mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
adjusted regression tests to work with new SDModelTypes
This commit is contained in:
parent
baf5451fa0
commit
426f4eaf7e
@ -2,10 +2,8 @@
|
||||
|
||||
from typing import Literal, Optional, Union
|
||||
|
||||
import diffusers
|
||||
import einops
|
||||
import torch
|
||||
from diffusers import DiffusionPipeline
|
||||
from diffusers.schedulers import SchedulerMixin as Scheduler
|
||||
from diffusers.image_processor import VaeImageProcessor
|
||||
from pydantic import BaseModel, Field
|
||||
@ -22,18 +20,16 @@ from ...backend.stable_diffusion.diffusers_pipeline import (
|
||||
from ...backend.stable_diffusion.diffusion.shared_invokeai_diffusion import \
|
||||
PostprocessingSettings
|
||||
from ...backend.util.devices import choose_torch_device, torch_dtype
|
||||
from ...backend.prompting.conditioning import get_uc_and_c_and_ec
|
||||
from ...backend.stable_diffusion.schedulers import SCHEDULER_MAP
|
||||
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext, InvocationConfig
|
||||
import numpy as np
|
||||
from .baseinvocation import (
|
||||
BaseInvocation, BaseInvocationOutput,
|
||||
InvocationContext, InvocationConfig
|
||||
)
|
||||
from ..services.image_storage import ImageType
|
||||
from .baseinvocation import (BaseInvocation, BaseInvocationOutput,
|
||||
InvocationConfig, InvocationContext)
|
||||
from .compel import ConditioningField
|
||||
from .image import ImageField, ImageOutput, build_image_output
|
||||
|
||||
from .model import ModelInfo, UNetField, VaeField
|
||||
from ...backend.model_management import SDModelType
|
||||
|
||||
|
||||
class LatentsField(BaseModel):
|
||||
@ -213,7 +209,7 @@ class TextToLatentsInvocation(BaseInvocation):
|
||||
h_symmetry_time_pct=None,#h_symmetry_time_pct,
|
||||
v_symmetry_time_pct=None#v_symmetry_time_pct,
|
||||
),
|
||||
).add_scheduler_args_if_applicable(scheduler, eta=None)#ddim_eta)
|
||||
).add_scheduler_args_if_applicable(scheduler, eta=0.0)#ddim_eta)
|
||||
return conditioning_data
|
||||
|
||||
def create_pipeline(self, unet, scheduler) -> StableDiffusionGeneratorPipeline:
|
||||
|
@ -2,7 +2,7 @@ import pytest
|
||||
import torch
|
||||
|
||||
from enum import Enum
|
||||
from invokeai.backend.model_management.model_cache import ModelCache
|
||||
from invokeai.backend.model_management.model_cache import ModelCache, MODEL_CLASSES
|
||||
|
||||
class DummyModelBase(object):
|
||||
'''Base class for dummy component of a diffusers model'''
|
||||
@ -32,13 +32,21 @@ class DummyPipeline(DummyModelBase):
|
||||
'''Dummy pipeline object is a composite of several types'''
|
||||
def __init__(self,repo_id):
|
||||
super().__init__(repo_id)
|
||||
self.type1 = DummyModelType1('dummy/type1')
|
||||
self.type2 = DummyModelType2('dummy/type2')
|
||||
self.dummy_model_type1 = DummyModelType1('dummy/type1')
|
||||
self.dummy_model_type2 = DummyModelType2('dummy/type2')
|
||||
|
||||
class DMType(Enum):
|
||||
dummy_pipeline = DummyPipeline
|
||||
type1 = DummyModelType1
|
||||
type2 = DummyModelType2
|
||||
class DMType(str, Enum):
|
||||
dummy_pipeline = 'dummy_pipeline'
|
||||
type1 = 'dummy_model_type1'
|
||||
type2 = 'dummy_model_type2'
|
||||
|
||||
MODEL_CLASSES.update(
|
||||
{
|
||||
DMType.dummy_pipeline: DummyPipeline,
|
||||
DMType.type1: DummyModelType1,
|
||||
DMType.type2: DummyModelType2,
|
||||
}
|
||||
)
|
||||
|
||||
cache = ModelCache(max_cache_size=4)
|
||||
|
||||
@ -50,7 +58,7 @@ def test_pipeline_fetch():
|
||||
assert pipeline1 is not None, 'get_model() should not return None'
|
||||
assert pipeline1a is not None, 'get_model() should not return None'
|
||||
assert pipeline2 is not None, 'get_model() should not return None'
|
||||
assert type(pipeline1)==DMType.dummy_pipeline.value,'get_model() did not return model of expected type'
|
||||
assert type(pipeline1)==DummyPipeline,'get_model() did not return model of expected type'
|
||||
assert pipeline1==pipeline1a,'pipelines with the same repo_id should be the same'
|
||||
assert pipeline1!=pipeline2,'pipelines with different repo_ids should not be the same'
|
||||
assert len(cache.models)==2,'cache should uniquely cache models with same identity'
|
||||
@ -77,6 +85,6 @@ def test_submodel_fetch():
|
||||
cache.get_model(repo_id_or_path='dummy/pipeline2',model_type=DMType.dummy_pipeline,submodel=DMType.type1) as part2:
|
||||
assert type(part1)==DummyModelType1,'returned submodel is not of expected type'
|
||||
assert part1.device==torch.device('cuda'),'returned submodel should be in the GPU when in context'
|
||||
assert pipeline.type1==part1,'returned submodel should match the corresponding subpart of parent model'
|
||||
assert pipeline.type1!=part2,'returned submodel should not match the subpart of a different parent'
|
||||
assert pipeline.dummy_model_type1==part1,'returned submodel should match the corresponding subpart of parent model'
|
||||
assert pipeline.dummy_model_type1!=part2,'returned submodel should not match the subpart of a different parent'
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user