mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Remove inpainting support from MultiDiffusionPipeline.
This commit is contained in:
parent
20322d781e
commit
493fcd8660
@ -6,15 +6,13 @@ from typing import Any, Callable, Optional
|
||||
import torch
|
||||
|
||||
from invokeai.backend.stable_diffusion.diffusers_pipeline import (
|
||||
AddsMaskGuidance,
|
||||
ControlNetData,
|
||||
PipelineIntermediateState,
|
||||
StableDiffusionGeneratorPipeline,
|
||||
T2IAdapterData,
|
||||
is_inpainting_model,
|
||||
)
|
||||
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import IPAdapterData, TextConditioningData
|
||||
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import TextConditioningData
|
||||
from invokeai.backend.stable_diffusion.diffusion.unet_attention_patcher import UNetAttentionPatcher
|
||||
from invokeai.backend.tiles.utils import Tile
|
||||
|
||||
|
||||
class MultiDiffusionPipeline(StableDiffusionGeneratorPipeline):
|
||||
@ -46,35 +44,23 @@ class MultiDiffusionPipeline(StableDiffusionGeneratorPipeline):
|
||||
# - TBD, need to think about this more
|
||||
# - step(...) remains mostly unmodified, is not overriden in this sub-class.
|
||||
# - May need a cleaner AddsMaskGuidance implementation to handle this plan... we'll see.
|
||||
def latents_from_embeddings(
|
||||
def multi_diffusion_denoise(
|
||||
self,
|
||||
regions: list[Tile],
|
||||
latents: torch.Tensor,
|
||||
scheduler_step_kwargs: dict[str, Any],
|
||||
conditioning_data: TextConditioningData,
|
||||
noise: Optional[torch.Tensor],
|
||||
seed: int,
|
||||
timesteps: torch.Tensor,
|
||||
init_timestep: torch.Tensor,
|
||||
callback: Callable[[PipelineIntermediateState], None],
|
||||
control_data: list[ControlNetData] | None = None,
|
||||
ip_adapter_data: Optional[list[IPAdapterData]] = None,
|
||||
t2i_adapter_data: Optional[list[T2IAdapterData]] = None,
|
||||
mask: Optional[torch.Tensor] = None,
|
||||
masked_latents: Optional[torch.Tensor] = None,
|
||||
is_gradient_mask: bool = False,
|
||||
) -> torch.Tensor:
|
||||
if ip_adapter_data is not None:
|
||||
raise NotImplementedError("ip_adapter_data is not supported in MultiDiffusionPipeline")
|
||||
if t2i_adapter_data is not None:
|
||||
raise NotImplementedError("t2i_adapter_data is not supported in MultiDiffusionPipeline")
|
||||
|
||||
# TODO(ryand): Figure out why this condition is necessary, and document it. My guess is that it's to handle
|
||||
# cases where densoisings_start and denoising_end are set such that there are no timesteps.
|
||||
if init_timestep.shape[0] == 0 or timesteps.shape[0] == 0:
|
||||
return latents
|
||||
|
||||
orig_latents = latents.clone()
|
||||
|
||||
batch_size = latents.shape[0]
|
||||
batched_init_timestep = init_timestep.expand(batch_size)
|
||||
|
||||
@ -85,32 +71,10 @@ class MultiDiffusionPipeline(StableDiffusionGeneratorPipeline):
|
||||
# latents = noise * self.scheduler.init_noise_sigma # it's like in t2l according to diffusers
|
||||
latents = self.scheduler.add_noise(latents, noise, batched_init_timestep)
|
||||
|
||||
# TODO(ryand): Look into the implications of passing in latents here that are larger than they will be after
|
||||
# cropping into regions.
|
||||
self._adjust_memory_efficient_attention(latents)
|
||||
|
||||
# Handle mask guidance (a.k.a. inpainting).
|
||||
mask_guidance: AddsMaskGuidance | None = None
|
||||
if mask is not None and not is_inpainting_model(self.unet):
|
||||
# We are doing inpainting, since a mask is provided, but we are not using an inpainting model, so we will
|
||||
# apply mask guidance to the latents.
|
||||
|
||||
# 'noise' might be None if the latents have already been noised (e.g. when running the SDXL refiner).
|
||||
# We still need noise for inpainting, so we generate it from the seed here.
|
||||
if noise is None:
|
||||
noise = torch.randn(
|
||||
orig_latents.shape,
|
||||
dtype=torch.float32,
|
||||
device="cpu",
|
||||
generator=torch.Generator(device="cpu").manual_seed(seed),
|
||||
).to(device=orig_latents.device, dtype=orig_latents.dtype)
|
||||
|
||||
mask_guidance = AddsMaskGuidance(
|
||||
mask=mask,
|
||||
mask_latents=orig_latents,
|
||||
scheduler=self.scheduler,
|
||||
noise=noise,
|
||||
is_gradient_mask=is_gradient_mask,
|
||||
)
|
||||
|
||||
use_regional_prompting = (
|
||||
conditioning_data.cond_regions is not None or conditioning_data.uncond_regions is not None
|
||||
)
|
||||
@ -141,9 +105,9 @@ class MultiDiffusionPipeline(StableDiffusionGeneratorPipeline):
|
||||
step_index=i,
|
||||
total_step_count=len(timesteps),
|
||||
scheduler_step_kwargs=scheduler_step_kwargs,
|
||||
mask_guidance=mask_guidance,
|
||||
mask=mask,
|
||||
masked_latents=masked_latents,
|
||||
mask_guidance=None,
|
||||
mask=None,
|
||||
masked_latents=None,
|
||||
control_data=control_data,
|
||||
)
|
||||
latents = step_output.prev_sample
|
||||
@ -160,14 +124,4 @@ class MultiDiffusionPipeline(StableDiffusionGeneratorPipeline):
|
||||
)
|
||||
)
|
||||
|
||||
# restore unmasked part after the last step is completed
|
||||
# in-process masking happens before each step
|
||||
if mask is not None:
|
||||
if is_gradient_mask:
|
||||
latents = torch.where(mask > 0, latents, orig_latents)
|
||||
else:
|
||||
latents = torch.lerp(
|
||||
orig_latents, latents.to(dtype=orig_latents.dtype), mask.to(dtype=orig_latents.dtype)
|
||||
)
|
||||
|
||||
return latents
|
||||
|
Loading…
Reference in New Issue
Block a user