **Python**
|
||||
|
||||
version 3.9 or 3.10 (3.11 is not recommended).
|
||||
version 3.9 through 3.11
|
||||
|
||||
* **CUDA Tools**
|
||||
|
||||
@ -65,7 +65,7 @@ gaming):
|
||||
To install InvokeAI with virtual environments and the PIP package
|
||||
manager, please follow these steps:
|
||||
|
||||
1. Please make sure you are using Python 3.9 or 3.10. The rest of the install
|
||||
1. Please make sure you are using Python 3.9 through 3.11. The rest of the install
|
||||
procedure depends on this and will not work with other versions:
|
||||
|
||||
```bash
|
||||
|
@ -9,16 +9,20 @@ cd $scriptdir
|
||||
function version { echo "$@" | awk -F. '{ printf("%d%03d%03d%03d\n", $1,$2,$3,$4); }'; }
|
||||
|
||||
MINIMUM_PYTHON_VERSION=3.9.0
|
||||
MAXIMUM_PYTHON_VERSION=3.11.0
|
||||
MAXIMUM_PYTHON_VERSION=3.11.100
|
||||
PYTHON=""
|
||||
for candidate in python3.10 python3.9 python3 python ; do
|
||||
for candidate in python3.11 python3.10 python3.9 python3 python ; do
|
||||
if ppath=`which $candidate`; then
|
||||
# when using `pyenv`, the executable for an inactive Python version will exist but will not be operational
|
||||
# we check that this found executable can actually run
|
||||
if [ $($candidate --version &>/dev/null; echo ${PIPESTATUS}) -gt 0 ]; then continue; fi
|
||||
|
||||
python_version=$($ppath -V | awk '{ print $2 }')
|
||||
if [ $(version $python_version) -ge $(version "$MINIMUM_PYTHON_VERSION") ]; then
|
||||
if [ $(version $python_version) -lt $(version "$MAXIMUM_PYTHON_VERSION") ]; then
|
||||
PYTHON=$ppath
|
||||
break
|
||||
fi
|
||||
if [ $(version $python_version) -le $(version "$MAXIMUM_PYTHON_VERSION") ]; then
|
||||
PYTHON=$ppath
|
||||
break
|
||||
fi
|
||||
fi
|
||||
fi
|
||||
done
|
||||
|
@ -90,7 +90,7 @@ async def update_model(
|
||||
new_name=info.model_name,
|
||||
new_base=info.base_model,
|
||||
)
|
||||
logger.info(f"Successfully renamed {base_model}/{model_name}=>{info.base_model}/{info.model_name}")
|
||||
logger.info(f"Successfully renamed {base_model.value}/{model_name}=>{info.base_model}/{info.model_name}")
|
||||
# update information to support an update of attributes
|
||||
model_name = info.model_name
|
||||
base_model = info.base_model
|
||||
|
@ -12,7 +12,7 @@ from pydantic import BaseModel, Field, validator
|
||||
|
||||
from invokeai.app.invocations.metadata import CoreMetadata
|
||||
from invokeai.app.util.step_callback import stable_diffusion_step_callback
|
||||
from invokeai.backend.model_management.models.base import ModelType
|
||||
from invokeai.backend.model_management.models import ModelType, SilenceWarnings
|
||||
|
||||
from ...backend.model_management.lora import ModelPatcher
|
||||
from ...backend.stable_diffusion import PipelineIntermediateState
|
||||
@ -311,70 +311,71 @@ class TextToLatentsInvocation(BaseInvocation):
|
||||
|
||||
@torch.no_grad()
|
||||
def invoke(self, context: InvocationContext) -> LatentsOutput:
|
||||
noise = context.services.latents.get(self.noise.latents_name)
|
||||
with SilenceWarnings():
|
||||
noise = context.services.latents.get(self.noise.latents_name)
|
||||
|
||||
# Get the source node id (we are invoking the prepared node)
|
||||
graph_execution_state = context.services.graph_execution_manager.get(context.graph_execution_state_id)
|
||||
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
|
||||
# Get the source node id (we are invoking the prepared node)
|
||||
graph_execution_state = context.services.graph_execution_manager.get(context.graph_execution_state_id)
|
||||
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
|
||||
|
||||
def step_callback(state: PipelineIntermediateState):
|
||||
self.dispatch_progress(context, source_node_id, state)
|
||||
def step_callback(state: PipelineIntermediateState):
|
||||
self.dispatch_progress(context, source_node_id, state)
|
||||
|
||||
def _lora_loader():
|
||||
for lora in self.unet.loras:
|
||||
lora_info = context.services.model_manager.get_model(
|
||||
**lora.dict(exclude={"weight"}),
|
||||
def _lora_loader():
|
||||
for lora in self.unet.loras:
|
||||
lora_info = context.services.model_manager.get_model(
|
||||
**lora.dict(exclude={"weight"}),
|
||||
context=context,
|
||||
)
|
||||
yield (lora_info.context.model, lora.weight)
|
||||
del lora_info
|
||||
return
|
||||
|
||||
unet_info = context.services.model_manager.get_model(
|
||||
**self.unet.unet.dict(),
|
||||
context=context,
|
||||
)
|
||||
with ExitStack() as exit_stack, ModelPatcher.apply_lora_unet(
|
||||
unet_info.context.model, _lora_loader()
|
||||
), unet_info as unet:
|
||||
noise = noise.to(device=unet.device, dtype=unet.dtype)
|
||||
|
||||
scheduler = get_scheduler(
|
||||
context=context,
|
||||
scheduler_info=self.unet.scheduler,
|
||||
scheduler_name=self.scheduler,
|
||||
)
|
||||
yield (lora_info.context.model, lora.weight)
|
||||
del lora_info
|
||||
return
|
||||
|
||||
unet_info = context.services.model_manager.get_model(
|
||||
**self.unet.unet.dict(),
|
||||
context=context,
|
||||
)
|
||||
with ExitStack() as exit_stack, ModelPatcher.apply_lora_unet(
|
||||
unet_info.context.model, _lora_loader()
|
||||
), unet_info as unet:
|
||||
noise = noise.to(device=unet.device, dtype=unet.dtype)
|
||||
pipeline = self.create_pipeline(unet, scheduler)
|
||||
conditioning_data = self.get_conditioning_data(context, scheduler, unet)
|
||||
|
||||
scheduler = get_scheduler(
|
||||
context=context,
|
||||
scheduler_info=self.unet.scheduler,
|
||||
scheduler_name=self.scheduler,
|
||||
)
|
||||
control_data = self.prep_control_data(
|
||||
model=pipeline,
|
||||
context=context,
|
||||
control_input=self.control,
|
||||
latents_shape=noise.shape,
|
||||
# do_classifier_free_guidance=(self.cfg_scale >= 1.0))
|
||||
do_classifier_free_guidance=True,
|
||||
exit_stack=exit_stack,
|
||||
)
|
||||
|
||||
pipeline = self.create_pipeline(unet, scheduler)
|
||||
conditioning_data = self.get_conditioning_data(context, scheduler, unet)
|
||||
# TODO: Verify the noise is the right size
|
||||
result_latents, result_attention_map_saver = pipeline.latents_from_embeddings(
|
||||
latents=torch.zeros_like(noise, dtype=torch_dtype(unet.device)),
|
||||
noise=noise,
|
||||
num_inference_steps=self.steps,
|
||||
conditioning_data=conditioning_data,
|
||||
control_data=control_data, # list[ControlNetData]
|
||||
callback=step_callback,
|
||||
)
|
||||
|
||||
control_data = self.prep_control_data(
|
||||
model=pipeline,
|
||||
context=context,
|
||||
control_input=self.control,
|
||||
latents_shape=noise.shape,
|
||||
# do_classifier_free_guidance=(self.cfg_scale >= 1.0))
|
||||
do_classifier_free_guidance=True,
|
||||
exit_stack=exit_stack,
|
||||
)
|
||||
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
|
||||
result_latents = result_latents.to("cpu")
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
# TODO: Verify the noise is the right size
|
||||
result_latents, result_attention_map_saver = pipeline.latents_from_embeddings(
|
||||
latents=torch.zeros_like(noise, dtype=torch_dtype(unet.device)),
|
||||
noise=noise,
|
||||
num_inference_steps=self.steps,
|
||||
conditioning_data=conditioning_data,
|
||||
control_data=control_data, # list[ControlNetData]
|
||||
callback=step_callback,
|
||||
)
|
||||
|
||||
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
|
||||
result_latents = result_latents.to("cpu")
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
name = f"{context.graph_execution_state_id}__{self.id}"
|
||||
context.services.latents.save(name, result_latents)
|
||||
return build_latents_output(latents_name=name, latents=result_latents)
|
||||
name = f"{context.graph_execution_state_id}__{self.id}"
|
||||
context.services.latents.save(name, result_latents)
|
||||
return build_latents_output(latents_name=name, latents=result_latents)
|
||||
|
||||
|
||||
class LatentsToLatentsInvocation(TextToLatentsInvocation):
|
||||
@ -402,82 +403,83 @@ class LatentsToLatentsInvocation(TextToLatentsInvocation):
|
||||
|
||||
@torch.no_grad()
|
||||
def invoke(self, context: InvocationContext) -> LatentsOutput:
|
||||
noise = context.services.latents.get(self.noise.latents_name)
|
||||
latent = context.services.latents.get(self.latents.latents_name)
|
||||
with SilenceWarnings(): # this quenches NSFW nag from diffusers
|
||||
noise = context.services.latents.get(self.noise.latents_name)
|
||||
latent = context.services.latents.get(self.latents.latents_name)
|
||||
|
||||
# Get the source node id (we are invoking the prepared node)
|
||||
graph_execution_state = context.services.graph_execution_manager.get(context.graph_execution_state_id)
|
||||
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
|
||||
# Get the source node id (we are invoking the prepared node)
|
||||
graph_execution_state = context.services.graph_execution_manager.get(context.graph_execution_state_id)
|
||||
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
|
||||
|
||||
def step_callback(state: PipelineIntermediateState):
|
||||
self.dispatch_progress(context, source_node_id, state)
|
||||
def step_callback(state: PipelineIntermediateState):
|
||||
self.dispatch_progress(context, source_node_id, state)
|
||||
|
||||
def _lora_loader():
|
||||
for lora in self.unet.loras:
|
||||
lora_info = context.services.model_manager.get_model(
|
||||
**lora.dict(exclude={"weight"}),
|
||||
def _lora_loader():
|
||||
for lora in self.unet.loras:
|
||||
lora_info = context.services.model_manager.get_model(
|
||||
**lora.dict(exclude={"weight"}),
|
||||
context=context,
|
||||
)
|
||||
yield (lora_info.context.model, lora.weight)
|
||||
del lora_info
|
||||
return
|
||||
|
||||
unet_info = context.services.model_manager.get_model(
|
||||
**self.unet.unet.dict(),
|
||||
context=context,
|
||||
)
|
||||
with ExitStack() as exit_stack, ModelPatcher.apply_lora_unet(
|
||||
unet_info.context.model, _lora_loader()
|
||||
), unet_info as unet:
|
||||
noise = noise.to(device=unet.device, dtype=unet.dtype)
|
||||
latent = latent.to(device=unet.device, dtype=unet.dtype)
|
||||
|
||||
scheduler = get_scheduler(
|
||||
context=context,
|
||||
scheduler_info=self.unet.scheduler,
|
||||
scheduler_name=self.scheduler,
|
||||
)
|
||||
yield (lora_info.context.model, lora.weight)
|
||||
del lora_info
|
||||
return
|
||||
|
||||
unet_info = context.services.model_manager.get_model(
|
||||
**self.unet.unet.dict(),
|
||||
context=context,
|
||||
)
|
||||
with ExitStack() as exit_stack, ModelPatcher.apply_lora_unet(
|
||||
unet_info.context.model, _lora_loader()
|
||||
), unet_info as unet:
|
||||
noise = noise.to(device=unet.device, dtype=unet.dtype)
|
||||
latent = latent.to(device=unet.device, dtype=unet.dtype)
|
||||
pipeline = self.create_pipeline(unet, scheduler)
|
||||
conditioning_data = self.get_conditioning_data(context, scheduler, unet)
|
||||
|
||||
scheduler = get_scheduler(
|
||||
context=context,
|
||||
scheduler_info=self.unet.scheduler,
|
||||
scheduler_name=self.scheduler,
|
||||
)
|
||||
control_data = self.prep_control_data(
|
||||
model=pipeline,
|
||||
context=context,
|
||||
control_input=self.control,
|
||||
latents_shape=noise.shape,
|
||||
# do_classifier_free_guidance=(self.cfg_scale >= 1.0))
|
||||
do_classifier_free_guidance=True,
|
||||
exit_stack=exit_stack,
|
||||
)
|
||||
|
||||
pipeline = self.create_pipeline(unet, scheduler)
|
||||
conditioning_data = self.get_conditioning_data(context, scheduler, unet)
|
||||
# TODO: Verify the noise is the right size
|
||||
initial_latents = (
|
||||
latent if self.strength < 1.0 else torch.zeros_like(latent, device=unet.device, dtype=latent.dtype)
|
||||
)
|
||||
|
||||
control_data = self.prep_control_data(
|
||||
model=pipeline,
|
||||
context=context,
|
||||
control_input=self.control,
|
||||
latents_shape=noise.shape,
|
||||
# do_classifier_free_guidance=(self.cfg_scale >= 1.0))
|
||||
do_classifier_free_guidance=True,
|
||||
exit_stack=exit_stack,
|
||||
)
|
||||
timesteps, _ = pipeline.get_img2img_timesteps(
|
||||
self.steps,
|
||||
self.strength,
|
||||
device=unet.device,
|
||||
)
|
||||
|
||||
# TODO: Verify the noise is the right size
|
||||
initial_latents = (
|
||||
latent if self.strength < 1.0 else torch.zeros_like(latent, device=unet.device, dtype=latent.dtype)
|
||||
)
|
||||
result_latents, result_attention_map_saver = pipeline.latents_from_embeddings(
|
||||
latents=initial_latents,
|
||||
timesteps=timesteps,
|
||||
noise=noise,
|
||||
num_inference_steps=self.steps,
|
||||
conditioning_data=conditioning_data,
|
||||
control_data=control_data, # list[ControlNetData]
|
||||
callback=step_callback,
|
||||
)
|
||||
|
||||
timesteps, _ = pipeline.get_img2img_timesteps(
|
||||
self.steps,
|
||||
self.strength,
|
||||
device=unet.device,
|
||||
)
|
||||
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
|
||||
result_latents = result_latents.to("cpu")
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
result_latents, result_attention_map_saver = pipeline.latents_from_embeddings(
|
||||
latents=initial_latents,
|
||||
timesteps=timesteps,
|
||||
noise=noise,
|
||||
num_inference_steps=self.steps,
|
||||
conditioning_data=conditioning_data,
|
||||
control_data=control_data, # list[ControlNetData]
|
||||
callback=step_callback,
|
||||
)
|
||||
|
||||
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
|
||||
result_latents = result_latents.to("cpu")
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
name = f"{context.graph_execution_state_id}__{self.id}"
|
||||
context.services.latents.save(name, result_latents)
|
||||
name = f"{context.graph_execution_state_id}__{self.id}"
|
||||
context.services.latents.save(name, result_latents)
|
||||
return build_latents_output(latents_name=name, latents=result_latents)
|
||||
|
||||
|
||||
@ -490,7 +492,7 @@ class LatentsToImageInvocation(BaseInvocation):
|
||||
# Inputs
|
||||
latents: Optional[LatentsField] = Field(description="The latents to generate an image from")
|
||||
vae: VaeField = Field(default=None, description="Vae submodel")
|
||||
tiled: bool = Field(default=False, description="Decode latents by overlapping tiles(less memory consumption)")
|
||||
tiled: bool = Field(default=False, description="Decode latents by overlaping tiles (less memory consumption)")
|
||||
fp32: bool = Field(DEFAULT_PRECISION == "float32", description="Decode in full precision")
|
||||
metadata: Optional[CoreMetadata] = Field(
|
||||
default=None, description="Optional core metadata to be written to the image"
|
||||
|
@ -401,7 +401,11 @@ class ModelManager(object):
|
||||
base_model: BaseModelType,
|
||||
model_type: ModelType,
|
||||
) -> str:
|
||||
return f"{base_model}/{model_type}/{model_name}"
|
||||
# In 3.11, the behavior of (str,enum) when interpolated into a
|
||||
# string has changed. The next two lines are defensive.
|
||||
base_model = BaseModelType(base_model)
|
||||
model_type = ModelType(model_type)
|
||||
return f"{base_model.value}/{model_type.value}/{model_name}"
|
||||
|
||||
@classmethod
|
||||
def parse_key(cls, model_key: str) -> Tuple[str, BaseModelType, ModelType]:
|
||||
|
@ -5,7 +5,7 @@ build-backend = "setuptools.build_meta"
|
||||
[project]
|
||||
name = "InvokeAI"
|
||||
description = "An implementation of Stable Diffusion which provides various new features and options to aid the image generation process"
|
||||
requires-python = ">=3.9, <3.11"
|
||||
requires-python = ">=3.9, <3.12"
|
||||
readme = { content-type = "text/markdown", file = "README.md" }
|
||||
keywords = ["stable-diffusion", "AI"]
|
||||
dynamic = ["version"]
|
||||
@ -32,16 +32,16 @@ classifiers = [
|
||||
'Topic :: Scientific/Engineering :: Image Processing',
|
||||
]
|
||||
dependencies = [
|
||||
"accelerate~=0.16",
|
||||
"accelerate~=0.21.0",
|
||||
"albumentations",
|
||||
"click",
|
||||
"clip_anytorch", # replacing "clip @ https://github.com/openai/CLIP/archive/eaa22acb90a5876642d0507623e859909230a52d.zip",
|
||||
"compel==2.0.0",
|
||||
"clip_anytorch", # replacing "clip @ https://github.com/openai/CLIP/archive/eaa22acb90a5876642d0507623e859909230a52d.zip",
|
||||
"compel~=2.0.0",
|
||||
"controlnet-aux>=0.0.6",
|
||||
"timm==0.6.13", # needed to override timm latest in controlnet_aux, see https://github.com/isl-org/ZoeDepth/issues/26
|
||||
"timm==0.6.13", # needed to override timm latest in controlnet_aux, see https://github.com/isl-org/ZoeDepth/issues/26
|
||||
"datasets",
|
||||
"diffusers[torch]~=0.18.1",
|
||||
"dnspython==2.2.1",
|
||||
"diffusers[torch]~=0.18.2",
|
||||
"dnspython~=2.4.0",
|
||||
"dynamicprompts",
|
||||
"easing-functions",
|
||||
"einops",
|
||||
@ -54,37 +54,37 @@ dependencies = [
|
||||
"flask_cors==3.0.10",
|
||||
"flask_socketio==5.3.0",
|
||||
"flaskwebgui==1.0.3",
|
||||
"gfpgan==1.3.8",
|
||||
"huggingface-hub>=0.11.1",
|
||||
"invisible-watermark>=0.2.0", # needed to install SDXL base and refiner using their repo_ids
|
||||
"invisible-watermark~=0.2.0", # needed to install SDXL base and refiner using their repo_ids
|
||||
"matplotlib", # needed for plotting of Penner easing functions
|
||||
"mediapipe", # needed for "mediapipeface" controlnet model
|
||||
"npyscreen",
|
||||
"numpy<1.24",
|
||||
"numpy==1.24.4",
|
||||
"omegaconf",
|
||||
"opencv-python",
|
||||
"picklescan",
|
||||
"pillow",
|
||||
"prompt-toolkit",
|
||||
"pympler==1.0.1",
|
||||
"pydantic==1.10.10",
|
||||
"pympler~=1.0.1",
|
||||
"pypatchmatch",
|
||||
'pyperclip',
|
||||
"pyreadline3",
|
||||
"python-multipart==0.0.6",
|
||||
"pytorch-lightning==1.7.7",
|
||||
"python-multipart",
|
||||
"pytorch-lightning",
|
||||
"realesrgan",
|
||||
"requests==2.28.2",
|
||||
"requests~=2.28.2",
|
||||
"rich~=13.3",
|
||||
"safetensors~=0.3.0",
|
||||
"scikit-image>=0.19",
|
||||
"scikit-image~=0.21.0",
|
||||
"send2trash",
|
||||
"test-tube>=0.7.5",
|
||||
"torch~=2.0.0",
|
||||
"torchvision>=0.14.1",
|
||||
"torchmetrics==0.11.4",
|
||||
"torchsde==0.2.5",
|
||||
"test-tube~=0.7.5",
|
||||
"torch~=2.0.1",
|
||||
"torchvision~=0.15.2",
|
||||
"torchmetrics~=1.0.1",
|
||||
"torchsde~=0.2.5",
|
||||
"transformers~=4.31.0",
|
||||
"uvicorn[standard]==0.21.1",
|
||||
"uvicorn[standard]~=0.21.1",
|
||||
"windows-curses; sys_platform=='win32'",
|
||||
]
|
||||
|
||||
|
@ -1,8 +1,16 @@
|
||||
#!/bin/env python
|
||||
|
||||
import argparse
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from invokeai.backend.model_management.model_probe import ModelProbe
|
||||
|
||||
info = ModelProbe().probe(Path(sys.argv[1]))
|
||||
parser = argparse.ArgumentParser(description="Probe model type")
|
||||
parser.add_argument(
|
||||
"model_path",
|
||||
type=Path,
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
info = ModelProbe().probe(args.model_path)
|
||||
print(info)
|
||||
|
Loading…
Reference in New Issue
Block a user