mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
tidy(ui): remove unused files
This commit is contained in:
parent
5425526d50
commit
4897ce2a13
@ -1,8 +1,8 @@
|
||||
import { enqueueRequested } from 'app/store/actions';
|
||||
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
|
||||
import { isImageViewerOpenChanged } from 'features/gallery/store/gallerySlice';
|
||||
import { buildGenerationTabGraph2 } from 'features/nodes/util/graph/buildGenerationTabGraph2';
|
||||
import { buildGenerationTabSDXLGraph2 } from 'features/nodes/util/graph/buildGenerationTabSDXLGraph2';
|
||||
import { buildGenerationTabGraph } from 'features/nodes/util/graph/buildGenerationTabGraph';
|
||||
import { buildGenerationTabSDXLGraph } from 'features/nodes/util/graph/buildGenerationTabSDXLGraph';
|
||||
import { prepareLinearUIBatch } from 'features/nodes/util/graph/buildLinearBatchConfig';
|
||||
import { queueApi } from 'services/api/endpoints/queue';
|
||||
|
||||
@ -18,10 +18,10 @@ export const addEnqueueRequestedLinear = (startAppListening: AppStartListening)
|
||||
|
||||
let graph;
|
||||
|
||||
if (model && model.base === 'sdxl') {
|
||||
graph = await buildGenerationTabSDXLGraph2(state);
|
||||
if (model?.base === 'sdxl') {
|
||||
graph = await buildGenerationTabSDXLGraph(state);
|
||||
} else {
|
||||
graph = await buildGenerationTabGraph2(state);
|
||||
graph = await buildGenerationTabGraph(state);
|
||||
}
|
||||
|
||||
const batchConfig = prepareLinearUIBatch(state, graph, prepend);
|
||||
|
@ -1,705 +0,0 @@
|
||||
import { getStore } from 'app/store/nanostores/store';
|
||||
import type { RootState } from 'app/store/store';
|
||||
import {
|
||||
isControlAdapterLayer,
|
||||
isInitialImageLayer,
|
||||
isIPAdapterLayer,
|
||||
isRegionalGuidanceLayer,
|
||||
rgLayerMaskImageUploaded,
|
||||
} from 'features/controlLayers/store/controlLayersSlice';
|
||||
import type { InitialImageLayer, Layer, RegionalGuidanceLayer } from 'features/controlLayers/store/types';
|
||||
import type {
|
||||
ControlNetConfigV2,
|
||||
ImageWithDims,
|
||||
IPAdapterConfigV2,
|
||||
ProcessorConfig,
|
||||
T2IAdapterConfigV2,
|
||||
} from 'features/controlLayers/util/controlAdapters';
|
||||
import { getRegionalPromptLayerBlobs } from 'features/controlLayers/util/getLayerBlobs';
|
||||
import type { ImageField } from 'features/nodes/types/common';
|
||||
import {
|
||||
CONTROL_NET_COLLECT,
|
||||
IMAGE_TO_LATENTS,
|
||||
IP_ADAPTER_COLLECT,
|
||||
NEGATIVE_CONDITIONING,
|
||||
NEGATIVE_CONDITIONING_COLLECT,
|
||||
NOISE,
|
||||
POSITIVE_CONDITIONING,
|
||||
POSITIVE_CONDITIONING_COLLECT,
|
||||
PROMPT_REGION_INVERT_TENSOR_MASK_PREFIX,
|
||||
PROMPT_REGION_MASK_TO_TENSOR_PREFIX,
|
||||
PROMPT_REGION_NEGATIVE_COND_PREFIX,
|
||||
PROMPT_REGION_POSITIVE_COND_INVERTED_PREFIX,
|
||||
PROMPT_REGION_POSITIVE_COND_PREFIX,
|
||||
RESIZE,
|
||||
T2I_ADAPTER_COLLECT,
|
||||
} from 'features/nodes/util/graph/constants';
|
||||
import { upsertMetadata } from 'features/nodes/util/graph/metadata';
|
||||
import { size } from 'lodash-es';
|
||||
import { getImageDTO, imagesApi } from 'services/api/endpoints/images';
|
||||
import type {
|
||||
BaseModelType,
|
||||
CollectInvocation,
|
||||
ControlNetInvocation,
|
||||
Edge,
|
||||
ImageDTO,
|
||||
Invocation,
|
||||
IPAdapterInvocation,
|
||||
NonNullableGraph,
|
||||
T2IAdapterInvocation,
|
||||
} from 'services/api/types';
|
||||
import { assert } from 'tsafe';
|
||||
|
||||
export const addControlLayersToGraph = async (
|
||||
state: RootState,
|
||||
graph: NonNullableGraph,
|
||||
denoiseNodeId: string
|
||||
): Promise<Layer[]> => {
|
||||
const mainModel = state.generation.model;
|
||||
assert(mainModel, 'Missing main model when building graph');
|
||||
const isSDXL = mainModel.base === 'sdxl';
|
||||
|
||||
// Filter out layers with incompatible base model, missing control image
|
||||
const validLayers = state.controlLayers.present.layers.filter((l) => isValidLayer(l, mainModel.base));
|
||||
|
||||
const validControlAdapters = validLayers.filter(isControlAdapterLayer).map((l) => l.controlAdapter);
|
||||
for (const ca of validControlAdapters) {
|
||||
addGlobalControlAdapterToGraph(ca, graph, denoiseNodeId);
|
||||
}
|
||||
|
||||
const validIPAdapters = validLayers.filter(isIPAdapterLayer).map((l) => l.ipAdapter);
|
||||
for (const ipAdapter of validIPAdapters) {
|
||||
addGlobalIPAdapterToGraph(ipAdapter, graph, denoiseNodeId);
|
||||
}
|
||||
|
||||
const initialImageLayers = validLayers.filter(isInitialImageLayer);
|
||||
assert(initialImageLayers.length <= 1, 'Only one initial image layer allowed');
|
||||
if (initialImageLayers[0]) {
|
||||
addInitialImageLayerToGraph(state, graph, denoiseNodeId, initialImageLayers[0]);
|
||||
}
|
||||
// TODO: We should probably just use conditioning collectors by default, and skip all this fanagling with re-routing
|
||||
// the existing conditioning nodes.
|
||||
|
||||
// With regional prompts we have multiple conditioning nodes which much be routed into collectors. Set those up
|
||||
const posCondCollectNode: CollectInvocation = {
|
||||
id: POSITIVE_CONDITIONING_COLLECT,
|
||||
type: 'collect',
|
||||
};
|
||||
graph.nodes[POSITIVE_CONDITIONING_COLLECT] = posCondCollectNode;
|
||||
const negCondCollectNode: CollectInvocation = {
|
||||
id: NEGATIVE_CONDITIONING_COLLECT,
|
||||
type: 'collect',
|
||||
};
|
||||
graph.nodes[NEGATIVE_CONDITIONING_COLLECT] = negCondCollectNode;
|
||||
|
||||
// Re-route the denoise node's OG conditioning inputs to the collect nodes
|
||||
const newEdges: Edge[] = [];
|
||||
for (const edge of graph.edges) {
|
||||
if (edge.destination.node_id === denoiseNodeId && edge.destination.field === 'positive_conditioning') {
|
||||
newEdges.push({
|
||||
source: edge.source,
|
||||
destination: {
|
||||
node_id: POSITIVE_CONDITIONING_COLLECT,
|
||||
field: 'item',
|
||||
},
|
||||
});
|
||||
} else if (edge.destination.node_id === denoiseNodeId && edge.destination.field === 'negative_conditioning') {
|
||||
newEdges.push({
|
||||
source: edge.source,
|
||||
destination: {
|
||||
node_id: NEGATIVE_CONDITIONING_COLLECT,
|
||||
field: 'item',
|
||||
},
|
||||
});
|
||||
} else {
|
||||
newEdges.push(edge);
|
||||
}
|
||||
}
|
||||
graph.edges = newEdges;
|
||||
|
||||
// Connect collectors to the denoise nodes - must happen _after_ rerouting else you get cycles
|
||||
graph.edges.push({
|
||||
source: {
|
||||
node_id: POSITIVE_CONDITIONING_COLLECT,
|
||||
field: 'collection',
|
||||
},
|
||||
destination: {
|
||||
node_id: denoiseNodeId,
|
||||
field: 'positive_conditioning',
|
||||
},
|
||||
});
|
||||
graph.edges.push({
|
||||
source: {
|
||||
node_id: NEGATIVE_CONDITIONING_COLLECT,
|
||||
field: 'collection',
|
||||
},
|
||||
destination: {
|
||||
node_id: denoiseNodeId,
|
||||
field: 'negative_conditioning',
|
||||
},
|
||||
});
|
||||
|
||||
const validRGLayers = validLayers.filter(isRegionalGuidanceLayer);
|
||||
const layerIds = validRGLayers.map((l) => l.id);
|
||||
const blobs = await getRegionalPromptLayerBlobs(layerIds);
|
||||
assert(size(blobs) === size(layerIds), 'Mismatch between layer IDs and blobs');
|
||||
|
||||
for (const layer of validRGLayers) {
|
||||
const blob = blobs[layer.id];
|
||||
assert(blob, `Blob for layer ${layer.id} not found`);
|
||||
// Upload the mask image, or get the cached image if it exists
|
||||
const { image_name } = await getMaskImage(layer, blob);
|
||||
|
||||
// The main mask-to-tensor node
|
||||
const maskToTensorNode: Invocation<'alpha_mask_to_tensor'> = {
|
||||
id: `${PROMPT_REGION_MASK_TO_TENSOR_PREFIX}_${layer.id}`,
|
||||
type: 'alpha_mask_to_tensor',
|
||||
image: {
|
||||
image_name,
|
||||
},
|
||||
};
|
||||
graph.nodes[maskToTensorNode.id] = maskToTensorNode;
|
||||
|
||||
if (layer.positivePrompt) {
|
||||
// The main positive conditioning node
|
||||
const regionalPositiveCondNode: Invocation<'compel'> | Invocation<'sdxl_compel_prompt'> = isSDXL
|
||||
? {
|
||||
type: 'sdxl_compel_prompt',
|
||||
id: `${PROMPT_REGION_POSITIVE_COND_PREFIX}_${layer.id}`,
|
||||
prompt: layer.positivePrompt,
|
||||
style: layer.positivePrompt, // TODO: Should we put the positive prompt in both fields?
|
||||
}
|
||||
: {
|
||||
type: 'compel',
|
||||
id: `${PROMPT_REGION_POSITIVE_COND_PREFIX}_${layer.id}`,
|
||||
prompt: layer.positivePrompt,
|
||||
};
|
||||
graph.nodes[regionalPositiveCondNode.id] = regionalPositiveCondNode;
|
||||
|
||||
// Connect the mask to the conditioning
|
||||
graph.edges.push({
|
||||
source: { node_id: maskToTensorNode.id, field: 'mask' },
|
||||
destination: { node_id: regionalPositiveCondNode.id, field: 'mask' },
|
||||
});
|
||||
|
||||
// Connect the conditioning to the collector
|
||||
graph.edges.push({
|
||||
source: { node_id: regionalPositiveCondNode.id, field: 'conditioning' },
|
||||
destination: { node_id: posCondCollectNode.id, field: 'item' },
|
||||
});
|
||||
|
||||
// Copy the connections to the "global" positive conditioning node to the regional cond
|
||||
for (const edge of graph.edges) {
|
||||
if (edge.destination.node_id === POSITIVE_CONDITIONING && edge.destination.field !== 'prompt') {
|
||||
graph.edges.push({
|
||||
source: edge.source,
|
||||
destination: { node_id: regionalPositiveCondNode.id, field: edge.destination.field },
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (layer.negativePrompt) {
|
||||
// The main negative conditioning node
|
||||
const regionalNegativeCondNode: Invocation<'compel'> | Invocation<'sdxl_compel_prompt'> = isSDXL
|
||||
? {
|
||||
type: 'sdxl_compel_prompt',
|
||||
id: `${PROMPT_REGION_NEGATIVE_COND_PREFIX}_${layer.id}`,
|
||||
prompt: layer.negativePrompt,
|
||||
style: layer.negativePrompt,
|
||||
}
|
||||
: {
|
||||
type: 'compel',
|
||||
id: `${PROMPT_REGION_NEGATIVE_COND_PREFIX}_${layer.id}`,
|
||||
prompt: layer.negativePrompt,
|
||||
};
|
||||
graph.nodes[regionalNegativeCondNode.id] = regionalNegativeCondNode;
|
||||
|
||||
// Connect the mask to the conditioning
|
||||
graph.edges.push({
|
||||
source: { node_id: maskToTensorNode.id, field: 'mask' },
|
||||
destination: { node_id: regionalNegativeCondNode.id, field: 'mask' },
|
||||
});
|
||||
|
||||
// Connect the conditioning to the collector
|
||||
graph.edges.push({
|
||||
source: { node_id: regionalNegativeCondNode.id, field: 'conditioning' },
|
||||
destination: { node_id: negCondCollectNode.id, field: 'item' },
|
||||
});
|
||||
|
||||
// Copy the connections to the "global" negative conditioning node to the regional cond
|
||||
for (const edge of graph.edges) {
|
||||
if (edge.destination.node_id === NEGATIVE_CONDITIONING && edge.destination.field !== 'prompt') {
|
||||
graph.edges.push({
|
||||
source: edge.source,
|
||||
destination: { node_id: regionalNegativeCondNode.id, field: edge.destination.field },
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// If we are using the "invert" auto-negative setting, we need to add an additional negative conditioning node
|
||||
if (layer.autoNegative === 'invert' && layer.positivePrompt) {
|
||||
// We re-use the mask image, but invert it when converting to tensor
|
||||
const invertTensorMaskNode: Invocation<'invert_tensor_mask'> = {
|
||||
id: `${PROMPT_REGION_INVERT_TENSOR_MASK_PREFIX}_${layer.id}`,
|
||||
type: 'invert_tensor_mask',
|
||||
};
|
||||
graph.nodes[invertTensorMaskNode.id] = invertTensorMaskNode;
|
||||
|
||||
// Connect the OG mask image to the inverted mask-to-tensor node
|
||||
graph.edges.push({
|
||||
source: {
|
||||
node_id: maskToTensorNode.id,
|
||||
field: 'mask',
|
||||
},
|
||||
destination: {
|
||||
node_id: invertTensorMaskNode.id,
|
||||
field: 'mask',
|
||||
},
|
||||
});
|
||||
|
||||
// Create the conditioning node. It's going to be connected to the negative cond collector, but it uses the
|
||||
// positive prompt
|
||||
const regionalPositiveCondInvertedNode: Invocation<'compel'> | Invocation<'sdxl_compel_prompt'> = isSDXL
|
||||
? {
|
||||
type: 'sdxl_compel_prompt',
|
||||
id: `${PROMPT_REGION_POSITIVE_COND_INVERTED_PREFIX}_${layer.id}`,
|
||||
prompt: layer.positivePrompt,
|
||||
style: layer.positivePrompt,
|
||||
}
|
||||
: {
|
||||
type: 'compel',
|
||||
id: `${PROMPT_REGION_POSITIVE_COND_INVERTED_PREFIX}_${layer.id}`,
|
||||
prompt: layer.positivePrompt,
|
||||
};
|
||||
graph.nodes[regionalPositiveCondInvertedNode.id] = regionalPositiveCondInvertedNode;
|
||||
// Connect the inverted mask to the conditioning
|
||||
graph.edges.push({
|
||||
source: { node_id: invertTensorMaskNode.id, field: 'mask' },
|
||||
destination: { node_id: regionalPositiveCondInvertedNode.id, field: 'mask' },
|
||||
});
|
||||
// Connect the conditioning to the negative collector
|
||||
graph.edges.push({
|
||||
source: { node_id: regionalPositiveCondInvertedNode.id, field: 'conditioning' },
|
||||
destination: { node_id: negCondCollectNode.id, field: 'item' },
|
||||
});
|
||||
// Copy the connections to the "global" positive conditioning node to our regional node
|
||||
for (const edge of graph.edges) {
|
||||
if (edge.destination.node_id === POSITIVE_CONDITIONING && edge.destination.field !== 'prompt') {
|
||||
graph.edges.push({
|
||||
source: edge.source,
|
||||
destination: { node_id: regionalPositiveCondInvertedNode.id, field: edge.destination.field },
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
const validRegionalIPAdapters: IPAdapterConfigV2[] = layer.ipAdapters.filter((ipa) =>
|
||||
isValidIPAdapter(ipa, mainModel.base)
|
||||
);
|
||||
|
||||
for (const ipAdapter of validRegionalIPAdapters) {
|
||||
addIPAdapterCollectorSafe(graph, denoiseNodeId);
|
||||
const { id, weight, model, clipVisionModel, method, beginEndStepPct, image } = ipAdapter;
|
||||
assert(model, 'IP Adapter model is required');
|
||||
assert(image, 'IP Adapter image is required');
|
||||
|
||||
const ipAdapterNode: IPAdapterInvocation = {
|
||||
id: `ip_adapter_${id}`,
|
||||
type: 'ip_adapter',
|
||||
is_intermediate: true,
|
||||
weight,
|
||||
method,
|
||||
ip_adapter_model: model,
|
||||
clip_vision_model: clipVisionModel,
|
||||
begin_step_percent: beginEndStepPct[0],
|
||||
end_step_percent: beginEndStepPct[1],
|
||||
image: {
|
||||
image_name: image.name,
|
||||
},
|
||||
};
|
||||
|
||||
graph.nodes[ipAdapterNode.id] = ipAdapterNode;
|
||||
|
||||
// Connect the mask to the conditioning
|
||||
graph.edges.push({
|
||||
source: { node_id: maskToTensorNode.id, field: 'mask' },
|
||||
destination: { node_id: ipAdapterNode.id, field: 'mask' },
|
||||
});
|
||||
|
||||
graph.edges.push({
|
||||
source: { node_id: ipAdapterNode.id, field: 'ip_adapter' },
|
||||
destination: {
|
||||
node_id: IP_ADAPTER_COLLECT,
|
||||
field: 'item',
|
||||
},
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
upsertMetadata(graph, { control_layers: { layers: validLayers, version: state.controlLayers.present._version } });
|
||||
return validLayers;
|
||||
};
|
||||
|
||||
const getMaskImage = async (layer: RegionalGuidanceLayer, blob: Blob): Promise<ImageDTO> => {
|
||||
if (layer.uploadedMaskImage) {
|
||||
const imageDTO = await getImageDTO(layer.uploadedMaskImage.name);
|
||||
if (imageDTO) {
|
||||
return imageDTO;
|
||||
}
|
||||
}
|
||||
const { dispatch } = getStore();
|
||||
// No cached mask, or the cached image no longer exists - we need to upload the mask image
|
||||
const file = new File([blob], `${layer.id}_mask.png`, { type: 'image/png' });
|
||||
const req = dispatch(
|
||||
imagesApi.endpoints.uploadImage.initiate({ file, image_category: 'mask', is_intermediate: true })
|
||||
);
|
||||
req.reset();
|
||||
|
||||
const imageDTO = await req.unwrap();
|
||||
dispatch(rgLayerMaskImageUploaded({ layerId: layer.id, imageDTO }));
|
||||
return imageDTO;
|
||||
};
|
||||
|
||||
const buildControlImage = (
|
||||
image: ImageWithDims | null,
|
||||
processedImage: ImageWithDims | null,
|
||||
processorConfig: ProcessorConfig | null
|
||||
): ImageField => {
|
||||
if (processedImage && processorConfig) {
|
||||
// We've processed the image in the app - use it for the control image.
|
||||
return {
|
||||
image_name: processedImage.name,
|
||||
};
|
||||
} else if (image) {
|
||||
// No processor selected, and we have an image - the user provided a processed image, use it for the control image.
|
||||
return {
|
||||
image_name: image.name,
|
||||
};
|
||||
}
|
||||
assert(false, 'Attempted to add unprocessed control image');
|
||||
};
|
||||
|
||||
const addGlobalControlAdapterToGraph = (
|
||||
controlAdapter: ControlNetConfigV2 | T2IAdapterConfigV2,
|
||||
graph: NonNullableGraph,
|
||||
denoiseNodeId: string
|
||||
) => {
|
||||
if (controlAdapter.type === 'controlnet') {
|
||||
addGlobalControlNetToGraph(controlAdapter, graph, denoiseNodeId);
|
||||
}
|
||||
if (controlAdapter.type === 't2i_adapter') {
|
||||
addGlobalT2IAdapterToGraph(controlAdapter, graph, denoiseNodeId);
|
||||
}
|
||||
};
|
||||
|
||||
const addControlNetCollectorSafe = (graph: NonNullableGraph, denoiseNodeId: string) => {
|
||||
if (graph.nodes[CONTROL_NET_COLLECT]) {
|
||||
// You see, we've already got one!
|
||||
return;
|
||||
}
|
||||
// Add the ControlNet collector
|
||||
const controlNetIterateNode: CollectInvocation = {
|
||||
id: CONTROL_NET_COLLECT,
|
||||
type: 'collect',
|
||||
is_intermediate: true,
|
||||
};
|
||||
graph.nodes[CONTROL_NET_COLLECT] = controlNetIterateNode;
|
||||
graph.edges.push({
|
||||
source: { node_id: CONTROL_NET_COLLECT, field: 'collection' },
|
||||
destination: {
|
||||
node_id: denoiseNodeId,
|
||||
field: 'control',
|
||||
},
|
||||
});
|
||||
};
|
||||
|
||||
const addGlobalControlNetToGraph = (controlNet: ControlNetConfigV2, graph: NonNullableGraph, denoiseNodeId: string) => {
|
||||
const { id, beginEndStepPct, controlMode, image, model, processedImage, processorConfig, weight } = controlNet;
|
||||
assert(model, 'ControlNet model is required');
|
||||
const controlImage = buildControlImage(image, processedImage, processorConfig);
|
||||
addControlNetCollectorSafe(graph, denoiseNodeId);
|
||||
|
||||
const controlNetNode: ControlNetInvocation = {
|
||||
id: `control_net_${id}`,
|
||||
type: 'controlnet',
|
||||
is_intermediate: true,
|
||||
begin_step_percent: beginEndStepPct[0],
|
||||
end_step_percent: beginEndStepPct[1],
|
||||
control_mode: controlMode,
|
||||
resize_mode: 'just_resize',
|
||||
control_model: model,
|
||||
control_weight: weight,
|
||||
image: controlImage,
|
||||
};
|
||||
|
||||
graph.nodes[controlNetNode.id] = controlNetNode;
|
||||
|
||||
graph.edges.push({
|
||||
source: { node_id: controlNetNode.id, field: 'control' },
|
||||
destination: {
|
||||
node_id: CONTROL_NET_COLLECT,
|
||||
field: 'item',
|
||||
},
|
||||
});
|
||||
};
|
||||
|
||||
const addT2IAdapterCollectorSafe = (graph: NonNullableGraph, denoiseNodeId: string) => {
|
||||
if (graph.nodes[T2I_ADAPTER_COLLECT]) {
|
||||
// You see, we've already got one!
|
||||
return;
|
||||
}
|
||||
// Even though denoise_latents' t2i adapter input is collection or scalar, keep it simple and always use a collect
|
||||
const t2iAdapterCollectNode: CollectInvocation = {
|
||||
id: T2I_ADAPTER_COLLECT,
|
||||
type: 'collect',
|
||||
is_intermediate: true,
|
||||
};
|
||||
graph.nodes[T2I_ADAPTER_COLLECT] = t2iAdapterCollectNode;
|
||||
graph.edges.push({
|
||||
source: { node_id: T2I_ADAPTER_COLLECT, field: 'collection' },
|
||||
destination: {
|
||||
node_id: denoiseNodeId,
|
||||
field: 't2i_adapter',
|
||||
},
|
||||
});
|
||||
};
|
||||
|
||||
const addGlobalT2IAdapterToGraph = (t2iAdapter: T2IAdapterConfigV2, graph: NonNullableGraph, denoiseNodeId: string) => {
|
||||
const { id, beginEndStepPct, image, model, processedImage, processorConfig, weight } = t2iAdapter;
|
||||
assert(model, 'T2I Adapter model is required');
|
||||
const controlImage = buildControlImage(image, processedImage, processorConfig);
|
||||
addT2IAdapterCollectorSafe(graph, denoiseNodeId);
|
||||
|
||||
const t2iAdapterNode: T2IAdapterInvocation = {
|
||||
id: `t2i_adapter_${id}`,
|
||||
type: 't2i_adapter',
|
||||
is_intermediate: true,
|
||||
begin_step_percent: beginEndStepPct[0],
|
||||
end_step_percent: beginEndStepPct[1],
|
||||
resize_mode: 'just_resize',
|
||||
t2i_adapter_model: model,
|
||||
weight: weight,
|
||||
image: controlImage,
|
||||
};
|
||||
|
||||
graph.nodes[t2iAdapterNode.id] = t2iAdapterNode;
|
||||
|
||||
graph.edges.push({
|
||||
source: { node_id: t2iAdapterNode.id, field: 't2i_adapter' },
|
||||
destination: {
|
||||
node_id: T2I_ADAPTER_COLLECT,
|
||||
field: 'item',
|
||||
},
|
||||
});
|
||||
};
|
||||
|
||||
const addIPAdapterCollectorSafe = (graph: NonNullableGraph, denoiseNodeId: string) => {
|
||||
if (graph.nodes[IP_ADAPTER_COLLECT]) {
|
||||
// You see, we've already got one!
|
||||
return;
|
||||
}
|
||||
|
||||
const ipAdapterCollectNode: CollectInvocation = {
|
||||
id: IP_ADAPTER_COLLECT,
|
||||
type: 'collect',
|
||||
is_intermediate: true,
|
||||
};
|
||||
graph.nodes[IP_ADAPTER_COLLECT] = ipAdapterCollectNode;
|
||||
graph.edges.push({
|
||||
source: { node_id: IP_ADAPTER_COLLECT, field: 'collection' },
|
||||
destination: {
|
||||
node_id: denoiseNodeId,
|
||||
field: 'ip_adapter',
|
||||
},
|
||||
});
|
||||
};
|
||||
|
||||
const addGlobalIPAdapterToGraph = (ipAdapter: IPAdapterConfigV2, graph: NonNullableGraph, denoiseNodeId: string) => {
|
||||
addIPAdapterCollectorSafe(graph, denoiseNodeId);
|
||||
const { id, weight, model, clipVisionModel, method, beginEndStepPct, image } = ipAdapter;
|
||||
assert(image, 'IP Adapter image is required');
|
||||
assert(model, 'IP Adapter model is required');
|
||||
|
||||
const ipAdapterNode: IPAdapterInvocation = {
|
||||
id: `ip_adapter_${id}`,
|
||||
type: 'ip_adapter',
|
||||
is_intermediate: true,
|
||||
weight,
|
||||
method,
|
||||
ip_adapter_model: model,
|
||||
clip_vision_model: clipVisionModel,
|
||||
begin_step_percent: beginEndStepPct[0],
|
||||
end_step_percent: beginEndStepPct[1],
|
||||
image: {
|
||||
image_name: image.name,
|
||||
},
|
||||
};
|
||||
|
||||
graph.nodes[ipAdapterNode.id] = ipAdapterNode;
|
||||
|
||||
graph.edges.push({
|
||||
source: { node_id: ipAdapterNode.id, field: 'ip_adapter' },
|
||||
destination: {
|
||||
node_id: IP_ADAPTER_COLLECT,
|
||||
field: 'item',
|
||||
},
|
||||
});
|
||||
};
|
||||
|
||||
const addInitialImageLayerToGraph = (
|
||||
state: RootState,
|
||||
graph: NonNullableGraph,
|
||||
denoiseNodeId: string,
|
||||
layer: InitialImageLayer
|
||||
) => {
|
||||
const { vaePrecision, model } = state.generation;
|
||||
const { refinerModel, refinerStart } = state.sdxl;
|
||||
const { width, height } = state.controlLayers.present.size;
|
||||
assert(layer.isEnabled, 'Initial image layer is not enabled');
|
||||
assert(layer.image, 'Initial image layer has no image');
|
||||
|
||||
const isSDXL = model?.base === 'sdxl';
|
||||
const useRefinerStartEnd = isSDXL && Boolean(refinerModel);
|
||||
|
||||
const denoiseNode = graph.nodes[denoiseNodeId];
|
||||
assert(denoiseNode?.type === 'denoise_latents', `Missing denoise node or incorrect type: ${denoiseNode?.type}`);
|
||||
|
||||
const { denoisingStrength } = layer;
|
||||
denoiseNode.denoising_start = useRefinerStartEnd
|
||||
? Math.min(refinerStart, 1 - denoisingStrength)
|
||||
: 1 - denoisingStrength;
|
||||
denoiseNode.denoising_end = useRefinerStartEnd ? refinerStart : 1;
|
||||
|
||||
const i2lNode: Invocation<'i2l'> = {
|
||||
type: 'i2l',
|
||||
id: IMAGE_TO_LATENTS,
|
||||
is_intermediate: true,
|
||||
use_cache: true,
|
||||
fp32: vaePrecision === 'fp32',
|
||||
};
|
||||
|
||||
graph.nodes[i2lNode.id] = i2lNode;
|
||||
graph.edges.push({
|
||||
source: {
|
||||
node_id: IMAGE_TO_LATENTS,
|
||||
field: 'latents',
|
||||
},
|
||||
destination: {
|
||||
node_id: denoiseNode.id,
|
||||
field: 'latents',
|
||||
},
|
||||
});
|
||||
|
||||
if (layer.image.width !== width || layer.image.height !== height) {
|
||||
// The init image needs to be resized to the specified width and height before being passed to `IMAGE_TO_LATENTS`
|
||||
|
||||
// Create a resize node, explicitly setting its image
|
||||
const resizeNode: Invocation<'img_resize'> = {
|
||||
id: RESIZE,
|
||||
type: 'img_resize',
|
||||
image: {
|
||||
image_name: layer.image.name,
|
||||
},
|
||||
is_intermediate: true,
|
||||
width,
|
||||
height,
|
||||
};
|
||||
|
||||
graph.nodes[RESIZE] = resizeNode;
|
||||
|
||||
// The `RESIZE` node then passes its image to `IMAGE_TO_LATENTS`
|
||||
graph.edges.push({
|
||||
source: { node_id: RESIZE, field: 'image' },
|
||||
destination: {
|
||||
node_id: IMAGE_TO_LATENTS,
|
||||
field: 'image',
|
||||
},
|
||||
});
|
||||
|
||||
// The `RESIZE` node also passes its width and height to `NOISE`
|
||||
graph.edges.push({
|
||||
source: { node_id: RESIZE, field: 'width' },
|
||||
destination: {
|
||||
node_id: NOISE,
|
||||
field: 'width',
|
||||
},
|
||||
});
|
||||
|
||||
graph.edges.push({
|
||||
source: { node_id: RESIZE, field: 'height' },
|
||||
destination: {
|
||||
node_id: NOISE,
|
||||
field: 'height',
|
||||
},
|
||||
});
|
||||
} else {
|
||||
// We are not resizing, so we need to set the image on the `IMAGE_TO_LATENTS` node explicitly
|
||||
i2lNode.image = {
|
||||
image_name: layer.image.name,
|
||||
};
|
||||
|
||||
// Pass the image's dimensions to the `NOISE` node
|
||||
graph.edges.push({
|
||||
source: { node_id: IMAGE_TO_LATENTS, field: 'width' },
|
||||
destination: {
|
||||
node_id: NOISE,
|
||||
field: 'width',
|
||||
},
|
||||
});
|
||||
graph.edges.push({
|
||||
source: { node_id: IMAGE_TO_LATENTS, field: 'height' },
|
||||
destination: {
|
||||
node_id: NOISE,
|
||||
field: 'height',
|
||||
},
|
||||
});
|
||||
}
|
||||
|
||||
upsertMetadata(graph, { generation_mode: isSDXL ? 'sdxl_img2img' : 'img2img' });
|
||||
};
|
||||
|
||||
const isValidControlAdapter = (ca: ControlNetConfigV2 | T2IAdapterConfigV2, base: BaseModelType): boolean => {
|
||||
// Must be have a model that matches the current base and must have a control image
|
||||
const hasModel = Boolean(ca.model);
|
||||
const modelMatchesBase = ca.model?.base === base;
|
||||
const hasControlImage = Boolean(ca.image || (ca.processedImage && ca.processorConfig));
|
||||
return hasModel && modelMatchesBase && hasControlImage;
|
||||
};
|
||||
|
||||
const isValidIPAdapter = (ipa: IPAdapterConfigV2, base: BaseModelType): boolean => {
|
||||
// Must be have a model that matches the current base and must have a control image
|
||||
const hasModel = Boolean(ipa.model);
|
||||
const modelMatchesBase = ipa.model?.base === base;
|
||||
const hasImage = Boolean(ipa.image);
|
||||
return hasModel && modelMatchesBase && hasImage;
|
||||
};
|
||||
|
||||
const isValidLayer = (layer: Layer, base: BaseModelType) => {
|
||||
if (!layer.isEnabled) {
|
||||
return false;
|
||||
}
|
||||
if (isControlAdapterLayer(layer)) {
|
||||
return isValidControlAdapter(layer.controlAdapter, base);
|
||||
}
|
||||
if (isIPAdapterLayer(layer)) {
|
||||
return isValidIPAdapter(layer.ipAdapter, base);
|
||||
}
|
||||
if (isInitialImageLayer(layer)) {
|
||||
if (!layer.image) {
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
if (isRegionalGuidanceLayer(layer)) {
|
||||
if (layer.maskObjects.length === 0) {
|
||||
// Layer has no mask, meaning any guidance would be applied to an empty region.
|
||||
return false;
|
||||
}
|
||||
const hasTextPrompt = Boolean(layer.positivePrompt) || Boolean(layer.negativePrompt);
|
||||
const hasIPAdapter = layer.ipAdapters.filter((ipa) => isValidIPAdapter(ipa, base)).length > 0;
|
||||
return hasTextPrompt || hasIPAdapter;
|
||||
}
|
||||
return false;
|
||||
};
|
@ -1,79 +0,0 @@
|
||||
import type { RootState } from 'app/store/store';
|
||||
import { isInitialImageLayer } from 'features/controlLayers/store/controlLayersSlice';
|
||||
import type { ImageField } from 'features/nodes/types/common';
|
||||
import type { Graph } from 'features/nodes/util/graph/Graph';
|
||||
import { MetadataUtil } from 'features/nodes/util/graph/MetadataUtil';
|
||||
import type { Invocation } from 'services/api/types';
|
||||
|
||||
import { IMAGE_TO_LATENTS, RESIZE } from './constants';
|
||||
|
||||
/**
|
||||
* Adds the initial image to the graph and connects it to the denoise and noise nodes.
|
||||
* @param state The current Redux state
|
||||
* @param g The graph to add the initial image to
|
||||
* @param denoise The denoise node in the graph
|
||||
* @param noise The noise node in the graph
|
||||
* @returns Whether the initial image was added to the graph
|
||||
*/
|
||||
export const addGenerationTabInitialImage = (
|
||||
state: RootState,
|
||||
g: Graph,
|
||||
denoise: Invocation<'denoise_latents'>,
|
||||
noise: Invocation<'noise'>
|
||||
): Invocation<'i2l'> | null => {
|
||||
// Remove Existing UNet Connections
|
||||
const { img2imgStrength, vaePrecision, model } = state.generation;
|
||||
const { refinerModel, refinerStart } = state.sdxl;
|
||||
const { width, height } = state.controlLayers.present.size;
|
||||
const initialImageLayer = state.controlLayers.present.layers.find(isInitialImageLayer);
|
||||
const initialImage = initialImageLayer?.isEnabled ? initialImageLayer?.image : null;
|
||||
|
||||
if (!initialImage) {
|
||||
return null;
|
||||
}
|
||||
|
||||
const isSDXL = model?.base === 'sdxl';
|
||||
const useRefinerStartEnd = isSDXL && Boolean(refinerModel);
|
||||
const image: ImageField = {
|
||||
image_name: initialImage.imageName,
|
||||
};
|
||||
|
||||
denoise.denoising_start = useRefinerStartEnd ? Math.min(refinerStart, 1 - img2imgStrength) : 1 - img2imgStrength;
|
||||
denoise.denoising_end = useRefinerStartEnd ? refinerStart : 1;
|
||||
|
||||
const i2l = g.addNode({
|
||||
type: 'i2l',
|
||||
id: IMAGE_TO_LATENTS,
|
||||
fp32: vaePrecision === 'fp32',
|
||||
});
|
||||
g.addEdge(i2l, 'latents', denoise, 'latents');
|
||||
|
||||
if (initialImage.width !== width || initialImage.height !== height) {
|
||||
// The init image needs to be resized to the specified width and height before being passed to `IMAGE_TO_LATENTS`
|
||||
const resize = g.addNode({
|
||||
id: RESIZE,
|
||||
type: 'img_resize',
|
||||
image,
|
||||
width,
|
||||
height,
|
||||
});
|
||||
// The `RESIZE` node then passes its image, to `IMAGE_TO_LATENTS`
|
||||
g.addEdge(resize, 'image', i2l, 'image');
|
||||
// The `RESIZE` node also passes its width and height to `NOISE`
|
||||
g.addEdge(resize, 'width', noise, 'width');
|
||||
g.addEdge(resize, 'height', noise, 'height');
|
||||
} else {
|
||||
// We are not resizing, so we need to set the image on the `IMAGE_TO_LATENTS` node explicitly
|
||||
i2l.image = image;
|
||||
g.addEdge(i2l, 'width', noise, 'width');
|
||||
g.addEdge(i2l, 'height', noise, 'height');
|
||||
}
|
||||
|
||||
MetadataUtil.add(g, {
|
||||
generation_mode: isSDXL ? 'sdxl_img2img' : 'img2img',
|
||||
strength: img2imgStrength,
|
||||
init_image: initialImage.imageName,
|
||||
});
|
||||
|
||||
return i2l;
|
||||
};
|
@ -1,37 +0,0 @@
|
||||
import type { RootState } from 'app/store/store';
|
||||
import type { Graph } from 'features/nodes/util/graph/Graph';
|
||||
import { MetadataUtil } from 'features/nodes/util/graph/MetadataUtil';
|
||||
import type { Invocation } from 'services/api/types';
|
||||
|
||||
import { VAE_LOADER } from './constants';
|
||||
|
||||
export const addGenerationTabVAE = (
|
||||
state: RootState,
|
||||
g: Graph,
|
||||
modelLoader: Invocation<'main_model_loader'> | Invocation<'sdxl_model_loader'>,
|
||||
l2i: Invocation<'l2i'>,
|
||||
i2l: Invocation<'i2l'> | null,
|
||||
seamless: Invocation<'seamless'> | null
|
||||
): void => {
|
||||
const { vae } = state.generation;
|
||||
|
||||
// The seamless helper also adds the VAE loader... so we need to check if it's already there
|
||||
const shouldAddVAELoader = !g.hasNode(VAE_LOADER) && vae;
|
||||
const vaeLoader = shouldAddVAELoader
|
||||
? g.addNode({
|
||||
type: 'vae_loader',
|
||||
id: VAE_LOADER,
|
||||
vae_model: vae,
|
||||
})
|
||||
: null;
|
||||
|
||||
const vaeSource = seamless ? seamless : vaeLoader ? vaeLoader : modelLoader;
|
||||
g.addEdge(vaeSource, 'vae', l2i, 'vae');
|
||||
if (i2l) {
|
||||
g.addEdge(vaeSource, 'vae', i2l, 'vae');
|
||||
}
|
||||
|
||||
if (vae) {
|
||||
MetadataUtil.add(g, { vae });
|
||||
}
|
||||
};
|
@ -1,356 +0,0 @@
|
||||
import { logger } from 'app/logging/logger';
|
||||
import type { RootState } from 'app/store/store';
|
||||
import { roundToMultiple } from 'common/util/roundDownToMultiple';
|
||||
import { getBoardField, getIsIntermediate } from 'features/nodes/util/graph/graphBuilderUtils';
|
||||
import { selectOptimalDimension } from 'features/parameters/store/generationSlice';
|
||||
import type {
|
||||
DenoiseLatentsInvocation,
|
||||
Edge,
|
||||
ESRGANInvocation,
|
||||
LatentsToImageInvocation,
|
||||
NoiseInvocation,
|
||||
NonNullableGraph,
|
||||
} from 'services/api/types';
|
||||
|
||||
import {
|
||||
DENOISE_LATENTS,
|
||||
DENOISE_LATENTS_HRF,
|
||||
ESRGAN_HRF,
|
||||
IMAGE_TO_LATENTS_HRF,
|
||||
LATENTS_TO_IMAGE,
|
||||
LATENTS_TO_IMAGE_HRF_HR,
|
||||
LATENTS_TO_IMAGE_HRF_LR,
|
||||
MAIN_MODEL_LOADER,
|
||||
NOISE,
|
||||
NOISE_HRF,
|
||||
RESIZE_HRF,
|
||||
SEAMLESS,
|
||||
VAE_LOADER,
|
||||
} from './constants';
|
||||
import { setMetadataReceivingNode, upsertMetadata } from './metadata';
|
||||
|
||||
// Copy certain connections from previous DENOISE_LATENTS to new DENOISE_LATENTS_HRF.
|
||||
function copyConnectionsToDenoiseLatentsHrf(graph: NonNullableGraph): void {
|
||||
const destinationFields = [
|
||||
'control',
|
||||
'ip_adapter',
|
||||
'metadata',
|
||||
'unet',
|
||||
'positive_conditioning',
|
||||
'negative_conditioning',
|
||||
];
|
||||
const newEdges: Edge[] = [];
|
||||
|
||||
// Loop through the existing edges connected to DENOISE_LATENTS
|
||||
graph.edges.forEach((edge: Edge) => {
|
||||
if (edge.destination.node_id === DENOISE_LATENTS && destinationFields.includes(edge.destination.field)) {
|
||||
// Add a similar connection to DENOISE_LATENTS_HRF
|
||||
newEdges.push({
|
||||
source: {
|
||||
node_id: edge.source.node_id,
|
||||
field: edge.source.field,
|
||||
},
|
||||
destination: {
|
||||
node_id: DENOISE_LATENTS_HRF,
|
||||
field: edge.destination.field,
|
||||
},
|
||||
});
|
||||
}
|
||||
});
|
||||
graph.edges = graph.edges.concat(newEdges);
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculates the new resolution for high-resolution features (HRF) based on base model type.
|
||||
* Adjusts the width and height to maintain the aspect ratio and constrains them by the model's dimension limits,
|
||||
* rounding down to the nearest multiple of 8.
|
||||
*
|
||||
* @param {number} optimalDimension The optimal dimension for the base model.
|
||||
* @param {number} width The current width to be adjusted for HRF.
|
||||
* @param {number} height The current height to be adjusted for HRF.
|
||||
* @return {{newWidth: number, newHeight: number}} The new width and height, adjusted and rounded as needed.
|
||||
*/
|
||||
function calculateHrfRes(
|
||||
optimalDimension: number,
|
||||
width: number,
|
||||
height: number
|
||||
): { newWidth: number; newHeight: number } {
|
||||
const aspect = width / height;
|
||||
|
||||
const minDimension = Math.floor(optimalDimension * 0.5);
|
||||
const modelArea = optimalDimension * optimalDimension; // Assuming square images for model_area
|
||||
|
||||
let initWidth;
|
||||
let initHeight;
|
||||
|
||||
if (aspect > 1.0) {
|
||||
initHeight = Math.max(minDimension, Math.sqrt(modelArea / aspect));
|
||||
initWidth = initHeight * aspect;
|
||||
} else {
|
||||
initWidth = Math.max(minDimension, Math.sqrt(modelArea * aspect));
|
||||
initHeight = initWidth / aspect;
|
||||
}
|
||||
// Cap initial height and width to final height and width.
|
||||
initWidth = Math.min(width, initWidth);
|
||||
initHeight = Math.min(height, initHeight);
|
||||
|
||||
const newWidth = roundToMultiple(Math.floor(initWidth), 8);
|
||||
const newHeight = roundToMultiple(Math.floor(initHeight), 8);
|
||||
|
||||
return { newWidth, newHeight };
|
||||
}
|
||||
|
||||
// Adds the high-res fix feature to the given graph.
|
||||
export const addHrfToGraph = (state: RootState, graph: NonNullableGraph): void => {
|
||||
// Double check hrf is enabled.
|
||||
if (!state.hrf.hrfEnabled || state.config.disabledSDFeatures.includes('hrf')) {
|
||||
return;
|
||||
}
|
||||
const log = logger('generation');
|
||||
|
||||
const { vae, seamlessXAxis, seamlessYAxis } = state.generation;
|
||||
const { hrfStrength, hrfEnabled, hrfMethod } = state.hrf;
|
||||
const { width, height } = state.controlLayers.present.size;
|
||||
const isAutoVae = !vae;
|
||||
const isSeamlessEnabled = seamlessXAxis || seamlessYAxis;
|
||||
const optimalDimension = selectOptimalDimension(state);
|
||||
const { newWidth: hrfWidth, newHeight: hrfHeight } = calculateHrfRes(optimalDimension, width, height);
|
||||
|
||||
// Pre-existing (original) graph nodes.
|
||||
const originalDenoiseLatentsNode = graph.nodes[DENOISE_LATENTS] as DenoiseLatentsInvocation | undefined;
|
||||
const originalNoiseNode = graph.nodes[NOISE] as NoiseInvocation | undefined;
|
||||
const originalLatentsToImageNode = graph.nodes[LATENTS_TO_IMAGE] as LatentsToImageInvocation | undefined;
|
||||
if (!originalDenoiseLatentsNode) {
|
||||
log.error('originalDenoiseLatentsNode is undefined');
|
||||
return;
|
||||
}
|
||||
if (!originalNoiseNode) {
|
||||
log.error('originalNoiseNode is undefined');
|
||||
return;
|
||||
}
|
||||
if (!originalLatentsToImageNode) {
|
||||
log.error('originalLatentsToImageNode is undefined');
|
||||
return;
|
||||
}
|
||||
|
||||
// Change height and width of original noise node to initial resolution.
|
||||
if (originalNoiseNode) {
|
||||
originalNoiseNode.width = hrfWidth;
|
||||
originalNoiseNode.height = hrfHeight;
|
||||
}
|
||||
|
||||
// Define new nodes and their connections, roughly in order of operations.
|
||||
graph.nodes[LATENTS_TO_IMAGE_HRF_LR] = {
|
||||
type: 'l2i',
|
||||
id: LATENTS_TO_IMAGE_HRF_LR,
|
||||
fp32: originalLatentsToImageNode?.fp32,
|
||||
is_intermediate: true,
|
||||
};
|
||||
graph.edges.push(
|
||||
{
|
||||
source: {
|
||||
node_id: DENOISE_LATENTS,
|
||||
field: 'latents',
|
||||
},
|
||||
destination: {
|
||||
node_id: LATENTS_TO_IMAGE_HRF_LR,
|
||||
field: 'latents',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: isSeamlessEnabled ? SEAMLESS : isAutoVae ? MAIN_MODEL_LOADER : VAE_LOADER,
|
||||
field: 'vae',
|
||||
},
|
||||
destination: {
|
||||
node_id: LATENTS_TO_IMAGE_HRF_LR,
|
||||
field: 'vae',
|
||||
},
|
||||
}
|
||||
);
|
||||
|
||||
graph.nodes[RESIZE_HRF] = {
|
||||
id: RESIZE_HRF,
|
||||
type: 'img_resize',
|
||||
is_intermediate: true,
|
||||
width: width,
|
||||
height: height,
|
||||
};
|
||||
if (hrfMethod === 'ESRGAN') {
|
||||
let model_name: ESRGANInvocation['model_name'] = 'RealESRGAN_x2plus.pth';
|
||||
if ((width * height) / (hrfWidth * hrfHeight) > 2) {
|
||||
model_name = 'RealESRGAN_x4plus.pth';
|
||||
}
|
||||
graph.nodes[ESRGAN_HRF] = {
|
||||
id: ESRGAN_HRF,
|
||||
type: 'esrgan',
|
||||
model_name,
|
||||
is_intermediate: true,
|
||||
};
|
||||
graph.edges.push(
|
||||
{
|
||||
source: {
|
||||
node_id: LATENTS_TO_IMAGE_HRF_LR,
|
||||
field: 'image',
|
||||
},
|
||||
destination: {
|
||||
node_id: ESRGAN_HRF,
|
||||
field: 'image',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: ESRGAN_HRF,
|
||||
field: 'image',
|
||||
},
|
||||
destination: {
|
||||
node_id: RESIZE_HRF,
|
||||
field: 'image',
|
||||
},
|
||||
}
|
||||
);
|
||||
} else {
|
||||
graph.edges.push({
|
||||
source: {
|
||||
node_id: LATENTS_TO_IMAGE_HRF_LR,
|
||||
field: 'image',
|
||||
},
|
||||
destination: {
|
||||
node_id: RESIZE_HRF,
|
||||
field: 'image',
|
||||
},
|
||||
});
|
||||
}
|
||||
|
||||
graph.nodes[NOISE_HRF] = {
|
||||
type: 'noise',
|
||||
id: NOISE_HRF,
|
||||
seed: originalNoiseNode?.seed,
|
||||
use_cpu: originalNoiseNode?.use_cpu,
|
||||
is_intermediate: true,
|
||||
};
|
||||
graph.edges.push(
|
||||
{
|
||||
source: {
|
||||
node_id: RESIZE_HRF,
|
||||
field: 'height',
|
||||
},
|
||||
destination: {
|
||||
node_id: NOISE_HRF,
|
||||
field: 'height',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: RESIZE_HRF,
|
||||
field: 'width',
|
||||
},
|
||||
destination: {
|
||||
node_id: NOISE_HRF,
|
||||
field: 'width',
|
||||
},
|
||||
}
|
||||
);
|
||||
|
||||
graph.nodes[IMAGE_TO_LATENTS_HRF] = {
|
||||
type: 'i2l',
|
||||
id: IMAGE_TO_LATENTS_HRF,
|
||||
is_intermediate: true,
|
||||
};
|
||||
graph.edges.push(
|
||||
{
|
||||
source: {
|
||||
node_id: isSeamlessEnabled ? SEAMLESS : isAutoVae ? MAIN_MODEL_LOADER : VAE_LOADER,
|
||||
field: 'vae',
|
||||
},
|
||||
destination: {
|
||||
node_id: IMAGE_TO_LATENTS_HRF,
|
||||
field: 'vae',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: RESIZE_HRF,
|
||||
field: 'image',
|
||||
},
|
||||
destination: {
|
||||
node_id: IMAGE_TO_LATENTS_HRF,
|
||||
field: 'image',
|
||||
},
|
||||
}
|
||||
);
|
||||
|
||||
graph.nodes[DENOISE_LATENTS_HRF] = {
|
||||
type: 'denoise_latents',
|
||||
id: DENOISE_LATENTS_HRF,
|
||||
is_intermediate: true,
|
||||
cfg_scale: originalDenoiseLatentsNode?.cfg_scale,
|
||||
scheduler: originalDenoiseLatentsNode?.scheduler,
|
||||
steps: originalDenoiseLatentsNode?.steps,
|
||||
denoising_start: 1 - hrfStrength,
|
||||
denoising_end: 1,
|
||||
};
|
||||
graph.edges.push(
|
||||
{
|
||||
source: {
|
||||
node_id: IMAGE_TO_LATENTS_HRF,
|
||||
field: 'latents',
|
||||
},
|
||||
destination: {
|
||||
node_id: DENOISE_LATENTS_HRF,
|
||||
field: 'latents',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: NOISE_HRF,
|
||||
field: 'noise',
|
||||
},
|
||||
destination: {
|
||||
node_id: DENOISE_LATENTS_HRF,
|
||||
field: 'noise',
|
||||
},
|
||||
}
|
||||
);
|
||||
copyConnectionsToDenoiseLatentsHrf(graph);
|
||||
|
||||
// The original l2i node is unnecessary now, remove it
|
||||
graph.edges = graph.edges.filter((edge) => edge.destination.node_id !== LATENTS_TO_IMAGE);
|
||||
delete graph.nodes[LATENTS_TO_IMAGE];
|
||||
|
||||
graph.nodes[LATENTS_TO_IMAGE_HRF_HR] = {
|
||||
type: 'l2i',
|
||||
id: LATENTS_TO_IMAGE_HRF_HR,
|
||||
fp32: originalLatentsToImageNode?.fp32,
|
||||
is_intermediate: getIsIntermediate(state),
|
||||
board: getBoardField(state),
|
||||
};
|
||||
graph.edges.push(
|
||||
{
|
||||
source: {
|
||||
node_id: isSeamlessEnabled ? SEAMLESS : isAutoVae ? MAIN_MODEL_LOADER : VAE_LOADER,
|
||||
field: 'vae',
|
||||
},
|
||||
destination: {
|
||||
node_id: LATENTS_TO_IMAGE_HRF_HR,
|
||||
field: 'vae',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: DENOISE_LATENTS_HRF,
|
||||
field: 'latents',
|
||||
},
|
||||
destination: {
|
||||
node_id: LATENTS_TO_IMAGE_HRF_HR,
|
||||
field: 'latents',
|
||||
},
|
||||
}
|
||||
);
|
||||
upsertMetadata(graph, {
|
||||
hrf_strength: hrfStrength,
|
||||
hrf_enabled: hrfEnabled,
|
||||
hrf_method: hrfMethod,
|
||||
});
|
||||
setMetadataReceivingNode(graph, LATENTS_TO_IMAGE_HRF_HR);
|
||||
};
|
@ -1,17 +1,20 @@
|
||||
import { logger } from 'app/logging/logger';
|
||||
import type { RootState } from 'app/store/store';
|
||||
import { isInitialImageLayer, isRegionalGuidanceLayer } from 'features/controlLayers/store/controlLayersSlice';
|
||||
import { fetchModelConfigWithTypeGuard } from 'features/metadata/util/modelFetchingHelpers';
|
||||
import { addControlLayersToGraph } from 'features/nodes/util/graph/addControlLayersToGraph';
|
||||
import { getBoardField, getIsIntermediate } from 'features/nodes/util/graph/graphBuilderUtils';
|
||||
import { isNonRefinerMainModelConfig, type NonNullableGraph } from 'services/api/types';
|
||||
import { addGenerationTabControlLayers } from 'features/nodes/util/graph/addGenerationTabControlLayers';
|
||||
import { addGenerationTabHRF } from 'features/nodes/util/graph/addGenerationTabHRF';
|
||||
import { addGenerationTabLoRAs } from 'features/nodes/util/graph/addGenerationTabLoRAs';
|
||||
import { addGenerationTabNSFWChecker } from 'features/nodes/util/graph/addGenerationTabNSFWChecker';
|
||||
import { addGenerationTabSeamless } from 'features/nodes/util/graph/addGenerationTabSeamless';
|
||||
import { addGenerationTabWatermarker } from 'features/nodes/util/graph/addGenerationTabWatermarker';
|
||||
import type { GraphType } from 'features/nodes/util/graph/Graph';
|
||||
import { Graph } from 'features/nodes/util/graph/Graph';
|
||||
import { getBoardField } from 'features/nodes/util/graph/graphBuilderUtils';
|
||||
import { MetadataUtil } from 'features/nodes/util/graph/MetadataUtil';
|
||||
import type { Invocation } from 'services/api/types';
|
||||
import { isNonRefinerMainModelConfig } from 'services/api/types';
|
||||
import { assert } from 'tsafe';
|
||||
|
||||
import { addHrfToGraph } from './addHrfToGraph';
|
||||
import { addLoRAsToGraph } from './addLoRAsToGraph';
|
||||
import { addNSFWCheckerToGraph } from './addNSFWCheckerToGraph';
|
||||
import { addSeamlessToLinearGraph } from './addSeamlessToLinearGraph';
|
||||
import { addVAEToGraph } from './addVAEToGraph';
|
||||
import { addWatermarkerToGraph } from './addWatermarkerToGraph';
|
||||
import {
|
||||
CLIP_SKIP,
|
||||
CONTROL_LAYERS_GRAPH,
|
||||
@ -19,249 +22,166 @@ import {
|
||||
LATENTS_TO_IMAGE,
|
||||
MAIN_MODEL_LOADER,
|
||||
NEGATIVE_CONDITIONING,
|
||||
NEGATIVE_CONDITIONING_COLLECT,
|
||||
NOISE,
|
||||
POSITIVE_CONDITIONING,
|
||||
SEAMLESS,
|
||||
POSITIVE_CONDITIONING_COLLECT,
|
||||
VAE_LOADER,
|
||||
} from './constants';
|
||||
import { addCoreMetadataNode, getModelMetadataField } from './metadata';
|
||||
import { getModelMetadataField } from './metadata';
|
||||
|
||||
export const buildGenerationTabGraph = async (state: RootState): Promise<NonNullableGraph> => {
|
||||
const log = logger('nodes');
|
||||
export const buildGenerationTabGraph = async (state: RootState): Promise<GraphType> => {
|
||||
const {
|
||||
model,
|
||||
cfgScale: cfg_scale,
|
||||
cfgRescaleMultiplier: cfg_rescale_multiplier,
|
||||
scheduler,
|
||||
steps,
|
||||
clipSkip,
|
||||
clipSkip: skipped_layers,
|
||||
shouldUseCpuNoise,
|
||||
vaePrecision,
|
||||
seamlessXAxis,
|
||||
seamlessYAxis,
|
||||
seed,
|
||||
vae,
|
||||
} = state.generation;
|
||||
const { positivePrompt, negativePrompt } = state.controlLayers.present;
|
||||
const { width, height } = state.controlLayers.present.size;
|
||||
|
||||
const use_cpu = shouldUseCpuNoise;
|
||||
assert(model, 'No model found in state');
|
||||
|
||||
if (!model) {
|
||||
log.error('No model found in state');
|
||||
throw new Error('No model found in state');
|
||||
}
|
||||
const g = new Graph(CONTROL_LAYERS_GRAPH);
|
||||
const modelLoader = g.addNode({
|
||||
type: 'main_model_loader',
|
||||
id: MAIN_MODEL_LOADER,
|
||||
model,
|
||||
});
|
||||
const clipSkip = g.addNode({
|
||||
type: 'clip_skip',
|
||||
id: CLIP_SKIP,
|
||||
skipped_layers,
|
||||
});
|
||||
const posCond = g.addNode({
|
||||
type: 'compel',
|
||||
id: POSITIVE_CONDITIONING,
|
||||
prompt: positivePrompt,
|
||||
});
|
||||
const posCondCollect = g.addNode({
|
||||
type: 'collect',
|
||||
id: POSITIVE_CONDITIONING_COLLECT,
|
||||
});
|
||||
const negCond = g.addNode({
|
||||
type: 'compel',
|
||||
id: NEGATIVE_CONDITIONING,
|
||||
prompt: negativePrompt,
|
||||
});
|
||||
const negCondCollect = g.addNode({
|
||||
type: 'collect',
|
||||
id: NEGATIVE_CONDITIONING_COLLECT,
|
||||
});
|
||||
const noise = g.addNode({
|
||||
type: 'noise',
|
||||
id: NOISE,
|
||||
seed,
|
||||
width,
|
||||
height,
|
||||
use_cpu: shouldUseCpuNoise,
|
||||
});
|
||||
const denoise = g.addNode({
|
||||
type: 'denoise_latents',
|
||||
id: DENOISE_LATENTS,
|
||||
cfg_scale,
|
||||
cfg_rescale_multiplier,
|
||||
scheduler,
|
||||
steps,
|
||||
denoising_start: 0,
|
||||
denoising_end: 1,
|
||||
});
|
||||
const l2i = g.addNode({
|
||||
type: 'l2i',
|
||||
id: LATENTS_TO_IMAGE,
|
||||
fp32: vaePrecision === 'fp32',
|
||||
board: getBoardField(state),
|
||||
// This is the terminal node and must always save to gallery.
|
||||
is_intermediate: false,
|
||||
use_cache: false,
|
||||
});
|
||||
const vaeLoader =
|
||||
vae?.base === model.base
|
||||
? g.addNode({
|
||||
type: 'vae_loader',
|
||||
id: VAE_LOADER,
|
||||
vae_model: vae,
|
||||
})
|
||||
: null;
|
||||
|
||||
const fp32 = vaePrecision === 'fp32';
|
||||
const is_intermediate = true;
|
||||
let imageOutput: Invocation<'l2i'> | Invocation<'img_nsfw'> | Invocation<'img_watermark'> = l2i;
|
||||
|
||||
let modelLoaderNodeId = MAIN_MODEL_LOADER;
|
||||
|
||||
/**
|
||||
* The easiest way to build linear graphs is to do it in the node editor, then copy and paste the
|
||||
* full graph here as a template. Then use the parameters from app state and set friendlier node
|
||||
* ids.
|
||||
*
|
||||
* The only thing we need extra logic for is handling randomized seed, control net, and for img2img,
|
||||
* the `fit` param. These are added to the graph at the end.
|
||||
*/
|
||||
|
||||
// copy-pasted graph from node editor, filled in with state values & friendly node ids
|
||||
|
||||
const graph: NonNullableGraph = {
|
||||
id: CONTROL_LAYERS_GRAPH,
|
||||
nodes: {
|
||||
[modelLoaderNodeId]: {
|
||||
type: 'main_model_loader',
|
||||
id: modelLoaderNodeId,
|
||||
is_intermediate,
|
||||
model,
|
||||
},
|
||||
[CLIP_SKIP]: {
|
||||
type: 'clip_skip',
|
||||
id: CLIP_SKIP,
|
||||
skipped_layers: clipSkip,
|
||||
is_intermediate,
|
||||
},
|
||||
[POSITIVE_CONDITIONING]: {
|
||||
type: 'compel',
|
||||
id: POSITIVE_CONDITIONING,
|
||||
prompt: positivePrompt,
|
||||
is_intermediate,
|
||||
},
|
||||
[NEGATIVE_CONDITIONING]: {
|
||||
type: 'compel',
|
||||
id: NEGATIVE_CONDITIONING,
|
||||
prompt: negativePrompt,
|
||||
is_intermediate,
|
||||
},
|
||||
[NOISE]: {
|
||||
type: 'noise',
|
||||
id: NOISE,
|
||||
seed,
|
||||
width,
|
||||
height,
|
||||
use_cpu,
|
||||
is_intermediate,
|
||||
},
|
||||
[DENOISE_LATENTS]: {
|
||||
type: 'denoise_latents',
|
||||
id: DENOISE_LATENTS,
|
||||
is_intermediate,
|
||||
cfg_scale,
|
||||
cfg_rescale_multiplier,
|
||||
scheduler,
|
||||
steps,
|
||||
denoising_start: 0,
|
||||
denoising_end: 1,
|
||||
},
|
||||
[LATENTS_TO_IMAGE]: {
|
||||
type: 'l2i',
|
||||
id: LATENTS_TO_IMAGE,
|
||||
fp32,
|
||||
is_intermediate: getIsIntermediate(state),
|
||||
board: getBoardField(state),
|
||||
use_cache: false,
|
||||
},
|
||||
},
|
||||
edges: [
|
||||
// Connect Model Loader to UNet and CLIP Skip
|
||||
{
|
||||
source: {
|
||||
node_id: modelLoaderNodeId,
|
||||
field: 'unet',
|
||||
},
|
||||
destination: {
|
||||
node_id: DENOISE_LATENTS,
|
||||
field: 'unet',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: modelLoaderNodeId,
|
||||
field: 'clip',
|
||||
},
|
||||
destination: {
|
||||
node_id: CLIP_SKIP,
|
||||
field: 'clip',
|
||||
},
|
||||
},
|
||||
// Connect CLIP Skip to Conditioning
|
||||
{
|
||||
source: {
|
||||
node_id: CLIP_SKIP,
|
||||
field: 'clip',
|
||||
},
|
||||
destination: {
|
||||
node_id: POSITIVE_CONDITIONING,
|
||||
field: 'clip',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: CLIP_SKIP,
|
||||
field: 'clip',
|
||||
},
|
||||
destination: {
|
||||
node_id: NEGATIVE_CONDITIONING,
|
||||
field: 'clip',
|
||||
},
|
||||
},
|
||||
// Connect everything to Denoise Latents
|
||||
{
|
||||
source: {
|
||||
node_id: POSITIVE_CONDITIONING,
|
||||
field: 'conditioning',
|
||||
},
|
||||
destination: {
|
||||
node_id: DENOISE_LATENTS,
|
||||
field: 'positive_conditioning',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: NEGATIVE_CONDITIONING,
|
||||
field: 'conditioning',
|
||||
},
|
||||
destination: {
|
||||
node_id: DENOISE_LATENTS,
|
||||
field: 'negative_conditioning',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: NOISE,
|
||||
field: 'noise',
|
||||
},
|
||||
destination: {
|
||||
node_id: DENOISE_LATENTS,
|
||||
field: 'noise',
|
||||
},
|
||||
},
|
||||
// Decode Denoised Latents To Image
|
||||
{
|
||||
source: {
|
||||
node_id: DENOISE_LATENTS,
|
||||
field: 'latents',
|
||||
},
|
||||
destination: {
|
||||
node_id: LATENTS_TO_IMAGE,
|
||||
field: 'latents',
|
||||
},
|
||||
},
|
||||
],
|
||||
};
|
||||
g.addEdge(modelLoader, 'unet', denoise, 'unet');
|
||||
g.addEdge(modelLoader, 'clip', clipSkip, 'clip');
|
||||
g.addEdge(clipSkip, 'clip', posCond, 'clip');
|
||||
g.addEdge(clipSkip, 'clip', negCond, 'clip');
|
||||
g.addEdge(posCond, 'conditioning', posCondCollect, 'item');
|
||||
g.addEdge(negCond, 'conditioning', negCondCollect, 'item');
|
||||
g.addEdge(posCondCollect, 'collection', denoise, 'positive_conditioning');
|
||||
g.addEdge(negCondCollect, 'collection', denoise, 'negative_conditioning');
|
||||
g.addEdge(noise, 'noise', denoise, 'noise');
|
||||
g.addEdge(denoise, 'latents', l2i, 'latents');
|
||||
|
||||
const modelConfig = await fetchModelConfigWithTypeGuard(model.key, isNonRefinerMainModelConfig);
|
||||
|
||||
addCoreMetadataNode(
|
||||
graph,
|
||||
{
|
||||
generation_mode: 'txt2img',
|
||||
cfg_scale,
|
||||
cfg_rescale_multiplier,
|
||||
height,
|
||||
width,
|
||||
positive_prompt: positivePrompt,
|
||||
negative_prompt: negativePrompt,
|
||||
model: getModelMetadataField(modelConfig),
|
||||
seed,
|
||||
steps,
|
||||
rand_device: use_cpu ? 'cpu' : 'cuda',
|
||||
scheduler,
|
||||
clip_skip: clipSkip,
|
||||
},
|
||||
LATENTS_TO_IMAGE
|
||||
MetadataUtil.add(g, {
|
||||
generation_mode: 'txt2img',
|
||||
cfg_scale,
|
||||
cfg_rescale_multiplier,
|
||||
height,
|
||||
width,
|
||||
positive_prompt: positivePrompt,
|
||||
negative_prompt: negativePrompt,
|
||||
model: getModelMetadataField(modelConfig),
|
||||
seed,
|
||||
steps,
|
||||
rand_device: shouldUseCpuNoise ? 'cpu' : 'cuda',
|
||||
scheduler,
|
||||
clip_skip: skipped_layers,
|
||||
vae: vae ?? undefined,
|
||||
});
|
||||
g.validate();
|
||||
|
||||
const seamless = addGenerationTabSeamless(state, g, denoise, modelLoader, vaeLoader);
|
||||
g.validate();
|
||||
|
||||
addGenerationTabLoRAs(state, g, denoise, modelLoader, seamless, clipSkip, posCond, negCond);
|
||||
g.validate();
|
||||
|
||||
// We might get the VAE from the main model, custom VAE, or seamless node.
|
||||
const vaeSource = seamless ?? vaeLoader ?? modelLoader;
|
||||
g.addEdge(vaeSource, 'vae', l2i, 'vae');
|
||||
|
||||
const addedLayers = await addGenerationTabControlLayers(
|
||||
state,
|
||||
g,
|
||||
denoise,
|
||||
posCond,
|
||||
negCond,
|
||||
posCondCollect,
|
||||
negCondCollect,
|
||||
noise,
|
||||
vaeSource
|
||||
);
|
||||
g.validate();
|
||||
|
||||
// Add Seamless To Graph
|
||||
if (seamlessXAxis || seamlessYAxis) {
|
||||
addSeamlessToLinearGraph(state, graph, modelLoaderNodeId);
|
||||
modelLoaderNodeId = SEAMLESS;
|
||||
const isHRFAllowed = !addedLayers.some((l) => isInitialImageLayer(l) || isRegionalGuidanceLayer(l));
|
||||
if (isHRFAllowed && state.hrf.hrfEnabled) {
|
||||
imageOutput = addGenerationTabHRF(state, g, denoise, noise, l2i, vaeSource);
|
||||
}
|
||||
|
||||
// add LoRA support
|
||||
await addLoRAsToGraph(state, graph, DENOISE_LATENTS, modelLoaderNodeId);
|
||||
|
||||
const addedLayers = await addControlLayersToGraph(state, graph, DENOISE_LATENTS);
|
||||
|
||||
// optionally add custom VAE
|
||||
await addVAEToGraph(state, graph, modelLoaderNodeId);
|
||||
|
||||
const shouldUseHRF = !addedLayers.some((l) => isInitialImageLayer(l) || isRegionalGuidanceLayer(l));
|
||||
// High resolution fix.
|
||||
if (state.hrf.hrfEnabled && shouldUseHRF) {
|
||||
addHrfToGraph(state, graph);
|
||||
}
|
||||
|
||||
// NSFW & watermark - must be last thing added to graph
|
||||
if (state.system.shouldUseNSFWChecker) {
|
||||
// must add before watermarker!
|
||||
addNSFWCheckerToGraph(state, graph);
|
||||
imageOutput = addGenerationTabNSFWChecker(g, imageOutput);
|
||||
}
|
||||
|
||||
if (state.system.shouldUseWatermarker) {
|
||||
// must add after nsfw checker!
|
||||
addWatermarkerToGraph(state, graph);
|
||||
imageOutput = addGenerationTabWatermarker(g, imageOutput);
|
||||
}
|
||||
|
||||
return graph;
|
||||
MetadataUtil.setMetadataReceivingNode(g, imageOutput);
|
||||
return g.getGraph();
|
||||
};
|
||||
|
@ -1,187 +0,0 @@
|
||||
import type { RootState } from 'app/store/store';
|
||||
import { isInitialImageLayer, isRegionalGuidanceLayer } from 'features/controlLayers/store/controlLayersSlice';
|
||||
import { fetchModelConfigWithTypeGuard } from 'features/metadata/util/modelFetchingHelpers';
|
||||
import { addGenerationTabControlLayers } from 'features/nodes/util/graph/addGenerationTabControlLayers';
|
||||
import { addGenerationTabHRF } from 'features/nodes/util/graph/addGenerationTabHRF';
|
||||
import { addGenerationTabLoRAs } from 'features/nodes/util/graph/addGenerationTabLoRAs';
|
||||
import { addGenerationTabNSFWChecker } from 'features/nodes/util/graph/addGenerationTabNSFWChecker';
|
||||
import { addGenerationTabSeamless } from 'features/nodes/util/graph/addGenerationTabSeamless';
|
||||
import { addGenerationTabWatermarker } from 'features/nodes/util/graph/addGenerationTabWatermarker';
|
||||
import type { GraphType } from 'features/nodes/util/graph/Graph';
|
||||
import { Graph } from 'features/nodes/util/graph/Graph';
|
||||
import { getBoardField } from 'features/nodes/util/graph/graphBuilderUtils';
|
||||
import { MetadataUtil } from 'features/nodes/util/graph/MetadataUtil';
|
||||
import type { Invocation } from 'services/api/types';
|
||||
import { isNonRefinerMainModelConfig } from 'services/api/types';
|
||||
import { assert } from 'tsafe';
|
||||
|
||||
import {
|
||||
CLIP_SKIP,
|
||||
CONTROL_LAYERS_GRAPH,
|
||||
DENOISE_LATENTS,
|
||||
LATENTS_TO_IMAGE,
|
||||
MAIN_MODEL_LOADER,
|
||||
NEGATIVE_CONDITIONING,
|
||||
NEGATIVE_CONDITIONING_COLLECT,
|
||||
NOISE,
|
||||
POSITIVE_CONDITIONING,
|
||||
POSITIVE_CONDITIONING_COLLECT,
|
||||
VAE_LOADER,
|
||||
} from './constants';
|
||||
import { getModelMetadataField } from './metadata';
|
||||
|
||||
export const buildGenerationTabGraph2 = async (state: RootState): Promise<GraphType> => {
|
||||
const {
|
||||
model,
|
||||
cfgScale: cfg_scale,
|
||||
cfgRescaleMultiplier: cfg_rescale_multiplier,
|
||||
scheduler,
|
||||
steps,
|
||||
clipSkip: skipped_layers,
|
||||
shouldUseCpuNoise,
|
||||
vaePrecision,
|
||||
seed,
|
||||
vae,
|
||||
} = state.generation;
|
||||
const { positivePrompt, negativePrompt } = state.controlLayers.present;
|
||||
const { width, height } = state.controlLayers.present.size;
|
||||
|
||||
assert(model, 'No model found in state');
|
||||
|
||||
const g = new Graph(CONTROL_LAYERS_GRAPH);
|
||||
const modelLoader = g.addNode({
|
||||
type: 'main_model_loader',
|
||||
id: MAIN_MODEL_LOADER,
|
||||
model,
|
||||
});
|
||||
const clipSkip = g.addNode({
|
||||
type: 'clip_skip',
|
||||
id: CLIP_SKIP,
|
||||
skipped_layers,
|
||||
});
|
||||
const posCond = g.addNode({
|
||||
type: 'compel',
|
||||
id: POSITIVE_CONDITIONING,
|
||||
prompt: positivePrompt,
|
||||
});
|
||||
const posCondCollect = g.addNode({
|
||||
type: 'collect',
|
||||
id: POSITIVE_CONDITIONING_COLLECT,
|
||||
});
|
||||
const negCond = g.addNode({
|
||||
type: 'compel',
|
||||
id: NEGATIVE_CONDITIONING,
|
||||
prompt: negativePrompt,
|
||||
});
|
||||
const negCondCollect = g.addNode({
|
||||
type: 'collect',
|
||||
id: NEGATIVE_CONDITIONING_COLLECT,
|
||||
});
|
||||
const noise = g.addNode({
|
||||
type: 'noise',
|
||||
id: NOISE,
|
||||
seed,
|
||||
width,
|
||||
height,
|
||||
use_cpu: shouldUseCpuNoise,
|
||||
});
|
||||
const denoise = g.addNode({
|
||||
type: 'denoise_latents',
|
||||
id: DENOISE_LATENTS,
|
||||
cfg_scale,
|
||||
cfg_rescale_multiplier,
|
||||
scheduler,
|
||||
steps,
|
||||
denoising_start: 0,
|
||||
denoising_end: 1,
|
||||
});
|
||||
const l2i = g.addNode({
|
||||
type: 'l2i',
|
||||
id: LATENTS_TO_IMAGE,
|
||||
fp32: vaePrecision === 'fp32',
|
||||
board: getBoardField(state),
|
||||
// This is the terminal node and must always save to gallery.
|
||||
is_intermediate: false,
|
||||
use_cache: false,
|
||||
});
|
||||
const vaeLoader =
|
||||
vae?.base === model.base
|
||||
? g.addNode({
|
||||
type: 'vae_loader',
|
||||
id: VAE_LOADER,
|
||||
vae_model: vae,
|
||||
})
|
||||
: null;
|
||||
|
||||
let imageOutput: Invocation<'l2i'> | Invocation<'img_nsfw'> | Invocation<'img_watermark'> = l2i;
|
||||
|
||||
g.addEdge(modelLoader, 'unet', denoise, 'unet');
|
||||
g.addEdge(modelLoader, 'clip', clipSkip, 'clip');
|
||||
g.addEdge(clipSkip, 'clip', posCond, 'clip');
|
||||
g.addEdge(clipSkip, 'clip', negCond, 'clip');
|
||||
g.addEdge(posCond, 'conditioning', posCondCollect, 'item');
|
||||
g.addEdge(negCond, 'conditioning', negCondCollect, 'item');
|
||||
g.addEdge(posCondCollect, 'collection', denoise, 'positive_conditioning');
|
||||
g.addEdge(negCondCollect, 'collection', denoise, 'negative_conditioning');
|
||||
g.addEdge(noise, 'noise', denoise, 'noise');
|
||||
g.addEdge(denoise, 'latents', l2i, 'latents');
|
||||
|
||||
const modelConfig = await fetchModelConfigWithTypeGuard(model.key, isNonRefinerMainModelConfig);
|
||||
|
||||
MetadataUtil.add(g, {
|
||||
generation_mode: 'txt2img',
|
||||
cfg_scale,
|
||||
cfg_rescale_multiplier,
|
||||
height,
|
||||
width,
|
||||
positive_prompt: positivePrompt,
|
||||
negative_prompt: negativePrompt,
|
||||
model: getModelMetadataField(modelConfig),
|
||||
seed,
|
||||
steps,
|
||||
rand_device: shouldUseCpuNoise ? 'cpu' : 'cuda',
|
||||
scheduler,
|
||||
clip_skip: skipped_layers,
|
||||
vae: vae ?? undefined,
|
||||
});
|
||||
g.validate();
|
||||
|
||||
const seamless = addGenerationTabSeamless(state, g, denoise, modelLoader, vaeLoader);
|
||||
g.validate();
|
||||
|
||||
addGenerationTabLoRAs(state, g, denoise, modelLoader, seamless, clipSkip, posCond, negCond);
|
||||
g.validate();
|
||||
|
||||
// We might get the VAE from the main model, custom VAE, or seamless node.
|
||||
const vaeSource = seamless ?? vaeLoader ?? modelLoader;
|
||||
g.addEdge(vaeSource, 'vae', l2i, 'vae');
|
||||
|
||||
const addedLayers = await addGenerationTabControlLayers(
|
||||
state,
|
||||
g,
|
||||
denoise,
|
||||
posCond,
|
||||
negCond,
|
||||
posCondCollect,
|
||||
negCondCollect,
|
||||
noise,
|
||||
vaeSource
|
||||
);
|
||||
g.validate();
|
||||
|
||||
const isHRFAllowed = !addedLayers.some((l) => isInitialImageLayer(l) || isRegionalGuidanceLayer(l));
|
||||
if (isHRFAllowed && state.hrf.hrfEnabled) {
|
||||
imageOutput = addGenerationTabHRF(state, g, denoise, noise, l2i, vaeSource);
|
||||
}
|
||||
|
||||
if (state.system.shouldUseNSFWChecker) {
|
||||
imageOutput = addGenerationTabNSFWChecker(g, imageOutput);
|
||||
}
|
||||
|
||||
if (state.system.shouldUseWatermarker) {
|
||||
imageOutput = addGenerationTabWatermarker(g, imageOutput);
|
||||
}
|
||||
|
||||
MetadataUtil.setMetadataReceivingNode(g, imageOutput);
|
||||
return g.getGraph();
|
||||
};
|
@ -1,31 +1,33 @@
|
||||
import { logger } from 'app/logging/logger';
|
||||
import type { RootState } from 'app/store/store';
|
||||
import { fetchModelConfigWithTypeGuard } from 'features/metadata/util/modelFetchingHelpers';
|
||||
import { addControlLayersToGraph } from 'features/nodes/util/graph/addControlLayersToGraph';
|
||||
import { isNonRefinerMainModelConfig, type NonNullableGraph } from 'services/api/types';
|
||||
import { addGenerationTabControlLayers } from 'features/nodes/util/graph/addGenerationTabControlLayers';
|
||||
import { addGenerationTabNSFWChecker } from 'features/nodes/util/graph/addGenerationTabNSFWChecker';
|
||||
import { addGenerationTabSDXLLoRAs } from 'features/nodes/util/graph/addGenerationTabSDXLLoRAs';
|
||||
import { addGenerationTabSDXLRefiner } from 'features/nodes/util/graph/addGenerationTabSDXLRefiner';
|
||||
import { addGenerationTabSeamless } from 'features/nodes/util/graph/addGenerationTabSeamless';
|
||||
import { addGenerationTabWatermarker } from 'features/nodes/util/graph/addGenerationTabWatermarker';
|
||||
import { Graph } from 'features/nodes/util/graph/Graph';
|
||||
import { MetadataUtil } from 'features/nodes/util/graph/MetadataUtil';
|
||||
import type { Invocation, NonNullableGraph } from 'services/api/types';
|
||||
import { isNonRefinerMainModelConfig } from 'services/api/types';
|
||||
import { assert } from 'tsafe';
|
||||
|
||||
import { addNSFWCheckerToGraph } from './addNSFWCheckerToGraph';
|
||||
import { addSDXLLoRAsToGraph } from './addSDXLLoRAstoGraph';
|
||||
import { addSDXLRefinerToGraph } from './addSDXLRefinerToGraph';
|
||||
import { addSeamlessToLinearGraph } from './addSeamlessToLinearGraph';
|
||||
import { addVAEToGraph } from './addVAEToGraph';
|
||||
import { addWatermarkerToGraph } from './addWatermarkerToGraph';
|
||||
import {
|
||||
LATENTS_TO_IMAGE,
|
||||
NEGATIVE_CONDITIONING,
|
||||
NEGATIVE_CONDITIONING_COLLECT,
|
||||
NOISE,
|
||||
POSITIVE_CONDITIONING,
|
||||
POSITIVE_CONDITIONING_COLLECT,
|
||||
SDXL_CONTROL_LAYERS_GRAPH,
|
||||
SDXL_DENOISE_LATENTS,
|
||||
SDXL_MODEL_LOADER,
|
||||
SDXL_REFINER_SEAMLESS,
|
||||
SEAMLESS,
|
||||
VAE_LOADER,
|
||||
} from './constants';
|
||||
import { getBoardField, getIsIntermediate, getSDXLStylePrompts } from './graphBuilderUtils';
|
||||
import { addCoreMetadataNode, getModelMetadataField } from './metadata';
|
||||
import { getBoardField, getSDXLStylePrompts } from './graphBuilderUtils';
|
||||
import { getModelMetadataField } from './metadata';
|
||||
|
||||
export const buildGenerationTabSDXLGraph = async (state: RootState): Promise<NonNullableGraph> => {
|
||||
const log = logger('nodes');
|
||||
const {
|
||||
model,
|
||||
cfgScale: cfg_scale,
|
||||
@ -35,244 +37,142 @@ export const buildGenerationTabSDXLGraph = async (state: RootState): Promise<Non
|
||||
steps,
|
||||
shouldUseCpuNoise,
|
||||
vaePrecision,
|
||||
seamlessXAxis,
|
||||
seamlessYAxis,
|
||||
vae,
|
||||
} = state.generation;
|
||||
const { positivePrompt, negativePrompt } = state.controlLayers.present;
|
||||
const { width, height } = state.controlLayers.present.size;
|
||||
|
||||
const { refinerModel, refinerStart } = state.sdxl;
|
||||
|
||||
const use_cpu = shouldUseCpuNoise;
|
||||
assert(model, 'No model found in state');
|
||||
|
||||
if (!model) {
|
||||
log.error('No model found in state');
|
||||
throw new Error('No model found in state');
|
||||
}
|
||||
|
||||
const fp32 = vaePrecision === 'fp32';
|
||||
const is_intermediate = true;
|
||||
|
||||
// Construct Style Prompt
|
||||
const { positiveStylePrompt, negativeStylePrompt } = getSDXLStylePrompts(state);
|
||||
|
||||
// Model Loader ID
|
||||
let modelLoaderNodeId = SDXL_MODEL_LOADER;
|
||||
const g = new Graph(SDXL_CONTROL_LAYERS_GRAPH);
|
||||
const modelLoader = g.addNode({
|
||||
type: 'sdxl_model_loader',
|
||||
id: SDXL_MODEL_LOADER,
|
||||
model,
|
||||
});
|
||||
const posCond = g.addNode({
|
||||
type: 'sdxl_compel_prompt',
|
||||
id: POSITIVE_CONDITIONING,
|
||||
prompt: positivePrompt,
|
||||
style: positiveStylePrompt,
|
||||
});
|
||||
const posCondCollect = g.addNode({
|
||||
type: 'collect',
|
||||
id: POSITIVE_CONDITIONING_COLLECT,
|
||||
});
|
||||
const negCond = g.addNode({
|
||||
type: 'sdxl_compel_prompt',
|
||||
id: NEGATIVE_CONDITIONING,
|
||||
prompt: negativePrompt,
|
||||
style: negativeStylePrompt,
|
||||
});
|
||||
const negCondCollect = g.addNode({
|
||||
type: 'collect',
|
||||
id: NEGATIVE_CONDITIONING_COLLECT,
|
||||
});
|
||||
const noise = g.addNode({ type: 'noise', id: NOISE, seed, width, height, use_cpu: shouldUseCpuNoise });
|
||||
const denoise = g.addNode({
|
||||
type: 'denoise_latents',
|
||||
id: SDXL_DENOISE_LATENTS,
|
||||
cfg_scale,
|
||||
cfg_rescale_multiplier,
|
||||
scheduler,
|
||||
steps,
|
||||
denoising_start: 0,
|
||||
denoising_end: refinerModel ? refinerStart : 1,
|
||||
});
|
||||
const l2i = g.addNode({
|
||||
type: 'l2i',
|
||||
id: LATENTS_TO_IMAGE,
|
||||
fp32: vaePrecision === 'fp32',
|
||||
board: getBoardField(state),
|
||||
// This is the terminal node and must always save to gallery.
|
||||
is_intermediate: false,
|
||||
use_cache: false,
|
||||
});
|
||||
const vaeLoader =
|
||||
vae?.base === model.base
|
||||
? g.addNode({
|
||||
type: 'vae_loader',
|
||||
id: VAE_LOADER,
|
||||
vae_model: vae,
|
||||
})
|
||||
: null;
|
||||
|
||||
/**
|
||||
* The easiest way to build linear graphs is to do it in the node editor, then copy and paste the
|
||||
* full graph here as a template. Then use the parameters from app state and set friendlier node
|
||||
* ids.
|
||||
*
|
||||
* The only thing we need extra logic for is handling randomized seed, control net, and for img2img,
|
||||
* the `fit` param. These are added to the graph at the end.
|
||||
*/
|
||||
let imageOutput: Invocation<'l2i'> | Invocation<'img_nsfw'> | Invocation<'img_watermark'> = l2i;
|
||||
|
||||
// copy-pasted graph from node editor, filled in with state values & friendly node ids
|
||||
const graph: NonNullableGraph = {
|
||||
id: SDXL_CONTROL_LAYERS_GRAPH,
|
||||
nodes: {
|
||||
[modelLoaderNodeId]: {
|
||||
type: 'sdxl_model_loader',
|
||||
id: modelLoaderNodeId,
|
||||
model,
|
||||
is_intermediate,
|
||||
},
|
||||
[POSITIVE_CONDITIONING]: {
|
||||
type: 'sdxl_compel_prompt',
|
||||
id: POSITIVE_CONDITIONING,
|
||||
prompt: positivePrompt,
|
||||
style: positiveStylePrompt,
|
||||
is_intermediate,
|
||||
},
|
||||
[NEGATIVE_CONDITIONING]: {
|
||||
type: 'sdxl_compel_prompt',
|
||||
id: NEGATIVE_CONDITIONING,
|
||||
prompt: negativePrompt,
|
||||
style: negativeStylePrompt,
|
||||
is_intermediate,
|
||||
},
|
||||
[NOISE]: {
|
||||
type: 'noise',
|
||||
id: NOISE,
|
||||
seed,
|
||||
width,
|
||||
height,
|
||||
use_cpu,
|
||||
is_intermediate,
|
||||
},
|
||||
[SDXL_DENOISE_LATENTS]: {
|
||||
type: 'denoise_latents',
|
||||
id: SDXL_DENOISE_LATENTS,
|
||||
cfg_scale,
|
||||
cfg_rescale_multiplier,
|
||||
scheduler,
|
||||
steps,
|
||||
denoising_start: 0,
|
||||
denoising_end: refinerModel ? refinerStart : 1,
|
||||
is_intermediate,
|
||||
},
|
||||
[LATENTS_TO_IMAGE]: {
|
||||
type: 'l2i',
|
||||
id: LATENTS_TO_IMAGE,
|
||||
fp32,
|
||||
is_intermediate: getIsIntermediate(state),
|
||||
board: getBoardField(state),
|
||||
use_cache: false,
|
||||
},
|
||||
},
|
||||
edges: [
|
||||
// Connect Model Loader to UNet, VAE & CLIP
|
||||
{
|
||||
source: {
|
||||
node_id: modelLoaderNodeId,
|
||||
field: 'unet',
|
||||
},
|
||||
destination: {
|
||||
node_id: SDXL_DENOISE_LATENTS,
|
||||
field: 'unet',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: modelLoaderNodeId,
|
||||
field: 'clip',
|
||||
},
|
||||
destination: {
|
||||
node_id: POSITIVE_CONDITIONING,
|
||||
field: 'clip',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: modelLoaderNodeId,
|
||||
field: 'clip2',
|
||||
},
|
||||
destination: {
|
||||
node_id: POSITIVE_CONDITIONING,
|
||||
field: 'clip2',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: modelLoaderNodeId,
|
||||
field: 'clip',
|
||||
},
|
||||
destination: {
|
||||
node_id: NEGATIVE_CONDITIONING,
|
||||
field: 'clip',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: modelLoaderNodeId,
|
||||
field: 'clip2',
|
||||
},
|
||||
destination: {
|
||||
node_id: NEGATIVE_CONDITIONING,
|
||||
field: 'clip2',
|
||||
},
|
||||
},
|
||||
// Connect everything to Denoise Latents
|
||||
{
|
||||
source: {
|
||||
node_id: POSITIVE_CONDITIONING,
|
||||
field: 'conditioning',
|
||||
},
|
||||
destination: {
|
||||
node_id: SDXL_DENOISE_LATENTS,
|
||||
field: 'positive_conditioning',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: NEGATIVE_CONDITIONING,
|
||||
field: 'conditioning',
|
||||
},
|
||||
destination: {
|
||||
node_id: SDXL_DENOISE_LATENTS,
|
||||
field: 'negative_conditioning',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: NOISE,
|
||||
field: 'noise',
|
||||
},
|
||||
destination: {
|
||||
node_id: SDXL_DENOISE_LATENTS,
|
||||
field: 'noise',
|
||||
},
|
||||
},
|
||||
// Decode Denoised Latents To Image
|
||||
{
|
||||
source: {
|
||||
node_id: SDXL_DENOISE_LATENTS,
|
||||
field: 'latents',
|
||||
},
|
||||
destination: {
|
||||
node_id: LATENTS_TO_IMAGE,
|
||||
field: 'latents',
|
||||
},
|
||||
},
|
||||
],
|
||||
};
|
||||
g.addEdge(modelLoader, 'unet', denoise, 'unet');
|
||||
g.addEdge(modelLoader, 'clip', posCond, 'clip');
|
||||
g.addEdge(modelLoader, 'clip', negCond, 'clip');
|
||||
g.addEdge(modelLoader, 'clip2', posCond, 'clip2');
|
||||
g.addEdge(modelLoader, 'clip2', negCond, 'clip2');
|
||||
g.addEdge(posCond, 'conditioning', posCondCollect, 'item');
|
||||
g.addEdge(negCond, 'conditioning', negCondCollect, 'item');
|
||||
g.addEdge(posCondCollect, 'collection', denoise, 'positive_conditioning');
|
||||
g.addEdge(negCondCollect, 'collection', denoise, 'negative_conditioning');
|
||||
g.addEdge(noise, 'noise', denoise, 'noise');
|
||||
g.addEdge(denoise, 'latents', l2i, 'latents');
|
||||
|
||||
const modelConfig = await fetchModelConfigWithTypeGuard(model.key, isNonRefinerMainModelConfig);
|
||||
|
||||
addCoreMetadataNode(
|
||||
graph,
|
||||
{
|
||||
generation_mode: 'txt2img',
|
||||
cfg_scale,
|
||||
cfg_rescale_multiplier,
|
||||
height,
|
||||
width,
|
||||
positive_prompt: positivePrompt,
|
||||
negative_prompt: negativePrompt,
|
||||
model: getModelMetadataField(modelConfig),
|
||||
seed,
|
||||
steps,
|
||||
rand_device: use_cpu ? 'cpu' : 'cuda',
|
||||
scheduler,
|
||||
positive_style_prompt: positiveStylePrompt,
|
||||
negative_style_prompt: negativeStylePrompt,
|
||||
},
|
||||
LATENTS_TO_IMAGE
|
||||
);
|
||||
MetadataUtil.add(g, {
|
||||
generation_mode: 'txt2img',
|
||||
cfg_scale,
|
||||
cfg_rescale_multiplier,
|
||||
height,
|
||||
width,
|
||||
positive_prompt: positivePrompt,
|
||||
negative_prompt: negativePrompt,
|
||||
model: getModelMetadataField(modelConfig),
|
||||
seed,
|
||||
steps,
|
||||
rand_device: shouldUseCpuNoise ? 'cpu' : 'cuda',
|
||||
scheduler,
|
||||
positive_style_prompt: positiveStylePrompt,
|
||||
negative_style_prompt: negativeStylePrompt,
|
||||
vae: vae ?? undefined,
|
||||
});
|
||||
g.validate();
|
||||
|
||||
// Add Seamless To Graph
|
||||
if (seamlessXAxis || seamlessYAxis) {
|
||||
addSeamlessToLinearGraph(state, graph, modelLoaderNodeId);
|
||||
modelLoaderNodeId = SEAMLESS;
|
||||
}
|
||||
const seamless = addGenerationTabSeamless(state, g, denoise, modelLoader, vaeLoader);
|
||||
g.validate();
|
||||
|
||||
addGenerationTabSDXLLoRAs(state, g, denoise, modelLoader, seamless, posCond, negCond);
|
||||
g.validate();
|
||||
|
||||
// We might get the VAE from the main model, custom VAE, or seamless node.
|
||||
const vaeSource = seamless ?? vaeLoader ?? modelLoader;
|
||||
g.addEdge(vaeSource, 'vae', l2i, 'vae');
|
||||
|
||||
// Add Refiner if enabled
|
||||
if (refinerModel) {
|
||||
await addSDXLRefinerToGraph(state, graph, SDXL_DENOISE_LATENTS);
|
||||
if (seamlessXAxis || seamlessYAxis) {
|
||||
modelLoaderNodeId = SDXL_REFINER_SEAMLESS;
|
||||
}
|
||||
await addGenerationTabSDXLRefiner(state, g, denoise, modelLoader, seamless, posCond, negCond, l2i);
|
||||
}
|
||||
|
||||
// add LoRA support
|
||||
await addSDXLLoRAsToGraph(state, graph, SDXL_DENOISE_LATENTS, modelLoaderNodeId);
|
||||
await addGenerationTabControlLayers(
|
||||
state,
|
||||
g,
|
||||
denoise,
|
||||
posCond,
|
||||
negCond,
|
||||
posCondCollect,
|
||||
negCondCollect,
|
||||
noise,
|
||||
vaeSource
|
||||
);
|
||||
|
||||
await addControlLayersToGraph(state, graph, SDXL_DENOISE_LATENTS);
|
||||
|
||||
// optionally add custom VAE
|
||||
await addVAEToGraph(state, graph, modelLoaderNodeId);
|
||||
|
||||
// NSFW & watermark - must be last thing added to graph
|
||||
if (state.system.shouldUseNSFWChecker) {
|
||||
// must add before watermarker!
|
||||
addNSFWCheckerToGraph(state, graph);
|
||||
imageOutput = addGenerationTabNSFWChecker(g, imageOutput);
|
||||
}
|
||||
|
||||
if (state.system.shouldUseWatermarker) {
|
||||
// must add after nsfw checker!
|
||||
addWatermarkerToGraph(state, graph);
|
||||
imageOutput = addGenerationTabWatermarker(g, imageOutput);
|
||||
}
|
||||
|
||||
return graph;
|
||||
MetadataUtil.setMetadataReceivingNode(g, imageOutput);
|
||||
return g.getGraph();
|
||||
};
|
||||
|
@ -1,178 +0,0 @@
|
||||
import type { RootState } from 'app/store/store';
|
||||
import { fetchModelConfigWithTypeGuard } from 'features/metadata/util/modelFetchingHelpers';
|
||||
import { addGenerationTabControlLayers } from 'features/nodes/util/graph/addGenerationTabControlLayers';
|
||||
import { addGenerationTabNSFWChecker } from 'features/nodes/util/graph/addGenerationTabNSFWChecker';
|
||||
import { addGenerationTabSDXLLoRAs } from 'features/nodes/util/graph/addGenerationTabSDXLLoRAs';
|
||||
import { addGenerationTabSDXLRefiner } from 'features/nodes/util/graph/addGenerationTabSDXLRefiner';
|
||||
import { addGenerationTabSeamless } from 'features/nodes/util/graph/addGenerationTabSeamless';
|
||||
import { addGenerationTabWatermarker } from 'features/nodes/util/graph/addGenerationTabWatermarker';
|
||||
import { Graph } from 'features/nodes/util/graph/Graph';
|
||||
import { MetadataUtil } from 'features/nodes/util/graph/MetadataUtil';
|
||||
import type { Invocation, NonNullableGraph } from 'services/api/types';
|
||||
import { isNonRefinerMainModelConfig } from 'services/api/types';
|
||||
import { assert } from 'tsafe';
|
||||
|
||||
import {
|
||||
LATENTS_TO_IMAGE,
|
||||
NEGATIVE_CONDITIONING,
|
||||
NEGATIVE_CONDITIONING_COLLECT,
|
||||
NOISE,
|
||||
POSITIVE_CONDITIONING,
|
||||
POSITIVE_CONDITIONING_COLLECT,
|
||||
SDXL_CONTROL_LAYERS_GRAPH,
|
||||
SDXL_DENOISE_LATENTS,
|
||||
SDXL_MODEL_LOADER,
|
||||
VAE_LOADER,
|
||||
} from './constants';
|
||||
import { getBoardField, getSDXLStylePrompts } from './graphBuilderUtils';
|
||||
import { getModelMetadataField } from './metadata';
|
||||
|
||||
export const buildGenerationTabSDXLGraph2 = async (state: RootState): Promise<NonNullableGraph> => {
|
||||
const {
|
||||
model,
|
||||
cfgScale: cfg_scale,
|
||||
cfgRescaleMultiplier: cfg_rescale_multiplier,
|
||||
scheduler,
|
||||
seed,
|
||||
steps,
|
||||
shouldUseCpuNoise,
|
||||
vaePrecision,
|
||||
vae,
|
||||
} = state.generation;
|
||||
const { positivePrompt, negativePrompt } = state.controlLayers.present;
|
||||
const { width, height } = state.controlLayers.present.size;
|
||||
|
||||
const { refinerModel, refinerStart } = state.sdxl;
|
||||
|
||||
assert(model, 'No model found in state');
|
||||
|
||||
const { positiveStylePrompt, negativeStylePrompt } = getSDXLStylePrompts(state);
|
||||
|
||||
const g = new Graph(SDXL_CONTROL_LAYERS_GRAPH);
|
||||
const modelLoader = g.addNode({
|
||||
type: 'sdxl_model_loader',
|
||||
id: SDXL_MODEL_LOADER,
|
||||
model,
|
||||
});
|
||||
const posCond = g.addNode({
|
||||
type: 'sdxl_compel_prompt',
|
||||
id: POSITIVE_CONDITIONING,
|
||||
prompt: positivePrompt,
|
||||
style: positiveStylePrompt,
|
||||
});
|
||||
const posCondCollect = g.addNode({
|
||||
type: 'collect',
|
||||
id: POSITIVE_CONDITIONING_COLLECT,
|
||||
});
|
||||
const negCond = g.addNode({
|
||||
type: 'sdxl_compel_prompt',
|
||||
id: NEGATIVE_CONDITIONING,
|
||||
prompt: negativePrompt,
|
||||
style: negativeStylePrompt,
|
||||
});
|
||||
const negCondCollect = g.addNode({
|
||||
type: 'collect',
|
||||
id: NEGATIVE_CONDITIONING_COLLECT,
|
||||
});
|
||||
const noise = g.addNode({ type: 'noise', id: NOISE, seed, width, height, use_cpu: shouldUseCpuNoise });
|
||||
const denoise = g.addNode({
|
||||
type: 'denoise_latents',
|
||||
id: SDXL_DENOISE_LATENTS,
|
||||
cfg_scale,
|
||||
cfg_rescale_multiplier,
|
||||
scheduler,
|
||||
steps,
|
||||
denoising_start: 0,
|
||||
denoising_end: refinerModel ? refinerStart : 1,
|
||||
});
|
||||
const l2i = g.addNode({
|
||||
type: 'l2i',
|
||||
id: LATENTS_TO_IMAGE,
|
||||
fp32: vaePrecision === 'fp32',
|
||||
board: getBoardField(state),
|
||||
// This is the terminal node and must always save to gallery.
|
||||
is_intermediate: false,
|
||||
use_cache: false,
|
||||
});
|
||||
const vaeLoader =
|
||||
vae?.base === model.base
|
||||
? g.addNode({
|
||||
type: 'vae_loader',
|
||||
id: VAE_LOADER,
|
||||
vae_model: vae,
|
||||
})
|
||||
: null;
|
||||
|
||||
let imageOutput: Invocation<'l2i'> | Invocation<'img_nsfw'> | Invocation<'img_watermark'> = l2i;
|
||||
|
||||
g.addEdge(modelLoader, 'unet', denoise, 'unet');
|
||||
g.addEdge(modelLoader, 'clip', posCond, 'clip');
|
||||
g.addEdge(modelLoader, 'clip', negCond, 'clip');
|
||||
g.addEdge(modelLoader, 'clip2', posCond, 'clip2');
|
||||
g.addEdge(modelLoader, 'clip2', negCond, 'clip2');
|
||||
g.addEdge(posCond, 'conditioning', posCondCollect, 'item');
|
||||
g.addEdge(negCond, 'conditioning', negCondCollect, 'item');
|
||||
g.addEdge(posCondCollect, 'collection', denoise, 'positive_conditioning');
|
||||
g.addEdge(negCondCollect, 'collection', denoise, 'negative_conditioning');
|
||||
g.addEdge(noise, 'noise', denoise, 'noise');
|
||||
g.addEdge(denoise, 'latents', l2i, 'latents');
|
||||
|
||||
const modelConfig = await fetchModelConfigWithTypeGuard(model.key, isNonRefinerMainModelConfig);
|
||||
|
||||
MetadataUtil.add(g, {
|
||||
generation_mode: 'txt2img',
|
||||
cfg_scale,
|
||||
cfg_rescale_multiplier,
|
||||
height,
|
||||
width,
|
||||
positive_prompt: positivePrompt,
|
||||
negative_prompt: negativePrompt,
|
||||
model: getModelMetadataField(modelConfig),
|
||||
seed,
|
||||
steps,
|
||||
rand_device: shouldUseCpuNoise ? 'cpu' : 'cuda',
|
||||
scheduler,
|
||||
positive_style_prompt: positiveStylePrompt,
|
||||
negative_style_prompt: negativeStylePrompt,
|
||||
vae: vae ?? undefined,
|
||||
});
|
||||
g.validate();
|
||||
|
||||
const seamless = addGenerationTabSeamless(state, g, denoise, modelLoader, vaeLoader);
|
||||
g.validate();
|
||||
|
||||
addGenerationTabSDXLLoRAs(state, g, denoise, modelLoader, seamless, posCond, negCond);
|
||||
g.validate();
|
||||
|
||||
// We might get the VAE from the main model, custom VAE, or seamless node.
|
||||
const vaeSource = seamless ?? vaeLoader ?? modelLoader;
|
||||
g.addEdge(vaeSource, 'vae', l2i, 'vae');
|
||||
|
||||
// Add Refiner if enabled
|
||||
if (refinerModel) {
|
||||
await addGenerationTabSDXLRefiner(state, g, denoise, modelLoader, seamless, posCond, negCond, l2i);
|
||||
}
|
||||
|
||||
await addGenerationTabControlLayers(
|
||||
state,
|
||||
g,
|
||||
denoise,
|
||||
posCond,
|
||||
negCond,
|
||||
posCondCollect,
|
||||
negCondCollect,
|
||||
noise,
|
||||
vaeSource
|
||||
);
|
||||
|
||||
if (state.system.shouldUseNSFWChecker) {
|
||||
imageOutput = addGenerationTabNSFWChecker(g, imageOutput);
|
||||
}
|
||||
|
||||
if (state.system.shouldUseWatermarker) {
|
||||
imageOutput = addGenerationTabWatermarker(g, imageOutput);
|
||||
}
|
||||
|
||||
MetadataUtil.setMetadataReceivingNode(g, imageOutput);
|
||||
return g.getGraph();
|
||||
};
|
@ -58,21 +58,6 @@ export const getHasMetadata = (graph: NonNullableGraph): boolean => {
|
||||
return Boolean(metadataNode);
|
||||
};
|
||||
|
||||
export const setMetadataReceivingNode = (graph: NonNullableGraph, nodeId: string) => {
|
||||
graph.edges = graph.edges.filter((edge) => edge.source.node_id !== METADATA);
|
||||
|
||||
graph.edges.push({
|
||||
source: {
|
||||
node_id: METADATA,
|
||||
field: 'metadata',
|
||||
},
|
||||
destination: {
|
||||
node_id: nodeId,
|
||||
field: 'metadata',
|
||||
},
|
||||
});
|
||||
};
|
||||
|
||||
export const getModelMetadataField = ({ key, hash, name, base, type }: AnyModelConfig): ModelIdentifierField => ({
|
||||
key,
|
||||
hash,
|
||||
|
Loading…
Reference in New Issue
Block a user