Improve inpainting by color-correcting result and pasting init image over result using mask

This commit is contained in:
Kyle Schouviller 2022-10-22 14:56:33 -07:00 committed by Lincoln Stein
parent ce6d618e3b
commit 493eaa7389
2 changed files with 55 additions and 10 deletions

View File

@ -271,6 +271,8 @@ class Generate:
upscale = None, upscale = None,
# this is specific to inpainting and causes more extreme inpainting # this is specific to inpainting and causes more extreme inpainting
inpaint_replace = 0.0, inpaint_replace = 0.0,
# This will help match inpainted areas to the original image more smoothly
mask_blur_radius: int = 8,
# Set this True to handle KeyboardInterrupt internally # Set this True to handle KeyboardInterrupt internally
catch_interrupts = False, catch_interrupts = False,
hires_fix = False, hires_fix = False,
@ -391,7 +393,7 @@ class Generate:
log_tokens =self.log_tokenization log_tokens =self.log_tokenization
) )
init_image,mask_image = self._make_images( init_image,mask_image,pil_image,pil_mask = self._make_images(
init_img, init_img,
init_mask, init_mask,
width, width,
@ -431,6 +433,8 @@ class Generate:
height=height, height=height,
init_img=init_img, # embiggen needs to manipulate from the unmodified init_img init_img=init_img, # embiggen needs to manipulate from the unmodified init_img
init_image=init_image, # notice that init_image is different from init_img init_image=init_image, # notice that init_image is different from init_img
pil_image=pil_image,
pil_mask=pil_mask,
mask_image=mask_image, mask_image=mask_image,
strength=strength, strength=strength,
threshold=threshold, threshold=threshold,
@ -438,6 +442,7 @@ class Generate:
embiggen=embiggen, embiggen=embiggen,
embiggen_tiles=embiggen_tiles, embiggen_tiles=embiggen_tiles,
inpaint_replace=inpaint_replace, inpaint_replace=inpaint_replace,
mask_blur_radius=mask_blur_radius
) )
if init_color: if init_color:
@ -621,7 +626,7 @@ class Generate:
init_image = None init_image = None
init_mask = None init_mask = None
if not img: if not img:
return None, None return None, None, None, None
image = self._load_img(img) image = self._load_img(img)
@ -647,7 +652,7 @@ class Generate:
elif text_mask: elif text_mask:
init_mask = self._txt2mask(image, text_mask, width, height, fit=fit) init_mask = self._txt2mask(image, text_mask, width, height, fit=fit)
return init_image, init_mask return init_image, init_mask, image, mask_image
def _make_base(self): def _make_base(self):
if not self.generators.get('base'): if not self.generators.get('base'):
@ -895,8 +900,9 @@ class Generate:
# The mask is expected to have the region to be inpainted # The mask is expected to have the region to be inpainted
# with alpha transparency. It converts it into a black/white # with alpha transparency. It converts it into a black/white
# image with the transparent part black. # image with the transparent part black.
def _image_to_mask(self, mask_image, invert=False) -> Image: def _image_to_mask(self, mask_image: Image.Image, invert=False) -> Image:
if mask_image.mode in ('L','RGB'): # Obtain the mask from the transparency channel
if mask_image.mode == 'L':
mask = mask_image mask = mask_image
else: else:
# Obtain the mask from the transparency channel # Obtain the mask from the transparency channel

View File

@ -3,7 +3,11 @@ ldm.invoke.generator.inpaint descends from ldm.invoke.generator
''' '''
import torch import torch
import torchvision.transforms as T
import numpy as np import numpy as np
import cv2 as cv
from PIL import Image, ImageFilter
from skimage.exposure.histogram_matching import match_histograms
from einops import rearrange, repeat from einops import rearrange, repeat
from ldm.invoke.devices import choose_autocast from ldm.invoke.devices import choose_autocast
from ldm.invoke.generator.img2img import Img2Img from ldm.invoke.generator.img2img import Img2Img
@ -18,12 +22,27 @@ class Inpaint(Img2Img):
@torch.no_grad() @torch.no_grad()
def get_make_image(self,prompt,sampler,steps,cfg_scale,ddim_eta, def get_make_image(self,prompt,sampler,steps,cfg_scale,ddim_eta,
conditioning,init_image,mask_image,strength, conditioning,init_image,mask_image,strength,
step_callback=None,inpaint_replace=False,**kwargs): pil_image: Image.Image, pil_mask: Image.Image,
mask_blur_radius: int = 8,
step_callback=None,inpaint_replace=False, **kwargs):
""" """
Returns a function returning an image derived from the prompt and Returns a function returning an image derived from the prompt and
the initial image + mask. Return value depends on the seed at the initial image + mask. Return value depends on the seed at
the time you call it. kwargs are 'init_latent' and 'strength' the time you call it. kwargs are 'init_latent' and 'strength'
""" """
# Get the alpha channel of the mask
pil_init_mask = pil_mask.getchannel('A')
pil_init_image = pil_image.convert('RGBA') # Add an alpha channel if one doesn't exist
# Build an image with only visible pixels from source to use as reference for color-matching.
# Note that this doesn't use the mask, which would exclude some source image pixels from the
# histogram and cause slight color changes.
init_rgb_pixels = np.asarray(pil_image.convert('RGB'), dtype=np.uint8).reshape(pil_image.width * pil_image.height, 3)
init_a_pixels = np.asarray(pil_init_image.getchannel('A'), dtype=np.uint8).reshape(pil_init_mask.width * pil_init_mask.height)
init_rgb_pixels = init_rgb_pixels[init_a_pixels > 0]
init_rgb_pixels = init_rgb_pixels.reshape(1, init_rgb_pixels.shape[0], init_rgb_pixels.shape[1]) # Filter to just pixels that have any alpha, this is now our histogram
# klms samplers not supported yet, so ignore previous sampler # klms samplers not supported yet, so ignore previous sampler
if isinstance(sampler,KSampler): if isinstance(sampler,KSampler):
print( print(
@ -78,9 +97,29 @@ class Inpaint(Img2Img):
init_latent = self.init_latent init_latent = self.init_latent
) )
return self.sample_to_image(samples) # Get PIL result
gen_result = self.sample_to_image(samples).convert('RGB')
# Get numpy version
np_gen_result = np.asarray(gen_result, dtype=np.uint8)
# Color correct
np_matched_result = match_histograms(np_gen_result, init_rgb_pixels, channel_axis=-1)
matched_result = Image.fromarray(np_matched_result, mode='RGB')
# Blur the mask out (into init image) by specified amount
if mask_blur_radius > 0:
nm = np.asarray(pil_init_mask, dtype=np.uint8)
nmd = cv.dilate(nm, kernel=np.ones((3,3), dtype=np.uint8), iterations=int(mask_blur_radius / 2))
pmd = Image.fromarray(nmd, mode='L')
blurred_init_mask = pmd.filter(ImageFilter.BoxBlur(mask_blur_radius))
else:
blurred_init_mask = pil_init_mask
# Paste original on color-corrected generation (using blurred mask)
matched_result.paste(pil_image, (0,0), mask = blurred_init_mask)
return matched_result
return make_image return make_image