diff --git a/invokeai/backend/bnb.py b/invokeai/backend/bnb.py new file mode 100644 index 0000000000..766de08f6d --- /dev/null +++ b/invokeai/backend/bnb.py @@ -0,0 +1,616 @@ +from typing import Any, Optional, Set, Tuple, Type + +import accelerate +import bitsandbytes as bnb +import torch + +# The utils in this file take ideas from +# https://github.com/Lightning-AI/pytorch-lightning/blob/1551a16b94f5234a4a78801098f64d0732ef5cb5/src/lightning/fabric/plugins/precision/bitsandbytes.py + + +# Patterns: +# - Quantize: +# - Initialize model on meta device +# - Replace layers +# - Load state_dict to cpu +# - Load state_dict into model +# - Quantize on GPU +# - Extract state_dict +# - Save + +# - Load: +# - Initialize model on meta device +# - Replace layers +# - Load state_dict to cpu +# - Load state_dict into model on cpu +# - Move to GPU + + +# class InvokeInt8Params(bnb.nn.Int8Params): +# """Overrides `bnb.nn.Int8Params` to add the following functionality: +# - Make it possible to load a quantized state dict without putting the weight on a "cuda" device. +# """ + +# def quantize(self, device: Optional[torch.device] = None): +# device = device or torch.device("cuda") +# if device.type != "cuda": +# raise RuntimeError(f"Int8Params quantization is only supported on CUDA devices ({device=}).") + +# # https://github.com/TimDettmers/bitsandbytes/blob/0.41.0/bitsandbytes/nn/modules.py#L291-L302 +# B = self.data.contiguous().half().cuda(device) +# if self.has_fp16_weights: +# self.data = B +# else: +# # we store the 8-bit rows-major weight +# # we convert this weight to the turning/ampere weight during the first inference pass +# CB, CBt, SCB, SCBt, coo_tensorB = bnb.functional.double_quant(B) +# del CBt +# del SCBt +# self.data = CB +# self.CB = CB +# self.SCB = SCB + + +class Invoke2Linear8bitLt(torch.nn.Linear): + """This class is the base module for the [LLM.int8()](https://arxiv.org/abs/2208.07339) algorithm.""" + + def __init__( + self, + input_features: int, + output_features: int, + bias=True, + has_fp16_weights=True, + memory_efficient_backward=False, + threshold=0.0, + index=None, + device=None, + ): + """ + Initialize Linear8bitLt class. + + Args: + input_features (`int`): + Number of input features of the linear layer. + output_features (`int`): + Number of output features of the linear layer. + bias (`bool`, defaults to `True`): + Whether the linear class uses the bias term as well. + """ + super().__init__(input_features, output_features, bias, device) + assert not memory_efficient_backward, "memory_efficient_backward is no longer required and the argument is deprecated in 0.37.0 and will be removed in 0.39.0" + self.state = bnb.MatmulLtState() + self.index = index + + self.state.threshold = threshold + self.state.has_fp16_weights = has_fp16_weights + self.state.memory_efficient_backward = memory_efficient_backward + if threshold > 0.0 and not has_fp16_weights: + self.state.use_pool = True + + self.weight = Int8Params(self.weight.data, has_fp16_weights=has_fp16_weights, requires_grad=has_fp16_weights) + self._register_load_state_dict_pre_hook(maybe_rearrange_weight) + + def _save_to_state_dict(self, destination, prefix, keep_vars): + super()._save_to_state_dict(destination, prefix, keep_vars) + + # we only need to save SCB as extra data, because CB for quantized weights is already stored in weight.data + scb_name = "SCB" + + # case 1: .cuda was called, SCB is in self.weight + param_from_weight = getattr(self.weight, scb_name) + # case 2: self.init_8bit_state was called, SCB is in self.state + param_from_state = getattr(self.state, scb_name) + # case 3: SCB is in self.state, weight layout reordered after first forward() + layout_reordered = self.state.CxB is not None + + key_name = prefix + f"{scb_name}" + format_name = prefix + "weight_format" + + if not self.state.has_fp16_weights: + if param_from_weight is not None: + destination[key_name] = param_from_weight if keep_vars else param_from_weight.detach() + destination[format_name] = torch.tensor(0, dtype=torch.uint8) + elif param_from_state is not None and not layout_reordered: + destination[key_name] = param_from_state if keep_vars else param_from_state.detach() + destination[format_name] = torch.tensor(0, dtype=torch.uint8) + elif param_from_state is not None: + destination[key_name] = param_from_state if keep_vars else param_from_state.detach() + weights_format = self.state.formatB + # At this point `weights_format` is an str + if weights_format not in LINEAR_8BIT_WEIGHTS_FORMAT_MAPPING: + raise ValueError(f"Unrecognized weights format {weights_format}") + + weights_format = LINEAR_8BIT_WEIGHTS_FORMAT_MAPPING[weights_format] + + destination[format_name] = torch.tensor(weights_format, dtype=torch.uint8) + + def _load_from_state_dict( + self, + state_dict, + prefix, + local_metadata, + strict, + missing_keys, + unexpected_keys, + error_msgs, + ): + super()._load_from_state_dict( + state_dict, + prefix, + local_metadata, + strict, + missing_keys, + unexpected_keys, + error_msgs, + ) + unexpected_copy = list(unexpected_keys) + + for key in unexpected_copy: + input_name = key[len(prefix) :] + if input_name == "SCB": + if self.weight.SCB is None: + # buffers not yet initialized, can't access them directly without quantizing first + raise RuntimeError( + "Loading a quantized checkpoint into non-quantized Linear8bitLt is " + "not supported. Please call module.cuda() before module.load_state_dict()", + ) + + input_param = state_dict[key] + self.weight.SCB.copy_(input_param) + + if self.state.SCB is not None: + self.state.SCB = self.weight.SCB + + unexpected_keys.remove(key) + + def init_8bit_state(self): + self.state.CB = self.weight.CB + self.state.SCB = self.weight.SCB + self.weight.CB = None + self.weight.SCB = None + + def forward(self, x: torch.Tensor): + self.state.is_training = self.training + if self.weight.CB is not None: + self.init_8bit_state() + + # weights are cast automatically as Int8Params, but the bias has to be cast manually + if self.bias is not None and self.bias.dtype != x.dtype: + self.bias.data = self.bias.data.to(x.dtype) + + out = bnb.matmul(x, self.weight, bias=self.bias, state=self.state) + + if not self.state.has_fp16_weights: + if self.state.CB is not None and self.state.CxB is not None: + # we converted 8-bit row major to turing/ampere format in the first inference pass + # we no longer need the row-major weight + del self.state.CB + self.weight.data = self.state.CxB + return out + + +class InvokeLinear8bitLt(bnb.nn.Linear8bitLt): + """Wraps `bnb.nn.Linear8bitLt` and adds the following functionality: + - enables instantiation directly on the device + - re-quantizaton when loading the state dict + """ + + def __init__( + self, *args: Any, device: Optional[torch.device] = None, threshold: float = 6.0, **kwargs: Any + ) -> None: + super().__init__(*args, device=device, threshold=threshold, **kwargs) + # If the device is CUDA or we are under a CUDA context manager, quantize the weight here, so we don't end up + # filling the device memory with float32 weights which could lead to OOM + # if torch.tensor(0, device=device).device.type == "cuda": + # self.quantize_() + # self._register_load_state_dict_pre_hook(partial(_quantize_on_load_hook, self.quantize_)) + # self.register_load_state_dict_post_hook(_ignore_missing_weights_hook) + + def _load_from_state_dict( + self, + state_dict, + prefix, + local_metadata, + strict, + missing_keys, + unexpected_keys, + error_msgs, + ): + super()._load_from_state_dict( + state_dict, + prefix, + local_metadata, + strict, + missing_keys, + unexpected_keys, + error_msgs, + ) + unexpected_copy = list(unexpected_keys) + + for key in unexpected_copy: + input_name = key[len(prefix) :] + if input_name == "SCB": + if self.weight.SCB is None: + # buffers not yet initialized, can't access them directly without quantizing first + raise RuntimeError( + "Loading a quantized checkpoint into non-quantized Linear8bitLt is " + "not supported. Please call module.cuda() before module.load_state_dict()", + ) + + input_param = state_dict[key] + self.weight.SCB.copy_(input_param) + + if self.state.SCB is not None: + self.state.SCB = self.weight.SCB + + unexpected_keys.remove(key) + + def quantize_(self, weight: Optional[torch.Tensor] = None, device: Optional[torch.device] = None) -> None: + """Inplace quantize.""" + if weight is None: + weight = self.weight.data + if weight.data.dtype == torch.int8: + # already quantized + return + assert isinstance(self.weight, bnb.nn.Int8Params) + self.weight = self.quantize(self.weight, weight, device) + + @staticmethod + def quantize( + int8params: bnb.nn.Int8Params, weight: torch.Tensor, device: Optional[torch.device] + ) -> bnb.nn.Int8Params: + device = device or torch.device("cuda") + if device.type != "cuda": + raise RuntimeError(f"Unexpected device type: {device.type}") + # https://github.com/TimDettmers/bitsandbytes/blob/0.41.0/bitsandbytes/nn/modules.py#L291-L302 + B = weight.contiguous().to(device=device, dtype=torch.float16) + if int8params.has_fp16_weights: + int8params.data = B + else: + CB, CBt, SCB, SCBt, _ = bnb.functional.double_quant(B) + del CBt + del SCBt + int8params.data = CB + int8params.CB = CB + int8params.SCB = SCB + return int8params + + +# class _Linear4bit(bnb.nn.Linear4bit): +# """Wraps `bnb.nn.Linear4bit` to enable: instantiation directly on the device, re-quantizaton when loading the +# state dict, meta-device initialization, and materialization.""" + +# def __init__(self, *args: Any, device: Optional[torch.device] = None, **kwargs: Any) -> None: +# super().__init__(*args, device=device, **kwargs) +# self.weight = cast(bnb.nn.Params4bit, self.weight) # type: ignore[has-type] +# self.bias = cast(Optional[torch.nn.Parameter], self.bias) # type: ignore[has-type] +# # if the device is CUDA or we are under a CUDA context manager, quantize the weight here, so we don't end up +# # filling the device memory with float32 weights which could lead to OOM +# if torch.tensor(0, device=device).device.type == "cuda": +# self.quantize_() +# self._register_load_state_dict_pre_hook(partial(_quantize_on_load_hook, self.quantize_)) +# self.register_load_state_dict_post_hook(_ignore_missing_weights_hook) + +# def quantize_(self, weight: Optional[torch.Tensor] = None, device: Optional[torch.device] = None) -> None: +# """Inplace quantize.""" +# if weight is None: +# weight = self.weight.data +# if weight.data.dtype == torch.uint8: +# # already quantized +# return +# assert isinstance(self.weight, bnb.nn.Params4bit) +# self.weight = self.quantize(self.weight, weight, device) + +# @staticmethod +# def quantize( +# params4bit: bnb.nn.Params4bit, weight: torch.Tensor, device: Optional[torch.device] +# ) -> bnb.nn.Params4bit: +# device = device or torch.device("cuda") +# if device.type != "cuda": +# raise RuntimeError(f"Unexpected device type: {device.type}") +# # https://github.com/TimDettmers/bitsandbytes/blob/0.41.0/bitsandbytes/nn/modules.py#L156-L159 +# w = weight.contiguous().to(device=device, dtype=torch.half) +# w_4bit, quant_state = bnb.functional.quantize_4bit( +# w, +# blocksize=params4bit.blocksize, +# compress_statistics=params4bit.compress_statistics, +# quant_type=params4bit.quant_type, +# ) +# return _replace_param(params4bit, w_4bit, quant_state) + +# def to_empty(self, *, device: _DEVICE, recurse: bool = True) -> Self: +# if self.weight.dtype == torch.uint8: # was quantized +# # cannot init the quantized params directly +# weight = torch.empty(self.weight.quant_state.shape, device=device, dtype=torch.half) +# else: +# weight = torch.empty_like(self.weight.data, device=device) +# device = torch.device(device) +# if device.type == "cuda": # re-quantize +# self.quantize_(weight, device) +# else: +# self.weight = _replace_param(self.weight, weight) +# if self.bias is not None: +# self.bias = _replace_param(self.bias, torch.empty_like(self.bias, device=device)) +# return self + + +def convert_model_to_bnb_llm_int8(model: torch.nn.Module, ignore_modules: set[str]): + linear_cls = InvokeLinear8bitLt + _convert_linear_layers(model, linear_cls, ignore_modules) + + # TODO(ryand): Is this necessary? + # set the compute dtype if necessary + # for m in model.modules(): + # if isinstance(m, bnb.nn.Linear4bit): + # m.compute_dtype = self.dtype + # m.compute_type_is_set = False + + +# class BitsandbytesPrecision(Precision): +# """Plugin for quantizing weights with `bitsandbytes `__. + +# .. warning:: This is an :ref:`experimental ` feature. + +# .. note:: +# The optimizer is not automatically replaced with ``bitsandbytes.optim.Adam8bit`` or equivalent 8-bit optimizers. + +# Args: +# mode: The quantization mode to use. +# dtype: The compute dtype to use. +# ignore_modules: The submodules whose Linear layers should not be replaced, for example. ``{"lm_head"}``. +# This might be desirable for numerical stability. The string will be checked in as a prefix, so a value like +# "transformer.blocks" will ignore all linear layers in all of the transformer blocks. +# """ + +# def __init__( +# self, +# mode: Literal["nf4", "nf4-dq", "fp4", "fp4-dq", "int8", "int8-training"], +# dtype: Optional[torch.dtype] = None, +# ignore_modules: Optional[Set[str]] = None, +# ) -> None: +# if dtype is None: +# # try to be smart about the default selection +# if mode.startswith("int8"): +# dtype = torch.float16 +# else: +# dtype = ( +# torch.bfloat16 if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else torch.float16 +# ) +# if mode.startswith("int8") and dtype is not torch.float16: +# # this limitation is mentioned in https://huggingface.co/blog/hf-bitsandbytes-integration#usage +# raise ValueError(f"{mode!r} only works with `dtype=torch.float16`, but you chose `{dtype}`") + +# globals_ = globals() +# mode_to_cls = { +# "nf4": globals_["_NF4Linear"], +# "nf4-dq": globals_["_NF4DQLinear"], +# "fp4": globals_["_FP4Linear"], +# "fp4-dq": globals_["_FP4DQLinear"], +# "int8-training": globals_["_Linear8bitLt"], +# "int8": globals_["_Int8LinearInference"], +# } +# self._linear_cls = mode_to_cls[mode] +# self.dtype = dtype +# self.ignore_modules = ignore_modules or set() + +# @override +# def convert_module(self, module: torch.nn.Module) -> torch.nn.Module: +# # avoid naive users thinking they quantized their model +# if not any(isinstance(m, torch.nn.Linear) for m in module.modules()): +# raise TypeError( +# "You are using the bitsandbytes precision plugin, but your model has no Linear layers. This plugin" +# " won't work for your model." +# ) + +# # convert modules if they haven't been converted already +# if not any(isinstance(m, (bnb.nn.Linear8bitLt, bnb.nn.Linear4bit)) for m in module.modules()): +# # this will not quantize the model but only replace the layer classes +# _convert_layers(module, self._linear_cls, self.ignore_modules) + +# # set the compute dtype if necessary +# for m in module.modules(): +# if isinstance(m, bnb.nn.Linear4bit): +# m.compute_dtype = self.dtype +# m.compute_type_is_set = False +# return module + + +# def _quantize_on_load_hook(quantize_fn: Callable[[torch.Tensor], None], state_dict: OrderedDict, *_: Any) -> None: +# # There is only one key that ends with `*.weight`, the other one is the bias +# weight_key = next((name for name in state_dict if name.endswith("weight")), None) +# if weight_key is None: +# return +# # Load the weight from the state dict and re-quantize it +# weight = state_dict.pop(weight_key) +# quantize_fn(weight) + + +# def _ignore_missing_weights_hook(module: torch.nn.Module, incompatible_keys: _IncompatibleKeys) -> None: +# # since we manually loaded the weight in the `_quantize_on_load_hook` hook, we need to avoid this missing key false +# # positive +# for key in reversed(incompatible_keys.missing_keys): +# if key.endswith("weight"): +# incompatible_keys.missing_keys.remove(key) + + +def _replace_param( + param: torch.nn.Parameter, data: torch.Tensor, quant_state: Optional[Tuple] = None +) -> torch.nn.Parameter: + # doing `param.data = weight` raises a RuntimeError if param.data was on meta-device, so + # we need to re-create the parameters instead of overwriting the data + if param.device.type == "meta": + if isinstance(param, bnb.nn.Params4bit): + return bnb.nn.Params4bit( + data, + requires_grad=data.requires_grad, + quant_state=quant_state, + compress_statistics=param.compress_statistics, + quant_type=param.quant_type, + ) + return torch.nn.Parameter(data, requires_grad=data.requires_grad) + param.data = data + if isinstance(param, bnb.nn.Params4bit): + param.quant_state = quant_state + return param + + +def _convert_linear_layers( + module: torch.nn.Module, linear_cls: Type, ignore_modules: Set[str], prefix: str = "" +) -> None: + for name, child in module.named_children(): + fullname = f"{prefix}.{name}" if prefix else name + if isinstance(child, torch.nn.Linear) and not any(fullname.startswith(s) for s in ignore_modules): + has_bias = child.bias is not None + # since we are going to copy over the child's data, the device doesn't matter. I chose CPU + # to avoid spiking CUDA memory even though initialization is slower + # 4bit layers support quantizing from meta-device params so this is only relevant for 8-bit + _Linear4bit = globals()["_Linear4bit"] + device = torch.device("meta" if issubclass(linear_cls, _Linear4bit) else "cpu") + replacement = linear_cls( + child.in_features, + child.out_features, + bias=has_bias, + device=device, + ) + if has_bias: + replacement.bias = _replace_param(replacement.bias, child.bias.data.clone()) + state = {"quant_state": replacement.weight.quant_state if issubclass(linear_cls, _Linear4bit) else None} + replacement.weight = _replace_param(replacement.weight, child.weight.data.clone(), **state) + module.__setattr__(name, replacement) + else: + _convert_linear_layers(child, linear_cls, ignore_modules, prefix=fullname) + + +def _convert_linear_layers_to_llm_8bit(module: torch.nn.Module, ignore_modules: Set[str], prefix: str = "") -> None: + for name, child in module.named_children(): + fullname = f"{prefix}.{name}" if prefix else name + if isinstance(child, torch.nn.Linear) and not any(fullname.startswith(s) for s in ignore_modules): + has_bias = child.bias is not None + replacement = InvokeLinear8bitLt( + child.in_features, + child.out_features, + bias=has_bias, + has_fp16_weights=False, + # device=device, + ) + replacement.weight.data = child.weight.data + if has_bias: + replacement.bias.data = child.bias.data + replacement.requires_grad_(False) + module.__setattr__(name, replacement) + else: + _convert_linear_layers_to_llm_8bit(child, ignore_modules, prefix=fullname) + + +def _convert_linear_layers_to_nf4( + module: torch.nn.Module, ignore_modules: Set[str], compute_dtype: torch.dtype, prefix: str = "" +) -> None: + for name, child in module.named_children(): + fullname = f"{prefix}.{name}" if prefix else name + if isinstance(child, torch.nn.Linear) and not any(fullname.startswith(s) for s in ignore_modules): + has_bias = child.bias is not None + replacement = bnb.nn.Linear4bit( + child.in_features, + child.out_features, + bias=has_bias, + compute_dtype=torch.float16, + # TODO(ryand): Test compress_statistics=True. + # compress_statistics=True, + ) + replacement.weight.data = child.weight.data + if has_bias: + replacement.bias.data = child.bias.data + replacement.requires_grad_(False) + module.__setattr__(name, replacement) + else: + _convert_linear_layers_to_nf4(child, ignore_modules, compute_dtype=compute_dtype, prefix=fullname) + + +# def _replace_linear_layers( +# model: torch.nn.Module, +# linear_layer_type: Literal["Linear8bitLt", "Linear4bit"], +# modules_to_not_convert: set[str], +# current_key_name: str | None = None, +# ): +# has_been_replaced = False +# for name, module in model.named_children(): +# if current_key_name is None: +# current_key_name = [] +# current_key_name.append(name) +# if isinstance(module, torch.nn.Linear) and name not in modules_to_not_convert: +# # Check if the current key is not in the `modules_to_not_convert` +# current_key_name_str = ".".join(current_key_name) +# proceed = True +# for key in modules_to_not_convert: +# if ( +# (key in current_key_name_str) and (key + "." in current_key_name_str) +# ) or key == current_key_name_str: +# proceed = False +# break +# if proceed: +# # Load bnb module with empty weight and replace ``nn.Linear` module +# if bnb_quantization_config.load_in_8bit: +# bnb_module = bnb.nn.Linear8bitLt( +# module.in_features, +# module.out_features, +# module.bias is not None, +# has_fp16_weights=False, +# threshold=bnb_quantization_config.llm_int8_threshold, +# ) +# elif bnb_quantization_config.load_in_4bit: +# bnb_module = bnb.nn.Linear4bit( +# module.in_features, +# module.out_features, +# module.bias is not None, +# bnb_quantization_config.bnb_4bit_compute_dtype, +# compress_statistics=bnb_quantization_config.bnb_4bit_use_double_quant, +# quant_type=bnb_quantization_config.bnb_4bit_quant_type, +# ) +# else: +# raise ValueError("load_in_8bit and load_in_4bit can't be both False") +# bnb_module.weight.data = module.weight.data +# if module.bias is not None: +# bnb_module.bias.data = module.bias.data +# bnb_module.requires_grad_(False) +# setattr(model, name, bnb_module) +# has_been_replaced = True +# if len(list(module.children())) > 0: +# _, _has_been_replaced = _replace_with_bnb_layers( +# module, bnb_quantization_config, modules_to_not_convert, current_key_name +# ) +# has_been_replaced = has_been_replaced | _has_been_replaced +# # Remove the last key for recursion +# current_key_name.pop(-1) +# return model, has_been_replaced + + +def get_parameter_device(parameter: torch.nn.Module): + return next(parameter.parameters()).device + + +def quantize_model_llm_int8(model: torch.nn.Module, modules_to_not_convert: set[str]): + """Apply bitsandbytes LLM.8bit() quantization to the model.""" + model_device = get_parameter_device(model) + if model_device.type != "meta": + # Note: This is not strictly required, but I can't think of a good reason to quantize a model that's not on the + # meta device, so we enforce it for now. + raise RuntimeError("The model should be on the meta device to apply LLM.8bit() quantization.") + + with accelerate.init_empty_weights(): + _convert_linear_layers_to_llm_8bit(module=model, ignore_modules=modules_to_not_convert) + + return model + + +def quantize_model_nf4(model: torch.nn.Module, modules_to_not_convert: set[str], compute_dtype: torch.dtype): + """Apply bitsandbytes nf4 quantization to the model.""" + # model_device = get_parameter_device(model) + # if model_device.type != "meta": + # # Note: This is not strictly required, but I can't think of a good reason to quantize a model that's not on the + # # meta device, so we enforce it for now. + # raise RuntimeError("The model should be on the meta device to apply LLM.8bit() quantization.") + + # with accelerate.init_empty_weights(): + _convert_linear_layers_to_nf4(module=model, ignore_modules=modules_to_not_convert, compute_dtype=compute_dtype) + + return model diff --git a/invokeai/backend/load_flux_model_bnb_llm_int8.py b/invokeai/backend/load_flux_model_bnb_llm_int8.py new file mode 100644 index 0000000000..f7e1471928 --- /dev/null +++ b/invokeai/backend/load_flux_model_bnb_llm_int8.py @@ -0,0 +1,124 @@ +import time +from pathlib import Path + +import accelerate +import torch +from accelerate.utils import BnbQuantizationConfig, load_and_quantize_model +from accelerate.utils.bnb import get_keys_to_not_convert +from diffusers.models.transformers.transformer_flux import FluxTransformer2DModel +from safetensors.torch import load_file + +from invokeai.backend.bnb import quantize_model_llm_int8 + +# Docs: +# https://huggingface.co/docs/accelerate/usage_guides/quantization +# https://huggingface.co/docs/bitsandbytes/v0.43.3/en/integrations#accelerate + + +def get_parameter_device(parameter: torch.nn.Module): + return next(parameter.parameters()).device + + +# def quantize_model_llm_int8(model: torch.nn.Module, modules_to_not_convert: set[str], llm_int8_threshold: int = 6): +# """Apply bitsandbytes LLM.8bit() quantization to the model.""" +# model_device = get_parameter_device(model) +# if model_device.type != "meta": +# # Note: This is not strictly required, but I can't think of a good reason to quantize a model that's not on the +# # meta device, so we enforce it for now. +# raise RuntimeError("The model should be on the meta device to apply LLM.8bit() quantization.") + +# bnb_quantization_config = BnbQuantizationConfig( +# load_in_8bit=True, +# llm_int8_threshold=llm_int8_threshold, +# ) + +# with accelerate.init_empty_weights(): +# model = replace_with_bnb_layers(model, bnb_quantization_config, modules_to_not_convert=modules_to_not_convert) + +# return model + + +def load_flux_transformer(path: Path) -> FluxTransformer2DModel: + model_config = FluxTransformer2DModel.load_config(path, local_files_only=True) + with accelerate.init_empty_weights(): + empty_model = FluxTransformer2DModel.from_config(model_config) + assert isinstance(empty_model, FluxTransformer2DModel) + + bnb_quantization_config = BnbQuantizationConfig( + load_in_8bit=True, + llm_int8_threshold=6, + ) + + model_8bit_path = path / "bnb_llm_int8" + if model_8bit_path.exists(): + # The quantized model already exists, load it and return it. + # Note that the model loading code is the same when loading from quantized vs original weights. The only + # difference is the weights_location. + # model = load_and_quantize_model( + # empty_model, + # weights_location=model_8bit_path, + # bnb_quantization_config=bnb_quantization_config, + # # device_map="auto", + # device_map={"": "cpu"}, + # ) + + # TODO: Handle the keys that were not quantized (get_keys_to_not_convert). + model = quantize_model_llm_int8(empty_model, modules_to_not_convert=set()) + + # model = quantize_model_llm_int8(empty_model, set()) + + # Load sharded state dict. + files = list(path.glob("*.safetensors")) + state_dict = dict() + for file in files: + sd = load_file(file) + state_dict.update(sd) + + else: + # The quantized model does not exist yet, quantize and save it. + model = load_and_quantize_model( + empty_model, + weights_location=path, + bnb_quantization_config=bnb_quantization_config, + device_map="auto", + ) + + keys_to_not_convert = get_keys_to_not_convert(empty_model) # TODO + + model_8bit_path.mkdir(parents=True, exist_ok=True) + accl = accelerate.Accelerator() + accl.save_model(model, model_8bit_path) + + # --------------------- + + # model = quantize_model_llm_int8(empty_model, set()) + + # # Load sharded state dict. + # files = list(path.glob("*.safetensors")) + # state_dict = dict() + # for file in files: + # sd = load_file(file) + # state_dict.update(sd) + + # # Load the state dict into the model. The bitsandbytes layers know how to load from both quantized and + # # non-quantized state dicts. + # result = model.load_state_dict(state_dict, strict=True) + # model = model.to("cuda") + + # --------------------- + + assert isinstance(model, FluxTransformer2DModel) + return model + + +def main(): + start = time.time() + model = load_flux_transformer( + Path("/data/invokeai/models/.download_cache/black-forest-labs_flux.1-schnell/FLUX.1-schnell/transformer/") + ) + print(f"Time to load: {time.time() - start}s") + print("hi") + + +if __name__ == "__main__": + main() diff --git a/invokeai/backend/load_flux_model_bnb_nf4.py b/invokeai/backend/load_flux_model_bnb_nf4.py new file mode 100644 index 0000000000..1629c5a01c --- /dev/null +++ b/invokeai/backend/load_flux_model_bnb_nf4.py @@ -0,0 +1,100 @@ +import time +from pathlib import Path + +import accelerate +import torch +from diffusers.models.transformers.transformer_flux import FluxTransformer2DModel +from safetensors.torch import load_file, save_file + +from invokeai.backend.bnb import quantize_model_nf4 + +# Docs: +# https://huggingface.co/docs/accelerate/usage_guides/quantization +# https://huggingface.co/docs/bitsandbytes/v0.43.3/en/integrations#accelerate + + +def get_parameter_device(parameter: torch.nn.Module): + return next(parameter.parameters()).device + + +def load_flux_transformer(path: Path) -> FluxTransformer2DModel: + model_config = FluxTransformer2DModel.load_config(path, local_files_only=True) + with accelerate.init_empty_weights(): + empty_model = FluxTransformer2DModel.from_config(model_config) + assert isinstance(empty_model, FluxTransformer2DModel) + + model_nf4_path = path / "bnb_nf4" + if model_nf4_path.exists(): + # The quantized model already exists, load it and return it. + # Note that the model loading code is the same when loading from quantized vs original weights. The only + # difference is the weights_location. + # model = load_and_quantize_model( + # empty_model, + # weights_location=model_8bit_path, + # bnb_quantization_config=bnb_quantization_config, + # # device_map="auto", + # device_map={"": "cpu"}, + # ) + + # TODO: Handle the keys that were not quantized (get_keys_to_not_convert). + with accelerate.init_empty_weights(): + model = quantize_model_nf4(empty_model, modules_to_not_convert=set(), compute_dtype=torch.bfloat16) + + model.to_empty(device="cpu") + sd = load_file(model_nf4_path / "model.safetensors") + model.load_state_dict(sd, strict=True) + + else: + # The quantized model does not exist yet, quantize and save it. + # model = load_and_quantize_model( + # empty_model, + # weights_location=path, + # bnb_quantization_config=bnb_quantization_config, + # device_map="auto", + # ) + + # keys_to_not_convert = get_keys_to_not_convert(empty_model) # TODO + + # model_8bit_path.mkdir(parents=True, exist_ok=True) + # accl = accelerate.Accelerator() + # accl.save_model(model, model_8bit_path) + + # --------------------- + + # Load sharded state dict. + files = list(path.glob("*.safetensors")) + state_dict = dict() + for file in files: + sd = load_file(file) + state_dict.update(sd) + + empty_model.load_state_dict(state_dict, strict=True, assign=True) + model = quantize_model_nf4(empty_model, modules_to_not_convert=set(), compute_dtype=torch.bfloat16) + + # Load the state dict into the model. The bitsandbytes layers know how to load from both quantized and + # non-quantized state dicts. + # model.to_empty(device="cpu") + # model.to(dtype=torch.float16) + # result = model.load_state_dict(state_dict, strict=True) + model = model.to("cuda") + + model_nf4_path.mkdir(parents=True, exist_ok=True) + save_file(model.state_dict(), model_nf4_path / "model.safetensors") + + # --------------------- + + assert isinstance(model, FluxTransformer2DModel) + return model + + +def main(): + start = time.time() + model = load_flux_transformer( + Path("/data/invokeai/models/.download_cache/black-forest-labs_flux.1-schnell/FLUX.1-schnell/transformer/") + ) + print(f"Time to load: {time.time() - start}s") + print("hi") + + +if __name__ == "__main__": + main() diff --git a/pyproject.toml b/pyproject.toml index 9e04e06d6d..93394f2955 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -34,6 +34,7 @@ classifiers = [ dependencies = [ # Core generation dependencies, pinned for reproducible builds. "accelerate==0.33.0", + "bitsandbytes==0.43.3", "clip_anytorch==2.6.0", # replacing "clip @ https://github.com/openai/CLIP/archive/eaa22acb90a5876642d0507623e859909230a52d.zip", "compel==2.0.2", "controlnet-aux==0.0.7",