mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Remove logic to update model cache size estimates dynamically.
This commit is contained in:
parent
b9fd2e9e76
commit
4580ba0d87
@ -305,25 +305,6 @@ class ModelCache(object):
|
|||||||
f"{get_pretty_snapshot_diff(snapshot_before, snapshot_after)}"
|
f"{get_pretty_snapshot_diff(snapshot_before, snapshot_after)}"
|
||||||
)
|
)
|
||||||
|
|
||||||
# Now, we will update our size estimate for `cache_entry` based on the change in VRAM usage. We only use the
|
|
||||||
# change in VRAM usage, not the change in RAM usage, because it is a more accurate measurement. The VRAM
|
|
||||||
# usage measurement only includes the memory used by PyTorch tensors, whereas the RAM usage measurement is
|
|
||||||
# of total process memory and is influenced by other factors.
|
|
||||||
|
|
||||||
# We want to err on the side of over-estimating the model's size, so we only update our estimate if the new
|
|
||||||
# information suggests that the model is larger than we previously thought.
|
|
||||||
if vram_change > cache_entry.size:
|
|
||||||
self.logger.info(
|
|
||||||
f"Updating the cache size estimate for model '{key}'. {(cache_entry.size/GIG):.2f}GB ->"
|
|
||||||
f" {(vram_change/GIG):.2f}GB."
|
|
||||||
)
|
|
||||||
cache_entry.size = vram_change
|
|
||||||
|
|
||||||
self.logger.info(
|
|
||||||
"Clearing models from cache, if necessary, after updating a model's size estimate."
|
|
||||||
)
|
|
||||||
self._make_cache_room(0)
|
|
||||||
|
|
||||||
class ModelLocker(object):
|
class ModelLocker(object):
|
||||||
def __init__(self, cache, key, model, gpu_load, size_needed):
|
def __init__(self, cache, key, model, gpu_load, size_needed):
|
||||||
"""
|
"""
|
||||||
|
Loading…
Reference in New Issue
Block a user