mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Tidy variable management and dtype handling in FluxTextToImageInvocation.
This commit is contained in:
@ -111,16 +111,7 @@ def denoise(
|
||||
step_callback: Callable[[], None],
|
||||
guidance: float = 4.0,
|
||||
):
|
||||
dtype = model.txt_in.bias.dtype
|
||||
|
||||
# TODO(ryand): This shouldn't be necessary if we manage the dtypes properly in the caller.
|
||||
img = img.to(dtype=dtype)
|
||||
img_ids = img_ids.to(dtype=dtype)
|
||||
txt = txt.to(dtype=dtype)
|
||||
txt_ids = txt_ids.to(dtype=dtype)
|
||||
vec = vec.to(dtype=dtype)
|
||||
|
||||
# this is ignored for schnell
|
||||
# guidance_vec is ignored for schnell.
|
||||
guidance_vec = torch.full((img.shape[0],), guidance, device=img.device, dtype=img.dtype)
|
||||
for t_curr, t_prev in tqdm(list(zip(timesteps[:-1], timesteps[1:], strict=True))):
|
||||
t_vec = torch.full((img.shape[0],), t_curr, dtype=img.dtype, device=img.device)
|
||||
@ -168,9 +159,9 @@ def prepare_latent_img_patches(latent_img: torch.Tensor) -> tuple[torch.Tensor,
|
||||
img = repeat(img, "1 ... -> bs ...", bs=bs)
|
||||
|
||||
# Generate patch position ids.
|
||||
img_ids = torch.zeros(h // 2, w // 2, 3, device=img.device)
|
||||
img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2, device=img.device)[:, None]
|
||||
img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2, device=img.device)[None, :]
|
||||
img_ids = torch.zeros(h // 2, w // 2, 3, device=img.device, dtype=img.dtype)
|
||||
img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2, device=img.device, dtype=img.dtype)[:, None]
|
||||
img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2, device=img.device, dtype=img.dtype)[None, :]
|
||||
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
|
||||
|
||||
return img, img_ids
|
||||
|
@ -43,6 +43,11 @@ class FLUXConditioningInfo:
|
||||
clip_embeds: torch.Tensor
|
||||
t5_embeds: torch.Tensor
|
||||
|
||||
def to(self, device: torch.device | None = None, dtype: torch.dtype | None = None):
|
||||
self.clip_embeds = self.clip_embeds.to(device=device, dtype=dtype)
|
||||
self.t5_embeds = self.t5_embeds.to(device=device, dtype=dtype)
|
||||
return self
|
||||
|
||||
|
||||
@dataclass
|
||||
class ConditioningFieldData:
|
||||
|
Reference in New Issue
Block a user