diff --git a/invokeai/backend/model_management/model_hash.py b/invokeai/backend/model_management/model_hash.py new file mode 100644 index 0000000000..93b0cbed4b --- /dev/null +++ b/invokeai/backend/model_management/model_hash.py @@ -0,0 +1,73 @@ +# Copyright (c) 2023 Lincoln D. Stein and the InvokeAI Development Team +""" +Fast hashing of diffusers and checkpoint-style models. + +Usage: +from invokeai.backend.model_management.model_hash import FastModelHash +>>> FastModelHash.hash('/home/models/stable-diffusion-v1.5') +'a8e693a126ea5b831c96064dc569956f' +""" + +import os +import hashlib +from imohash import hashfile +from pathlib import Path +from typing import Dict, Union + + +class FastModelHash(object): + """FastModelHash obect provides one public class method, hash().""" + + # When traversing directories, ignore files smaller than this + # minimum value + MINIMUM_FILE_SIZE = 100000 + + @classmethod + def hash(cls, model_location: Union[str, Path]) -> str: + """ + Return hexdigest string for model located at model_location. + + :param model_location: Path to the model + """ + model_location = Path(model_location) + if model_location.is_file(): + return cls._hash_file(model_location) + elif model_location.is_dir(): + return cls._hash_dir(model_location) + else: + # avoid circular import + from .models import InvalidModelException + + raise InvalidModelException(f"Not a valid file or directory: {model_location}") + + @classmethod + def _hash_file(cls, model_location: Union[str, Path]) -> str: + """ + Fasthash a single file and return its hexdigest. + + :param model_location: Path to the model file + """ + # we return sha256 hash of the filehash in order to be + # consistent with length of hashes returned by _hash_dir() + return hashlib.sha256(hashfile(model_location)).hexdigest() + + @classmethod + def _hash_dir(cls, model_location: Union[str, Path]) -> str: + components: Dict[str, str] = {} + + for root, dirs, files in os.walk(model_location): + for file in files: + # Only pay attention to the big files. The config + # files contain things like diffusers point version + # which change locally. + path = Path(root) / file + if path.stat().st_size < cls.MINIMUM_FILE_SIZE: + continue + fast_hash = cls._hash_file(path) + components.update({str(path): fast_hash}) + + # hash all the model hashes together, using alphabetic file order + sha = hashlib.sha256() + for path, fast_hash in sorted(components.items()): + sha.update(fast_hash.encode("utf-8")) + return sha.hexdigest()