adjusted regression tests to work with new SDModelTypes

This commit is contained in:
Lincoln Stein 2023-05-13 22:29:33 -04:00
parent baf5451fa0
commit 426f4eaf7e
2 changed files with 23 additions and 19 deletions

View File

@ -2,10 +2,8 @@
from typing import Literal, Optional, Union
import diffusers
import einops
import torch
from diffusers import DiffusionPipeline
from diffusers.schedulers import SchedulerMixin as Scheduler
from diffusers.image_processor import VaeImageProcessor
from pydantic import BaseModel, Field
@ -22,18 +20,16 @@ from ...backend.stable_diffusion.diffusers_pipeline import (
from ...backend.stable_diffusion.diffusion.shared_invokeai_diffusion import \
PostprocessingSettings
from ...backend.util.devices import choose_torch_device, torch_dtype
from ...backend.prompting.conditioning import get_uc_and_c_and_ec
from ...backend.stable_diffusion.schedulers import SCHEDULER_MAP
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext, InvocationConfig
import numpy as np
from .baseinvocation import (
BaseInvocation, BaseInvocationOutput,
InvocationContext, InvocationConfig
)
from ..services.image_storage import ImageType
from .baseinvocation import (BaseInvocation, BaseInvocationOutput,
InvocationConfig, InvocationContext)
from .compel import ConditioningField
from .image import ImageField, ImageOutput, build_image_output
from .model import ModelInfo, UNetField, VaeField
from ...backend.model_management import SDModelType
class LatentsField(BaseModel):
@ -213,7 +209,7 @@ class TextToLatentsInvocation(BaseInvocation):
h_symmetry_time_pct=None,#h_symmetry_time_pct,
v_symmetry_time_pct=None#v_symmetry_time_pct,
),
).add_scheduler_args_if_applicable(scheduler, eta=None)#ddim_eta)
).add_scheduler_args_if_applicable(scheduler, eta=0.0)#ddim_eta)
return conditioning_data
def create_pipeline(self, unet, scheduler) -> StableDiffusionGeneratorPipeline:

View File

@ -2,7 +2,7 @@ import pytest
import torch
from enum import Enum
from invokeai.backend.model_management.model_cache import ModelCache
from invokeai.backend.model_management.model_cache import ModelCache, MODEL_CLASSES
class DummyModelBase(object):
'''Base class for dummy component of a diffusers model'''
@ -32,13 +32,21 @@ class DummyPipeline(DummyModelBase):
'''Dummy pipeline object is a composite of several types'''
def __init__(self,repo_id):
super().__init__(repo_id)
self.type1 = DummyModelType1('dummy/type1')
self.type2 = DummyModelType2('dummy/type2')
self.dummy_model_type1 = DummyModelType1('dummy/type1')
self.dummy_model_type2 = DummyModelType2('dummy/type2')
class DMType(Enum):
dummy_pipeline = DummyPipeline
type1 = DummyModelType1
type2 = DummyModelType2
class DMType(str, Enum):
dummy_pipeline = 'dummy_pipeline'
type1 = 'dummy_model_type1'
type2 = 'dummy_model_type2'
MODEL_CLASSES.update(
{
DMType.dummy_pipeline: DummyPipeline,
DMType.type1: DummyModelType1,
DMType.type2: DummyModelType2,
}
)
cache = ModelCache(max_cache_size=4)
@ -50,7 +58,7 @@ def test_pipeline_fetch():
assert pipeline1 is not None, 'get_model() should not return None'
assert pipeline1a is not None, 'get_model() should not return None'
assert pipeline2 is not None, 'get_model() should not return None'
assert type(pipeline1)==DMType.dummy_pipeline.value,'get_model() did not return model of expected type'
assert type(pipeline1)==DummyPipeline,'get_model() did not return model of expected type'
assert pipeline1==pipeline1a,'pipelines with the same repo_id should be the same'
assert pipeline1!=pipeline2,'pipelines with different repo_ids should not be the same'
assert len(cache.models)==2,'cache should uniquely cache models with same identity'
@ -77,6 +85,6 @@ def test_submodel_fetch():
cache.get_model(repo_id_or_path='dummy/pipeline2',model_type=DMType.dummy_pipeline,submodel=DMType.type1) as part2:
assert type(part1)==DummyModelType1,'returned submodel is not of expected type'
assert part1.device==torch.device('cuda'),'returned submodel should be in the GPU when in context'
assert pipeline.type1==part1,'returned submodel should match the corresponding subpart of parent model'
assert pipeline.type1!=part2,'returned submodel should not match the subpart of a different parent'
assert pipeline.dummy_model_type1==part1,'returned submodel should match the corresponding subpart of parent model'
assert pipeline.dummy_model_type1!=part2,'returned submodel should not match the subpart of a different parent'