Remove inpainting support from MultiDiffusionPipeline.

This commit is contained in:
Ryan Dick 2024-06-17 13:22:43 -04:00
parent 20322d781e
commit 493fcd8660

View File

@ -6,15 +6,13 @@ from typing import Any, Callable, Optional
import torch
from invokeai.backend.stable_diffusion.diffusers_pipeline import (
AddsMaskGuidance,
ControlNetData,
PipelineIntermediateState,
StableDiffusionGeneratorPipeline,
T2IAdapterData,
is_inpainting_model,
)
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import IPAdapterData, TextConditioningData
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import TextConditioningData
from invokeai.backend.stable_diffusion.diffusion.unet_attention_patcher import UNetAttentionPatcher
from invokeai.backend.tiles.utils import Tile
class MultiDiffusionPipeline(StableDiffusionGeneratorPipeline):
@ -46,35 +44,23 @@ class MultiDiffusionPipeline(StableDiffusionGeneratorPipeline):
# - TBD, need to think about this more
# - step(...) remains mostly unmodified, is not overriden in this sub-class.
# - May need a cleaner AddsMaskGuidance implementation to handle this plan... we'll see.
def latents_from_embeddings(
def multi_diffusion_denoise(
self,
regions: list[Tile],
latents: torch.Tensor,
scheduler_step_kwargs: dict[str, Any],
conditioning_data: TextConditioningData,
noise: Optional[torch.Tensor],
seed: int,
timesteps: torch.Tensor,
init_timestep: torch.Tensor,
callback: Callable[[PipelineIntermediateState], None],
control_data: list[ControlNetData] | None = None,
ip_adapter_data: Optional[list[IPAdapterData]] = None,
t2i_adapter_data: Optional[list[T2IAdapterData]] = None,
mask: Optional[torch.Tensor] = None,
masked_latents: Optional[torch.Tensor] = None,
is_gradient_mask: bool = False,
) -> torch.Tensor:
if ip_adapter_data is not None:
raise NotImplementedError("ip_adapter_data is not supported in MultiDiffusionPipeline")
if t2i_adapter_data is not None:
raise NotImplementedError("t2i_adapter_data is not supported in MultiDiffusionPipeline")
# TODO(ryand): Figure out why this condition is necessary, and document it. My guess is that it's to handle
# cases where densoisings_start and denoising_end are set such that there are no timesteps.
if init_timestep.shape[0] == 0 or timesteps.shape[0] == 0:
return latents
orig_latents = latents.clone()
batch_size = latents.shape[0]
batched_init_timestep = init_timestep.expand(batch_size)
@ -85,32 +71,10 @@ class MultiDiffusionPipeline(StableDiffusionGeneratorPipeline):
# latents = noise * self.scheduler.init_noise_sigma # it's like in t2l according to diffusers
latents = self.scheduler.add_noise(latents, noise, batched_init_timestep)
# TODO(ryand): Look into the implications of passing in latents here that are larger than they will be after
# cropping into regions.
self._adjust_memory_efficient_attention(latents)
# Handle mask guidance (a.k.a. inpainting).
mask_guidance: AddsMaskGuidance | None = None
if mask is not None and not is_inpainting_model(self.unet):
# We are doing inpainting, since a mask is provided, but we are not using an inpainting model, so we will
# apply mask guidance to the latents.
# 'noise' might be None if the latents have already been noised (e.g. when running the SDXL refiner).
# We still need noise for inpainting, so we generate it from the seed here.
if noise is None:
noise = torch.randn(
orig_latents.shape,
dtype=torch.float32,
device="cpu",
generator=torch.Generator(device="cpu").manual_seed(seed),
).to(device=orig_latents.device, dtype=orig_latents.dtype)
mask_guidance = AddsMaskGuidance(
mask=mask,
mask_latents=orig_latents,
scheduler=self.scheduler,
noise=noise,
is_gradient_mask=is_gradient_mask,
)
use_regional_prompting = (
conditioning_data.cond_regions is not None or conditioning_data.uncond_regions is not None
)
@ -141,9 +105,9 @@ class MultiDiffusionPipeline(StableDiffusionGeneratorPipeline):
step_index=i,
total_step_count=len(timesteps),
scheduler_step_kwargs=scheduler_step_kwargs,
mask_guidance=mask_guidance,
mask=mask,
masked_latents=masked_latents,
mask_guidance=None,
mask=None,
masked_latents=None,
control_data=control_data,
)
latents = step_output.prev_sample
@ -160,14 +124,4 @@ class MultiDiffusionPipeline(StableDiffusionGeneratorPipeline):
)
)
# restore unmasked part after the last step is completed
# in-process masking happens before each step
if mask is not None:
if is_gradient_mask:
latents = torch.where(mask > 0, latents, orig_latents)
else:
latents = torch.lerp(
orig_latents, latents.to(dtype=orig_latents.dtype), mask.to(dtype=orig_latents.dtype)
)
return latents