mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
add router API support for model manager heuristic_import()`
This commit is contained in:
parent
54b74427f4
commit
466ec3ab5e
@ -1,13 +1,13 @@
|
||||
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654) and 2023 Kent Keirsey (https://github.com/hipsterusername)
|
||||
|
||||
from typing import Annotated, Literal, Optional, Union, Dict
|
||||
from typing import Literal, Optional, Union
|
||||
|
||||
from fastapi import Query
|
||||
from fastapi.routing import APIRouter, HTTPException
|
||||
from pydantic import BaseModel, Field, parse_obj_as
|
||||
from ..dependencies import ApiDependencies
|
||||
from invokeai.backend import BaseModelType, ModelType
|
||||
from invokeai.backend.model_management.models import OPENAPI_MODEL_CONFIGS
|
||||
from invokeai.backend.model_management.models import OPENAPI_MODEL_CONFIGS, SchedulerPredictionType
|
||||
MODEL_CONFIGS = Union[tuple(OPENAPI_MODEL_CONFIGS)]
|
||||
|
||||
models_router = APIRouter(prefix="/v1/models", tags=["models"])
|
||||
@ -51,11 +51,14 @@ class CreateModelResponse(BaseModel):
|
||||
info: Union[CkptModelInfo, DiffusersModelInfo] = Field(discriminator="format", description="The model info")
|
||||
status: str = Field(description="The status of the API response")
|
||||
|
||||
class ImportModelRequest(BaseModel):
|
||||
name: str = Field(description="A model path, repo_id or URL to import")
|
||||
prediction_type: Optional[Literal['epsilon','v_prediction','sample']] = Field(description='Prediction type for SDv2 checkpoint files')
|
||||
|
||||
class ConversionRequest(BaseModel):
|
||||
name: str = Field(description="The name of the new model")
|
||||
info: CkptModelInfo = Field(description="The converted model info")
|
||||
save_location: str = Field(description="The path to save the converted model weights")
|
||||
|
||||
|
||||
class ConvertedModelResponse(BaseModel):
|
||||
name: str = Field(description="The name of the new model")
|
||||
@ -105,6 +108,28 @@ async def update_model(
|
||||
|
||||
return model_response
|
||||
|
||||
@models_router.post(
|
||||
"/",
|
||||
operation_id="import_model",
|
||||
responses={200: {"status": "success"}},
|
||||
)
|
||||
async def import_model(
|
||||
model_request: ImportModelRequest
|
||||
) -> None:
|
||||
""" Add Model """
|
||||
items_to_import = set([model_request.name])
|
||||
prediction_types = { x.value: x for x in SchedulerPredictionType }
|
||||
logger = ApiDependencies.invoker.services.logger
|
||||
|
||||
installed_models = ApiDependencies.invoker.services.model_manager.heuristic_import(
|
||||
items_to_import = items_to_import,
|
||||
prediction_type_helper = lambda x: prediction_types.get(model_request.prediction_type)
|
||||
)
|
||||
if len(installed_models) > 0:
|
||||
logger.info(f'Successfully imported {model_request.name}')
|
||||
else:
|
||||
logger.error(f'Model {model_request.name} not imported')
|
||||
raise HTTPException(status_code=500, detail=f'Model {model_request.name} not imported')
|
||||
|
||||
@models_router.delete(
|
||||
"/{model_name}",
|
||||
|
@ -93,9 +93,10 @@ class ModelInstall(object):
|
||||
def __init__(self,
|
||||
config:InvokeAIAppConfig,
|
||||
prediction_type_helper: Callable[[Path],SchedulerPredictionType]=None,
|
||||
model_manager: ModelManager = None,
|
||||
access_token:str = None):
|
||||
self.config = config
|
||||
self.mgr = ModelManager(config.model_conf_path)
|
||||
self.mgr = model_manager or ModelManager(config.model_conf_path)
|
||||
self.datasets = OmegaConf.load(Dataset_path)
|
||||
self.prediction_helper = prediction_type_helper
|
||||
self.access_token = access_token or HfFolder.get_token()
|
||||
|
@ -151,13 +151,11 @@ import os
|
||||
import hashlib
|
||||
import textwrap
|
||||
from dataclasses import dataclass
|
||||
from packaging import version
|
||||
from pathlib import Path
|
||||
from typing import Dict, Optional, List, Tuple, Union, types
|
||||
from typing import Optional, List, Tuple, Union, Set, Callable, types
|
||||
from shutil import rmtree
|
||||
|
||||
import torch
|
||||
from huggingface_hub import scan_cache_dir
|
||||
from omegaconf import OmegaConf
|
||||
from omegaconf.dictconfig import DictConfig
|
||||
|
||||
@ -165,9 +163,13 @@ from pydantic import BaseModel
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from invokeai.app.services.config import InvokeAIAppConfig
|
||||
from invokeai.backend.util import CUDA_DEVICE, download_with_resume
|
||||
from invokeai.backend.util import CUDA_DEVICE
|
||||
from .model_cache import ModelCache, ModelLocker
|
||||
from .models import BaseModelType, ModelType, SubModelType, ModelError, MODEL_CLASSES
|
||||
from .models import (
|
||||
BaseModelType, ModelType, SubModelType,
|
||||
ModelError, SchedulerPredictionType, MODEL_CLASSES,
|
||||
ModelConfigBase,
|
||||
)
|
||||
|
||||
# We are only starting to number the config file with release 3.
|
||||
# The config file version doesn't have to start at release version, but it will help
|
||||
@ -686,3 +688,34 @@ class ModelManager(object):
|
||||
|
||||
if new_models_found and self.config_path:
|
||||
self.commit()
|
||||
|
||||
|
||||
def heuristic_import(self,
|
||||
items_to_import: Set[str],
|
||||
prediction_type_helper: Callable[[Path],SchedulerPredictionType]=None,
|
||||
)->Set[str]:
|
||||
'''
|
||||
Import a list of paths, repo_ids or URLs. Returns the
|
||||
set of successfully imported items. The prediction_type_helper
|
||||
is a callback that receives the Path of a checkpoint or diffusers
|
||||
model and returns a SchedulerPredictionType (or None).
|
||||
'''
|
||||
# avoid circular import here
|
||||
from invokeai.backend.install.model_install_backend import ModelInstall
|
||||
successfully_installed = set()
|
||||
|
||||
installer = ModelInstall(config = self.globals,
|
||||
prediction_type_helper = prediction_type_helper,
|
||||
model_manager = self)
|
||||
for thing in items_to_import:
|
||||
try:
|
||||
installer.heuristic_install(thing)
|
||||
successfully_installed.add(thing)
|
||||
except Exception as e:
|
||||
self.logger.warning(f'{thing} could not be imported: {str(e)}')
|
||||
|
||||
self.commit()
|
||||
return successfully_installed
|
||||
|
||||
|
||||
|
||||
|
@ -1,17 +1,14 @@
|
||||
import json
|
||||
import traceback
|
||||
import torch
|
||||
import safetensors.torch
|
||||
|
||||
from dataclasses import dataclass
|
||||
from enum import Enum
|
||||
|
||||
from diffusers import ModelMixin, ConfigMixin, StableDiffusionPipeline, AutoencoderKL, ControlNetModel
|
||||
from diffusers import ModelMixin, ConfigMixin
|
||||
from pathlib import Path
|
||||
from typing import Callable, Literal, Union, Dict
|
||||
from picklescan.scanner import scan_file_path
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from .models import BaseModelType, ModelType, ModelVariantType, SchedulerPredictionType, SilenceWarnings
|
||||
|
||||
@dataclass
|
||||
@ -102,7 +99,7 @@ class ModelProbe(object):
|
||||
and prediction_type==SchedulerPredictionType.VPrediction \
|
||||
) else 512,
|
||||
)
|
||||
except Exception as e:
|
||||
except Exception:
|
||||
return None
|
||||
|
||||
return model_info
|
||||
@ -115,6 +112,9 @@ class ModelProbe(object):
|
||||
return ModelType.TextualInversion
|
||||
checkpoint = checkpoint or cls._scan_and_load_checkpoint(model_path)
|
||||
state_dict = checkpoint.get("state_dict") or checkpoint
|
||||
|
||||
if len(checkpoint) < 10 and all(isinstance(v, torch.Tensor) for v in checkpoint.values()):
|
||||
return ModelType.TextualInversion
|
||||
if any([x.startswith("model.diffusion_model") for x in state_dict.keys()]):
|
||||
return ModelType.Pipeline
|
||||
if any([x.startswith("encoder.conv_in") for x in state_dict.keys()]):
|
||||
@ -326,13 +326,9 @@ class PipelineFolderProbe(FolderProbeBase):
|
||||
def get_base_type(self)->BaseModelType:
|
||||
if self.model:
|
||||
unet_conf = self.model.unet.config
|
||||
scheduler_conf = self.model.scheduler.config
|
||||
else:
|
||||
with open(self.folder_path / 'unet' / 'config.json','r') as file:
|
||||
unet_conf = json.load(file)
|
||||
with open(self.folder_path / 'scheduler' / 'scheduler_config.json','r') as file:
|
||||
scheduler_conf = json.load(file)
|
||||
|
||||
if unet_conf['cross_attention_dim'] == 768:
|
||||
return BaseModelType.StableDiffusion1
|
||||
elif unet_conf['cross_attention_dim'] == 1024:
|
||||
|
@ -56,7 +56,6 @@ class ModelConfigBase(BaseModel):
|
||||
class Config:
|
||||
use_enum_values = True
|
||||
|
||||
|
||||
class EmptyConfigLoader(ConfigMixin):
|
||||
@classmethod
|
||||
def load_config(cls, *args, **kwargs):
|
||||
|
@ -45,6 +45,7 @@ sd-1/pipeline/portraitplus:
|
||||
repo_id: wavymulder/portraitplus
|
||||
recommended: False
|
||||
sd-1/pipeline/seek.art_MEGA:
|
||||
repo_id: coreco/seek.art_MEGA
|
||||
description: A general use SD-1.5 "anything" model that supports multiple styles (2.1 GB)
|
||||
recommended: False
|
||||
sd-1/pipeline/trinart_stable_diffusion_v2:
|
||||
|
Loading…
Reference in New Issue
Block a user