mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
wip(docs): ELI5 Tutorial For Invocations
This commit is contained in:
parent
267f0408bb
commit
48258c4bb8
BIN
docs/assets/contributing/resize_invocation.png
Normal file
BIN
docs/assets/contributing/resize_invocation.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 7.1 KiB |
BIN
docs/assets/contributing/resize_node_editor.png
Normal file
BIN
docs/assets/contributing/resize_node_editor.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 17 KiB |
@ -1,8 +1,521 @@
|
|||||||
# Invocations
|
# Invocations
|
||||||
|
|
||||||
Invocations represent a single operation, its inputs, and its outputs. These
|
Features in InvokeAI are added in the form of modular node-like systems called
|
||||||
operations and their outputs can be chained together to generate and modify
|
**Invocations**.
|
||||||
images.
|
|
||||||
|
An Invocation is simply a single operation that takes in some inputs and gives
|
||||||
|
out some outputs. We can then chain multiple Invocations together to create more
|
||||||
|
complex functionality.
|
||||||
|
|
||||||
|
## Invocations Directory
|
||||||
|
|
||||||
|
InvokeAI Invocations can be found in the `invokeai/app/invocations` directory.
|
||||||
|
|
||||||
|
You can add your new functionality to one of the existing Invocations in this
|
||||||
|
directory or create a new file in this directory as per your needs.
|
||||||
|
|
||||||
|
**Note:** _All Invocations must be inside this directory for InvokeAI to
|
||||||
|
recognize them as valid Invocations._
|
||||||
|
|
||||||
|
## Creating A New Invocation
|
||||||
|
|
||||||
|
In order to understand the process of creating a new Invocation, let us actually
|
||||||
|
create one.
|
||||||
|
|
||||||
|
In our example, let us create an Invocation that will take in an image, resize
|
||||||
|
it and output the resized image.
|
||||||
|
|
||||||
|
The first set of things we need to do when creating a new Invocation are -
|
||||||
|
|
||||||
|
- Create a new class that derives from a predefined parent class called
|
||||||
|
`BaseInvocation`.
|
||||||
|
- The name of every Invocation must end with the word `Invocation` in order for
|
||||||
|
it to be recognized as an Invocation.
|
||||||
|
- Every Invocation must have a `docstring` that describes what this Invocation
|
||||||
|
does.
|
||||||
|
- Every Invocation must have a unique `type` field defined which becomes its
|
||||||
|
indentifier.
|
||||||
|
- Invocations are strictly typed. We make use of the native
|
||||||
|
[typing](https://docs.python.org/3/library/typing.html) library and the
|
||||||
|
installed [pydantic](https://pydantic-docs.helpmanual.io/) library for
|
||||||
|
validation.
|
||||||
|
|
||||||
|
So let us do that.
|
||||||
|
|
||||||
|
```python
|
||||||
|
from typing import Literal
|
||||||
|
from .baseinvocation import BaseInvocation
|
||||||
|
|
||||||
|
class ResizeInvocation(BaseInvocation):
|
||||||
|
'''Resizes an image'''
|
||||||
|
type: Literal['resize'] = 'resize'
|
||||||
|
```
|
||||||
|
|
||||||
|
That's great.
|
||||||
|
|
||||||
|
Now we have setup the base of our new Invocation. Let us think about what inputs
|
||||||
|
our Invocation takes.
|
||||||
|
|
||||||
|
- We need an `image` that we are going to resize.
|
||||||
|
- We will need new `width` and `height` values to which we need to resize the
|
||||||
|
image to.
|
||||||
|
|
||||||
|
### **Inputs**
|
||||||
|
|
||||||
|
Every Invocation input is a pydantic `Field` and like everything else should be
|
||||||
|
strictly typed and defined.
|
||||||
|
|
||||||
|
So let us create these inputs for our Invocation. First up, the `image` input we
|
||||||
|
need. Generally, we can use standard variable types in Python but InvokeAI
|
||||||
|
already has a custom `ImageField` type that handles all the stuff that is needed
|
||||||
|
for image inputs.
|
||||||
|
|
||||||
|
But what is this `ImageField` ..? It is a special class type specifically
|
||||||
|
written to handle how images are dealt with in InvokeAI. We will cover how to
|
||||||
|
create your own custom field types later in this guide. For now, let's go ahead
|
||||||
|
and use it.
|
||||||
|
|
||||||
|
```python
|
||||||
|
from typing import Literal, Union
|
||||||
|
from pydantic import Field
|
||||||
|
|
||||||
|
from .baseinvocation import BaseInvocation
|
||||||
|
from ..models.image import ImageField
|
||||||
|
|
||||||
|
class ResizeInvocation(BaseInvocation):
|
||||||
|
'''Resizes an image'''
|
||||||
|
type: Literal['resize'] = 'resize'
|
||||||
|
|
||||||
|
# Inputs
|
||||||
|
image: Union[ImageField, None] = Field(description="The input image", default=None)
|
||||||
|
```
|
||||||
|
|
||||||
|
Let us break down our input code.
|
||||||
|
|
||||||
|
```python
|
||||||
|
image: Union[ImageField, None] = Field(description="The input image", default=None)
|
||||||
|
```
|
||||||
|
|
||||||
|
| Part | Value | Description |
|
||||||
|
| --------- | ---------------------------------------------------- | -------------------------------------------------------------------------------------------------- |
|
||||||
|
| Name | `image` | The variable that will hold our image |
|
||||||
|
| Type Hint | `Union[ImageField, None]` | The types for our field. Indicates that the image can either be an `ImageField` type or `None` |
|
||||||
|
| Field | `Field(description="The input image", default=None)` | The image variable is a field which needs a description and a default value that we set to `None`. |
|
||||||
|
|
||||||
|
Great. Now let us create our other inputs for `width` and `height`
|
||||||
|
|
||||||
|
```python
|
||||||
|
from typing import Literal, Union
|
||||||
|
from pydantic import Field
|
||||||
|
|
||||||
|
from .baseinvocation import BaseInvocation
|
||||||
|
from ..models.image import ImageField
|
||||||
|
|
||||||
|
class ResizeInvocation(BaseInvocation):
|
||||||
|
'''Resizes an image'''
|
||||||
|
type: Literal['resize'] = 'resize'
|
||||||
|
|
||||||
|
# Inputs
|
||||||
|
image: Union[ImageField, None] = Field(description="The input image", default=None)
|
||||||
|
width: int = Field(default=512, ge=64, le=2048, description="Width of the new image")
|
||||||
|
height: int = Field(default=512, ge=64, le=2048, description="Height of the new image")
|
||||||
|
```
|
||||||
|
|
||||||
|
As you might have noticed, we added two new parameters to the field type for
|
||||||
|
`width` and `height` called `gt` and `le`. These basically stand for _greater
|
||||||
|
than or equal to_ and _less than or equal to_. There are various other param
|
||||||
|
types for field that you can find on the **pydantic** documentation.
|
||||||
|
|
||||||
|
**Note:** _Any time it is possible to define constraints for our field, we
|
||||||
|
should do it so the frontend has more information on how to parse this field._
|
||||||
|
|
||||||
|
Perfect. We now have our inputs. Let us do something with these.
|
||||||
|
|
||||||
|
### **Invoke Function**
|
||||||
|
|
||||||
|
The `invoke` function is where all the magic happens. This function provides you
|
||||||
|
the `context` parameter that is of the type `InvocationContext` which will give
|
||||||
|
you access to the current context of the generation and all the other services
|
||||||
|
that are provided by it by InvokeAI.
|
||||||
|
|
||||||
|
Let us create this function first.
|
||||||
|
|
||||||
|
```python
|
||||||
|
from typing import Literal, Union
|
||||||
|
from pydantic import Field
|
||||||
|
|
||||||
|
from .baseinvocation import BaseInvocation, InvocationContext
|
||||||
|
from ..models.image import ImageField
|
||||||
|
|
||||||
|
class ResizeInvocation(BaseInvocation):
|
||||||
|
'''Resizes an image'''
|
||||||
|
type: Literal['resize'] = 'resize'
|
||||||
|
|
||||||
|
# Inputs
|
||||||
|
image: Union[ImageField, None] = Field(description="The input image", default=None)
|
||||||
|
width: int = Field(default=512, ge=64, le=2048, description="Width of the new image")
|
||||||
|
height: int = Field(default=512, ge=64, le=2048, description="Height of the new image")
|
||||||
|
|
||||||
|
def invoke(self, context: InvocationContext):
|
||||||
|
pass
|
||||||
|
```
|
||||||
|
|
||||||
|
### **Outputs**
|
||||||
|
|
||||||
|
The output of our Invocation will be whatever is returned by this `invoke`
|
||||||
|
function. Like with our inputs, we need to strongly type and define our outputs
|
||||||
|
too.
|
||||||
|
|
||||||
|
What is our output going to be? Another image. Normally you'd have to create a
|
||||||
|
type for this but InvokeAI already offers you an `ImageOutput` type that handles
|
||||||
|
all the necessary info related to image outputs. So let us use that.
|
||||||
|
|
||||||
|
We will cover how to create your own output types later in this guide.
|
||||||
|
|
||||||
|
```python
|
||||||
|
from typing import Literal, Union
|
||||||
|
from pydantic import Field
|
||||||
|
|
||||||
|
from .baseinvocation import BaseInvocation, InvocationContext
|
||||||
|
from ..models.image import ImageField
|
||||||
|
from .image import ImageOutput
|
||||||
|
|
||||||
|
class ResizeInvocation(BaseInvocation):
|
||||||
|
'''Resizes an image'''
|
||||||
|
type: Literal['resize'] = 'resize'
|
||||||
|
|
||||||
|
# Inputs
|
||||||
|
image: Union[ImageField, None] = Field(description="The input image", default=None)
|
||||||
|
width: int = Field(default=512, ge=64, le=2048, description="Width of the new image")
|
||||||
|
height: int = Field(default=512, ge=64, le=2048, description="Height of the new image")
|
||||||
|
|
||||||
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||||
|
pass
|
||||||
|
```
|
||||||
|
|
||||||
|
Perfect. Now that we have our Invocation setup, let us do what we want to do.
|
||||||
|
|
||||||
|
- We will first load the image. Generally we do this using the `PIL` library but
|
||||||
|
we can use one of the services provided by InvokeAI to load the image.
|
||||||
|
- We will resize the image using `PIL` to our input data.
|
||||||
|
- We will output this image in the format we set above.
|
||||||
|
|
||||||
|
So let's do that.
|
||||||
|
|
||||||
|
```python
|
||||||
|
from typing import Literal, Union
|
||||||
|
from pydantic import Field
|
||||||
|
|
||||||
|
from .baseinvocation import BaseInvocation, InvocationContext
|
||||||
|
from ..models.image import ImageField, ResourceOrigin, ImageCategory
|
||||||
|
from .image import ImageOutput
|
||||||
|
|
||||||
|
class ResizeInvocation(BaseInvocation):
|
||||||
|
'''Resizes an image'''
|
||||||
|
type: Literal['resize'] = 'resize'
|
||||||
|
|
||||||
|
# Inputs
|
||||||
|
image: Union[ImageField, None] = Field(description="The input image", default=None)
|
||||||
|
width: int = Field(default=512, ge=64, le=2048, description="Width of the new image")
|
||||||
|
height: int = Field(default=512, ge=64, le=2048, description="Height of the new image")
|
||||||
|
|
||||||
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||||
|
# Load the image using InvokeAI's predefined Image Service.
|
||||||
|
image = context.services.images.get_pil_image(self.image.image_origin, self.image.image_name)
|
||||||
|
|
||||||
|
# Resizing the image
|
||||||
|
# Because we used the above service, we already have a PIL image. So we can simply resize.
|
||||||
|
resized_image = image.resize((self.width, self.height))
|
||||||
|
|
||||||
|
# Preparing the image for output using InvokeAI's predefined Image Service.
|
||||||
|
output_image = context.services.images.create(
|
||||||
|
image=resized_image,
|
||||||
|
image_origin=ResourceOrigin.INTERNAL,
|
||||||
|
image_category=ImageCategory.GENERAL,
|
||||||
|
node_id=self.id,
|
||||||
|
session_id=context.graph_execution_state_id,
|
||||||
|
is_intermediate=self.is_intermediate,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Returning the Image
|
||||||
|
return ImageOutput(
|
||||||
|
image=ImageField(
|
||||||
|
image_name=output_image.image_name,
|
||||||
|
image_origin=output_image.image_origin,
|
||||||
|
),
|
||||||
|
width=output_image.width,
|
||||||
|
height=output_image.height,
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
|
**Note:** Do not be overwhelmed by the `ImageOutput` process. InvokeAI has a
|
||||||
|
certain way that the images need to be dispatched in order to be stored and read
|
||||||
|
correctly. In 99% of the cases when dealing with an image output, you can simply
|
||||||
|
copy-paste the template above.
|
||||||
|
|
||||||
|
That's it. You made your own **Resize Invocation**.
|
||||||
|
|
||||||
|
## Result
|
||||||
|
|
||||||
|
Once you make your Invocation correctly, the rest of the process is fully
|
||||||
|
automated for you.
|
||||||
|
|
||||||
|
When you launch InvokeAI, you can go to `http://localhost:9090/docs` and see
|
||||||
|
your new Invocation show up there with all the relevant info.
|
||||||
|
|
||||||
|
![resize invocation](../assets/contributing/resize_invocation.png)
|
||||||
|
|
||||||
|
When you launch the frontend UI, you can go to the Node Editor tab and find your
|
||||||
|
new Invocation ready to be used.
|
||||||
|
|
||||||
|
![resize node editor](../assets/contributing/resize_node_editor.png)
|
||||||
|
|
||||||
|
# Advanced
|
||||||
|
|
||||||
|
## Custom Input Fields
|
||||||
|
|
||||||
|
Now that you know how to create your own Invocations, let us dive into slightly
|
||||||
|
more advanced topics.
|
||||||
|
|
||||||
|
While creating your own Invocations, you might run into a scenario where the
|
||||||
|
existing input types in InvokeAI do not meet your requirements. In such cases,
|
||||||
|
you can create your own input types.
|
||||||
|
|
||||||
|
Let us create one as an example. Let us say we want to create a color input
|
||||||
|
field that represents a color code. But before we start on that here are some
|
||||||
|
general good practices to keep in mind.
|
||||||
|
|
||||||
|
**Good Practices**
|
||||||
|
|
||||||
|
- There is no naming convention for input fields but we highly recommend that
|
||||||
|
you name it something appropriate like `ColorField`.
|
||||||
|
- It is not mandatory but it is heavily recommended to add a relevant
|
||||||
|
`docstring` to describe your input field.
|
||||||
|
- Keep your field in the same file as the Invocation that it is made for or in
|
||||||
|
another file where it is relevant.
|
||||||
|
|
||||||
|
All input types a class that derive from the `BaseModel` type from `pydantic`.
|
||||||
|
So let's create one.
|
||||||
|
|
||||||
|
```python
|
||||||
|
from pydantic import BaseModel
|
||||||
|
|
||||||
|
class ColorField(BaseModel):
|
||||||
|
'''A field that holds the rgba values of a color'''
|
||||||
|
pass
|
||||||
|
```
|
||||||
|
|
||||||
|
Perfect. Now let us create our custom inputs for our field. This is exactly
|
||||||
|
similar how you created input fields for your Invocation. All the same rules
|
||||||
|
apply. Let us create four fields representing the _red(r)_, _blue(b)_,
|
||||||
|
_green(g)_ and _alpha(a)_ channel of the color.
|
||||||
|
|
||||||
|
```python
|
||||||
|
class ColorField(BaseModel):
|
||||||
|
'''A field that holds the rgba values of a color'''
|
||||||
|
r: int = Field(ge=0, le=255, description="The red channel")
|
||||||
|
g: int = Field(ge=0, le=255, description="The green channel")
|
||||||
|
b: int = Field(ge=0, le=255, description="The blue channel")
|
||||||
|
a: int = Field(ge=0, le=255, description="The alpha channel")
|
||||||
|
```
|
||||||
|
|
||||||
|
That's it. We now have a new input field type that we can use in our Invocations
|
||||||
|
like this.
|
||||||
|
|
||||||
|
```python
|
||||||
|
color: ColorField = Field(default=ColorField(r=0, g=0, b=0, a=0), description='Background color of an image')
|
||||||
|
```
|
||||||
|
|
||||||
|
**Extra Config**
|
||||||
|
|
||||||
|
All input fields also take an additional `Config` class that you can use to do
|
||||||
|
various advanced things like setting required parameters and etc.
|
||||||
|
|
||||||
|
Let us do that for our _ColorField_ and enforce all the values because we did
|
||||||
|
not define any defaults for our fields.
|
||||||
|
|
||||||
|
```python
|
||||||
|
class ColorField(BaseModel):
|
||||||
|
'''A field that holds the rgba values of a color'''
|
||||||
|
r: int = Field(ge=0, le=255, description="The red channel")
|
||||||
|
g: int = Field(ge=0, le=255, description="The green channel")
|
||||||
|
b: int = Field(ge=0, le=255, description="The blue channel")
|
||||||
|
a: int = Field(ge=0, le=255, description="The alpha channel")
|
||||||
|
|
||||||
|
class Config:
|
||||||
|
schema_extra = {"required": ["r", "g", "b", "a"]}
|
||||||
|
```
|
||||||
|
|
||||||
|
Now it becomes mandatory for the user to supply all the values required by our
|
||||||
|
input field.
|
||||||
|
|
||||||
|
We will discuss the `Config` class in extra detail later in this guide and how
|
||||||
|
you can use it to make your Invocations more robust.
|
||||||
|
|
||||||
|
## Custom Output Types
|
||||||
|
|
||||||
|
Like with custom inputs, sometimes you might find yourself needing custom
|
||||||
|
outputs that InvokeAI does not provide. We can easily set one up.
|
||||||
|
|
||||||
|
Now that you are familiar with Invocations and Inputs, let us use that knowledge
|
||||||
|
to put together a custom output type for an Invocation that returns _width_,
|
||||||
|
_height_ and _background_color_ that we need to create a blank image.
|
||||||
|
|
||||||
|
- A custom output type is a class that derives from the parent class of
|
||||||
|
`BaseInvocationOutput`.
|
||||||
|
- It is not mandatory but we recommend using names ending with `Output` for
|
||||||
|
output types. So we'll call our class `BlankImageOutput`
|
||||||
|
- It is not mandatory but we highly recommend adding a `docstring` to describe
|
||||||
|
what your output type is for.
|
||||||
|
- Like Invocations, each output type should have a `type` variable that is
|
||||||
|
**unique**
|
||||||
|
|
||||||
|
Now that we know the basic rules for creating a new output type, let us go ahead
|
||||||
|
and make it.
|
||||||
|
|
||||||
|
```python
|
||||||
|
from typing import Literal
|
||||||
|
from pydantic import Field
|
||||||
|
|
||||||
|
from .baseinvocation import BaseInvocationOutput
|
||||||
|
|
||||||
|
class BlankImageOutput(BaseInvocationOutput):
|
||||||
|
'''Base output type for creating a blank image'''
|
||||||
|
type: Literal['blank_image_output'] = 'blank_image_output'
|
||||||
|
|
||||||
|
# Inputs
|
||||||
|
width: int = Field(description='Width of blank image')
|
||||||
|
height: int = Field(description='Height of blank image')
|
||||||
|
bg_color: ColorField = Field(description='Background color of blank image')
|
||||||
|
|
||||||
|
class Config:
|
||||||
|
schema_extra = {"required": ["type", "width", "height", "bg_color"]}
|
||||||
|
```
|
||||||
|
|
||||||
|
All set. We now have an output type that requires what we need to create a
|
||||||
|
blank_image. And if you noticed it, we even used the `Config` class to ensure
|
||||||
|
the fields are required.
|
||||||
|
|
||||||
|
## Custom Configuration
|
||||||
|
|
||||||
|
As you might have noticed when making inputs and outputs, we used a class called
|
||||||
|
`Config` from _pydantic_ to further customize them. Because our inputs and
|
||||||
|
outputs essentially inherit from _pydantic_'s `BaseModel` class, all
|
||||||
|
[configuration options](https://docs.pydantic.dev/latest/usage/schema/#schema-customization)
|
||||||
|
that are valid for _pydantic_ classes are also valid for our inputs and outputs.
|
||||||
|
You can do the same for your Invocations too but InvokeAI makes our life a
|
||||||
|
little bit easier on that end.
|
||||||
|
|
||||||
|
InvokeAI provides a custom configuration class called `InvocationConfig`
|
||||||
|
particularly for configuring Invocations. This is exactly the same as the raw
|
||||||
|
`Config` class from _pydantic_ with some extra stuff on top to help faciliate
|
||||||
|
parsing of the scheme in the frontend UI.
|
||||||
|
|
||||||
|
At the current moment, tihs `InvocationConfig` class is further improved with
|
||||||
|
the following features related the `ui`.
|
||||||
|
|
||||||
|
| Config Option | Field Type | Example |
|
||||||
|
| ------------- | ------------------------------------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------------------------------------- |
|
||||||
|
| type_hints | `Dict[str, Literal["integer", "float", "boolean", "string", "enum", "image", "latents", "model", "control"]]` | `type_hint: "model"` provides type hints related to the model like displaying a list of available models |
|
||||||
|
| tags | `List[str]` | `tags: ['resize', 'image']` will classify your invocation under the tags of resize and image. |
|
||||||
|
| title | `str` | `title: 'Resize Image` will rename your to this custom title rather than infer from the name of the Invocation class. |
|
||||||
|
|
||||||
|
So let us update your `ResizeInvocation` with some extra configuration and see
|
||||||
|
how that works.
|
||||||
|
|
||||||
|
```python
|
||||||
|
from typing import Literal, Union
|
||||||
|
from pydantic import Field
|
||||||
|
|
||||||
|
from .baseinvocation import BaseInvocation, InvocationContext, InvocationConfig
|
||||||
|
from ..models.image import ImageField, ResourceOrigin, ImageCategory
|
||||||
|
from .image import ImageOutput
|
||||||
|
|
||||||
|
class ResizeInvocation(BaseInvocation):
|
||||||
|
'''Resizes an image'''
|
||||||
|
type: Literal['resize'] = 'resize'
|
||||||
|
|
||||||
|
# Inputs
|
||||||
|
image: Union[ImageField, None] = Field(description="The input image", default=None)
|
||||||
|
width: int = Field(default=512, ge=64, le=2048, description="Width of the new image")
|
||||||
|
height: int = Field(default=512, ge=64, le=2048, description="Height of the new image")
|
||||||
|
|
||||||
|
class Config(InvocationConfig):
|
||||||
|
schema_extra: {
|
||||||
|
ui: {
|
||||||
|
tags: ['resize', 'image'],
|
||||||
|
title: ['My Custom Resize']
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||||
|
# Load the image using InvokeAI's predefined Image Service.
|
||||||
|
image = context.services.images.get_pil_image(self.image.image_origin, self.image.image_name)
|
||||||
|
|
||||||
|
# Resizing the image
|
||||||
|
# Because we used the above service, we already have a PIL image. So we can simply resize.
|
||||||
|
resized_image = image.resize((self.width, self.height))
|
||||||
|
|
||||||
|
# Preparing the image for output using InvokeAI's predefined Image Service.
|
||||||
|
output_image = context.services.images.create(
|
||||||
|
image=resized_image,
|
||||||
|
image_origin=ResourceOrigin.INTERNAL,
|
||||||
|
image_category=ImageCategory.GENERAL,
|
||||||
|
node_id=self.id,
|
||||||
|
session_id=context.graph_execution_state_id,
|
||||||
|
is_intermediate=self.is_intermediate,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Returning the Image
|
||||||
|
return ImageOutput(
|
||||||
|
image=ImageField(
|
||||||
|
image_name=output_image.image_name,
|
||||||
|
image_origin=output_image.image_origin,
|
||||||
|
),
|
||||||
|
width=output_image.width,
|
||||||
|
height=output_image.height,
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
|
We now customized our code to let the frontend know that our Invocation falls
|
||||||
|
under `resize` and `image` categories. So when the user searches for these
|
||||||
|
particular words, our Invocation will show up too.
|
||||||
|
|
||||||
|
We also set a custom title for our Invocation. So instead of being called
|
||||||
|
`Resize`, it will be called `My Custom Resize`.
|
||||||
|
|
||||||
|
As simple as that.
|
||||||
|
|
||||||
|
As time goes by, InvokeAI will further improve and add more customizability for
|
||||||
|
Invocation configuration. We will have more documentation regarding this at a
|
||||||
|
later time.
|
||||||
|
|
||||||
|
# **[TODO]**
|
||||||
|
|
||||||
|
## Custom Components For Frontend
|
||||||
|
|
||||||
|
Every backend input type should have a corresponding frontend component so the
|
||||||
|
UI knows what to render when you use a particular field type.
|
||||||
|
|
||||||
|
If you are using existing field types, we already have components for those. So
|
||||||
|
you don't have to worry about creating anything new. But this might not always
|
||||||
|
be the case. Sometimes you might want to create new field types and have the
|
||||||
|
frontend UI deal with it in a different way.
|
||||||
|
|
||||||
|
This is where we venture into the world of React and Javascript and create our
|
||||||
|
own new components for our Invocations. Do not fear the world of JS. It's
|
||||||
|
actually pretty straightforward.
|
||||||
|
|
||||||
|
Let us create a new component for our custom color field we created above. When
|
||||||
|
we use a color field, let us say we want the UI to display a color picker for
|
||||||
|
the user to pick from rather than entering values. That is what we will build
|
||||||
|
now.
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
# OLD -- TO BE DELETED OR MOVED LATER
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
## Creating a new invocation
|
## Creating a new invocation
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user