add config variable to suppress loading of sd3 text_encoder_3 T5 model

This commit is contained in:
Lincoln Stein 2024-06-16 16:28:39 -04:00
parent f65d50a4dd
commit 423057a2e8
4 changed files with 56 additions and 58 deletions

View File

@ -1,3 +1,4 @@
from contextlib import ExitStack
from typing import cast
import torch
@ -23,7 +24,6 @@ from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.misc import SEED_MAX
from invokeai.backend.model_manager.config import SubModelType
from invokeai.backend.model_manager.load.load_base import LoadedModel
from invokeai.backend.util.devices import TorchDevice
sd3_pipeline: Optional[StableDiffusion3Pipeline] = None
transformer_info: Optional[LoadedModel] = None
@ -148,39 +148,35 @@ class StableDiffusion3Invocation(BaseInvocation):
return v % (SEED_MAX + 1)
def invoke(self, context: InvocationContext) -> LatentsOutput:
global sd3_pipeline, transformer_info, tokenizer_1_info, tokenizer_2_info, tokenizer_3_info, text_encoder_1_info, text_encoder_2_info, text_encoder_3_info
app_config = context.config.get()
load_te3 = app_config.load_sd3_encoder_3
if not transformer_info:
transformer_info = context.models.load(self.transformer.transformer)
if not tokenizer_1_info:
tokenizer_1_info = context.models.load(self.clip.tokenizer_1)
if not tokenizer_2_info:
tokenizer_2_info = context.models.load(self.clip.tokenizer_2)
if not tokenizer_3_info:
tokenizer_3_info = context.models.load(self.clip.tokenizer_3)
if not text_encoder_1_info:
text_encoder_1_info = context.models.load(self.clip.text_encoder_1)
if not text_encoder_2_info:
text_encoder_2_info = context.models.load(self.clip.text_encoder_2)
if not text_encoder_3_info:
text_encoder_3_info = context.models.load(self.clip.text_encoder_3)
transformer_info = context.models.load(self.transformer.transformer)
tokenizer_1_info = context.models.load(self.clip.tokenizer_1)
tokenizer_2_info = context.models.load(self.clip.tokenizer_2)
text_encoder_1_info = context.models.load(self.clip.text_encoder_1)
text_encoder_2_info = context.models.load(self.clip.text_encoder_2)
with (
tokenizer_1_info as tokenizer_1,
tokenizer_2_info as tokenizer_2,
tokenizer_3_info as tokenizer_3,
text_encoder_1_info as text_encoder_1,
text_encoder_2_info as text_encoder_2,
text_encoder_3_info as text_encoder_3,
transformer_info as transformer,
):
with ExitStack() as stack:
tokenizer_1 = stack.enter_context(tokenizer_1_info)
tokenizer_2 = stack.enter_context(tokenizer_2_info)
text_encoder_1 = stack.enter_context(text_encoder_1_info)
text_encoder_2 = stack.enter_context(text_encoder_2_info)
transformer = stack.enter_context(transformer_info)
assert isinstance(transformer, SD3Transformer2DModel)
assert isinstance(text_encoder_1, CLIPTextModelWithProjection)
assert isinstance(text_encoder_2, CLIPTextModelWithProjection)
assert isinstance(text_encoder_3, T5EncoderModel)
assert isinstance(tokenizer_1, CLIPTokenizer)
assert isinstance(tokenizer_2, CLIPTokenizer)
assert isinstance(tokenizer_3, T5TokenizerFast)
if load_te3:
tokenizer_3 = stack.enter_context(context.models.load(self.clip.tokenizer_3))
text_encoder_3 = stack.enter_context(context.models.load(self.clip.text_encoder_3))
assert isinstance(text_encoder_3, T5EncoderModel)
assert isinstance(tokenizer_3, T5TokenizerFast)
else:
tokenizer_3 = None
text_encoder_3 = None
scheduler = get_scheduler(
context=context,
@ -189,21 +185,17 @@ class StableDiffusion3Invocation(BaseInvocation):
seed=self.seed,
)
if not isinstance(sd3_pipeline, StableDiffusion3Pipeline):
sd3_pipeline = StableDiffusion3Pipeline(
transformer=transformer,
vae=FakeVae(),
text_encoder=text_encoder_1,
text_encoder_2=text_encoder_2,
text_encoder_3=text_encoder_3,
tokenizer=tokenizer_1,
tokenizer_2=tokenizer_2,
tokenizer_3=tokenizer_3,
scheduler=scheduler,
)
sd3_pipeline.components["scheduler"] = scheduler
sd3_pipeline.to(TorchDevice.choose_torch_device().type)
sd3_pipeline = StableDiffusion3Pipeline(
transformer=transformer,
vae=FakeVae(),
text_encoder=text_encoder_1,
text_encoder_2=text_encoder_2,
text_encoder_3=text_encoder_3,
tokenizer=tokenizer_1,
tokenizer_2=tokenizer_2,
tokenizer_3=tokenizer_3,
scheduler=scheduler,
)
results = sd3_pipeline(
self.positive_prompt,

View File

@ -104,6 +104,7 @@ class InvokeAIAppConfig(BaseSettings):
vram: Amount of VRAM reserved for model storage (GB).
convert_cache: Maximum size of on-disk converted models cache (GB).
lazy_offload: Keep models in VRAM until their space is needed.
load_sd3_encoder_3: Load the memory-intensive SD3 text_encoder_3.
log_memory_usage: If True, a memory snapshot will be captured before and after every model cache operation, and the result will be logged (at debug level). There is a time cost to capturing the memory snapshots, so it is recommended to only enable this feature if you are actively inspecting the model cache's behaviour.
device: Preferred execution device. `auto` will choose the device depending on the hardware platform and the installed torch capabilities.<br>Valid values: `auto`, `cpu`, `cuda`, `cuda:1`, `mps`
precision: Floating point precision. `float16` will consume half the memory of `float32` but produce slightly lower-quality images. The `auto` setting will guess the proper precision based on your video card and operating system.<br>Valid values: `auto`, `float16`, `bfloat16`, `float32`
@ -173,6 +174,7 @@ class InvokeAIAppConfig(BaseSettings):
vram: float = Field(default=DEFAULT_VRAM_CACHE, ge=0, description="Amount of VRAM reserved for model storage (GB).")
convert_cache: float = Field(default=DEFAULT_CONVERT_CACHE, ge=0, description="Maximum size of on-disk converted models cache (GB).")
lazy_offload: bool = Field(default=True, description="Keep models in VRAM until their space is needed.")
load_sd3_encoder_3: bool = Field(default=False, description="Load the memory-intensive SD3 text_encoder_3.")
log_memory_usage: bool = Field(default=False, description="If True, a memory snapshot will be captured before and after every model cache operation, and the result will be logged (at debug level). There is a time cost to capturing the memory snapshots, so it is recommended to only enable this feature if you are actively inspecting the model cache's behaviour.")
# DEVICE

View File

@ -84,6 +84,8 @@ class ModelLoader(ModelLoaderBase):
except IndexError:
pass
self._logger.info(f"Loading {config.key}:{submodel_type}")
cache_path: Path = self._convert_cache.cache_path(str(model_path))
if self._needs_conversion(config, model_path, cache_path):
loaded_model = self._do_convert(config, model_path, cache_path, submodel_type)

View File

@ -161,11 +161,13 @@ class ModelCache(ModelCacheBase[AnyModel]):
self.make_room(size)
is_quantized = hasattr(model, "is_quantized") and model.is_quantized
state_dict = model.state_dict() if isinstance(model, torch.nn.Module) else None
state_dict = model.state_dict() if isinstance(model, torch.nn.Module) and not is_quantized else None
cache_record = CacheRecord(
key=key,
model=model,
device=self._storage_device,
device=self._execution_device
if is_quantized
else self._storage_device, # quantized models are loaded directly into CUDA
is_quantized=is_quantized,
state_dict=state_dict,
size=size,
@ -235,26 +237,28 @@ class ModelCache(ModelCacheBase[AnyModel]):
reserved = self._max_vram_cache_size * GIG
vram_in_use = torch.cuda.memory_allocated() + size_required
self.logger.debug(f"{(vram_in_use/GIG):.2f}GB VRAM needed for models; max allowed={(reserved/GIG):.2f}GB")
delete_it = False
for _, cache_entry in sorted(self._cached_models.items(), key=lambda x: x[1].size):
if vram_in_use <= reserved:
break
# only way to remove a quantized model from VRAM is to
# delete it completely - it can't be moved from device to device
if cache_entry.is_quantized:
self._delete_cache_entry(cache_entry)
vram_in_use = torch.cuda.memory_allocated() + size_required
continue
if not cache_entry.loaded:
continue
if not cache_entry.locked:
if cache_entry.is_quantized:
self._delete_cache_entry(cache_entry)
delete_it = True
else:
self.move_model_to_device(cache_entry, self.storage_device)
cache_entry.loaded = False
self.move_model_to_device(cache_entry, self.storage_device)
cache_entry.loaded = False
vram_in_use = torch.cuda.memory_allocated() + size_required
self.logger.debug(
f"Removing {cache_entry.key} from VRAM to free {(cache_entry.size/GIG):.2f}GB; vram free = {(torch.cuda.memory_allocated()/GIG):.2f}GB"
)
if delete_it:
del cache_entry
gc.collect()
TorchDevice.empty_cache()
def move_model_to_device(self, cache_entry: CacheRecord[AnyModel], target_device: torch.device) -> None:
@ -268,7 +272,7 @@ class ModelCache(ModelCacheBase[AnyModel]):
self.logger.debug(f"Called to move {cache_entry.key} to {target_device}")
source_device = cache_entry.device
# Note: We compare device types only so that 'cuda' == 'cuda:0'.
# Note: We compare device types so that 'cuda' == 'cuda:0'.
# This would need to be revised to support multi-GPU.
if torch.device(source_device).type == torch.device(target_device).type:
return
@ -277,9 +281,6 @@ class ModelCache(ModelCacheBase[AnyModel]):
if not hasattr(cache_entry.model, "to"):
return
if cache_entry.is_quantized: # can't move quantized models around
return
# This roundabout method for moving the model around is done to avoid
# the cost of moving the model from RAM to VRAM and then back from VRAM to RAM.
# When moving to VRAM, we copy (not move) each element of the state dict from
@ -422,5 +423,6 @@ class ModelCache(ModelCacheBase[AnyModel]):
def _delete_cache_entry(self, cache_entry: CacheRecord[AnyModel]) -> None:
self._cache_stack.remove(cache_entry.key)
del self._cached_models[cache_entry.key]
del cache_entry
gc.collect()
TorchDevice.empty_cache()