Add ControlNet support to denoise

This commit is contained in:
Sergey Borisov 2024-07-21 20:01:30 +03:00
parent f9c61f1b6c
commit 42356ec866
2 changed files with 212 additions and 15 deletions

View File

@ -58,6 +58,7 @@ from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
from invokeai.backend.stable_diffusion.diffusion.custom_atttention import CustomAttnProcessor2_0
from invokeai.backend.stable_diffusion.diffusion_backend import StableDiffusionBackend
from invokeai.backend.stable_diffusion.extension_callback_type import ExtensionCallbackType
from invokeai.backend.stable_diffusion.extensions.controlnet import ControlNetExt
from invokeai.backend.stable_diffusion.extensions.preview import PreviewExt
from invokeai.backend.stable_diffusion.extensions_manager import ExtensionsManager
from invokeai.backend.stable_diffusion.schedulers import SCHEDULER_MAP
@ -463,6 +464,39 @@ class DenoiseLatentsInvocation(BaseInvocation):
return controlnet_data
@staticmethod
def parse_controlnet_field(
exit_stack: ExitStack,
context: InvocationContext,
control_input: ControlField | list[ControlField] | None,
ext_manager: ExtensionsManager,
) -> None:
# Normalize control_input to a list.
control_list: list[ControlField]
if isinstance(control_input, ControlField):
control_list = [control_input]
elif isinstance(control_input, list):
control_list = control_input
elif control_input is None:
control_list = []
else:
raise ValueError(f"Unexpected control_input type: {type(control_input)}")
for control_info in control_list:
model = exit_stack.enter_context(context.models.load(control_info.control_model))
ext_manager.add_extension(
ControlNetExt(
model=model,
image=context.images.get_pil(control_info.image.image_name),
weight=control_info.control_weight,
begin_step_percent=control_info.begin_step_percent,
end_step_percent=control_info.end_step_percent,
control_mode=control_info.control_mode,
resize_mode=control_info.resize_mode,
)
)
# MultiControlNetModel has been refactored out, just need list[ControlNetData]
def prep_ip_adapter_image_prompts(
self,
context: InvocationContext,
@ -790,22 +824,30 @@ class DenoiseLatentsInvocation(BaseInvocation):
ext_manager.add_extension(PreviewExt(step_callback))
# ext: t2i/ip adapter
ext_manager.run_callback(ExtensionCallbackType.SETUP, denoise_ctx)
# context for loading additional models
with ExitStack() as exit_stack:
# later should be smth like:
# for extension_field in self.extensions:
# ext = extension_field.to_extension(exit_stack, context, ext_manager)
# ext_manager.add_extension(ext)
self.parse_controlnet_field(exit_stack, context, self.control, ext_manager)
unet_info = context.models.load(self.unet.unet)
assert isinstance(unet_info.model, UNet2DConditionModel)
with (
unet_info.model_on_device() as (model_state_dict, unet),
ModelPatcher.patch_unet_attention_processor(unet, denoise_ctx.inputs.attention_processor_cls),
# ext: controlnet
ext_manager.patch_extensions(unet),
# ext: freeu, seamless, ip adapter, lora
ext_manager.patch_unet(model_state_dict, unet),
):
sd_backend = StableDiffusionBackend(unet, scheduler)
denoise_ctx.unet = unet
result_latents = sd_backend.latents_from_embeddings(denoise_ctx, ext_manager)
# ext: t2i/ip adapter
ext_manager.run_callback(ExtensionCallbackType.SETUP, denoise_ctx)
unet_info = context.models.load(self.unet.unet)
assert isinstance(unet_info.model, UNet2DConditionModel)
with (
unet_info.model_on_device() as (model_state_dict, unet),
ModelPatcher.patch_unet_attention_processor(unet, denoise_ctx.inputs.attention_processor_cls),
# ext: controlnet
ext_manager.patch_extensions(denoise_ctx),
# ext: freeu, seamless, ip adapter, lora
ext_manager.patch_unet(model_state_dict, unet),
):
sd_backend = StableDiffusionBackend(unet, scheduler)
denoise_ctx.unet = unet
result_latents = sd_backend.latents_from_embeddings(denoise_ctx, ext_manager)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
result_latents = result_latents.detach().to("cpu")

View File

@ -0,0 +1,155 @@
from __future__ import annotations
import math
from contextlib import contextmanager
from typing import TYPE_CHECKING, List, Optional, Union
import torch
from PIL.Image import Image
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
from invokeai.app.util.controlnet_utils import prepare_control_image
from invokeai.backend.stable_diffusion.denoise_context import UNetKwargs
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningMode
from invokeai.backend.stable_diffusion.extension_callback_type import ExtensionCallbackType
from invokeai.backend.stable_diffusion.extensions.base import ExtensionBase, callback
if TYPE_CHECKING:
from invokeai.backend.stable_diffusion.denoise_context import DenoiseContext
from invokeai.backend.util.hotfixes import ControlNetModel
class ControlNetExt(ExtensionBase):
def __init__(
self,
model: ControlNetModel,
image: Image,
weight: Union[float, List[float]],
begin_step_percent: float,
end_step_percent: float,
control_mode: str,
resize_mode: str,
):
super().__init__()
self.model = model
self.image = image
self.weight = weight
self.begin_step_percent = begin_step_percent
self.end_step_percent = end_step_percent
self.control_mode = control_mode
self.resize_mode = resize_mode
self.image_tensor: Optional[torch.Tensor] = None
@contextmanager
def patch_extension(self, ctx: DenoiseContext):
try:
original_processors = self.model.attn_processors
self.model.set_attn_processor(ctx.inputs.attention_processor_cls())
yield None
finally:
self.model.set_attn_processor(original_processors)
@callback(ExtensionCallbackType.PRE_DENOISE_LOOP)
def resize_image(self, ctx: DenoiseContext):
_, _, latent_height, latent_width = ctx.latents.shape
image_height = latent_height * LATENT_SCALE_FACTOR
image_width = latent_width * LATENT_SCALE_FACTOR
self.image_tensor = prepare_control_image(
image=self.image,
do_classifier_free_guidance=False,
width=image_width,
height=image_height,
# batch_size=batch_size * num_images_per_prompt,
# num_images_per_prompt=num_images_per_prompt,
device=ctx.latents.device,
dtype=ctx.latents.dtype,
control_mode=self.control_mode,
resize_mode=self.resize_mode,
)
@callback(ExtensionCallbackType.PRE_UNET)
def pre_unet_step(self, ctx: DenoiseContext):
# skip if model not active in current step
total_steps = len(ctx.inputs.timesteps)
first_step = math.floor(self.begin_step_percent * total_steps)
last_step = math.ceil(self.end_step_percent * total_steps)
if ctx.step_index < first_step or ctx.step_index > last_step:
return
# convert mode to internal flags
soft_injection = self.control_mode in ["more_prompt", "more_control"]
cfg_injection = self.control_mode in ["more_control", "unbalanced"]
# no negative conditioning in cfg_injection mode
if cfg_injection:
if ctx.conditioning_mode == ConditioningMode.Negative:
return
down_samples, mid_sample = self._run(ctx, soft_injection, ConditioningMode.Positive)
if ctx.conditioning_mode == ConditioningMode.Both:
# add zeros as samples for negative conditioning
down_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_samples]
mid_sample = torch.cat([torch.zeros_like(mid_sample), mid_sample])
else:
down_samples, mid_sample = self._run(ctx, soft_injection, ctx.conditioning_mode)
if (
ctx.unet_kwargs.down_block_additional_residuals is None
and ctx.unet_kwargs.mid_block_additional_residual is None
):
ctx.unet_kwargs.down_block_additional_residuals = down_samples
ctx.unet_kwargs.mid_block_additional_residual = mid_sample
else:
# add controlnet outputs together if have multiple controlnets
ctx.unet_kwargs.down_block_additional_residuals = [
samples_prev + samples_curr
for samples_prev, samples_curr in zip(
ctx.unet_kwargs.down_block_additional_residuals, down_samples, strict=True
)
]
ctx.unet_kwargs.mid_block_additional_residual += mid_sample
def _run(self, ctx: DenoiseContext, soft_injection: bool, conditioning_mode: ConditioningMode):
total_steps = len(ctx.inputs.timesteps)
model_input = ctx.latent_model_input
image_tensor = self.image_tensor
if conditioning_mode == ConditioningMode.Both:
model_input = torch.cat([model_input] * 2)
image_tensor = torch.cat([image_tensor] * 2)
cn_unet_kwargs = UNetKwargs(
sample=model_input,
timestep=ctx.timestep,
encoder_hidden_states=None, # set later by conditoning
cross_attention_kwargs=dict( # noqa: C408
percent_through=ctx.step_index / total_steps,
),
)
ctx.inputs.conditioning_data.to_unet_kwargs(cn_unet_kwargs, conditioning_mode=conditioning_mode)
# get static weight, or weight corresponding to current step
weight = self.weight
if isinstance(weight, list):
weight = weight[ctx.step_index]
tmp_kwargs = vars(cn_unet_kwargs)
tmp_kwargs.pop("down_block_additional_residuals", None)
tmp_kwargs.pop("mid_block_additional_residual", None)
tmp_kwargs.pop("down_intrablock_additional_residuals", None)
# controlnet(s) inference
down_samples, mid_sample = self.model(
controlnet_cond=image_tensor,
conditioning_scale=weight, # controlnet specific, NOT the guidance scale
guess_mode=soft_injection, # this is still called guess_mode in diffusers ControlNetModel
return_dict=False,
**vars(cn_unet_kwargs),
)
return down_samples, mid_sample