mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
prettified all the code using "blue" at the urging of @tildebyte
This commit is contained in:
parent
dd670200bb
commit
4f02b72c9c
@ -1,11 +1,17 @@
|
||||
from abc import abstractmethod
|
||||
from torch.utils.data import Dataset, ConcatDataset, ChainDataset, IterableDataset
|
||||
from torch.utils.data import (
|
||||
Dataset,
|
||||
ConcatDataset,
|
||||
ChainDataset,
|
||||
IterableDataset,
|
||||
)
|
||||
|
||||
|
||||
class Txt2ImgIterableBaseDataset(IterableDataset):
|
||||
'''
|
||||
"""
|
||||
Define an interface to make the IterableDatasets for text2img data chainable
|
||||
'''
|
||||
"""
|
||||
|
||||
def __init__(self, num_records=0, valid_ids=None, size=256):
|
||||
super().__init__()
|
||||
self.num_records = num_records
|
||||
@ -13,7 +19,9 @@ class Txt2ImgIterableBaseDataset(IterableDataset):
|
||||
self.sample_ids = valid_ids
|
||||
self.size = size
|
||||
|
||||
print(f'{self.__class__.__name__} dataset contains {self.__len__()} examples.')
|
||||
print(
|
||||
f'{self.__class__.__name__} dataset contains {self.__len__()} examples.'
|
||||
)
|
||||
|
||||
def __len__(self):
|
||||
return self.num_records
|
||||
|
@ -11,24 +11,34 @@ from tqdm import tqdm
|
||||
from torch.utils.data import Dataset, Subset
|
||||
|
||||
import taming.data.utils as tdu
|
||||
from taming.data.imagenet import str_to_indices, give_synsets_from_indices, download, retrieve
|
||||
from taming.data.imagenet import (
|
||||
str_to_indices,
|
||||
give_synsets_from_indices,
|
||||
download,
|
||||
retrieve,
|
||||
)
|
||||
from taming.data.imagenet import ImagePaths
|
||||
|
||||
from ldm.modules.image_degradation import degradation_fn_bsr, degradation_fn_bsr_light
|
||||
from ldm.modules.image_degradation import (
|
||||
degradation_fn_bsr,
|
||||
degradation_fn_bsr_light,
|
||||
)
|
||||
|
||||
|
||||
def synset2idx(path_to_yaml="data/index_synset.yaml"):
|
||||
def synset2idx(path_to_yaml='data/index_synset.yaml'):
|
||||
with open(path_to_yaml) as f:
|
||||
di2s = yaml.load(f)
|
||||
return dict((v,k) for k,v in di2s.items())
|
||||
return dict((v, k) for k, v in di2s.items())
|
||||
|
||||
|
||||
class ImageNetBase(Dataset):
|
||||
def __init__(self, config=None):
|
||||
self.config = config or OmegaConf.create()
|
||||
if not type(self.config)==dict:
|
||||
if not type(self.config) == dict:
|
||||
self.config = OmegaConf.to_container(self.config)
|
||||
self.keep_orig_class_label = self.config.get("keep_orig_class_label", False)
|
||||
self.keep_orig_class_label = self.config.get(
|
||||
'keep_orig_class_label', False
|
||||
)
|
||||
self.process_images = True # if False we skip loading & processing images and self.data contains filepaths
|
||||
self._prepare()
|
||||
self._prepare_synset_to_human()
|
||||
@ -46,17 +56,23 @@ class ImageNetBase(Dataset):
|
||||
raise NotImplementedError()
|
||||
|
||||
def _filter_relpaths(self, relpaths):
|
||||
ignore = set([
|
||||
"n06596364_9591.JPEG",
|
||||
])
|
||||
relpaths = [rpath for rpath in relpaths if not rpath.split("/")[-1] in ignore]
|
||||
if "sub_indices" in self.config:
|
||||
indices = str_to_indices(self.config["sub_indices"])
|
||||
synsets = give_synsets_from_indices(indices, path_to_yaml=self.idx2syn) # returns a list of strings
|
||||
ignore = set(
|
||||
[
|
||||
'n06596364_9591.JPEG',
|
||||
]
|
||||
)
|
||||
relpaths = [
|
||||
rpath for rpath in relpaths if not rpath.split('/')[-1] in ignore
|
||||
]
|
||||
if 'sub_indices' in self.config:
|
||||
indices = str_to_indices(self.config['sub_indices'])
|
||||
synsets = give_synsets_from_indices(
|
||||
indices, path_to_yaml=self.idx2syn
|
||||
) # returns a list of strings
|
||||
self.synset2idx = synset2idx(path_to_yaml=self.idx2syn)
|
||||
files = []
|
||||
for rpath in relpaths:
|
||||
syn = rpath.split("/")[0]
|
||||
syn = rpath.split('/')[0]
|
||||
if syn in synsets:
|
||||
files.append(rpath)
|
||||
return files
|
||||
@ -65,78 +81,89 @@ class ImageNetBase(Dataset):
|
||||
|
||||
def _prepare_synset_to_human(self):
|
||||
SIZE = 2655750
|
||||
URL = "https://heibox.uni-heidelberg.de/f/9f28e956cd304264bb82/?dl=1"
|
||||
self.human_dict = os.path.join(self.root, "synset_human.txt")
|
||||
if (not os.path.exists(self.human_dict) or
|
||||
not os.path.getsize(self.human_dict)==SIZE):
|
||||
URL = 'https://heibox.uni-heidelberg.de/f/9f28e956cd304264bb82/?dl=1'
|
||||
self.human_dict = os.path.join(self.root, 'synset_human.txt')
|
||||
if (
|
||||
not os.path.exists(self.human_dict)
|
||||
or not os.path.getsize(self.human_dict) == SIZE
|
||||
):
|
||||
download(URL, self.human_dict)
|
||||
|
||||
def _prepare_idx_to_synset(self):
|
||||
URL = "https://heibox.uni-heidelberg.de/f/d835d5b6ceda4d3aa910/?dl=1"
|
||||
self.idx2syn = os.path.join(self.root, "index_synset.yaml")
|
||||
if (not os.path.exists(self.idx2syn)):
|
||||
URL = 'https://heibox.uni-heidelberg.de/f/d835d5b6ceda4d3aa910/?dl=1'
|
||||
self.idx2syn = os.path.join(self.root, 'index_synset.yaml')
|
||||
if not os.path.exists(self.idx2syn):
|
||||
download(URL, self.idx2syn)
|
||||
|
||||
def _prepare_human_to_integer_label(self):
|
||||
URL = "https://heibox.uni-heidelberg.de/f/2362b797d5be43b883f6/?dl=1"
|
||||
self.human2integer = os.path.join(self.root, "imagenet1000_clsidx_to_labels.txt")
|
||||
if (not os.path.exists(self.human2integer)):
|
||||
URL = 'https://heibox.uni-heidelberg.de/f/2362b797d5be43b883f6/?dl=1'
|
||||
self.human2integer = os.path.join(
|
||||
self.root, 'imagenet1000_clsidx_to_labels.txt'
|
||||
)
|
||||
if not os.path.exists(self.human2integer):
|
||||
download(URL, self.human2integer)
|
||||
with open(self.human2integer, "r") as f:
|
||||
with open(self.human2integer, 'r') as f:
|
||||
lines = f.read().splitlines()
|
||||
assert len(lines) == 1000
|
||||
self.human2integer_dict = dict()
|
||||
for line in lines:
|
||||
value, key = line.split(":")
|
||||
value, key = line.split(':')
|
||||
self.human2integer_dict[key] = int(value)
|
||||
|
||||
def _load(self):
|
||||
with open(self.txt_filelist, "r") as f:
|
||||
with open(self.txt_filelist, 'r') as f:
|
||||
self.relpaths = f.read().splitlines()
|
||||
l1 = len(self.relpaths)
|
||||
self.relpaths = self._filter_relpaths(self.relpaths)
|
||||
print("Removed {} files from filelist during filtering.".format(l1 - len(self.relpaths)))
|
||||
print(
|
||||
'Removed {} files from filelist during filtering.'.format(
|
||||
l1 - len(self.relpaths)
|
||||
)
|
||||
)
|
||||
|
||||
self.synsets = [p.split("/")[0] for p in self.relpaths]
|
||||
self.synsets = [p.split('/')[0] for p in self.relpaths]
|
||||
self.abspaths = [os.path.join(self.datadir, p) for p in self.relpaths]
|
||||
|
||||
unique_synsets = np.unique(self.synsets)
|
||||
class_dict = dict((synset, i) for i, synset in enumerate(unique_synsets))
|
||||
class_dict = dict(
|
||||
(synset, i) for i, synset in enumerate(unique_synsets)
|
||||
)
|
||||
if not self.keep_orig_class_label:
|
||||
self.class_labels = [class_dict[s] for s in self.synsets]
|
||||
else:
|
||||
self.class_labels = [self.synset2idx[s] for s in self.synsets]
|
||||
|
||||
with open(self.human_dict, "r") as f:
|
||||
with open(self.human_dict, 'r') as f:
|
||||
human_dict = f.read().splitlines()
|
||||
human_dict = dict(line.split(maxsplit=1) for line in human_dict)
|
||||
|
||||
self.human_labels = [human_dict[s] for s in self.synsets]
|
||||
|
||||
labels = {
|
||||
"relpath": np.array(self.relpaths),
|
||||
"synsets": np.array(self.synsets),
|
||||
"class_label": np.array(self.class_labels),
|
||||
"human_label": np.array(self.human_labels),
|
||||
'relpath': np.array(self.relpaths),
|
||||
'synsets': np.array(self.synsets),
|
||||
'class_label': np.array(self.class_labels),
|
||||
'human_label': np.array(self.human_labels),
|
||||
}
|
||||
|
||||
if self.process_images:
|
||||
self.size = retrieve(self.config, "size", default=256)
|
||||
self.data = ImagePaths(self.abspaths,
|
||||
labels=labels,
|
||||
size=self.size,
|
||||
random_crop=self.random_crop,
|
||||
)
|
||||
self.size = retrieve(self.config, 'size', default=256)
|
||||
self.data = ImagePaths(
|
||||
self.abspaths,
|
||||
labels=labels,
|
||||
size=self.size,
|
||||
random_crop=self.random_crop,
|
||||
)
|
||||
else:
|
||||
self.data = self.abspaths
|
||||
|
||||
|
||||
class ImageNetTrain(ImageNetBase):
|
||||
NAME = "ILSVRC2012_train"
|
||||
URL = "http://www.image-net.org/challenges/LSVRC/2012/"
|
||||
AT_HASH = "a306397ccf9c2ead27155983c254227c0fd938e2"
|
||||
NAME = 'ILSVRC2012_train'
|
||||
URL = 'http://www.image-net.org/challenges/LSVRC/2012/'
|
||||
AT_HASH = 'a306397ccf9c2ead27155983c254227c0fd938e2'
|
||||
FILES = [
|
||||
"ILSVRC2012_img_train.tar",
|
||||
'ILSVRC2012_img_train.tar',
|
||||
]
|
||||
SIZES = [
|
||||
147897477120,
|
||||
@ -151,57 +178,64 @@ class ImageNetTrain(ImageNetBase):
|
||||
if self.data_root:
|
||||
self.root = os.path.join(self.data_root, self.NAME)
|
||||
else:
|
||||
cachedir = os.environ.get("XDG_CACHE_HOME", os.path.expanduser("~/.cache"))
|
||||
self.root = os.path.join(cachedir, "autoencoders/data", self.NAME)
|
||||
cachedir = os.environ.get(
|
||||
'XDG_CACHE_HOME', os.path.expanduser('~/.cache')
|
||||
)
|
||||
self.root = os.path.join(cachedir, 'autoencoders/data', self.NAME)
|
||||
|
||||
self.datadir = os.path.join(self.root, "data")
|
||||
self.txt_filelist = os.path.join(self.root, "filelist.txt")
|
||||
self.datadir = os.path.join(self.root, 'data')
|
||||
self.txt_filelist = os.path.join(self.root, 'filelist.txt')
|
||||
self.expected_length = 1281167
|
||||
self.random_crop = retrieve(self.config, "ImageNetTrain/random_crop",
|
||||
default=True)
|
||||
self.random_crop = retrieve(
|
||||
self.config, 'ImageNetTrain/random_crop', default=True
|
||||
)
|
||||
if not tdu.is_prepared(self.root):
|
||||
# prep
|
||||
print("Preparing dataset {} in {}".format(self.NAME, self.root))
|
||||
print('Preparing dataset {} in {}'.format(self.NAME, self.root))
|
||||
|
||||
datadir = self.datadir
|
||||
if not os.path.exists(datadir):
|
||||
path = os.path.join(self.root, self.FILES[0])
|
||||
if not os.path.exists(path) or not os.path.getsize(path)==self.SIZES[0]:
|
||||
if (
|
||||
not os.path.exists(path)
|
||||
or not os.path.getsize(path) == self.SIZES[0]
|
||||
):
|
||||
import academictorrents as at
|
||||
|
||||
atpath = at.get(self.AT_HASH, datastore=self.root)
|
||||
assert atpath == path
|
||||
|
||||
print("Extracting {} to {}".format(path, datadir))
|
||||
print('Extracting {} to {}'.format(path, datadir))
|
||||
os.makedirs(datadir, exist_ok=True)
|
||||
with tarfile.open(path, "r:") as tar:
|
||||
with tarfile.open(path, 'r:') as tar:
|
||||
tar.extractall(path=datadir)
|
||||
|
||||
print("Extracting sub-tars.")
|
||||
subpaths = sorted(glob.glob(os.path.join(datadir, "*.tar")))
|
||||
print('Extracting sub-tars.')
|
||||
subpaths = sorted(glob.glob(os.path.join(datadir, '*.tar')))
|
||||
for subpath in tqdm(subpaths):
|
||||
subdir = subpath[:-len(".tar")]
|
||||
subdir = subpath[: -len('.tar')]
|
||||
os.makedirs(subdir, exist_ok=True)
|
||||
with tarfile.open(subpath, "r:") as tar:
|
||||
with tarfile.open(subpath, 'r:') as tar:
|
||||
tar.extractall(path=subdir)
|
||||
|
||||
filelist = glob.glob(os.path.join(datadir, "**", "*.JPEG"))
|
||||
filelist = glob.glob(os.path.join(datadir, '**', '*.JPEG'))
|
||||
filelist = [os.path.relpath(p, start=datadir) for p in filelist]
|
||||
filelist = sorted(filelist)
|
||||
filelist = "\n".join(filelist)+"\n"
|
||||
with open(self.txt_filelist, "w") as f:
|
||||
filelist = '\n'.join(filelist) + '\n'
|
||||
with open(self.txt_filelist, 'w') as f:
|
||||
f.write(filelist)
|
||||
|
||||
tdu.mark_prepared(self.root)
|
||||
|
||||
|
||||
class ImageNetValidation(ImageNetBase):
|
||||
NAME = "ILSVRC2012_validation"
|
||||
URL = "http://www.image-net.org/challenges/LSVRC/2012/"
|
||||
AT_HASH = "5d6d0df7ed81efd49ca99ea4737e0ae5e3a5f2e5"
|
||||
VS_URL = "https://heibox.uni-heidelberg.de/f/3e0f6e9c624e45f2bd73/?dl=1"
|
||||
NAME = 'ILSVRC2012_validation'
|
||||
URL = 'http://www.image-net.org/challenges/LSVRC/2012/'
|
||||
AT_HASH = '5d6d0df7ed81efd49ca99ea4737e0ae5e3a5f2e5'
|
||||
VS_URL = 'https://heibox.uni-heidelberg.de/f/3e0f6e9c624e45f2bd73/?dl=1'
|
||||
FILES = [
|
||||
"ILSVRC2012_img_val.tar",
|
||||
"validation_synset.txt",
|
||||
'ILSVRC2012_img_val.tar',
|
||||
'validation_synset.txt',
|
||||
]
|
||||
SIZES = [
|
||||
6744924160,
|
||||
@ -217,39 +251,49 @@ class ImageNetValidation(ImageNetBase):
|
||||
if self.data_root:
|
||||
self.root = os.path.join(self.data_root, self.NAME)
|
||||
else:
|
||||
cachedir = os.environ.get("XDG_CACHE_HOME", os.path.expanduser("~/.cache"))
|
||||
self.root = os.path.join(cachedir, "autoencoders/data", self.NAME)
|
||||
self.datadir = os.path.join(self.root, "data")
|
||||
self.txt_filelist = os.path.join(self.root, "filelist.txt")
|
||||
cachedir = os.environ.get(
|
||||
'XDG_CACHE_HOME', os.path.expanduser('~/.cache')
|
||||
)
|
||||
self.root = os.path.join(cachedir, 'autoencoders/data', self.NAME)
|
||||
self.datadir = os.path.join(self.root, 'data')
|
||||
self.txt_filelist = os.path.join(self.root, 'filelist.txt')
|
||||
self.expected_length = 50000
|
||||
self.random_crop = retrieve(self.config, "ImageNetValidation/random_crop",
|
||||
default=False)
|
||||
self.random_crop = retrieve(
|
||||
self.config, 'ImageNetValidation/random_crop', default=False
|
||||
)
|
||||
if not tdu.is_prepared(self.root):
|
||||
# prep
|
||||
print("Preparing dataset {} in {}".format(self.NAME, self.root))
|
||||
print('Preparing dataset {} in {}'.format(self.NAME, self.root))
|
||||
|
||||
datadir = self.datadir
|
||||
if not os.path.exists(datadir):
|
||||
path = os.path.join(self.root, self.FILES[0])
|
||||
if not os.path.exists(path) or not os.path.getsize(path)==self.SIZES[0]:
|
||||
if (
|
||||
not os.path.exists(path)
|
||||
or not os.path.getsize(path) == self.SIZES[0]
|
||||
):
|
||||
import academictorrents as at
|
||||
|
||||
atpath = at.get(self.AT_HASH, datastore=self.root)
|
||||
assert atpath == path
|
||||
|
||||
print("Extracting {} to {}".format(path, datadir))
|
||||
print('Extracting {} to {}'.format(path, datadir))
|
||||
os.makedirs(datadir, exist_ok=True)
|
||||
with tarfile.open(path, "r:") as tar:
|
||||
with tarfile.open(path, 'r:') as tar:
|
||||
tar.extractall(path=datadir)
|
||||
|
||||
vspath = os.path.join(self.root, self.FILES[1])
|
||||
if not os.path.exists(vspath) or not os.path.getsize(vspath)==self.SIZES[1]:
|
||||
if (
|
||||
not os.path.exists(vspath)
|
||||
or not os.path.getsize(vspath) == self.SIZES[1]
|
||||
):
|
||||
download(self.VS_URL, vspath)
|
||||
|
||||
with open(vspath, "r") as f:
|
||||
with open(vspath, 'r') as f:
|
||||
synset_dict = f.read().splitlines()
|
||||
synset_dict = dict(line.split() for line in synset_dict)
|
||||
|
||||
print("Reorganizing into synset folders")
|
||||
print('Reorganizing into synset folders')
|
||||
synsets = np.unique(list(synset_dict.values()))
|
||||
for s in synsets:
|
||||
os.makedirs(os.path.join(datadir, s), exist_ok=True)
|
||||
@ -258,21 +302,26 @@ class ImageNetValidation(ImageNetBase):
|
||||
dst = os.path.join(datadir, v)
|
||||
shutil.move(src, dst)
|
||||
|
||||
filelist = glob.glob(os.path.join(datadir, "**", "*.JPEG"))
|
||||
filelist = glob.glob(os.path.join(datadir, '**', '*.JPEG'))
|
||||
filelist = [os.path.relpath(p, start=datadir) for p in filelist]
|
||||
filelist = sorted(filelist)
|
||||
filelist = "\n".join(filelist)+"\n"
|
||||
with open(self.txt_filelist, "w") as f:
|
||||
filelist = '\n'.join(filelist) + '\n'
|
||||
with open(self.txt_filelist, 'w') as f:
|
||||
f.write(filelist)
|
||||
|
||||
tdu.mark_prepared(self.root)
|
||||
|
||||
|
||||
|
||||
class ImageNetSR(Dataset):
|
||||
def __init__(self, size=None,
|
||||
degradation=None, downscale_f=4, min_crop_f=0.5, max_crop_f=1.,
|
||||
random_crop=True):
|
||||
def __init__(
|
||||
self,
|
||||
size=None,
|
||||
degradation=None,
|
||||
downscale_f=4,
|
||||
min_crop_f=0.5,
|
||||
max_crop_f=1.0,
|
||||
random_crop=True,
|
||||
):
|
||||
"""
|
||||
Imagenet Superresolution Dataloader
|
||||
Performs following ops in order:
|
||||
@ -296,67 +345,86 @@ class ImageNetSR(Dataset):
|
||||
self.LR_size = int(size / downscale_f)
|
||||
self.min_crop_f = min_crop_f
|
||||
self.max_crop_f = max_crop_f
|
||||
assert(max_crop_f <= 1.)
|
||||
assert max_crop_f <= 1.0
|
||||
self.center_crop = not random_crop
|
||||
|
||||
self.image_rescaler = albumentations.SmallestMaxSize(max_size=size, interpolation=cv2.INTER_AREA)
|
||||
self.image_rescaler = albumentations.SmallestMaxSize(
|
||||
max_size=size, interpolation=cv2.INTER_AREA
|
||||
)
|
||||
|
||||
self.pil_interpolation = False # gets reset later if incase interp_op is from pillow
|
||||
self.pil_interpolation = (
|
||||
False # gets reset later if incase interp_op is from pillow
|
||||
)
|
||||
|
||||
if degradation == "bsrgan":
|
||||
self.degradation_process = partial(degradation_fn_bsr, sf=downscale_f)
|
||||
if degradation == 'bsrgan':
|
||||
self.degradation_process = partial(
|
||||
degradation_fn_bsr, sf=downscale_f
|
||||
)
|
||||
|
||||
elif degradation == "bsrgan_light":
|
||||
self.degradation_process = partial(degradation_fn_bsr_light, sf=downscale_f)
|
||||
elif degradation == 'bsrgan_light':
|
||||
self.degradation_process = partial(
|
||||
degradation_fn_bsr_light, sf=downscale_f
|
||||
)
|
||||
|
||||
else:
|
||||
interpolation_fn = {
|
||||
"cv_nearest": cv2.INTER_NEAREST,
|
||||
"cv_bilinear": cv2.INTER_LINEAR,
|
||||
"cv_bicubic": cv2.INTER_CUBIC,
|
||||
"cv_area": cv2.INTER_AREA,
|
||||
"cv_lanczos": cv2.INTER_LANCZOS4,
|
||||
"pil_nearest": PIL.Image.NEAREST,
|
||||
"pil_bilinear": PIL.Image.BILINEAR,
|
||||
"pil_bicubic": PIL.Image.BICUBIC,
|
||||
"pil_box": PIL.Image.BOX,
|
||||
"pil_hamming": PIL.Image.HAMMING,
|
||||
"pil_lanczos": PIL.Image.LANCZOS,
|
||||
'cv_nearest': cv2.INTER_NEAREST,
|
||||
'cv_bilinear': cv2.INTER_LINEAR,
|
||||
'cv_bicubic': cv2.INTER_CUBIC,
|
||||
'cv_area': cv2.INTER_AREA,
|
||||
'cv_lanczos': cv2.INTER_LANCZOS4,
|
||||
'pil_nearest': PIL.Image.NEAREST,
|
||||
'pil_bilinear': PIL.Image.BILINEAR,
|
||||
'pil_bicubic': PIL.Image.BICUBIC,
|
||||
'pil_box': PIL.Image.BOX,
|
||||
'pil_hamming': PIL.Image.HAMMING,
|
||||
'pil_lanczos': PIL.Image.LANCZOS,
|
||||
}[degradation]
|
||||
|
||||
self.pil_interpolation = degradation.startswith("pil_")
|
||||
self.pil_interpolation = degradation.startswith('pil_')
|
||||
|
||||
if self.pil_interpolation:
|
||||
self.degradation_process = partial(TF.resize, size=self.LR_size, interpolation=interpolation_fn)
|
||||
self.degradation_process = partial(
|
||||
TF.resize,
|
||||
size=self.LR_size,
|
||||
interpolation=interpolation_fn,
|
||||
)
|
||||
|
||||
else:
|
||||
self.degradation_process = albumentations.SmallestMaxSize(max_size=self.LR_size,
|
||||
interpolation=interpolation_fn)
|
||||
self.degradation_process = albumentations.SmallestMaxSize(
|
||||
max_size=self.LR_size, interpolation=interpolation_fn
|
||||
)
|
||||
|
||||
def __len__(self):
|
||||
return len(self.base)
|
||||
|
||||
def __getitem__(self, i):
|
||||
example = self.base[i]
|
||||
image = Image.open(example["file_path_"])
|
||||
image = Image.open(example['file_path_'])
|
||||
|
||||
if not image.mode == "RGB":
|
||||
image = image.convert("RGB")
|
||||
if not image.mode == 'RGB':
|
||||
image = image.convert('RGB')
|
||||
|
||||
image = np.array(image).astype(np.uint8)
|
||||
|
||||
min_side_len = min(image.shape[:2])
|
||||
crop_side_len = min_side_len * np.random.uniform(self.min_crop_f, self.max_crop_f, size=None)
|
||||
crop_side_len = min_side_len * np.random.uniform(
|
||||
self.min_crop_f, self.max_crop_f, size=None
|
||||
)
|
||||
crop_side_len = int(crop_side_len)
|
||||
|
||||
if self.center_crop:
|
||||
self.cropper = albumentations.CenterCrop(height=crop_side_len, width=crop_side_len)
|
||||
self.cropper = albumentations.CenterCrop(
|
||||
height=crop_side_len, width=crop_side_len
|
||||
)
|
||||
|
||||
else:
|
||||
self.cropper = albumentations.RandomCrop(height=crop_side_len, width=crop_side_len)
|
||||
self.cropper = albumentations.RandomCrop(
|
||||
height=crop_side_len, width=crop_side_len
|
||||
)
|
||||
|
||||
image = self.cropper(image=image)["image"]
|
||||
image = self.image_rescaler(image=image)["image"]
|
||||
image = self.cropper(image=image)['image']
|
||||
image = self.image_rescaler(image=image)['image']
|
||||
|
||||
if self.pil_interpolation:
|
||||
image_pil = PIL.Image.fromarray(image)
|
||||
@ -364,10 +432,10 @@ class ImageNetSR(Dataset):
|
||||
LR_image = np.array(LR_image).astype(np.uint8)
|
||||
|
||||
else:
|
||||
LR_image = self.degradation_process(image=image)["image"]
|
||||
LR_image = self.degradation_process(image=image)['image']
|
||||
|
||||
example["image"] = (image/127.5 - 1.0).astype(np.float32)
|
||||
example["LR_image"] = (LR_image/127.5 - 1.0).astype(np.float32)
|
||||
example['image'] = (image / 127.5 - 1.0).astype(np.float32)
|
||||
example['LR_image'] = (LR_image / 127.5 - 1.0).astype(np.float32)
|
||||
|
||||
return example
|
||||
|
||||
@ -377,9 +445,11 @@ class ImageNetSRTrain(ImageNetSR):
|
||||
super().__init__(**kwargs)
|
||||
|
||||
def get_base(self):
|
||||
with open("data/imagenet_train_hr_indices.p", "rb") as f:
|
||||
with open('data/imagenet_train_hr_indices.p', 'rb') as f:
|
||||
indices = pickle.load(f)
|
||||
dset = ImageNetTrain(process_images=False,)
|
||||
dset = ImageNetTrain(
|
||||
process_images=False,
|
||||
)
|
||||
return Subset(dset, indices)
|
||||
|
||||
|
||||
@ -388,7 +458,9 @@ class ImageNetSRValidation(ImageNetSR):
|
||||
super().__init__(**kwargs)
|
||||
|
||||
def get_base(self):
|
||||
with open("data/imagenet_val_hr_indices.p", "rb") as f:
|
||||
with open('data/imagenet_val_hr_indices.p', 'rb') as f:
|
||||
indices = pickle.load(f)
|
||||
dset = ImageNetValidation(process_images=False,)
|
||||
dset = ImageNetValidation(
|
||||
process_images=False,
|
||||
)
|
||||
return Subset(dset, indices)
|
||||
|
104
ldm/data/lsun.py
104
ldm/data/lsun.py
@ -7,30 +7,33 @@ from torchvision import transforms
|
||||
|
||||
|
||||
class LSUNBase(Dataset):
|
||||
def __init__(self,
|
||||
txt_file,
|
||||
data_root,
|
||||
size=None,
|
||||
interpolation="bicubic",
|
||||
flip_p=0.5
|
||||
):
|
||||
def __init__(
|
||||
self,
|
||||
txt_file,
|
||||
data_root,
|
||||
size=None,
|
||||
interpolation='bicubic',
|
||||
flip_p=0.5,
|
||||
):
|
||||
self.data_paths = txt_file
|
||||
self.data_root = data_root
|
||||
with open(self.data_paths, "r") as f:
|
||||
with open(self.data_paths, 'r') as f:
|
||||
self.image_paths = f.read().splitlines()
|
||||
self._length = len(self.image_paths)
|
||||
self.labels = {
|
||||
"relative_file_path_": [l for l in self.image_paths],
|
||||
"file_path_": [os.path.join(self.data_root, l)
|
||||
for l in self.image_paths],
|
||||
'relative_file_path_': [l for l in self.image_paths],
|
||||
'file_path_': [
|
||||
os.path.join(self.data_root, l) for l in self.image_paths
|
||||
],
|
||||
}
|
||||
|
||||
self.size = size
|
||||
self.interpolation = {"linear": PIL.Image.LINEAR,
|
||||
"bilinear": PIL.Image.BILINEAR,
|
||||
"bicubic": PIL.Image.BICUBIC,
|
||||
"lanczos": PIL.Image.LANCZOS,
|
||||
}[interpolation]
|
||||
self.interpolation = {
|
||||
'linear': PIL.Image.LINEAR,
|
||||
'bilinear': PIL.Image.BILINEAR,
|
||||
'bicubic': PIL.Image.BICUBIC,
|
||||
'lanczos': PIL.Image.LANCZOS,
|
||||
}[interpolation]
|
||||
self.flip = transforms.RandomHorizontalFlip(p=flip_p)
|
||||
|
||||
def __len__(self):
|
||||
@ -38,55 +41,86 @@ class LSUNBase(Dataset):
|
||||
|
||||
def __getitem__(self, i):
|
||||
example = dict((k, self.labels[k][i]) for k in self.labels)
|
||||
image = Image.open(example["file_path_"])
|
||||
if not image.mode == "RGB":
|
||||
image = image.convert("RGB")
|
||||
image = Image.open(example['file_path_'])
|
||||
if not image.mode == 'RGB':
|
||||
image = image.convert('RGB')
|
||||
|
||||
# default to score-sde preprocessing
|
||||
img = np.array(image).astype(np.uint8)
|
||||
crop = min(img.shape[0], img.shape[1])
|
||||
h, w, = img.shape[0], img.shape[1]
|
||||
img = img[(h - crop) // 2:(h + crop) // 2,
|
||||
(w - crop) // 2:(w + crop) // 2]
|
||||
h, w, = (
|
||||
img.shape[0],
|
||||
img.shape[1],
|
||||
)
|
||||
img = img[
|
||||
(h - crop) // 2 : (h + crop) // 2,
|
||||
(w - crop) // 2 : (w + crop) // 2,
|
||||
]
|
||||
|
||||
image = Image.fromarray(img)
|
||||
if self.size is not None:
|
||||
image = image.resize((self.size, self.size), resample=self.interpolation)
|
||||
image = image.resize(
|
||||
(self.size, self.size), resample=self.interpolation
|
||||
)
|
||||
|
||||
image = self.flip(image)
|
||||
image = np.array(image).astype(np.uint8)
|
||||
example["image"] = (image / 127.5 - 1.0).astype(np.float32)
|
||||
example['image'] = (image / 127.5 - 1.0).astype(np.float32)
|
||||
return example
|
||||
|
||||
|
||||
class LSUNChurchesTrain(LSUNBase):
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__(txt_file="data/lsun/church_outdoor_train.txt", data_root="data/lsun/churches", **kwargs)
|
||||
super().__init__(
|
||||
txt_file='data/lsun/church_outdoor_train.txt',
|
||||
data_root='data/lsun/churches',
|
||||
**kwargs
|
||||
)
|
||||
|
||||
|
||||
class LSUNChurchesValidation(LSUNBase):
|
||||
def __init__(self, flip_p=0., **kwargs):
|
||||
super().__init__(txt_file="data/lsun/church_outdoor_val.txt", data_root="data/lsun/churches",
|
||||
flip_p=flip_p, **kwargs)
|
||||
def __init__(self, flip_p=0.0, **kwargs):
|
||||
super().__init__(
|
||||
txt_file='data/lsun/church_outdoor_val.txt',
|
||||
data_root='data/lsun/churches',
|
||||
flip_p=flip_p,
|
||||
**kwargs
|
||||
)
|
||||
|
||||
|
||||
class LSUNBedroomsTrain(LSUNBase):
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__(txt_file="data/lsun/bedrooms_train.txt", data_root="data/lsun/bedrooms", **kwargs)
|
||||
super().__init__(
|
||||
txt_file='data/lsun/bedrooms_train.txt',
|
||||
data_root='data/lsun/bedrooms',
|
||||
**kwargs
|
||||
)
|
||||
|
||||
|
||||
class LSUNBedroomsValidation(LSUNBase):
|
||||
def __init__(self, flip_p=0.0, **kwargs):
|
||||
super().__init__(txt_file="data/lsun/bedrooms_val.txt", data_root="data/lsun/bedrooms",
|
||||
flip_p=flip_p, **kwargs)
|
||||
super().__init__(
|
||||
txt_file='data/lsun/bedrooms_val.txt',
|
||||
data_root='data/lsun/bedrooms',
|
||||
flip_p=flip_p,
|
||||
**kwargs
|
||||
)
|
||||
|
||||
|
||||
class LSUNCatsTrain(LSUNBase):
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__(txt_file="data/lsun/cat_train.txt", data_root="data/lsun/cats", **kwargs)
|
||||
super().__init__(
|
||||
txt_file='data/lsun/cat_train.txt',
|
||||
data_root='data/lsun/cats',
|
||||
**kwargs
|
||||
)
|
||||
|
||||
|
||||
class LSUNCatsValidation(LSUNBase):
|
||||
def __init__(self, flip_p=0., **kwargs):
|
||||
super().__init__(txt_file="data/lsun/cat_val.txt", data_root="data/lsun/cats",
|
||||
flip_p=flip_p, **kwargs)
|
||||
def __init__(self, flip_p=0.0, **kwargs):
|
||||
super().__init__(
|
||||
txt_file='data/lsun/cat_val.txt',
|
||||
data_root='data/lsun/cats',
|
||||
flip_p=flip_p,
|
||||
**kwargs
|
||||
)
|
||||
|
@ -72,27 +72,53 @@ imagenet_dual_templates_small = [
|
||||
]
|
||||
|
||||
per_img_token_list = [
|
||||
'א', 'ב', 'ג', 'ד', 'ה', 'ו', 'ז', 'ח', 'ט', 'י', 'כ', 'ל', 'מ', 'נ', 'ס', 'ע', 'פ', 'צ', 'ק', 'ר', 'ש', 'ת',
|
||||
'א',
|
||||
'ב',
|
||||
'ג',
|
||||
'ד',
|
||||
'ה',
|
||||
'ו',
|
||||
'ז',
|
||||
'ח',
|
||||
'ט',
|
||||
'י',
|
||||
'כ',
|
||||
'ל',
|
||||
'מ',
|
||||
'נ',
|
||||
'ס',
|
||||
'ע',
|
||||
'פ',
|
||||
'צ',
|
||||
'ק',
|
||||
'ר',
|
||||
'ש',
|
||||
'ת',
|
||||
]
|
||||
|
||||
|
||||
class PersonalizedBase(Dataset):
|
||||
def __init__(self,
|
||||
data_root,
|
||||
size=None,
|
||||
repeats=100,
|
||||
interpolation="bicubic",
|
||||
flip_p=0.5,
|
||||
set="train",
|
||||
placeholder_token="*",
|
||||
per_image_tokens=False,
|
||||
center_crop=False,
|
||||
mixing_prob=0.25,
|
||||
coarse_class_text=None,
|
||||
):
|
||||
def __init__(
|
||||
self,
|
||||
data_root,
|
||||
size=None,
|
||||
repeats=100,
|
||||
interpolation='bicubic',
|
||||
flip_p=0.5,
|
||||
set='train',
|
||||
placeholder_token='*',
|
||||
per_image_tokens=False,
|
||||
center_crop=False,
|
||||
mixing_prob=0.25,
|
||||
coarse_class_text=None,
|
||||
):
|
||||
|
||||
self.data_root = data_root
|
||||
|
||||
self.image_paths = [os.path.join(self.data_root, file_path) for file_path in os.listdir(self.data_root)]
|
||||
self.image_paths = [
|
||||
os.path.join(self.data_root, file_path)
|
||||
for file_path in os.listdir(self.data_root)
|
||||
]
|
||||
|
||||
# self._length = len(self.image_paths)
|
||||
self.num_images = len(self.image_paths)
|
||||
@ -107,17 +133,20 @@ class PersonalizedBase(Dataset):
|
||||
self.coarse_class_text = coarse_class_text
|
||||
|
||||
if per_image_tokens:
|
||||
assert self.num_images < len(per_img_token_list), f"Can't use per-image tokens when the training set contains more than {len(per_img_token_list)} tokens. To enable larger sets, add more tokens to 'per_img_token_list'."
|
||||
assert self.num_images < len(
|
||||
per_img_token_list
|
||||
), f"Can't use per-image tokens when the training set contains more than {len(per_img_token_list)} tokens. To enable larger sets, add more tokens to 'per_img_token_list'."
|
||||
|
||||
if set == "train":
|
||||
if set == 'train':
|
||||
self._length = self.num_images * repeats
|
||||
|
||||
self.size = size
|
||||
self.interpolation = {"linear": PIL.Image.LINEAR,
|
||||
"bilinear": PIL.Image.BILINEAR,
|
||||
"bicubic": PIL.Image.BICUBIC,
|
||||
"lanczos": PIL.Image.LANCZOS,
|
||||
}[interpolation]
|
||||
self.interpolation = {
|
||||
'linear': PIL.Image.LINEAR,
|
||||
'bilinear': PIL.Image.BILINEAR,
|
||||
'bicubic': PIL.Image.BICUBIC,
|
||||
'lanczos': PIL.Image.LANCZOS,
|
||||
}[interpolation]
|
||||
self.flip = transforms.RandomHorizontalFlip(p=flip_p)
|
||||
|
||||
def __len__(self):
|
||||
@ -127,34 +156,47 @@ class PersonalizedBase(Dataset):
|
||||
example = {}
|
||||
image = Image.open(self.image_paths[i % self.num_images])
|
||||
|
||||
if not image.mode == "RGB":
|
||||
image = image.convert("RGB")
|
||||
if not image.mode == 'RGB':
|
||||
image = image.convert('RGB')
|
||||
|
||||
placeholder_string = self.placeholder_token
|
||||
if self.coarse_class_text:
|
||||
placeholder_string = f"{self.coarse_class_text} {placeholder_string}"
|
||||
placeholder_string = (
|
||||
f'{self.coarse_class_text} {placeholder_string}'
|
||||
)
|
||||
|
||||
if self.per_image_tokens and np.random.uniform() < self.mixing_prob:
|
||||
text = random.choice(imagenet_dual_templates_small).format(placeholder_string, per_img_token_list[i % self.num_images])
|
||||
text = random.choice(imagenet_dual_templates_small).format(
|
||||
placeholder_string, per_img_token_list[i % self.num_images]
|
||||
)
|
||||
else:
|
||||
text = random.choice(imagenet_templates_small).format(placeholder_string)
|
||||
text = random.choice(imagenet_templates_small).format(
|
||||
placeholder_string
|
||||
)
|
||||
|
||||
example["caption"] = text
|
||||
example['caption'] = text
|
||||
|
||||
# default to score-sde preprocessing
|
||||
img = np.array(image).astype(np.uint8)
|
||||
|
||||
if self.center_crop:
|
||||
crop = min(img.shape[0], img.shape[1])
|
||||
h, w, = img.shape[0], img.shape[1]
|
||||
img = img[(h - crop) // 2:(h + crop) // 2,
|
||||
(w - crop) // 2:(w + crop) // 2]
|
||||
h, w, = (
|
||||
img.shape[0],
|
||||
img.shape[1],
|
||||
)
|
||||
img = img[
|
||||
(h - crop) // 2 : (h + crop) // 2,
|
||||
(w - crop) // 2 : (w + crop) // 2,
|
||||
]
|
||||
|
||||
image = Image.fromarray(img)
|
||||
if self.size is not None:
|
||||
image = image.resize((self.size, self.size), resample=self.interpolation)
|
||||
image = image.resize(
|
||||
(self.size, self.size), resample=self.interpolation
|
||||
)
|
||||
|
||||
image = self.flip(image)
|
||||
image = np.array(image).astype(np.uint8)
|
||||
example["image"] = (image / 127.5 - 1.0).astype(np.float32)
|
||||
example['image'] = (image / 127.5 - 1.0).astype(np.float32)
|
||||
return example
|
@ -50,25 +50,51 @@ imagenet_dual_templates_small = [
|
||||
]
|
||||
|
||||
per_img_token_list = [
|
||||
'א', 'ב', 'ג', 'ד', 'ה', 'ו', 'ז', 'ח', 'ט', 'י', 'כ', 'ל', 'מ', 'נ', 'ס', 'ע', 'פ', 'צ', 'ק', 'ר', 'ש', 'ת',
|
||||
'א',
|
||||
'ב',
|
||||
'ג',
|
||||
'ד',
|
||||
'ה',
|
||||
'ו',
|
||||
'ז',
|
||||
'ח',
|
||||
'ט',
|
||||
'י',
|
||||
'כ',
|
||||
'ל',
|
||||
'מ',
|
||||
'נ',
|
||||
'ס',
|
||||
'ע',
|
||||
'פ',
|
||||
'צ',
|
||||
'ק',
|
||||
'ר',
|
||||
'ש',
|
||||
'ת',
|
||||
]
|
||||
|
||||
|
||||
class PersonalizedBase(Dataset):
|
||||
def __init__(self,
|
||||
data_root,
|
||||
size=None,
|
||||
repeats=100,
|
||||
interpolation="bicubic",
|
||||
flip_p=0.5,
|
||||
set="train",
|
||||
placeholder_token="*",
|
||||
per_image_tokens=False,
|
||||
center_crop=False,
|
||||
):
|
||||
def __init__(
|
||||
self,
|
||||
data_root,
|
||||
size=None,
|
||||
repeats=100,
|
||||
interpolation='bicubic',
|
||||
flip_p=0.5,
|
||||
set='train',
|
||||
placeholder_token='*',
|
||||
per_image_tokens=False,
|
||||
center_crop=False,
|
||||
):
|
||||
|
||||
self.data_root = data_root
|
||||
|
||||
self.image_paths = [os.path.join(self.data_root, file_path) for file_path in os.listdir(self.data_root)]
|
||||
self.image_paths = [
|
||||
os.path.join(self.data_root, file_path)
|
||||
for file_path in os.listdir(self.data_root)
|
||||
]
|
||||
|
||||
# self._length = len(self.image_paths)
|
||||
self.num_images = len(self.image_paths)
|
||||
@ -80,17 +106,20 @@ class PersonalizedBase(Dataset):
|
||||
self.center_crop = center_crop
|
||||
|
||||
if per_image_tokens:
|
||||
assert self.num_images < len(per_img_token_list), f"Can't use per-image tokens when the training set contains more than {len(per_img_token_list)} tokens. To enable larger sets, add more tokens to 'per_img_token_list'."
|
||||
assert self.num_images < len(
|
||||
per_img_token_list
|
||||
), f"Can't use per-image tokens when the training set contains more than {len(per_img_token_list)} tokens. To enable larger sets, add more tokens to 'per_img_token_list'."
|
||||
|
||||
if set == "train":
|
||||
if set == 'train':
|
||||
self._length = self.num_images * repeats
|
||||
|
||||
self.size = size
|
||||
self.interpolation = {"linear": PIL.Image.LINEAR,
|
||||
"bilinear": PIL.Image.BILINEAR,
|
||||
"bicubic": PIL.Image.BICUBIC,
|
||||
"lanczos": PIL.Image.LANCZOS,
|
||||
}[interpolation]
|
||||
self.interpolation = {
|
||||
'linear': PIL.Image.LINEAR,
|
||||
'bilinear': PIL.Image.BILINEAR,
|
||||
'bicubic': PIL.Image.BICUBIC,
|
||||
'lanczos': PIL.Image.LANCZOS,
|
||||
}[interpolation]
|
||||
self.flip = transforms.RandomHorizontalFlip(p=flip_p)
|
||||
|
||||
def __len__(self):
|
||||
@ -100,30 +129,41 @@ class PersonalizedBase(Dataset):
|
||||
example = {}
|
||||
image = Image.open(self.image_paths[i % self.num_images])
|
||||
|
||||
if not image.mode == "RGB":
|
||||
image = image.convert("RGB")
|
||||
if not image.mode == 'RGB':
|
||||
image = image.convert('RGB')
|
||||
|
||||
if self.per_image_tokens and np.random.uniform() < 0.25:
|
||||
text = random.choice(imagenet_dual_templates_small).format(self.placeholder_token, per_img_token_list[i % self.num_images])
|
||||
text = random.choice(imagenet_dual_templates_small).format(
|
||||
self.placeholder_token, per_img_token_list[i % self.num_images]
|
||||
)
|
||||
else:
|
||||
text = random.choice(imagenet_templates_small).format(self.placeholder_token)
|
||||
text = random.choice(imagenet_templates_small).format(
|
||||
self.placeholder_token
|
||||
)
|
||||
|
||||
example["caption"] = text
|
||||
example['caption'] = text
|
||||
|
||||
# default to score-sde preprocessing
|
||||
img = np.array(image).astype(np.uint8)
|
||||
|
||||
if self.center_crop:
|
||||
crop = min(img.shape[0], img.shape[1])
|
||||
h, w, = img.shape[0], img.shape[1]
|
||||
img = img[(h - crop) // 2:(h + crop) // 2,
|
||||
(w - crop) // 2:(w + crop) // 2]
|
||||
h, w, = (
|
||||
img.shape[0],
|
||||
img.shape[1],
|
||||
)
|
||||
img = img[
|
||||
(h - crop) // 2 : (h + crop) // 2,
|
||||
(w - crop) // 2 : (w + crop) // 2,
|
||||
]
|
||||
|
||||
image = Image.fromarray(img)
|
||||
if self.size is not None:
|
||||
image = image.resize((self.size, self.size), resample=self.interpolation)
|
||||
image = image.resize(
|
||||
(self.size, self.size), resample=self.interpolation
|
||||
)
|
||||
|
||||
image = self.flip(image)
|
||||
image = np.array(image).astype(np.uint8)
|
||||
example["image"] = (image / 127.5 - 1.0).astype(np.float32)
|
||||
example['image'] = (image / 127.5 - 1.0).astype(np.float32)
|
||||
return example
|
@ -1,4 +1,4 @@
|
||||
'''
|
||||
"""
|
||||
Two helper classes for dealing with PNG images and their path names.
|
||||
PngWriter -- Converts Images generated by T2I into PNGs, finds
|
||||
appropriate names for them, and writes prompt metadata
|
||||
@ -7,53 +7,57 @@ PngWriter -- Converts Images generated by T2I into PNGs, finds
|
||||
prompt for file/directory names.
|
||||
PromptFormatter -- Utility for converting a Namespace of prompt parameters
|
||||
back into a formatted prompt string with command-line switches.
|
||||
'''
|
||||
"""
|
||||
import os
|
||||
import re
|
||||
from math import sqrt,floor,ceil
|
||||
from PIL import Image,PngImagePlugin
|
||||
from math import sqrt, floor, ceil
|
||||
from PIL import Image, PngImagePlugin
|
||||
|
||||
# -------------------image generation utils-----
|
||||
class PngWriter:
|
||||
|
||||
def __init__(self,outdir,prompt=None,batch_size=1):
|
||||
self.outdir = outdir
|
||||
self.batch_size = batch_size
|
||||
self.prompt = prompt
|
||||
self.filepath = None
|
||||
self.files_written = []
|
||||
def __init__(self, outdir, prompt=None, batch_size=1):
|
||||
self.outdir = outdir
|
||||
self.batch_size = batch_size
|
||||
self.prompt = prompt
|
||||
self.filepath = None
|
||||
self.files_written = []
|
||||
os.makedirs(outdir, exist_ok=True)
|
||||
|
||||
def write_image(self,image,seed):
|
||||
self.filepath = self.unique_filename(seed,self.filepath) # will increment name in some sensible way
|
||||
def write_image(self, image, seed):
|
||||
self.filepath = self.unique_filename(
|
||||
seed, self.filepath
|
||||
) # will increment name in some sensible way
|
||||
try:
|
||||
prompt = f'{self.prompt} -S{seed}'
|
||||
self.save_image_and_prompt_to_png(image,prompt,self.filepath)
|
||||
self.save_image_and_prompt_to_png(image, prompt, self.filepath)
|
||||
except IOError as e:
|
||||
print(e)
|
||||
self.files_written.append([self.filepath,seed])
|
||||
self.files_written.append([self.filepath, seed])
|
||||
|
||||
def unique_filename(self,seed,previouspath=None):
|
||||
def unique_filename(self, seed, previouspath=None):
|
||||
revision = 1
|
||||
|
||||
if previouspath is None:
|
||||
# sort reverse alphabetically until we find max+1
|
||||
dirlist = sorted(os.listdir(self.outdir),reverse=True)
|
||||
dirlist = sorted(os.listdir(self.outdir), reverse=True)
|
||||
# find the first filename that matches our pattern or return 000000.0.png
|
||||
filename = next((f for f in dirlist if re.match('^(\d+)\..*\.png',f)),'0000000.0.png')
|
||||
basecount = int(filename.split('.',1)[0])
|
||||
filename = next(
|
||||
(f for f in dirlist if re.match('^(\d+)\..*\.png', f)),
|
||||
'0000000.0.png',
|
||||
)
|
||||
basecount = int(filename.split('.', 1)[0])
|
||||
basecount += 1
|
||||
if self.batch_size > 1:
|
||||
filename = f'{basecount:06}.{seed}.01.png'
|
||||
else:
|
||||
filename = f'{basecount:06}.{seed}.png'
|
||||
return os.path.join(self.outdir,filename)
|
||||
return os.path.join(self.outdir, filename)
|
||||
|
||||
else:
|
||||
basename = os.path.basename(previouspath)
|
||||
x = re.match('^(\d+)\..*\.png',basename)
|
||||
x = re.match('^(\d+)\..*\.png', basename)
|
||||
if not x:
|
||||
return self.unique_filename(seed,previouspath)
|
||||
return self.unique_filename(seed, previouspath)
|
||||
|
||||
basecount = int(x.groups()[0])
|
||||
series = 0
|
||||
@ -61,41 +65,46 @@ class PngWriter:
|
||||
while not finished:
|
||||
series += 1
|
||||
filename = f'{basecount:06}.{seed}.png'
|
||||
if self.batch_size>1 or os.path.exists(os.path.join(self.outdir,filename)):
|
||||
if self.batch_size > 1 or os.path.exists(
|
||||
os.path.join(self.outdir, filename)
|
||||
):
|
||||
filename = f'{basecount:06}.{seed}.{series:02}.png'
|
||||
finished = not os.path.exists(os.path.join(self.outdir,filename))
|
||||
return os.path.join(self.outdir,filename)
|
||||
finished = not os.path.exists(
|
||||
os.path.join(self.outdir, filename)
|
||||
)
|
||||
return os.path.join(self.outdir, filename)
|
||||
|
||||
def save_image_and_prompt_to_png(self,image,prompt,path):
|
||||
def save_image_and_prompt_to_png(self, image, prompt, path):
|
||||
info = PngImagePlugin.PngInfo()
|
||||
info.add_text("Dream",prompt)
|
||||
image.save(path,"PNG",pnginfo=info)
|
||||
info.add_text('Dream', prompt)
|
||||
image.save(path, 'PNG', pnginfo=info)
|
||||
|
||||
def make_grid(self,image_list,rows=None,cols=None):
|
||||
def make_grid(self, image_list, rows=None, cols=None):
|
||||
image_cnt = len(image_list)
|
||||
if None in (rows,cols):
|
||||
if None in (rows, cols):
|
||||
rows = floor(sqrt(image_cnt)) # try to make it square
|
||||
cols = ceil(image_cnt/rows)
|
||||
width = image_list[0].width
|
||||
cols = ceil(image_cnt / rows)
|
||||
width = image_list[0].width
|
||||
height = image_list[0].height
|
||||
|
||||
grid_img = Image.new('RGB',(width*cols,height*rows))
|
||||
for r in range(0,rows):
|
||||
for c in range (0,cols):
|
||||
i = r*rows + c
|
||||
grid_img.paste(image_list[i],(c*width,r*height))
|
||||
grid_img = Image.new('RGB', (width * cols, height * rows))
|
||||
for r in range(0, rows):
|
||||
for c in range(0, cols):
|
||||
i = r * rows + c
|
||||
grid_img.paste(image_list[i], (c * width, r * height))
|
||||
|
||||
return grid_img
|
||||
|
||||
class PromptFormatter():
|
||||
def __init__(self,t2i,opt):
|
||||
|
||||
class PromptFormatter:
|
||||
def __init__(self, t2i, opt):
|
||||
self.t2i = t2i
|
||||
self.opt = opt
|
||||
|
||||
def normalize_prompt(self):
|
||||
'''Normalize the prompt and switches'''
|
||||
t2i = self.t2i
|
||||
opt = self.opt
|
||||
"""Normalize the prompt and switches"""
|
||||
t2i = self.t2i
|
||||
opt = self.opt
|
||||
|
||||
switches = list()
|
||||
switches.append(f'"{opt.prompt}"')
|
||||
@ -114,4 +123,3 @@ class PromptFormatter():
|
||||
if t2i.full_precision:
|
||||
switches.append('-F')
|
||||
return ' '.join(switches)
|
||||
|
||||
|
@ -1,37 +1,40 @@
|
||||
'''
|
||||
"""
|
||||
Readline helper functions for dream.py (linux and mac only).
|
||||
'''
|
||||
"""
|
||||
import os
|
||||
import re
|
||||
import atexit
|
||||
|
||||
# ---------------readline utilities---------------------
|
||||
try:
|
||||
import readline
|
||||
|
||||
readline_available = True
|
||||
except:
|
||||
readline_available = False
|
||||
|
||||
class Completer():
|
||||
def __init__(self,options):
|
||||
|
||||
class Completer:
|
||||
def __init__(self, options):
|
||||
self.options = sorted(options)
|
||||
return
|
||||
|
||||
def complete(self,text,state):
|
||||
def complete(self, text, state):
|
||||
buffer = readline.get_line_buffer()
|
||||
|
||||
if text.startswith(('-I','--init_img')):
|
||||
return self._path_completions(text,state,('.png'))
|
||||
if text.startswith(('-I', '--init_img')):
|
||||
return self._path_completions(text, state, ('.png'))
|
||||
|
||||
if buffer.strip().endswith('cd') or text.startswith(('.','/')):
|
||||
return self._path_completions(text,state,())
|
||||
if buffer.strip().endswith('cd') or text.startswith(('.', '/')):
|
||||
return self._path_completions(text, state, ())
|
||||
|
||||
response = None
|
||||
if state == 0:
|
||||
# This is the first time for this text, so build a match list.
|
||||
if text:
|
||||
self.matches = [s
|
||||
for s in self.options
|
||||
if s and s.startswith(text)]
|
||||
self.matches = [
|
||||
s for s in self.options if s and s.startswith(text)
|
||||
]
|
||||
else:
|
||||
self.matches = self.options[:]
|
||||
|
||||
@ -43,32 +46,34 @@ class Completer():
|
||||
response = None
|
||||
return response
|
||||
|
||||
def _path_completions(self,text,state,extensions):
|
||||
def _path_completions(self, text, state, extensions):
|
||||
# get the path so far
|
||||
if text.startswith('-I'):
|
||||
path = text.replace('-I','',1).lstrip()
|
||||
path = text.replace('-I', '', 1).lstrip()
|
||||
elif text.startswith('--init_img='):
|
||||
path = text.replace('--init_img=','',1).lstrip()
|
||||
path = text.replace('--init_img=', '', 1).lstrip()
|
||||
else:
|
||||
path = text
|
||||
|
||||
matches = list()
|
||||
matches = list()
|
||||
|
||||
path = os.path.expanduser(path)
|
||||
if len(path)==0:
|
||||
matches.append(text+'./')
|
||||
if len(path) == 0:
|
||||
matches.append(text + './')
|
||||
else:
|
||||
dir = os.path.dirname(path)
|
||||
dir = os.path.dirname(path)
|
||||
dir_list = os.listdir(dir)
|
||||
for n in dir_list:
|
||||
if n.startswith('.') and len(n)>1:
|
||||
if n.startswith('.') and len(n) > 1:
|
||||
continue
|
||||
full_path = os.path.join(dir,n)
|
||||
full_path = os.path.join(dir, n)
|
||||
if full_path.startswith(path):
|
||||
if os.path.isdir(full_path):
|
||||
matches.append(os.path.join(os.path.dirname(text),n)+'/')
|
||||
matches.append(
|
||||
os.path.join(os.path.dirname(text), n) + '/'
|
||||
)
|
||||
elif n.endswith(extensions):
|
||||
matches.append(os.path.join(os.path.dirname(text),n))
|
||||
matches.append(os.path.join(os.path.dirname(text), n))
|
||||
|
||||
try:
|
||||
response = matches[state]
|
||||
@ -76,19 +81,47 @@ class Completer():
|
||||
response = None
|
||||
return response
|
||||
|
||||
|
||||
if readline_available:
|
||||
readline.set_completer(Completer(['cd','pwd',
|
||||
'--steps','-s','--seed','-S','--iterations','-n','--batch_size','-b',
|
||||
'--width','-W','--height','-H','--cfg_scale','-C','--grid','-g',
|
||||
'--individual','-i','--init_img','-I','--strength','-f','-v','--variants']).complete)
|
||||
readline.set_completer_delims(" ")
|
||||
readline.set_completer(
|
||||
Completer(
|
||||
[
|
||||
'cd',
|
||||
'pwd',
|
||||
'--steps',
|
||||
'-s',
|
||||
'--seed',
|
||||
'-S',
|
||||
'--iterations',
|
||||
'-n',
|
||||
'--batch_size',
|
||||
'-b',
|
||||
'--width',
|
||||
'-W',
|
||||
'--height',
|
||||
'-H',
|
||||
'--cfg_scale',
|
||||
'-C',
|
||||
'--grid',
|
||||
'-g',
|
||||
'--individual',
|
||||
'-i',
|
||||
'--init_img',
|
||||
'-I',
|
||||
'--strength',
|
||||
'-f',
|
||||
'-v',
|
||||
'--variants',
|
||||
]
|
||||
).complete
|
||||
)
|
||||
readline.set_completer_delims(' ')
|
||||
readline.parse_and_bind('tab: complete')
|
||||
|
||||
histfile = os.path.join(os.path.expanduser('~'),".dream_history")
|
||||
histfile = os.path.join(os.path.expanduser('~'), '.dream_history')
|
||||
try:
|
||||
readline.read_history_file(histfile)
|
||||
readline.set_history_length(1000)
|
||||
except FileNotFoundError:
|
||||
pass
|
||||
atexit.register(readline.write_history_file,histfile)
|
||||
|
||||
atexit.register(readline.write_history_file, histfile)
|
||||
|
@ -5,32 +5,49 @@ class LambdaWarmUpCosineScheduler:
|
||||
"""
|
||||
note: use with a base_lr of 1.0
|
||||
"""
|
||||
def __init__(self, warm_up_steps, lr_min, lr_max, lr_start, max_decay_steps, verbosity_interval=0):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
warm_up_steps,
|
||||
lr_min,
|
||||
lr_max,
|
||||
lr_start,
|
||||
max_decay_steps,
|
||||
verbosity_interval=0,
|
||||
):
|
||||
self.lr_warm_up_steps = warm_up_steps
|
||||
self.lr_start = lr_start
|
||||
self.lr_min = lr_min
|
||||
self.lr_max = lr_max
|
||||
self.lr_max_decay_steps = max_decay_steps
|
||||
self.last_lr = 0.
|
||||
self.last_lr = 0.0
|
||||
self.verbosity_interval = verbosity_interval
|
||||
|
||||
def schedule(self, n, **kwargs):
|
||||
if self.verbosity_interval > 0:
|
||||
if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_lr}")
|
||||
if n % self.verbosity_interval == 0:
|
||||
print(
|
||||
f'current step: {n}, recent lr-multiplier: {self.last_lr}'
|
||||
)
|
||||
if n < self.lr_warm_up_steps:
|
||||
lr = (self.lr_max - self.lr_start) / self.lr_warm_up_steps * n + self.lr_start
|
||||
lr = (
|
||||
self.lr_max - self.lr_start
|
||||
) / self.lr_warm_up_steps * n + self.lr_start
|
||||
self.last_lr = lr
|
||||
return lr
|
||||
else:
|
||||
t = (n - self.lr_warm_up_steps) / (self.lr_max_decay_steps - self.lr_warm_up_steps)
|
||||
t = (n - self.lr_warm_up_steps) / (
|
||||
self.lr_max_decay_steps - self.lr_warm_up_steps
|
||||
)
|
||||
t = min(t, 1.0)
|
||||
lr = self.lr_min + 0.5 * (self.lr_max - self.lr_min) * (
|
||||
1 + np.cos(t * np.pi))
|
||||
1 + np.cos(t * np.pi)
|
||||
)
|
||||
self.last_lr = lr
|
||||
return lr
|
||||
|
||||
def __call__(self, n, **kwargs):
|
||||
return self.schedule(n,**kwargs)
|
||||
return self.schedule(n, **kwargs)
|
||||
|
||||
|
||||
class LambdaWarmUpCosineScheduler2:
|
||||
@ -38,15 +55,30 @@ class LambdaWarmUpCosineScheduler2:
|
||||
supports repeated iterations, configurable via lists
|
||||
note: use with a base_lr of 1.0.
|
||||
"""
|
||||
def __init__(self, warm_up_steps, f_min, f_max, f_start, cycle_lengths, verbosity_interval=0):
|
||||
assert len(warm_up_steps) == len(f_min) == len(f_max) == len(f_start) == len(cycle_lengths)
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
warm_up_steps,
|
||||
f_min,
|
||||
f_max,
|
||||
f_start,
|
||||
cycle_lengths,
|
||||
verbosity_interval=0,
|
||||
):
|
||||
assert (
|
||||
len(warm_up_steps)
|
||||
== len(f_min)
|
||||
== len(f_max)
|
||||
== len(f_start)
|
||||
== len(cycle_lengths)
|
||||
)
|
||||
self.lr_warm_up_steps = warm_up_steps
|
||||
self.f_start = f_start
|
||||
self.f_min = f_min
|
||||
self.f_max = f_max
|
||||
self.cycle_lengths = cycle_lengths
|
||||
self.cum_cycles = np.cumsum([0] + list(self.cycle_lengths))
|
||||
self.last_f = 0.
|
||||
self.last_f = 0.0
|
||||
self.verbosity_interval = verbosity_interval
|
||||
|
||||
def find_in_interval(self, n):
|
||||
@ -60,17 +92,25 @@ class LambdaWarmUpCosineScheduler2:
|
||||
cycle = self.find_in_interval(n)
|
||||
n = n - self.cum_cycles[cycle]
|
||||
if self.verbosity_interval > 0:
|
||||
if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_f}, "
|
||||
f"current cycle {cycle}")
|
||||
if n % self.verbosity_interval == 0:
|
||||
print(
|
||||
f'current step: {n}, recent lr-multiplier: {self.last_f}, '
|
||||
f'current cycle {cycle}'
|
||||
)
|
||||
if n < self.lr_warm_up_steps[cycle]:
|
||||
f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle]
|
||||
f = (
|
||||
self.f_max[cycle] - self.f_start[cycle]
|
||||
) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle]
|
||||
self.last_f = f
|
||||
return f
|
||||
else:
|
||||
t = (n - self.lr_warm_up_steps[cycle]) / (self.cycle_lengths[cycle] - self.lr_warm_up_steps[cycle])
|
||||
t = (n - self.lr_warm_up_steps[cycle]) / (
|
||||
self.cycle_lengths[cycle] - self.lr_warm_up_steps[cycle]
|
||||
)
|
||||
t = min(t, 1.0)
|
||||
f = self.f_min[cycle] + 0.5 * (self.f_max[cycle] - self.f_min[cycle]) * (
|
||||
1 + np.cos(t * np.pi))
|
||||
f = self.f_min[cycle] + 0.5 * (
|
||||
self.f_max[cycle] - self.f_min[cycle]
|
||||
) * (1 + np.cos(t * np.pi))
|
||||
self.last_f = f
|
||||
return f
|
||||
|
||||
@ -79,20 +119,25 @@ class LambdaWarmUpCosineScheduler2:
|
||||
|
||||
|
||||
class LambdaLinearScheduler(LambdaWarmUpCosineScheduler2):
|
||||
|
||||
def schedule(self, n, **kwargs):
|
||||
cycle = self.find_in_interval(n)
|
||||
n = n - self.cum_cycles[cycle]
|
||||
if self.verbosity_interval > 0:
|
||||
if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_f}, "
|
||||
f"current cycle {cycle}")
|
||||
if n % self.verbosity_interval == 0:
|
||||
print(
|
||||
f'current step: {n}, recent lr-multiplier: {self.last_f}, '
|
||||
f'current cycle {cycle}'
|
||||
)
|
||||
|
||||
if n < self.lr_warm_up_steps[cycle]:
|
||||
f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle]
|
||||
f = (
|
||||
self.f_max[cycle] - self.f_start[cycle]
|
||||
) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle]
|
||||
self.last_f = f
|
||||
return f
|
||||
else:
|
||||
f = self.f_min[cycle] + (self.f_max[cycle] - self.f_min[cycle]) * (self.cycle_lengths[cycle] - n) / (self.cycle_lengths[cycle])
|
||||
f = self.f_min[cycle] + (self.f_max[cycle] - self.f_min[cycle]) * (
|
||||
self.cycle_lengths[cycle] - n
|
||||
) / (self.cycle_lengths[cycle])
|
||||
self.last_f = f
|
||||
return f
|
||||
|
||||
|
@ -6,29 +6,32 @@ from contextlib import contextmanager
|
||||
from taming.modules.vqvae.quantize import VectorQuantizer2 as VectorQuantizer
|
||||
|
||||
from ldm.modules.diffusionmodules.model import Encoder, Decoder
|
||||
from ldm.modules.distributions.distributions import DiagonalGaussianDistribution
|
||||
from ldm.modules.distributions.distributions import (
|
||||
DiagonalGaussianDistribution,
|
||||
)
|
||||
|
||||
from ldm.util import instantiate_from_config
|
||||
|
||||
|
||||
class VQModel(pl.LightningModule):
|
||||
def __init__(self,
|
||||
ddconfig,
|
||||
lossconfig,
|
||||
n_embed,
|
||||
embed_dim,
|
||||
ckpt_path=None,
|
||||
ignore_keys=[],
|
||||
image_key="image",
|
||||
colorize_nlabels=None,
|
||||
monitor=None,
|
||||
batch_resize_range=None,
|
||||
scheduler_config=None,
|
||||
lr_g_factor=1.0,
|
||||
remap=None,
|
||||
sane_index_shape=False, # tell vector quantizer to return indices as bhw
|
||||
use_ema=False
|
||||
):
|
||||
def __init__(
|
||||
self,
|
||||
ddconfig,
|
||||
lossconfig,
|
||||
n_embed,
|
||||
embed_dim,
|
||||
ckpt_path=None,
|
||||
ignore_keys=[],
|
||||
image_key='image',
|
||||
colorize_nlabels=None,
|
||||
monitor=None,
|
||||
batch_resize_range=None,
|
||||
scheduler_config=None,
|
||||
lr_g_factor=1.0,
|
||||
remap=None,
|
||||
sane_index_shape=False, # tell vector quantizer to return indices as bhw
|
||||
use_ema=False,
|
||||
):
|
||||
super().__init__()
|
||||
self.embed_dim = embed_dim
|
||||
self.n_embed = n_embed
|
||||
@ -36,24 +39,34 @@ class VQModel(pl.LightningModule):
|
||||
self.encoder = Encoder(**ddconfig)
|
||||
self.decoder = Decoder(**ddconfig)
|
||||
self.loss = instantiate_from_config(lossconfig)
|
||||
self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25,
|
||||
remap=remap,
|
||||
sane_index_shape=sane_index_shape)
|
||||
self.quant_conv = torch.nn.Conv2d(ddconfig["z_channels"], embed_dim, 1)
|
||||
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
|
||||
self.quantize = VectorQuantizer(
|
||||
n_embed,
|
||||
embed_dim,
|
||||
beta=0.25,
|
||||
remap=remap,
|
||||
sane_index_shape=sane_index_shape,
|
||||
)
|
||||
self.quant_conv = torch.nn.Conv2d(ddconfig['z_channels'], embed_dim, 1)
|
||||
self.post_quant_conv = torch.nn.Conv2d(
|
||||
embed_dim, ddconfig['z_channels'], 1
|
||||
)
|
||||
if colorize_nlabels is not None:
|
||||
assert type(colorize_nlabels)==int
|
||||
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
|
||||
assert type(colorize_nlabels) == int
|
||||
self.register_buffer(
|
||||
'colorize', torch.randn(3, colorize_nlabels, 1, 1)
|
||||
)
|
||||
if monitor is not None:
|
||||
self.monitor = monitor
|
||||
self.batch_resize_range = batch_resize_range
|
||||
if self.batch_resize_range is not None:
|
||||
print(f"{self.__class__.__name__}: Using per-batch resizing in range {batch_resize_range}.")
|
||||
print(
|
||||
f'{self.__class__.__name__}: Using per-batch resizing in range {batch_resize_range}.'
|
||||
)
|
||||
|
||||
self.use_ema = use_ema
|
||||
if self.use_ema:
|
||||
self.model_ema = LitEma(self)
|
||||
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
|
||||
print(f'Keeping EMAs of {len(list(self.model_ema.buffers()))}.')
|
||||
|
||||
if ckpt_path is not None:
|
||||
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
||||
@ -66,28 +79,30 @@ class VQModel(pl.LightningModule):
|
||||
self.model_ema.store(self.parameters())
|
||||
self.model_ema.copy_to(self)
|
||||
if context is not None:
|
||||
print(f"{context}: Switched to EMA weights")
|
||||
print(f'{context}: Switched to EMA weights')
|
||||
try:
|
||||
yield None
|
||||
finally:
|
||||
if self.use_ema:
|
||||
self.model_ema.restore(self.parameters())
|
||||
if context is not None:
|
||||
print(f"{context}: Restored training weights")
|
||||
print(f'{context}: Restored training weights')
|
||||
|
||||
def init_from_ckpt(self, path, ignore_keys=list()):
|
||||
sd = torch.load(path, map_location="cpu")["state_dict"]
|
||||
sd = torch.load(path, map_location='cpu')['state_dict']
|
||||
keys = list(sd.keys())
|
||||
for k in keys:
|
||||
for ik in ignore_keys:
|
||||
if k.startswith(ik):
|
||||
print("Deleting key {} from state_dict.".format(k))
|
||||
print('Deleting key {} from state_dict.'.format(k))
|
||||
del sd[k]
|
||||
missing, unexpected = self.load_state_dict(sd, strict=False)
|
||||
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
|
||||
print(
|
||||
f'Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys'
|
||||
)
|
||||
if len(missing) > 0:
|
||||
print(f"Missing Keys: {missing}")
|
||||
print(f"Unexpected Keys: {unexpected}")
|
||||
print(f'Missing Keys: {missing}')
|
||||
print(f'Unexpected Keys: {unexpected}')
|
||||
|
||||
def on_train_batch_end(self, *args, **kwargs):
|
||||
if self.use_ema:
|
||||
@ -115,7 +130,7 @@ class VQModel(pl.LightningModule):
|
||||
return dec
|
||||
|
||||
def forward(self, input, return_pred_indices=False):
|
||||
quant, diff, (_,_,ind) = self.encode(input)
|
||||
quant, diff, (_, _, ind) = self.encode(input)
|
||||
dec = self.decode(quant)
|
||||
if return_pred_indices:
|
||||
return dec, diff, ind
|
||||
@ -125,7 +140,11 @@ class VQModel(pl.LightningModule):
|
||||
x = batch[k]
|
||||
if len(x.shape) == 3:
|
||||
x = x[..., None]
|
||||
x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
|
||||
x = (
|
||||
x.permute(0, 3, 1, 2)
|
||||
.to(memory_format=torch.contiguous_format)
|
||||
.float()
|
||||
)
|
||||
if self.batch_resize_range is not None:
|
||||
lower_size = self.batch_resize_range[0]
|
||||
upper_size = self.batch_resize_range[1]
|
||||
@ -133,9 +152,11 @@ class VQModel(pl.LightningModule):
|
||||
# do the first few batches with max size to avoid later oom
|
||||
new_resize = upper_size
|
||||
else:
|
||||
new_resize = np.random.choice(np.arange(lower_size, upper_size+16, 16))
|
||||
new_resize = np.random.choice(
|
||||
np.arange(lower_size, upper_size + 16, 16)
|
||||
)
|
||||
if new_resize != x.shape[2]:
|
||||
x = F.interpolate(x, size=new_resize, mode="bicubic")
|
||||
x = F.interpolate(x, size=new_resize, mode='bicubic')
|
||||
x = x.detach()
|
||||
return x
|
||||
|
||||
@ -147,81 +168,139 @@ class VQModel(pl.LightningModule):
|
||||
|
||||
if optimizer_idx == 0:
|
||||
# autoencode
|
||||
aeloss, log_dict_ae = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
|
||||
last_layer=self.get_last_layer(), split="train",
|
||||
predicted_indices=ind)
|
||||
aeloss, log_dict_ae = self.loss(
|
||||
qloss,
|
||||
x,
|
||||
xrec,
|
||||
optimizer_idx,
|
||||
self.global_step,
|
||||
last_layer=self.get_last_layer(),
|
||||
split='train',
|
||||
predicted_indices=ind,
|
||||
)
|
||||
|
||||
self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True)
|
||||
self.log_dict(
|
||||
log_dict_ae,
|
||||
prog_bar=False,
|
||||
logger=True,
|
||||
on_step=True,
|
||||
on_epoch=True,
|
||||
)
|
||||
return aeloss
|
||||
|
||||
if optimizer_idx == 1:
|
||||
# discriminator
|
||||
discloss, log_dict_disc = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
|
||||
last_layer=self.get_last_layer(), split="train")
|
||||
self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=True)
|
||||
discloss, log_dict_disc = self.loss(
|
||||
qloss,
|
||||
x,
|
||||
xrec,
|
||||
optimizer_idx,
|
||||
self.global_step,
|
||||
last_layer=self.get_last_layer(),
|
||||
split='train',
|
||||
)
|
||||
self.log_dict(
|
||||
log_dict_disc,
|
||||
prog_bar=False,
|
||||
logger=True,
|
||||
on_step=True,
|
||||
on_epoch=True,
|
||||
)
|
||||
return discloss
|
||||
|
||||
def validation_step(self, batch, batch_idx):
|
||||
log_dict = self._validation_step(batch, batch_idx)
|
||||
with self.ema_scope():
|
||||
log_dict_ema = self._validation_step(batch, batch_idx, suffix="_ema")
|
||||
log_dict_ema = self._validation_step(
|
||||
batch, batch_idx, suffix='_ema'
|
||||
)
|
||||
return log_dict
|
||||
|
||||
def _validation_step(self, batch, batch_idx, suffix=""):
|
||||
def _validation_step(self, batch, batch_idx, suffix=''):
|
||||
x = self.get_input(batch, self.image_key)
|
||||
xrec, qloss, ind = self(x, return_pred_indices=True)
|
||||
aeloss, log_dict_ae = self.loss(qloss, x, xrec, 0,
|
||||
self.global_step,
|
||||
last_layer=self.get_last_layer(),
|
||||
split="val"+suffix,
|
||||
predicted_indices=ind
|
||||
)
|
||||
aeloss, log_dict_ae = self.loss(
|
||||
qloss,
|
||||
x,
|
||||
xrec,
|
||||
0,
|
||||
self.global_step,
|
||||
last_layer=self.get_last_layer(),
|
||||
split='val' + suffix,
|
||||
predicted_indices=ind,
|
||||
)
|
||||
|
||||
discloss, log_dict_disc = self.loss(qloss, x, xrec, 1,
|
||||
self.global_step,
|
||||
last_layer=self.get_last_layer(),
|
||||
split="val"+suffix,
|
||||
predicted_indices=ind
|
||||
)
|
||||
rec_loss = log_dict_ae[f"val{suffix}/rec_loss"]
|
||||
self.log(f"val{suffix}/rec_loss", rec_loss,
|
||||
prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
|
||||
self.log(f"val{suffix}/aeloss", aeloss,
|
||||
prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
|
||||
discloss, log_dict_disc = self.loss(
|
||||
qloss,
|
||||
x,
|
||||
xrec,
|
||||
1,
|
||||
self.global_step,
|
||||
last_layer=self.get_last_layer(),
|
||||
split='val' + suffix,
|
||||
predicted_indices=ind,
|
||||
)
|
||||
rec_loss = log_dict_ae[f'val{suffix}/rec_loss']
|
||||
self.log(
|
||||
f'val{suffix}/rec_loss',
|
||||
rec_loss,
|
||||
prog_bar=True,
|
||||
logger=True,
|
||||
on_step=False,
|
||||
on_epoch=True,
|
||||
sync_dist=True,
|
||||
)
|
||||
self.log(
|
||||
f'val{suffix}/aeloss',
|
||||
aeloss,
|
||||
prog_bar=True,
|
||||
logger=True,
|
||||
on_step=False,
|
||||
on_epoch=True,
|
||||
sync_dist=True,
|
||||
)
|
||||
if version.parse(pl.__version__) >= version.parse('1.4.0'):
|
||||
del log_dict_ae[f"val{suffix}/rec_loss"]
|
||||
del log_dict_ae[f'val{suffix}/rec_loss']
|
||||
self.log_dict(log_dict_ae)
|
||||
self.log_dict(log_dict_disc)
|
||||
return self.log_dict
|
||||
|
||||
def configure_optimizers(self):
|
||||
lr_d = self.learning_rate
|
||||
lr_g = self.lr_g_factor*self.learning_rate
|
||||
print("lr_d", lr_d)
|
||||
print("lr_g", lr_g)
|
||||
opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
|
||||
list(self.decoder.parameters())+
|
||||
list(self.quantize.parameters())+
|
||||
list(self.quant_conv.parameters())+
|
||||
list(self.post_quant_conv.parameters()),
|
||||
lr=lr_g, betas=(0.5, 0.9))
|
||||
opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
|
||||
lr=lr_d, betas=(0.5, 0.9))
|
||||
lr_g = self.lr_g_factor * self.learning_rate
|
||||
print('lr_d', lr_d)
|
||||
print('lr_g', lr_g)
|
||||
opt_ae = torch.optim.Adam(
|
||||
list(self.encoder.parameters())
|
||||
+ list(self.decoder.parameters())
|
||||
+ list(self.quantize.parameters())
|
||||
+ list(self.quant_conv.parameters())
|
||||
+ list(self.post_quant_conv.parameters()),
|
||||
lr=lr_g,
|
||||
betas=(0.5, 0.9),
|
||||
)
|
||||
opt_disc = torch.optim.Adam(
|
||||
self.loss.discriminator.parameters(), lr=lr_d, betas=(0.5, 0.9)
|
||||
)
|
||||
|
||||
if self.scheduler_config is not None:
|
||||
scheduler = instantiate_from_config(self.scheduler_config)
|
||||
|
||||
print("Setting up LambdaLR scheduler...")
|
||||
print('Setting up LambdaLR scheduler...')
|
||||
scheduler = [
|
||||
{
|
||||
'scheduler': LambdaLR(opt_ae, lr_lambda=scheduler.schedule),
|
||||
'scheduler': LambdaLR(
|
||||
opt_ae, lr_lambda=scheduler.schedule
|
||||
),
|
||||
'interval': 'step',
|
||||
'frequency': 1
|
||||
'frequency': 1,
|
||||
},
|
||||
{
|
||||
'scheduler': LambdaLR(opt_disc, lr_lambda=scheduler.schedule),
|
||||
'scheduler': LambdaLR(
|
||||
opt_disc, lr_lambda=scheduler.schedule
|
||||
),
|
||||
'interval': 'step',
|
||||
'frequency': 1
|
||||
'frequency': 1,
|
||||
},
|
||||
]
|
||||
return [opt_ae, opt_disc], scheduler
|
||||
@ -235,7 +314,7 @@ class VQModel(pl.LightningModule):
|
||||
x = self.get_input(batch, self.image_key)
|
||||
x = x.to(self.device)
|
||||
if only_inputs:
|
||||
log["inputs"] = x
|
||||
log['inputs'] = x
|
||||
return log
|
||||
xrec, _ = self(x)
|
||||
if x.shape[1] > 3:
|
||||
@ -243,21 +322,24 @@ class VQModel(pl.LightningModule):
|
||||
assert xrec.shape[1] > 3
|
||||
x = self.to_rgb(x)
|
||||
xrec = self.to_rgb(xrec)
|
||||
log["inputs"] = x
|
||||
log["reconstructions"] = xrec
|
||||
log['inputs'] = x
|
||||
log['reconstructions'] = xrec
|
||||
if plot_ema:
|
||||
with self.ema_scope():
|
||||
xrec_ema, _ = self(x)
|
||||
if x.shape[1] > 3: xrec_ema = self.to_rgb(xrec_ema)
|
||||
log["reconstructions_ema"] = xrec_ema
|
||||
if x.shape[1] > 3:
|
||||
xrec_ema = self.to_rgb(xrec_ema)
|
||||
log['reconstructions_ema'] = xrec_ema
|
||||
return log
|
||||
|
||||
def to_rgb(self, x):
|
||||
assert self.image_key == "segmentation"
|
||||
if not hasattr(self, "colorize"):
|
||||
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
|
||||
assert self.image_key == 'segmentation'
|
||||
if not hasattr(self, 'colorize'):
|
||||
self.register_buffer(
|
||||
'colorize', torch.randn(3, x.shape[1], 1, 1).to(x)
|
||||
)
|
||||
x = F.conv2d(x, weight=self.colorize)
|
||||
x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
|
||||
x = 2.0 * (x - x.min()) / (x.max() - x.min()) - 1.0
|
||||
return x
|
||||
|
||||
|
||||
@ -283,43 +365,50 @@ class VQModelInterface(VQModel):
|
||||
|
||||
|
||||
class AutoencoderKL(pl.LightningModule):
|
||||
def __init__(self,
|
||||
ddconfig,
|
||||
lossconfig,
|
||||
embed_dim,
|
||||
ckpt_path=None,
|
||||
ignore_keys=[],
|
||||
image_key="image",
|
||||
colorize_nlabels=None,
|
||||
monitor=None,
|
||||
):
|
||||
def __init__(
|
||||
self,
|
||||
ddconfig,
|
||||
lossconfig,
|
||||
embed_dim,
|
||||
ckpt_path=None,
|
||||
ignore_keys=[],
|
||||
image_key='image',
|
||||
colorize_nlabels=None,
|
||||
monitor=None,
|
||||
):
|
||||
super().__init__()
|
||||
self.image_key = image_key
|
||||
self.encoder = Encoder(**ddconfig)
|
||||
self.decoder = Decoder(**ddconfig)
|
||||
self.loss = instantiate_from_config(lossconfig)
|
||||
assert ddconfig["double_z"]
|
||||
self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1)
|
||||
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
|
||||
assert ddconfig['double_z']
|
||||
self.quant_conv = torch.nn.Conv2d(
|
||||
2 * ddconfig['z_channels'], 2 * embed_dim, 1
|
||||
)
|
||||
self.post_quant_conv = torch.nn.Conv2d(
|
||||
embed_dim, ddconfig['z_channels'], 1
|
||||
)
|
||||
self.embed_dim = embed_dim
|
||||
if colorize_nlabels is not None:
|
||||
assert type(colorize_nlabels)==int
|
||||
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
|
||||
assert type(colorize_nlabels) == int
|
||||
self.register_buffer(
|
||||
'colorize', torch.randn(3, colorize_nlabels, 1, 1)
|
||||
)
|
||||
if monitor is not None:
|
||||
self.monitor = monitor
|
||||
if ckpt_path is not None:
|
||||
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
||||
|
||||
def init_from_ckpt(self, path, ignore_keys=list()):
|
||||
sd = torch.load(path, map_location="cpu")["state_dict"]
|
||||
sd = torch.load(path, map_location='cpu')['state_dict']
|
||||
keys = list(sd.keys())
|
||||
for k in keys:
|
||||
for ik in ignore_keys:
|
||||
if k.startswith(ik):
|
||||
print("Deleting key {} from state_dict.".format(k))
|
||||
print('Deleting key {} from state_dict.'.format(k))
|
||||
del sd[k]
|
||||
self.load_state_dict(sd, strict=False)
|
||||
print(f"Restored from {path}")
|
||||
print(f'Restored from {path}')
|
||||
|
||||
def encode(self, x):
|
||||
h = self.encoder(x)
|
||||
@ -345,7 +434,11 @@ class AutoencoderKL(pl.LightningModule):
|
||||
x = batch[k]
|
||||
if len(x.shape) == 3:
|
||||
x = x[..., None]
|
||||
x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
|
||||
x = (
|
||||
x.permute(0, 3, 1, 2)
|
||||
.to(memory_format=torch.contiguous_format)
|
||||
.float()
|
||||
)
|
||||
return x
|
||||
|
||||
def training_step(self, batch, batch_idx, optimizer_idx):
|
||||
@ -354,44 +447,102 @@ class AutoencoderKL(pl.LightningModule):
|
||||
|
||||
if optimizer_idx == 0:
|
||||
# train encoder+decoder+logvar
|
||||
aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
|
||||
last_layer=self.get_last_layer(), split="train")
|
||||
self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
||||
self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False)
|
||||
aeloss, log_dict_ae = self.loss(
|
||||
inputs,
|
||||
reconstructions,
|
||||
posterior,
|
||||
optimizer_idx,
|
||||
self.global_step,
|
||||
last_layer=self.get_last_layer(),
|
||||
split='train',
|
||||
)
|
||||
self.log(
|
||||
'aeloss',
|
||||
aeloss,
|
||||
prog_bar=True,
|
||||
logger=True,
|
||||
on_step=True,
|
||||
on_epoch=True,
|
||||
)
|
||||
self.log_dict(
|
||||
log_dict_ae,
|
||||
prog_bar=False,
|
||||
logger=True,
|
||||
on_step=True,
|
||||
on_epoch=False,
|
||||
)
|
||||
return aeloss
|
||||
|
||||
if optimizer_idx == 1:
|
||||
# train the discriminator
|
||||
discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
|
||||
last_layer=self.get_last_layer(), split="train")
|
||||
discloss, log_dict_disc = self.loss(
|
||||
inputs,
|
||||
reconstructions,
|
||||
posterior,
|
||||
optimizer_idx,
|
||||
self.global_step,
|
||||
last_layer=self.get_last_layer(),
|
||||
split='train',
|
||||
)
|
||||
|
||||
self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
||||
self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False)
|
||||
self.log(
|
||||
'discloss',
|
||||
discloss,
|
||||
prog_bar=True,
|
||||
logger=True,
|
||||
on_step=True,
|
||||
on_epoch=True,
|
||||
)
|
||||
self.log_dict(
|
||||
log_dict_disc,
|
||||
prog_bar=False,
|
||||
logger=True,
|
||||
on_step=True,
|
||||
on_epoch=False,
|
||||
)
|
||||
return discloss
|
||||
|
||||
def validation_step(self, batch, batch_idx):
|
||||
inputs = self.get_input(batch, self.image_key)
|
||||
reconstructions, posterior = self(inputs)
|
||||
aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step,
|
||||
last_layer=self.get_last_layer(), split="val")
|
||||
aeloss, log_dict_ae = self.loss(
|
||||
inputs,
|
||||
reconstructions,
|
||||
posterior,
|
||||
0,
|
||||
self.global_step,
|
||||
last_layer=self.get_last_layer(),
|
||||
split='val',
|
||||
)
|
||||
|
||||
discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step,
|
||||
last_layer=self.get_last_layer(), split="val")
|
||||
discloss, log_dict_disc = self.loss(
|
||||
inputs,
|
||||
reconstructions,
|
||||
posterior,
|
||||
1,
|
||||
self.global_step,
|
||||
last_layer=self.get_last_layer(),
|
||||
split='val',
|
||||
)
|
||||
|
||||
self.log("val/rec_loss", log_dict_ae["val/rec_loss"])
|
||||
self.log('val/rec_loss', log_dict_ae['val/rec_loss'])
|
||||
self.log_dict(log_dict_ae)
|
||||
self.log_dict(log_dict_disc)
|
||||
return self.log_dict
|
||||
|
||||
def configure_optimizers(self):
|
||||
lr = self.learning_rate
|
||||
opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
|
||||
list(self.decoder.parameters())+
|
||||
list(self.quant_conv.parameters())+
|
||||
list(self.post_quant_conv.parameters()),
|
||||
lr=lr, betas=(0.5, 0.9))
|
||||
opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
|
||||
lr=lr, betas=(0.5, 0.9))
|
||||
opt_ae = torch.optim.Adam(
|
||||
list(self.encoder.parameters())
|
||||
+ list(self.decoder.parameters())
|
||||
+ list(self.quant_conv.parameters())
|
||||
+ list(self.post_quant_conv.parameters()),
|
||||
lr=lr,
|
||||
betas=(0.5, 0.9),
|
||||
)
|
||||
opt_disc = torch.optim.Adam(
|
||||
self.loss.discriminator.parameters(), lr=lr, betas=(0.5, 0.9)
|
||||
)
|
||||
return [opt_ae, opt_disc], []
|
||||
|
||||
def get_last_layer(self):
|
||||
@ -409,17 +560,19 @@ class AutoencoderKL(pl.LightningModule):
|
||||
assert xrec.shape[1] > 3
|
||||
x = self.to_rgb(x)
|
||||
xrec = self.to_rgb(xrec)
|
||||
log["samples"] = self.decode(torch.randn_like(posterior.sample()))
|
||||
log["reconstructions"] = xrec
|
||||
log["inputs"] = x
|
||||
log['samples'] = self.decode(torch.randn_like(posterior.sample()))
|
||||
log['reconstructions'] = xrec
|
||||
log['inputs'] = x
|
||||
return log
|
||||
|
||||
def to_rgb(self, x):
|
||||
assert self.image_key == "segmentation"
|
||||
if not hasattr(self, "colorize"):
|
||||
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
|
||||
assert self.image_key == 'segmentation'
|
||||
if not hasattr(self, 'colorize'):
|
||||
self.register_buffer(
|
||||
'colorize', torch.randn(3, x.shape[1], 1, 1).to(x)
|
||||
)
|
||||
x = F.conv2d(x, weight=self.colorize)
|
||||
x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
|
||||
x = 2.0 * (x - x.min()) / (x.max() - x.min()) - 1.0
|
||||
return x
|
||||
|
||||
|
||||
|
@ -10,13 +10,13 @@ from einops import rearrange
|
||||
from glob import glob
|
||||
from natsort import natsorted
|
||||
|
||||
from ldm.modules.diffusionmodules.openaimodel import EncoderUNetModel, UNetModel
|
||||
from ldm.modules.diffusionmodules.openaimodel import (
|
||||
EncoderUNetModel,
|
||||
UNetModel,
|
||||
)
|
||||
from ldm.util import log_txt_as_img, default, ismap, instantiate_from_config
|
||||
|
||||
__models__ = {
|
||||
'class_label': EncoderUNetModel,
|
||||
'segmentation': UNetModel
|
||||
}
|
||||
__models__ = {'class_label': EncoderUNetModel, 'segmentation': UNetModel}
|
||||
|
||||
|
||||
def disabled_train(self, mode=True):
|
||||
@ -26,37 +26,49 @@ def disabled_train(self, mode=True):
|
||||
|
||||
|
||||
class NoisyLatentImageClassifier(pl.LightningModule):
|
||||
|
||||
def __init__(self,
|
||||
diffusion_path,
|
||||
num_classes,
|
||||
ckpt_path=None,
|
||||
pool='attention',
|
||||
label_key=None,
|
||||
diffusion_ckpt_path=None,
|
||||
scheduler_config=None,
|
||||
weight_decay=1.e-2,
|
||||
log_steps=10,
|
||||
monitor='val/loss',
|
||||
*args,
|
||||
**kwargs):
|
||||
def __init__(
|
||||
self,
|
||||
diffusion_path,
|
||||
num_classes,
|
||||
ckpt_path=None,
|
||||
pool='attention',
|
||||
label_key=None,
|
||||
diffusion_ckpt_path=None,
|
||||
scheduler_config=None,
|
||||
weight_decay=1.0e-2,
|
||||
log_steps=10,
|
||||
monitor='val/loss',
|
||||
*args,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.num_classes = num_classes
|
||||
# get latest config of diffusion model
|
||||
diffusion_config = natsorted(glob(os.path.join(diffusion_path, 'configs', '*-project.yaml')))[-1]
|
||||
diffusion_config = natsorted(
|
||||
glob(os.path.join(diffusion_path, 'configs', '*-project.yaml'))
|
||||
)[-1]
|
||||
self.diffusion_config = OmegaConf.load(diffusion_config).model
|
||||
self.diffusion_config.params.ckpt_path = diffusion_ckpt_path
|
||||
self.load_diffusion()
|
||||
|
||||
self.monitor = monitor
|
||||
self.numd = self.diffusion_model.first_stage_model.encoder.num_resolutions - 1
|
||||
self.log_time_interval = self.diffusion_model.num_timesteps // log_steps
|
||||
self.numd = (
|
||||
self.diffusion_model.first_stage_model.encoder.num_resolutions - 1
|
||||
)
|
||||
self.log_time_interval = (
|
||||
self.diffusion_model.num_timesteps // log_steps
|
||||
)
|
||||
self.log_steps = log_steps
|
||||
|
||||
self.label_key = label_key if not hasattr(self.diffusion_model, 'cond_stage_key') \
|
||||
self.label_key = (
|
||||
label_key
|
||||
if not hasattr(self.diffusion_model, 'cond_stage_key')
|
||||
else self.diffusion_model.cond_stage_key
|
||||
)
|
||||
|
||||
assert self.label_key is not None, 'label_key neither in diffusion model nor in model.params'
|
||||
assert (
|
||||
self.label_key is not None
|
||||
), 'label_key neither in diffusion model nor in model.params'
|
||||
|
||||
if self.label_key not in __models__:
|
||||
raise NotImplementedError()
|
||||
@ -68,22 +80,27 @@ class NoisyLatentImageClassifier(pl.LightningModule):
|
||||
self.weight_decay = weight_decay
|
||||
|
||||
def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
|
||||
sd = torch.load(path, map_location="cpu")
|
||||
if "state_dict" in list(sd.keys()):
|
||||
sd = sd["state_dict"]
|
||||
sd = torch.load(path, map_location='cpu')
|
||||
if 'state_dict' in list(sd.keys()):
|
||||
sd = sd['state_dict']
|
||||
keys = list(sd.keys())
|
||||
for k in keys:
|
||||
for ik in ignore_keys:
|
||||
if k.startswith(ik):
|
||||
print("Deleting key {} from state_dict.".format(k))
|
||||
print('Deleting key {} from state_dict.'.format(k))
|
||||
del sd[k]
|
||||
missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
|
||||
sd, strict=False)
|
||||
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
|
||||
missing, unexpected = (
|
||||
self.load_state_dict(sd, strict=False)
|
||||
if not only_model
|
||||
else self.model.load_state_dict(sd, strict=False)
|
||||
)
|
||||
print(
|
||||
f'Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys'
|
||||
)
|
||||
if len(missing) > 0:
|
||||
print(f"Missing Keys: {missing}")
|
||||
print(f'Missing Keys: {missing}')
|
||||
if len(unexpected) > 0:
|
||||
print(f"Unexpected Keys: {unexpected}")
|
||||
print(f'Unexpected Keys: {unexpected}')
|
||||
|
||||
def load_diffusion(self):
|
||||
model = instantiate_from_config(self.diffusion_config)
|
||||
@ -93,17 +110,25 @@ class NoisyLatentImageClassifier(pl.LightningModule):
|
||||
param.requires_grad = False
|
||||
|
||||
def load_classifier(self, ckpt_path, pool):
|
||||
model_config = deepcopy(self.diffusion_config.params.unet_config.params)
|
||||
model_config.in_channels = self.diffusion_config.params.unet_config.params.out_channels
|
||||
model_config = deepcopy(
|
||||
self.diffusion_config.params.unet_config.params
|
||||
)
|
||||
model_config.in_channels = (
|
||||
self.diffusion_config.params.unet_config.params.out_channels
|
||||
)
|
||||
model_config.out_channels = self.num_classes
|
||||
if self.label_key == 'class_label':
|
||||
model_config.pool = pool
|
||||
|
||||
self.model = __models__[self.label_key](**model_config)
|
||||
if ckpt_path is not None:
|
||||
print('#####################################################################')
|
||||
print(
|
||||
'#####################################################################'
|
||||
)
|
||||
print(f'load from ckpt "{ckpt_path}"')
|
||||
print('#####################################################################')
|
||||
print(
|
||||
'#####################################################################'
|
||||
)
|
||||
self.init_from_ckpt(ckpt_path)
|
||||
|
||||
@torch.no_grad()
|
||||
@ -111,11 +136,19 @@ class NoisyLatentImageClassifier(pl.LightningModule):
|
||||
noise = default(noise, lambda: torch.randn_like(x))
|
||||
continuous_sqrt_alpha_cumprod = None
|
||||
if self.diffusion_model.use_continuous_noise:
|
||||
continuous_sqrt_alpha_cumprod = self.diffusion_model.sample_continuous_noise_level(x.shape[0], t + 1)
|
||||
continuous_sqrt_alpha_cumprod = (
|
||||
self.diffusion_model.sample_continuous_noise_level(
|
||||
x.shape[0], t + 1
|
||||
)
|
||||
)
|
||||
# todo: make sure t+1 is correct here
|
||||
|
||||
return self.diffusion_model.q_sample(x_start=x, t=t, noise=noise,
|
||||
continuous_sqrt_alpha_cumprod=continuous_sqrt_alpha_cumprod)
|
||||
return self.diffusion_model.q_sample(
|
||||
x_start=x,
|
||||
t=t,
|
||||
noise=noise,
|
||||
continuous_sqrt_alpha_cumprod=continuous_sqrt_alpha_cumprod,
|
||||
)
|
||||
|
||||
def forward(self, x_noisy, t, *args, **kwargs):
|
||||
return self.model(x_noisy, t)
|
||||
@ -141,17 +174,21 @@ class NoisyLatentImageClassifier(pl.LightningModule):
|
||||
targets = rearrange(targets, 'b h w c -> b c h w')
|
||||
for down in range(self.numd):
|
||||
h, w = targets.shape[-2:]
|
||||
targets = F.interpolate(targets, size=(h // 2, w // 2), mode='nearest')
|
||||
targets = F.interpolate(
|
||||
targets, size=(h // 2, w // 2), mode='nearest'
|
||||
)
|
||||
|
||||
# targets = rearrange(targets,'b c h w -> b h w c')
|
||||
|
||||
return targets
|
||||
|
||||
def compute_top_k(self, logits, labels, k, reduction="mean"):
|
||||
def compute_top_k(self, logits, labels, k, reduction='mean'):
|
||||
_, top_ks = torch.topk(logits, k, dim=1)
|
||||
if reduction == "mean":
|
||||
return (top_ks == labels[:, None]).float().sum(dim=-1).mean().item()
|
||||
elif reduction == "none":
|
||||
if reduction == 'mean':
|
||||
return (
|
||||
(top_ks == labels[:, None]).float().sum(dim=-1).mean().item()
|
||||
)
|
||||
elif reduction == 'none':
|
||||
return (top_ks == labels[:, None]).float().sum(dim=-1)
|
||||
|
||||
def on_train_epoch_start(self):
|
||||
@ -162,29 +199,59 @@ class NoisyLatentImageClassifier(pl.LightningModule):
|
||||
def write_logs(self, loss, logits, targets):
|
||||
log_prefix = 'train' if self.training else 'val'
|
||||
log = {}
|
||||
log[f"{log_prefix}/loss"] = loss.mean()
|
||||
log[f"{log_prefix}/acc@1"] = self.compute_top_k(
|
||||
logits, targets, k=1, reduction="mean"
|
||||
log[f'{log_prefix}/loss'] = loss.mean()
|
||||
log[f'{log_prefix}/acc@1'] = self.compute_top_k(
|
||||
logits, targets, k=1, reduction='mean'
|
||||
)
|
||||
log[f"{log_prefix}/acc@5"] = self.compute_top_k(
|
||||
logits, targets, k=5, reduction="mean"
|
||||
log[f'{log_prefix}/acc@5'] = self.compute_top_k(
|
||||
logits, targets, k=5, reduction='mean'
|
||||
)
|
||||
|
||||
self.log_dict(log, prog_bar=False, logger=True, on_step=self.training, on_epoch=True)
|
||||
self.log('loss', log[f"{log_prefix}/loss"], prog_bar=True, logger=False)
|
||||
self.log('global_step', self.global_step, logger=False, on_epoch=False, prog_bar=True)
|
||||
self.log_dict(
|
||||
log,
|
||||
prog_bar=False,
|
||||
logger=True,
|
||||
on_step=self.training,
|
||||
on_epoch=True,
|
||||
)
|
||||
self.log(
|
||||
'loss', log[f'{log_prefix}/loss'], prog_bar=True, logger=False
|
||||
)
|
||||
self.log(
|
||||
'global_step',
|
||||
self.global_step,
|
||||
logger=False,
|
||||
on_epoch=False,
|
||||
prog_bar=True,
|
||||
)
|
||||
lr = self.optimizers().param_groups[0]['lr']
|
||||
self.log('lr_abs', lr, on_step=True, logger=True, on_epoch=False, prog_bar=True)
|
||||
self.log(
|
||||
'lr_abs',
|
||||
lr,
|
||||
on_step=True,
|
||||
logger=True,
|
||||
on_epoch=False,
|
||||
prog_bar=True,
|
||||
)
|
||||
|
||||
def shared_step(self, batch, t=None):
|
||||
x, *_ = self.diffusion_model.get_input(batch, k=self.diffusion_model.first_stage_key)
|
||||
x, *_ = self.diffusion_model.get_input(
|
||||
batch, k=self.diffusion_model.first_stage_key
|
||||
)
|
||||
targets = self.get_conditioning(batch)
|
||||
if targets.dim() == 4:
|
||||
targets = targets.argmax(dim=1)
|
||||
if t is None:
|
||||
t = torch.randint(0, self.diffusion_model.num_timesteps, (x.shape[0],), device=self.device).long()
|
||||
t = torch.randint(
|
||||
0,
|
||||
self.diffusion_model.num_timesteps,
|
||||
(x.shape[0],),
|
||||
device=self.device,
|
||||
).long()
|
||||
else:
|
||||
t = torch.full(size=(x.shape[0],), fill_value=t, device=self.device).long()
|
||||
t = torch.full(
|
||||
size=(x.shape[0],), fill_value=t, device=self.device
|
||||
).long()
|
||||
x_noisy = self.get_x_noisy(x, t)
|
||||
logits = self(x_noisy, t)
|
||||
|
||||
@ -200,8 +267,14 @@ class NoisyLatentImageClassifier(pl.LightningModule):
|
||||
return loss
|
||||
|
||||
def reset_noise_accs(self):
|
||||
self.noisy_acc = {t: {'acc@1': [], 'acc@5': []} for t in
|
||||
range(0, self.diffusion_model.num_timesteps, self.diffusion_model.log_every_t)}
|
||||
self.noisy_acc = {
|
||||
t: {'acc@1': [], 'acc@5': []}
|
||||
for t in range(
|
||||
0,
|
||||
self.diffusion_model.num_timesteps,
|
||||
self.diffusion_model.log_every_t,
|
||||
)
|
||||
}
|
||||
|
||||
def on_validation_start(self):
|
||||
self.reset_noise_accs()
|
||||
@ -212,24 +285,35 @@ class NoisyLatentImageClassifier(pl.LightningModule):
|
||||
|
||||
for t in self.noisy_acc:
|
||||
_, logits, _, targets = self.shared_step(batch, t)
|
||||
self.noisy_acc[t]['acc@1'].append(self.compute_top_k(logits, targets, k=1, reduction='mean'))
|
||||
self.noisy_acc[t]['acc@5'].append(self.compute_top_k(logits, targets, k=5, reduction='mean'))
|
||||
self.noisy_acc[t]['acc@1'].append(
|
||||
self.compute_top_k(logits, targets, k=1, reduction='mean')
|
||||
)
|
||||
self.noisy_acc[t]['acc@5'].append(
|
||||
self.compute_top_k(logits, targets, k=5, reduction='mean')
|
||||
)
|
||||
|
||||
return loss
|
||||
|
||||
def configure_optimizers(self):
|
||||
optimizer = AdamW(self.model.parameters(), lr=self.learning_rate, weight_decay=self.weight_decay)
|
||||
optimizer = AdamW(
|
||||
self.model.parameters(),
|
||||
lr=self.learning_rate,
|
||||
weight_decay=self.weight_decay,
|
||||
)
|
||||
|
||||
if self.use_scheduler:
|
||||
scheduler = instantiate_from_config(self.scheduler_config)
|
||||
|
||||
print("Setting up LambdaLR scheduler...")
|
||||
print('Setting up LambdaLR scheduler...')
|
||||
scheduler = [
|
||||
{
|
||||
'scheduler': LambdaLR(optimizer, lr_lambda=scheduler.schedule),
|
||||
'scheduler': LambdaLR(
|
||||
optimizer, lr_lambda=scheduler.schedule
|
||||
),
|
||||
'interval': 'step',
|
||||
'frequency': 1
|
||||
}]
|
||||
'frequency': 1,
|
||||
}
|
||||
]
|
||||
return [optimizer], scheduler
|
||||
|
||||
return optimizer
|
||||
@ -243,7 +327,7 @@ class NoisyLatentImageClassifier(pl.LightningModule):
|
||||
y = self.get_conditioning(batch)
|
||||
|
||||
if self.label_key == 'class_label':
|
||||
y = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"])
|
||||
y = log_txt_as_img((x.shape[2], x.shape[3]), batch['human_label'])
|
||||
log['labels'] = y
|
||||
|
||||
if ismap(y):
|
||||
@ -256,10 +340,14 @@ class NoisyLatentImageClassifier(pl.LightningModule):
|
||||
|
||||
log[f'inputs@t{current_time}'] = x_noisy
|
||||
|
||||
pred = F.one_hot(logits.argmax(dim=1), num_classes=self.num_classes)
|
||||
pred = F.one_hot(
|
||||
logits.argmax(dim=1), num_classes=self.num_classes
|
||||
)
|
||||
pred = rearrange(pred, 'b h w c -> b c h w')
|
||||
|
||||
log[f'pred@t{current_time}'] = self.diffusion_model.to_rgb(pred)
|
||||
log[f'pred@t{current_time}'] = self.diffusion_model.to_rgb(
|
||||
pred
|
||||
)
|
||||
|
||||
for key in log:
|
||||
log[key] = log[key][:N]
|
||||
|
@ -5,12 +5,16 @@ import numpy as np
|
||||
from tqdm import tqdm
|
||||
from functools import partial
|
||||
|
||||
from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, \
|
||||
extract_into_tensor
|
||||
from ldm.modules.diffusionmodules.util import (
|
||||
make_ddim_sampling_parameters,
|
||||
make_ddim_timesteps,
|
||||
noise_like,
|
||||
extract_into_tensor,
|
||||
)
|
||||
|
||||
|
||||
class DDIMSampler(object):
|
||||
def __init__(self, model, schedule="linear", device="cuda", **kwargs):
|
||||
def __init__(self, model, schedule='linear', device='cuda', **kwargs):
|
||||
super().__init__()
|
||||
self.model = model
|
||||
self.ddpm_num_timesteps = model.num_timesteps
|
||||
@ -23,70 +27,122 @@ class DDIMSampler(object):
|
||||
attr = attr.to(torch.device(self.device))
|
||||
setattr(self, name, attr)
|
||||
|
||||
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
|
||||
self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
|
||||
num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
|
||||
def make_schedule(
|
||||
self,
|
||||
ddim_num_steps,
|
||||
ddim_discretize='uniform',
|
||||
ddim_eta=0.0,
|
||||
verbose=True,
|
||||
):
|
||||
self.ddim_timesteps = make_ddim_timesteps(
|
||||
ddim_discr_method=ddim_discretize,
|
||||
num_ddim_timesteps=ddim_num_steps,
|
||||
num_ddpm_timesteps=self.ddpm_num_timesteps,
|
||||
verbose=verbose,
|
||||
)
|
||||
alphas_cumprod = self.model.alphas_cumprod
|
||||
assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
|
||||
to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
|
||||
assert (
|
||||
alphas_cumprod.shape[0] == self.ddpm_num_timesteps
|
||||
), 'alphas have to be defined for each timestep'
|
||||
to_torch = (
|
||||
lambda x: x.clone()
|
||||
.detach()
|
||||
.to(torch.float32)
|
||||
.to(self.model.device)
|
||||
)
|
||||
|
||||
self.register_buffer('betas', to_torch(self.model.betas))
|
||||
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
||||
self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
|
||||
self.register_buffer(
|
||||
'alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev)
|
||||
)
|
||||
|
||||
# calculations for diffusion q(x_t | x_{t-1}) and others
|
||||
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
|
||||
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
|
||||
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
|
||||
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
|
||||
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
|
||||
self.register_buffer(
|
||||
'sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu()))
|
||||
)
|
||||
self.register_buffer(
|
||||
'sqrt_one_minus_alphas_cumprod',
|
||||
to_torch(np.sqrt(1.0 - alphas_cumprod.cpu())),
|
||||
)
|
||||
self.register_buffer(
|
||||
'log_one_minus_alphas_cumprod',
|
||||
to_torch(np.log(1.0 - alphas_cumprod.cpu())),
|
||||
)
|
||||
self.register_buffer(
|
||||
'sqrt_recip_alphas_cumprod',
|
||||
to_torch(np.sqrt(1.0 / alphas_cumprod.cpu())),
|
||||
)
|
||||
self.register_buffer(
|
||||
'sqrt_recipm1_alphas_cumprod',
|
||||
to_torch(np.sqrt(1.0 / alphas_cumprod.cpu() - 1)),
|
||||
)
|
||||
|
||||
# ddim sampling parameters
|
||||
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
|
||||
ddim_timesteps=self.ddim_timesteps,
|
||||
eta=ddim_eta,verbose=verbose)
|
||||
(
|
||||
ddim_sigmas,
|
||||
ddim_alphas,
|
||||
ddim_alphas_prev,
|
||||
) = make_ddim_sampling_parameters(
|
||||
alphacums=alphas_cumprod.cpu(),
|
||||
ddim_timesteps=self.ddim_timesteps,
|
||||
eta=ddim_eta,
|
||||
verbose=verbose,
|
||||
)
|
||||
self.register_buffer('ddim_sigmas', ddim_sigmas)
|
||||
self.register_buffer('ddim_alphas', ddim_alphas)
|
||||
self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
|
||||
self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
|
||||
self.register_buffer(
|
||||
'ddim_sqrt_one_minus_alphas', np.sqrt(1.0 - ddim_alphas)
|
||||
)
|
||||
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
|
||||
(1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
|
||||
1 - self.alphas_cumprod / self.alphas_cumprod_prev))
|
||||
self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
|
||||
(1 - self.alphas_cumprod_prev)
|
||||
/ (1 - self.alphas_cumprod)
|
||||
* (1 - self.alphas_cumprod / self.alphas_cumprod_prev)
|
||||
)
|
||||
self.register_buffer(
|
||||
'ddim_sigmas_for_original_num_steps',
|
||||
sigmas_for_original_sampling_steps,
|
||||
)
|
||||
|
||||
@torch.no_grad()
|
||||
def sample(self,
|
||||
S,
|
||||
batch_size,
|
||||
shape,
|
||||
conditioning=None,
|
||||
callback=None,
|
||||
normals_sequence=None,
|
||||
img_callback=None,
|
||||
quantize_x0=False,
|
||||
eta=0.,
|
||||
mask=None,
|
||||
x0=None,
|
||||
temperature=1.,
|
||||
noise_dropout=0.,
|
||||
score_corrector=None,
|
||||
corrector_kwargs=None,
|
||||
verbose=True,
|
||||
x_T=None,
|
||||
log_every_t=100,
|
||||
unconditional_guidance_scale=1.,
|
||||
unconditional_conditioning=None,
|
||||
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
||||
**kwargs
|
||||
):
|
||||
def sample(
|
||||
self,
|
||||
S,
|
||||
batch_size,
|
||||
shape,
|
||||
conditioning=None,
|
||||
callback=None,
|
||||
normals_sequence=None,
|
||||
img_callback=None,
|
||||
quantize_x0=False,
|
||||
eta=0.0,
|
||||
mask=None,
|
||||
x0=None,
|
||||
temperature=1.0,
|
||||
noise_dropout=0.0,
|
||||
score_corrector=None,
|
||||
corrector_kwargs=None,
|
||||
verbose=True,
|
||||
x_T=None,
|
||||
log_every_t=100,
|
||||
unconditional_guidance_scale=1.0,
|
||||
unconditional_conditioning=None,
|
||||
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
||||
**kwargs,
|
||||
):
|
||||
if conditioning is not None:
|
||||
if isinstance(conditioning, dict):
|
||||
cbs = conditioning[list(conditioning.keys())[0]].shape[0]
|
||||
if cbs != batch_size:
|
||||
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
||||
print(
|
||||
f'Warning: Got {cbs} conditionings but batch-size is {batch_size}'
|
||||
)
|
||||
else:
|
||||
if conditioning.shape[0] != batch_size:
|
||||
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
|
||||
print(
|
||||
f'Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}'
|
||||
)
|
||||
|
||||
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
|
||||
# sampling
|
||||
@ -94,30 +150,47 @@ class DDIMSampler(object):
|
||||
size = (batch_size, C, H, W)
|
||||
print(f'Data shape for DDIM sampling is {size}, eta {eta}')
|
||||
|
||||
samples, intermediates = self.ddim_sampling(conditioning, size,
|
||||
callback=callback,
|
||||
img_callback=img_callback,
|
||||
quantize_denoised=quantize_x0,
|
||||
mask=mask, x0=x0,
|
||||
ddim_use_original_steps=False,
|
||||
noise_dropout=noise_dropout,
|
||||
temperature=temperature,
|
||||
score_corrector=score_corrector,
|
||||
corrector_kwargs=corrector_kwargs,
|
||||
x_T=x_T,
|
||||
log_every_t=log_every_t,
|
||||
unconditional_guidance_scale=unconditional_guidance_scale,
|
||||
unconditional_conditioning=unconditional_conditioning,
|
||||
)
|
||||
samples, intermediates = self.ddim_sampling(
|
||||
conditioning,
|
||||
size,
|
||||
callback=callback,
|
||||
img_callback=img_callback,
|
||||
quantize_denoised=quantize_x0,
|
||||
mask=mask,
|
||||
x0=x0,
|
||||
ddim_use_original_steps=False,
|
||||
noise_dropout=noise_dropout,
|
||||
temperature=temperature,
|
||||
score_corrector=score_corrector,
|
||||
corrector_kwargs=corrector_kwargs,
|
||||
x_T=x_T,
|
||||
log_every_t=log_every_t,
|
||||
unconditional_guidance_scale=unconditional_guidance_scale,
|
||||
unconditional_conditioning=unconditional_conditioning,
|
||||
)
|
||||
return samples, intermediates
|
||||
|
||||
@torch.no_grad()
|
||||
def ddim_sampling(self, cond, shape,
|
||||
x_T=None, ddim_use_original_steps=False,
|
||||
callback=None, timesteps=None, quantize_denoised=False,
|
||||
mask=None, x0=None, img_callback=None, log_every_t=100,
|
||||
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
||||
unconditional_guidance_scale=1., unconditional_conditioning=None,):
|
||||
def ddim_sampling(
|
||||
self,
|
||||
cond,
|
||||
shape,
|
||||
x_T=None,
|
||||
ddim_use_original_steps=False,
|
||||
callback=None,
|
||||
timesteps=None,
|
||||
quantize_denoised=False,
|
||||
mask=None,
|
||||
x0=None,
|
||||
img_callback=None,
|
||||
log_every_t=100,
|
||||
temperature=1.0,
|
||||
noise_dropout=0.0,
|
||||
score_corrector=None,
|
||||
corrector_kwargs=None,
|
||||
unconditional_guidance_scale=1.0,
|
||||
unconditional_conditioning=None,
|
||||
):
|
||||
device = self.model.betas.device
|
||||
b = shape[0]
|
||||
if x_T is None:
|
||||
@ -126,17 +199,38 @@ class DDIMSampler(object):
|
||||
img = x_T
|
||||
|
||||
if timesteps is None:
|
||||
timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
|
||||
timesteps = (
|
||||
self.ddpm_num_timesteps
|
||||
if ddim_use_original_steps
|
||||
else self.ddim_timesteps
|
||||
)
|
||||
elif timesteps is not None and not ddim_use_original_steps:
|
||||
subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
|
||||
subset_end = (
|
||||
int(
|
||||
min(timesteps / self.ddim_timesteps.shape[0], 1)
|
||||
* self.ddim_timesteps.shape[0]
|
||||
)
|
||||
- 1
|
||||
)
|
||||
timesteps = self.ddim_timesteps[:subset_end]
|
||||
|
||||
intermediates = {'x_inter': [img], 'pred_x0': [img]}
|
||||
time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps)
|
||||
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
|
||||
print(f"Running DDIM Sampling with {total_steps} timesteps")
|
||||
time_range = (
|
||||
reversed(range(0, timesteps))
|
||||
if ddim_use_original_steps
|
||||
else np.flip(timesteps)
|
||||
)
|
||||
total_steps = (
|
||||
timesteps if ddim_use_original_steps else timesteps.shape[0]
|
||||
)
|
||||
print(f'Running DDIM Sampling with {total_steps} timesteps')
|
||||
|
||||
iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps, dynamic_ncols=True)
|
||||
iterator = tqdm(
|
||||
time_range,
|
||||
desc='DDIM Sampler',
|
||||
total=total_steps,
|
||||
dynamic_ncols=True,
|
||||
)
|
||||
|
||||
for i, step in enumerate(iterator):
|
||||
index = total_steps - i - 1
|
||||
@ -144,18 +238,30 @@ class DDIMSampler(object):
|
||||
|
||||
if mask is not None:
|
||||
assert x0 is not None
|
||||
img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
|
||||
img = img_orig * mask + (1. - mask) * img
|
||||
img_orig = self.model.q_sample(
|
||||
x0, ts
|
||||
) # TODO: deterministic forward pass?
|
||||
img = img_orig * mask + (1.0 - mask) * img
|
||||
|
||||
outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
|
||||
quantize_denoised=quantize_denoised, temperature=temperature,
|
||||
noise_dropout=noise_dropout, score_corrector=score_corrector,
|
||||
corrector_kwargs=corrector_kwargs,
|
||||
unconditional_guidance_scale=unconditional_guidance_scale,
|
||||
unconditional_conditioning=unconditional_conditioning)
|
||||
outs = self.p_sample_ddim(
|
||||
img,
|
||||
cond,
|
||||
ts,
|
||||
index=index,
|
||||
use_original_steps=ddim_use_original_steps,
|
||||
quantize_denoised=quantize_denoised,
|
||||
temperature=temperature,
|
||||
noise_dropout=noise_dropout,
|
||||
score_corrector=score_corrector,
|
||||
corrector_kwargs=corrector_kwargs,
|
||||
unconditional_guidance_scale=unconditional_guidance_scale,
|
||||
unconditional_conditioning=unconditional_conditioning,
|
||||
)
|
||||
img, pred_x0 = outs
|
||||
if callback: callback(i)
|
||||
if img_callback: img_callback(pred_x0, i)
|
||||
if callback:
|
||||
callback(i)
|
||||
if img_callback:
|
||||
img_callback(pred_x0, i)
|
||||
|
||||
if index % log_every_t == 0 or index == total_steps - 1:
|
||||
intermediates['x_inter'].append(img)
|
||||
@ -164,42 +270,82 @@ class DDIMSampler(object):
|
||||
return img, intermediates
|
||||
|
||||
@torch.no_grad()
|
||||
def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
|
||||
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
||||
unconditional_guidance_scale=1., unconditional_conditioning=None):
|
||||
def p_sample_ddim(
|
||||
self,
|
||||
x,
|
||||
c,
|
||||
t,
|
||||
index,
|
||||
repeat_noise=False,
|
||||
use_original_steps=False,
|
||||
quantize_denoised=False,
|
||||
temperature=1.0,
|
||||
noise_dropout=0.0,
|
||||
score_corrector=None,
|
||||
corrector_kwargs=None,
|
||||
unconditional_guidance_scale=1.0,
|
||||
unconditional_conditioning=None,
|
||||
):
|
||||
b, *_, device = *x.shape, x.device
|
||||
|
||||
if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
|
||||
if (
|
||||
unconditional_conditioning is None
|
||||
or unconditional_guidance_scale == 1.0
|
||||
):
|
||||
e_t = self.model.apply_model(x, t, c)
|
||||
else:
|
||||
x_in = torch.cat([x] * 2)
|
||||
t_in = torch.cat([t] * 2)
|
||||
c_in = torch.cat([unconditional_conditioning, c])
|
||||
e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
|
||||
e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
|
||||
e_t = e_t_uncond + unconditional_guidance_scale * (
|
||||
e_t - e_t_uncond
|
||||
)
|
||||
|
||||
if score_corrector is not None:
|
||||
assert self.model.parameterization == "eps"
|
||||
e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
|
||||
assert self.model.parameterization == 'eps'
|
||||
e_t = score_corrector.modify_score(
|
||||
self.model, e_t, x, t, c, **corrector_kwargs
|
||||
)
|
||||
|
||||
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
|
||||
alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
|
||||
sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
|
||||
sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
|
||||
alphas = (
|
||||
self.model.alphas_cumprod
|
||||
if use_original_steps
|
||||
else self.ddim_alphas
|
||||
)
|
||||
alphas_prev = (
|
||||
self.model.alphas_cumprod_prev
|
||||
if use_original_steps
|
||||
else self.ddim_alphas_prev
|
||||
)
|
||||
sqrt_one_minus_alphas = (
|
||||
self.model.sqrt_one_minus_alphas_cumprod
|
||||
if use_original_steps
|
||||
else self.ddim_sqrt_one_minus_alphas
|
||||
)
|
||||
sigmas = (
|
||||
self.model.ddim_sigmas_for_original_num_steps
|
||||
if use_original_steps
|
||||
else self.ddim_sigmas
|
||||
)
|
||||
# select parameters corresponding to the currently considered timestep
|
||||
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
|
||||
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
|
||||
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
|
||||
sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
|
||||
sqrt_one_minus_at = torch.full(
|
||||
(b, 1, 1, 1), sqrt_one_minus_alphas[index], device=device
|
||||
)
|
||||
|
||||
# current prediction for x_0
|
||||
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
||||
if quantize_denoised:
|
||||
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
|
||||
# direction pointing to x_t
|
||||
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
|
||||
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
||||
if noise_dropout > 0.:
|
||||
dir_xt = (1.0 - a_prev - sigma_t**2).sqrt() * e_t
|
||||
noise = (
|
||||
sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
||||
)
|
||||
if noise_dropout > 0.0:
|
||||
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
||||
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
|
||||
return x_prev, pred_x0
|
||||
@ -217,26 +363,51 @@ class DDIMSampler(object):
|
||||
|
||||
if noise is None:
|
||||
noise = torch.randn_like(x0)
|
||||
return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 +
|
||||
extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise)
|
||||
return (
|
||||
extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0
|
||||
+ extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape)
|
||||
* noise
|
||||
)
|
||||
|
||||
@torch.no_grad()
|
||||
def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None,
|
||||
use_original_steps=False):
|
||||
def decode(
|
||||
self,
|
||||
x_latent,
|
||||
cond,
|
||||
t_start,
|
||||
unconditional_guidance_scale=1.0,
|
||||
unconditional_conditioning=None,
|
||||
use_original_steps=False,
|
||||
):
|
||||
|
||||
timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps
|
||||
timesteps = (
|
||||
np.arange(self.ddpm_num_timesteps)
|
||||
if use_original_steps
|
||||
else self.ddim_timesteps
|
||||
)
|
||||
timesteps = timesteps[:t_start]
|
||||
|
||||
time_range = np.flip(timesteps)
|
||||
total_steps = timesteps.shape[0]
|
||||
print(f"Running DDIM Sampling with {total_steps} timesteps")
|
||||
print(f'Running DDIM Sampling with {total_steps} timesteps')
|
||||
|
||||
iterator = tqdm(time_range, desc='Decoding image', total=total_steps)
|
||||
x_dec = x_latent
|
||||
for i, step in enumerate(iterator):
|
||||
index = total_steps - i - 1
|
||||
ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long)
|
||||
x_dec, _ = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps,
|
||||
unconditional_guidance_scale=unconditional_guidance_scale,
|
||||
unconditional_conditioning=unconditional_conditioning)
|
||||
ts = torch.full(
|
||||
(x_latent.shape[0],),
|
||||
step,
|
||||
device=x_latent.device,
|
||||
dtype=torch.long,
|
||||
)
|
||||
x_dec, _ = self.p_sample_ddim(
|
||||
x_dec,
|
||||
cond,
|
||||
ts,
|
||||
index=index,
|
||||
use_original_steps=use_original_steps,
|
||||
unconditional_guidance_scale=unconditional_guidance_scale,
|
||||
unconditional_conditioning=unconditional_conditioning,
|
||||
)
|
||||
return x_dec
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -1,8 +1,9 @@
|
||||
'''wrapper around part of Katherine Crowson's k-diffusion library, making it call compatible with other Samplers'''
|
||||
"""wrapper around part of Katherine Crowson's k-diffusion library, making it call compatible with other Samplers"""
|
||||
import k_diffusion as K
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
class CFGDenoiser(nn.Module):
|
||||
def __init__(self, model):
|
||||
super().__init__()
|
||||
@ -15,8 +16,9 @@ class CFGDenoiser(nn.Module):
|
||||
uncond, cond = self.inner_model(x_in, sigma_in, cond=cond_in).chunk(2)
|
||||
return uncond + (cond - uncond) * cond_scale
|
||||
|
||||
|
||||
class KSampler(object):
|
||||
def __init__(self, model, schedule="lms", device="cuda", **kwargs):
|
||||
def __init__(self, model, schedule='lms', device='cuda', **kwargs):
|
||||
super().__init__()
|
||||
self.model = K.external.CompVisDenoiser(model)
|
||||
self.schedule = schedule
|
||||
@ -26,44 +28,57 @@ class KSampler(object):
|
||||
x_in = torch.cat([x] * 2)
|
||||
sigma_in = torch.cat([sigma] * 2)
|
||||
cond_in = torch.cat([uncond, cond])
|
||||
uncond, cond = self.inner_model(x_in, sigma_in, cond=cond_in).chunk(2)
|
||||
uncond, cond = self.inner_model(
|
||||
x_in, sigma_in, cond=cond_in
|
||||
).chunk(2)
|
||||
return uncond + (cond - uncond) * cond_scale
|
||||
|
||||
|
||||
# most of these arguments are ignored and are only present for compatibility with
|
||||
# other samples
|
||||
@torch.no_grad()
|
||||
def sample(self,
|
||||
S,
|
||||
batch_size,
|
||||
shape,
|
||||
conditioning=None,
|
||||
callback=None,
|
||||
normals_sequence=None,
|
||||
img_callback=None,
|
||||
quantize_x0=False,
|
||||
eta=0.,
|
||||
mask=None,
|
||||
x0=None,
|
||||
temperature=1.,
|
||||
noise_dropout=0.,
|
||||
score_corrector=None,
|
||||
corrector_kwargs=None,
|
||||
verbose=True,
|
||||
x_T=None,
|
||||
log_every_t=100,
|
||||
unconditional_guidance_scale=1.,
|
||||
unconditional_conditioning=None,
|
||||
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
||||
**kwargs
|
||||
):
|
||||
def sample(
|
||||
self,
|
||||
S,
|
||||
batch_size,
|
||||
shape,
|
||||
conditioning=None,
|
||||
callback=None,
|
||||
normals_sequence=None,
|
||||
img_callback=None,
|
||||
quantize_x0=False,
|
||||
eta=0.0,
|
||||
mask=None,
|
||||
x0=None,
|
||||
temperature=1.0,
|
||||
noise_dropout=0.0,
|
||||
score_corrector=None,
|
||||
corrector_kwargs=None,
|
||||
verbose=True,
|
||||
x_T=None,
|
||||
log_every_t=100,
|
||||
unconditional_guidance_scale=1.0,
|
||||
unconditional_conditioning=None,
|
||||
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
||||
**kwargs,
|
||||
):
|
||||
|
||||
sigmas = self.model.get_sigmas(S)
|
||||
if x_T:
|
||||
x = x_T
|
||||
else:
|
||||
x = torch.randn([batch_size, *shape], device=self.device) * sigmas[0] # for GPU draw
|
||||
x = (
|
||||
torch.randn([batch_size, *shape], device=self.device)
|
||||
* sigmas[0]
|
||||
) # for GPU draw
|
||||
model_wrap_cfg = CFGDenoiser(self.model)
|
||||
extra_args = {'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': unconditional_guidance_scale}
|
||||
return (K.sampling.__dict__[f'sample_{self.schedule}'](model_wrap_cfg, x, sigmas, extra_args=extra_args),
|
||||
None)
|
||||
extra_args = {
|
||||
'cond': conditioning,
|
||||
'uncond': unconditional_conditioning,
|
||||
'cond_scale': unconditional_guidance_scale,
|
||||
}
|
||||
return (
|
||||
K.sampling.__dict__[f'sample_{self.schedule}'](
|
||||
model_wrap_cfg, x, sigmas, extra_args=extra_args
|
||||
),
|
||||
None,
|
||||
)
|
||||
|
@ -5,11 +5,15 @@ import numpy as np
|
||||
from tqdm import tqdm
|
||||
from functools import partial
|
||||
|
||||
from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like
|
||||
from ldm.modules.diffusionmodules.util import (
|
||||
make_ddim_sampling_parameters,
|
||||
make_ddim_timesteps,
|
||||
noise_like,
|
||||
)
|
||||
|
||||
|
||||
class PLMSSampler(object):
|
||||
def __init__(self, model, schedule="linear", device="cuda", **kwargs):
|
||||
def __init__(self, model, schedule='linear', device='cuda', **kwargs):
|
||||
super().__init__()
|
||||
self.model = model
|
||||
self.ddpm_num_timesteps = model.num_timesteps
|
||||
@ -23,103 +27,172 @@ class PLMSSampler(object):
|
||||
|
||||
setattr(self, name, attr)
|
||||
|
||||
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
|
||||
def make_schedule(
|
||||
self,
|
||||
ddim_num_steps,
|
||||
ddim_discretize='uniform',
|
||||
ddim_eta=0.0,
|
||||
verbose=True,
|
||||
):
|
||||
if ddim_eta != 0:
|
||||
raise ValueError('ddim_eta must be 0 for PLMS')
|
||||
self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
|
||||
num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
|
||||
self.ddim_timesteps = make_ddim_timesteps(
|
||||
ddim_discr_method=ddim_discretize,
|
||||
num_ddim_timesteps=ddim_num_steps,
|
||||
num_ddpm_timesteps=self.ddpm_num_timesteps,
|
||||
verbose=verbose,
|
||||
)
|
||||
alphas_cumprod = self.model.alphas_cumprod
|
||||
assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
|
||||
to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
|
||||
assert (
|
||||
alphas_cumprod.shape[0] == self.ddpm_num_timesteps
|
||||
), 'alphas have to be defined for each timestep'
|
||||
to_torch = (
|
||||
lambda x: x.clone()
|
||||
.detach()
|
||||
.to(torch.float32)
|
||||
.to(self.model.device)
|
||||
)
|
||||
|
||||
self.register_buffer('betas', to_torch(self.model.betas))
|
||||
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
||||
self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
|
||||
self.register_buffer(
|
||||
'alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev)
|
||||
)
|
||||
|
||||
# calculations for diffusion q(x_t | x_{t-1}) and others
|
||||
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
|
||||
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
|
||||
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
|
||||
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
|
||||
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
|
||||
self.register_buffer(
|
||||
'sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu()))
|
||||
)
|
||||
self.register_buffer(
|
||||
'sqrt_one_minus_alphas_cumprod',
|
||||
to_torch(np.sqrt(1.0 - alphas_cumprod.cpu())),
|
||||
)
|
||||
self.register_buffer(
|
||||
'log_one_minus_alphas_cumprod',
|
||||
to_torch(np.log(1.0 - alphas_cumprod.cpu())),
|
||||
)
|
||||
self.register_buffer(
|
||||
'sqrt_recip_alphas_cumprod',
|
||||
to_torch(np.sqrt(1.0 / alphas_cumprod.cpu())),
|
||||
)
|
||||
self.register_buffer(
|
||||
'sqrt_recipm1_alphas_cumprod',
|
||||
to_torch(np.sqrt(1.0 / alphas_cumprod.cpu() - 1)),
|
||||
)
|
||||
|
||||
# ddim sampling parameters
|
||||
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
|
||||
ddim_timesteps=self.ddim_timesteps,
|
||||
eta=ddim_eta,verbose=verbose)
|
||||
(
|
||||
ddim_sigmas,
|
||||
ddim_alphas,
|
||||
ddim_alphas_prev,
|
||||
) = make_ddim_sampling_parameters(
|
||||
alphacums=alphas_cumprod.cpu(),
|
||||
ddim_timesteps=self.ddim_timesteps,
|
||||
eta=ddim_eta,
|
||||
verbose=verbose,
|
||||
)
|
||||
self.register_buffer('ddim_sigmas', ddim_sigmas)
|
||||
self.register_buffer('ddim_alphas', ddim_alphas)
|
||||
self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
|
||||
self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
|
||||
self.register_buffer(
|
||||
'ddim_sqrt_one_minus_alphas', np.sqrt(1.0 - ddim_alphas)
|
||||
)
|
||||
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
|
||||
(1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
|
||||
1 - self.alphas_cumprod / self.alphas_cumprod_prev))
|
||||
self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
|
||||
(1 - self.alphas_cumprod_prev)
|
||||
/ (1 - self.alphas_cumprod)
|
||||
* (1 - self.alphas_cumprod / self.alphas_cumprod_prev)
|
||||
)
|
||||
self.register_buffer(
|
||||
'ddim_sigmas_for_original_num_steps',
|
||||
sigmas_for_original_sampling_steps,
|
||||
)
|
||||
|
||||
@torch.no_grad()
|
||||
def sample(self,
|
||||
S,
|
||||
batch_size,
|
||||
shape,
|
||||
conditioning=None,
|
||||
callback=None,
|
||||
normals_sequence=None,
|
||||
img_callback=None,
|
||||
quantize_x0=False,
|
||||
eta=0.,
|
||||
mask=None,
|
||||
x0=None,
|
||||
temperature=1.,
|
||||
noise_dropout=0.,
|
||||
score_corrector=None,
|
||||
corrector_kwargs=None,
|
||||
verbose=True,
|
||||
x_T=None,
|
||||
log_every_t=100,
|
||||
unconditional_guidance_scale=1.,
|
||||
unconditional_conditioning=None,
|
||||
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
||||
**kwargs
|
||||
):
|
||||
def sample(
|
||||
self,
|
||||
S,
|
||||
batch_size,
|
||||
shape,
|
||||
conditioning=None,
|
||||
callback=None,
|
||||
normals_sequence=None,
|
||||
img_callback=None,
|
||||
quantize_x0=False,
|
||||
eta=0.0,
|
||||
mask=None,
|
||||
x0=None,
|
||||
temperature=1.0,
|
||||
noise_dropout=0.0,
|
||||
score_corrector=None,
|
||||
corrector_kwargs=None,
|
||||
verbose=True,
|
||||
x_T=None,
|
||||
log_every_t=100,
|
||||
unconditional_guidance_scale=1.0,
|
||||
unconditional_conditioning=None,
|
||||
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
||||
**kwargs,
|
||||
):
|
||||
if conditioning is not None:
|
||||
if isinstance(conditioning, dict):
|
||||
cbs = conditioning[list(conditioning.keys())[0]].shape[0]
|
||||
if cbs != batch_size:
|
||||
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
||||
print(
|
||||
f'Warning: Got {cbs} conditionings but batch-size is {batch_size}'
|
||||
)
|
||||
else:
|
||||
if conditioning.shape[0] != batch_size:
|
||||
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
|
||||
print(
|
||||
f'Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}'
|
||||
)
|
||||
|
||||
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
|
||||
# sampling
|
||||
C, H, W = shape
|
||||
size = (batch_size, C, H, W)
|
||||
# print(f'Data shape for PLMS sampling is {size}')
|
||||
# print(f'Data shape for PLMS sampling is {size}')
|
||||
|
||||
samples, intermediates = self.plms_sampling(conditioning, size,
|
||||
callback=callback,
|
||||
img_callback=img_callback,
|
||||
quantize_denoised=quantize_x0,
|
||||
mask=mask, x0=x0,
|
||||
ddim_use_original_steps=False,
|
||||
noise_dropout=noise_dropout,
|
||||
temperature=temperature,
|
||||
score_corrector=score_corrector,
|
||||
corrector_kwargs=corrector_kwargs,
|
||||
x_T=x_T,
|
||||
log_every_t=log_every_t,
|
||||
unconditional_guidance_scale=unconditional_guidance_scale,
|
||||
unconditional_conditioning=unconditional_conditioning,
|
||||
)
|
||||
samples, intermediates = self.plms_sampling(
|
||||
conditioning,
|
||||
size,
|
||||
callback=callback,
|
||||
img_callback=img_callback,
|
||||
quantize_denoised=quantize_x0,
|
||||
mask=mask,
|
||||
x0=x0,
|
||||
ddim_use_original_steps=False,
|
||||
noise_dropout=noise_dropout,
|
||||
temperature=temperature,
|
||||
score_corrector=score_corrector,
|
||||
corrector_kwargs=corrector_kwargs,
|
||||
x_T=x_T,
|
||||
log_every_t=log_every_t,
|
||||
unconditional_guidance_scale=unconditional_guidance_scale,
|
||||
unconditional_conditioning=unconditional_conditioning,
|
||||
)
|
||||
return samples, intermediates
|
||||
|
||||
@torch.no_grad()
|
||||
def plms_sampling(self, cond, shape,
|
||||
x_T=None, ddim_use_original_steps=False,
|
||||
callback=None, timesteps=None, quantize_denoised=False,
|
||||
mask=None, x0=None, img_callback=None, log_every_t=100,
|
||||
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
||||
unconditional_guidance_scale=1., unconditional_conditioning=None,):
|
||||
def plms_sampling(
|
||||
self,
|
||||
cond,
|
||||
shape,
|
||||
x_T=None,
|
||||
ddim_use_original_steps=False,
|
||||
callback=None,
|
||||
timesteps=None,
|
||||
quantize_denoised=False,
|
||||
mask=None,
|
||||
x0=None,
|
||||
img_callback=None,
|
||||
log_every_t=100,
|
||||
temperature=1.0,
|
||||
noise_dropout=0.0,
|
||||
score_corrector=None,
|
||||
corrector_kwargs=None,
|
||||
unconditional_guidance_scale=1.0,
|
||||
unconditional_conditioning=None,
|
||||
):
|
||||
device = self.model.betas.device
|
||||
b = shape[0]
|
||||
if x_T is None:
|
||||
@ -128,42 +201,81 @@ class PLMSSampler(object):
|
||||
img = x_T
|
||||
|
||||
if timesteps is None:
|
||||
timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
|
||||
timesteps = (
|
||||
self.ddpm_num_timesteps
|
||||
if ddim_use_original_steps
|
||||
else self.ddim_timesteps
|
||||
)
|
||||
elif timesteps is not None and not ddim_use_original_steps:
|
||||
subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
|
||||
subset_end = (
|
||||
int(
|
||||
min(timesteps / self.ddim_timesteps.shape[0], 1)
|
||||
* self.ddim_timesteps.shape[0]
|
||||
)
|
||||
- 1
|
||||
)
|
||||
timesteps = self.ddim_timesteps[:subset_end]
|
||||
|
||||
intermediates = {'x_inter': [img], 'pred_x0': [img]}
|
||||
time_range = list(reversed(range(0,timesteps))) if ddim_use_original_steps else np.flip(timesteps)
|
||||
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
|
||||
# print(f"Running PLMS Sampling with {total_steps} timesteps")
|
||||
time_range = (
|
||||
list(reversed(range(0, timesteps)))
|
||||
if ddim_use_original_steps
|
||||
else np.flip(timesteps)
|
||||
)
|
||||
total_steps = (
|
||||
timesteps if ddim_use_original_steps else timesteps.shape[0]
|
||||
)
|
||||
# print(f"Running PLMS Sampling with {total_steps} timesteps")
|
||||
|
||||
iterator = tqdm(time_range, desc='PLMS Sampler', total=total_steps, dynamic_ncols=True)
|
||||
iterator = tqdm(
|
||||
time_range,
|
||||
desc='PLMS Sampler',
|
||||
total=total_steps,
|
||||
dynamic_ncols=True,
|
||||
)
|
||||
old_eps = []
|
||||
|
||||
for i, step in enumerate(iterator):
|
||||
index = total_steps - i - 1
|
||||
ts = torch.full((b,), step, device=device, dtype=torch.long)
|
||||
ts_next = torch.full((b,), time_range[min(i + 1, len(time_range) - 1)], device=device, dtype=torch.long)
|
||||
ts_next = torch.full(
|
||||
(b,),
|
||||
time_range[min(i + 1, len(time_range) - 1)],
|
||||
device=device,
|
||||
dtype=torch.long,
|
||||
)
|
||||
|
||||
if mask is not None:
|
||||
assert x0 is not None
|
||||
img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
|
||||
img = img_orig * mask + (1. - mask) * img
|
||||
img_orig = self.model.q_sample(
|
||||
x0, ts
|
||||
) # TODO: deterministic forward pass?
|
||||
img = img_orig * mask + (1.0 - mask) * img
|
||||
|
||||
outs = self.p_sample_plms(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
|
||||
quantize_denoised=quantize_denoised, temperature=temperature,
|
||||
noise_dropout=noise_dropout, score_corrector=score_corrector,
|
||||
corrector_kwargs=corrector_kwargs,
|
||||
unconditional_guidance_scale=unconditional_guidance_scale,
|
||||
unconditional_conditioning=unconditional_conditioning,
|
||||
old_eps=old_eps, t_next=ts_next)
|
||||
outs = self.p_sample_plms(
|
||||
img,
|
||||
cond,
|
||||
ts,
|
||||
index=index,
|
||||
use_original_steps=ddim_use_original_steps,
|
||||
quantize_denoised=quantize_denoised,
|
||||
temperature=temperature,
|
||||
noise_dropout=noise_dropout,
|
||||
score_corrector=score_corrector,
|
||||
corrector_kwargs=corrector_kwargs,
|
||||
unconditional_guidance_scale=unconditional_guidance_scale,
|
||||
unconditional_conditioning=unconditional_conditioning,
|
||||
old_eps=old_eps,
|
||||
t_next=ts_next,
|
||||
)
|
||||
img, pred_x0, e_t = outs
|
||||
old_eps.append(e_t)
|
||||
if len(old_eps) >= 4:
|
||||
old_eps.pop(0)
|
||||
if callback: callback(i)
|
||||
if img_callback: img_callback(pred_x0, i)
|
||||
if callback:
|
||||
callback(i)
|
||||
if img_callback:
|
||||
img_callback(pred_x0, i)
|
||||
|
||||
if index % log_every_t == 0 or index == total_steps - 1:
|
||||
intermediates['x_inter'].append(img)
|
||||
@ -172,47 +284,95 @@ class PLMSSampler(object):
|
||||
return img, intermediates
|
||||
|
||||
@torch.no_grad()
|
||||
def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
|
||||
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
||||
unconditional_guidance_scale=1., unconditional_conditioning=None, old_eps=None, t_next=None):
|
||||
def p_sample_plms(
|
||||
self,
|
||||
x,
|
||||
c,
|
||||
t,
|
||||
index,
|
||||
repeat_noise=False,
|
||||
use_original_steps=False,
|
||||
quantize_denoised=False,
|
||||
temperature=1.0,
|
||||
noise_dropout=0.0,
|
||||
score_corrector=None,
|
||||
corrector_kwargs=None,
|
||||
unconditional_guidance_scale=1.0,
|
||||
unconditional_conditioning=None,
|
||||
old_eps=None,
|
||||
t_next=None,
|
||||
):
|
||||
b, *_, device = *x.shape, x.device
|
||||
|
||||
def get_model_output(x, t):
|
||||
if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
|
||||
if (
|
||||
unconditional_conditioning is None
|
||||
or unconditional_guidance_scale == 1.0
|
||||
):
|
||||
e_t = self.model.apply_model(x, t, c)
|
||||
else:
|
||||
x_in = torch.cat([x] * 2)
|
||||
t_in = torch.cat([t] * 2)
|
||||
c_in = torch.cat([unconditional_conditioning, c])
|
||||
e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
|
||||
e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
|
||||
e_t_uncond, e_t = self.model.apply_model(
|
||||
x_in, t_in, c_in
|
||||
).chunk(2)
|
||||
e_t = e_t_uncond + unconditional_guidance_scale * (
|
||||
e_t - e_t_uncond
|
||||
)
|
||||
|
||||
if score_corrector is not None:
|
||||
assert self.model.parameterization == "eps"
|
||||
e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
|
||||
assert self.model.parameterization == 'eps'
|
||||
e_t = score_corrector.modify_score(
|
||||
self.model, e_t, x, t, c, **corrector_kwargs
|
||||
)
|
||||
|
||||
return e_t
|
||||
|
||||
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
|
||||
alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
|
||||
sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
|
||||
sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
|
||||
alphas = (
|
||||
self.model.alphas_cumprod
|
||||
if use_original_steps
|
||||
else self.ddim_alphas
|
||||
)
|
||||
alphas_prev = (
|
||||
self.model.alphas_cumprod_prev
|
||||
if use_original_steps
|
||||
else self.ddim_alphas_prev
|
||||
)
|
||||
sqrt_one_minus_alphas = (
|
||||
self.model.sqrt_one_minus_alphas_cumprod
|
||||
if use_original_steps
|
||||
else self.ddim_sqrt_one_minus_alphas
|
||||
)
|
||||
sigmas = (
|
||||
self.model.ddim_sigmas_for_original_num_steps
|
||||
if use_original_steps
|
||||
else self.ddim_sigmas
|
||||
)
|
||||
|
||||
def get_x_prev_and_pred_x0(e_t, index):
|
||||
# select parameters corresponding to the currently considered timestep
|
||||
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
|
||||
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
|
||||
a_prev = torch.full(
|
||||
(b, 1, 1, 1), alphas_prev[index], device=device
|
||||
)
|
||||
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
|
||||
sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
|
||||
sqrt_one_minus_at = torch.full(
|
||||
(b, 1, 1, 1), sqrt_one_minus_alphas[index], device=device
|
||||
)
|
||||
|
||||
# current prediction for x_0
|
||||
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
||||
if quantize_denoised:
|
||||
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
|
||||
# direction pointing to x_t
|
||||
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
|
||||
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
||||
if noise_dropout > 0.:
|
||||
dir_xt = (1.0 - a_prev - sigma_t**2).sqrt() * e_t
|
||||
noise = (
|
||||
sigma_t
|
||||
* noise_like(x.shape, device, repeat_noise)
|
||||
* temperature
|
||||
)
|
||||
if noise_dropout > 0.0:
|
||||
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
||||
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
|
||||
return x_prev, pred_x0
|
||||
@ -231,7 +391,12 @@ class PLMSSampler(object):
|
||||
e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12
|
||||
elif len(old_eps) >= 3:
|
||||
# 4nd order Pseudo Linear Multistep (Adams-Bashforth)
|
||||
e_t_prime = (55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]) / 24
|
||||
e_t_prime = (
|
||||
55 * e_t
|
||||
- 59 * old_eps[-1]
|
||||
+ 37 * old_eps[-2]
|
||||
- 9 * old_eps[-3]
|
||||
) / 24
|
||||
|
||||
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index)
|
||||
|
||||
|
@ -13,7 +13,7 @@ def exists(val):
|
||||
|
||||
|
||||
def uniq(arr):
|
||||
return{el: True for el in arr}.keys()
|
||||
return {el: True for el in arr}.keys()
|
||||
|
||||
|
||||
def default(val, d):
|
||||
@ -45,19 +45,18 @@ class GEGLU(nn.Module):
|
||||
|
||||
|
||||
class FeedForward(nn.Module):
|
||||
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
|
||||
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0):
|
||||
super().__init__()
|
||||
inner_dim = int(dim * mult)
|
||||
dim_out = default(dim_out, dim)
|
||||
project_in = nn.Sequential(
|
||||
nn.Linear(dim, inner_dim),
|
||||
nn.GELU()
|
||||
) if not glu else GEGLU(dim, inner_dim)
|
||||
project_in = (
|
||||
nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU())
|
||||
if not glu
|
||||
else GEGLU(dim, inner_dim)
|
||||
)
|
||||
|
||||
self.net = nn.Sequential(
|
||||
project_in,
|
||||
nn.Dropout(dropout),
|
||||
nn.Linear(inner_dim, dim_out)
|
||||
project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
@ -74,7 +73,9 @@ def zero_module(module):
|
||||
|
||||
|
||||
def Normalize(in_channels):
|
||||
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
||||
return torch.nn.GroupNorm(
|
||||
num_groups=32, num_channels=in_channels, eps=1e-6, affine=True
|
||||
)
|
||||
|
||||
|
||||
class LinearAttention(nn.Module):
|
||||
@ -82,17 +83,28 @@ class LinearAttention(nn.Module):
|
||||
super().__init__()
|
||||
self.heads = heads
|
||||
hidden_dim = dim_head * heads
|
||||
self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False)
|
||||
self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias=False)
|
||||
self.to_out = nn.Conv2d(hidden_dim, dim, 1)
|
||||
|
||||
def forward(self, x):
|
||||
b, c, h, w = x.shape
|
||||
qkv = self.to_qkv(x)
|
||||
q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads = self.heads, qkv=3)
|
||||
q, k, v = rearrange(
|
||||
qkv,
|
||||
'b (qkv heads c) h w -> qkv b heads c (h w)',
|
||||
heads=self.heads,
|
||||
qkv=3,
|
||||
)
|
||||
k = k.softmax(dim=-1)
|
||||
context = torch.einsum('bhdn,bhen->bhde', k, v)
|
||||
out = torch.einsum('bhde,bhdn->bhen', context, q)
|
||||
out = rearrange(out, 'b heads c (h w) -> b (heads c) h w', heads=self.heads, h=h, w=w)
|
||||
out = rearrange(
|
||||
out,
|
||||
'b heads c (h w) -> b (heads c) h w',
|
||||
heads=self.heads,
|
||||
h=h,
|
||||
w=w,
|
||||
)
|
||||
return self.to_out(out)
|
||||
|
||||
|
||||
@ -102,26 +114,18 @@ class SpatialSelfAttention(nn.Module):
|
||||
self.in_channels = in_channels
|
||||
|
||||
self.norm = Normalize(in_channels)
|
||||
self.q = torch.nn.Conv2d(in_channels,
|
||||
in_channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0)
|
||||
self.k = torch.nn.Conv2d(in_channels,
|
||||
in_channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0)
|
||||
self.v = torch.nn.Conv2d(in_channels,
|
||||
in_channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0)
|
||||
self.proj_out = torch.nn.Conv2d(in_channels,
|
||||
in_channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0)
|
||||
self.q = torch.nn.Conv2d(
|
||||
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
||||
)
|
||||
self.k = torch.nn.Conv2d(
|
||||
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
||||
)
|
||||
self.v = torch.nn.Conv2d(
|
||||
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
||||
)
|
||||
self.proj_out = torch.nn.Conv2d(
|
||||
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
h_ = x
|
||||
@ -131,12 +135,12 @@ class SpatialSelfAttention(nn.Module):
|
||||
v = self.v(h_)
|
||||
|
||||
# compute attention
|
||||
b,c,h,w = q.shape
|
||||
b, c, h, w = q.shape
|
||||
q = rearrange(q, 'b c h w -> b (h w) c')
|
||||
k = rearrange(k, 'b c h w -> b c (h w)')
|
||||
w_ = torch.einsum('bij,bjk->bik', q, k)
|
||||
|
||||
w_ = w_ * (int(c)**(-0.5))
|
||||
w_ = w_ * (int(c) ** (-0.5))
|
||||
w_ = torch.nn.functional.softmax(w_, dim=2)
|
||||
|
||||
# attend to values
|
||||
@ -146,16 +150,18 @@ class SpatialSelfAttention(nn.Module):
|
||||
h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h)
|
||||
h_ = self.proj_out(h_)
|
||||
|
||||
return x+h_
|
||||
return x + h_
|
||||
|
||||
|
||||
class CrossAttention(nn.Module):
|
||||
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.):
|
||||
def __init__(
|
||||
self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0
|
||||
):
|
||||
super().__init__()
|
||||
inner_dim = dim_head * heads
|
||||
context_dim = default(context_dim, query_dim)
|
||||
|
||||
self.scale = dim_head ** -0.5
|
||||
self.scale = dim_head**-0.5
|
||||
self.heads = heads
|
||||
|
||||
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
||||
@ -163,8 +169,7 @@ class CrossAttention(nn.Module):
|
||||
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
||||
|
||||
self.to_out = nn.Sequential(
|
||||
nn.Linear(inner_dim, query_dim),
|
||||
nn.Dropout(dropout)
|
||||
nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)
|
||||
)
|
||||
|
||||
def forward(self, x, context=None, mask=None):
|
||||
@ -175,7 +180,9 @@ class CrossAttention(nn.Module):
|
||||
k = self.to_k(context)
|
||||
v = self.to_v(context)
|
||||
|
||||
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
|
||||
q, k, v = map(
|
||||
lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)
|
||||
)
|
||||
|
||||
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
|
||||
|
||||
@ -194,19 +201,37 @@ class CrossAttention(nn.Module):
|
||||
|
||||
|
||||
class BasicTransformerBlock(nn.Module):
|
||||
def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True):
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
n_heads,
|
||||
d_head,
|
||||
dropout=0.0,
|
||||
context_dim=None,
|
||||
gated_ff=True,
|
||||
checkpoint=True,
|
||||
):
|
||||
super().__init__()
|
||||
self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout) # is a self-attention
|
||||
self.attn1 = CrossAttention(
|
||||
query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout
|
||||
) # is a self-attention
|
||||
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
|
||||
self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim,
|
||||
heads=n_heads, dim_head=d_head, dropout=dropout) # is self-attn if context is none
|
||||
self.attn2 = CrossAttention(
|
||||
query_dim=dim,
|
||||
context_dim=context_dim,
|
||||
heads=n_heads,
|
||||
dim_head=d_head,
|
||||
dropout=dropout,
|
||||
) # is self-attn if context is none
|
||||
self.norm1 = nn.LayerNorm(dim)
|
||||
self.norm2 = nn.LayerNorm(dim)
|
||||
self.norm3 = nn.LayerNorm(dim)
|
||||
self.checkpoint = checkpoint
|
||||
|
||||
def forward(self, x, context=None):
|
||||
return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint)
|
||||
return checkpoint(
|
||||
self._forward, (x, context), self.parameters(), self.checkpoint
|
||||
)
|
||||
|
||||
def _forward(self, x, context=None):
|
||||
x = self.attn1(self.norm1(x)) + x
|
||||
@ -223,29 +248,43 @@ class SpatialTransformer(nn.Module):
|
||||
Then apply standard transformer action.
|
||||
Finally, reshape to image
|
||||
"""
|
||||
def __init__(self, in_channels, n_heads, d_head,
|
||||
depth=1, dropout=0., context_dim=None):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
in_channels,
|
||||
n_heads,
|
||||
d_head,
|
||||
depth=1,
|
||||
dropout=0.0,
|
||||
context_dim=None,
|
||||
):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
inner_dim = n_heads * d_head
|
||||
self.norm = Normalize(in_channels)
|
||||
|
||||
self.proj_in = nn.Conv2d(in_channels,
|
||||
inner_dim,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0)
|
||||
|
||||
self.transformer_blocks = nn.ModuleList(
|
||||
[BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim)
|
||||
for d in range(depth)]
|
||||
self.proj_in = nn.Conv2d(
|
||||
in_channels, inner_dim, kernel_size=1, stride=1, padding=0
|
||||
)
|
||||
|
||||
self.proj_out = zero_module(nn.Conv2d(inner_dim,
|
||||
in_channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0))
|
||||
self.transformer_blocks = nn.ModuleList(
|
||||
[
|
||||
BasicTransformerBlock(
|
||||
inner_dim,
|
||||
n_heads,
|
||||
d_head,
|
||||
dropout=dropout,
|
||||
context_dim=context_dim,
|
||||
)
|
||||
for d in range(depth)
|
||||
]
|
||||
)
|
||||
|
||||
self.proj_out = zero_module(
|
||||
nn.Conv2d(
|
||||
inner_dim, in_channels, kernel_size=1, stride=1, padding=0
|
||||
)
|
||||
)
|
||||
|
||||
def forward(self, x, context=None):
|
||||
# note: if no context is given, cross-attention defaults to self-attention
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -24,6 +24,7 @@ from ldm.modules.attention import SpatialTransformer
|
||||
def convert_module_to_f16(x):
|
||||
pass
|
||||
|
||||
|
||||
def convert_module_to_f32(x):
|
||||
pass
|
||||
|
||||
@ -42,7 +43,9 @@ class AttentionPool2d(nn.Module):
|
||||
output_dim: int = None,
|
||||
):
|
||||
super().__init__()
|
||||
self.positional_embedding = nn.Parameter(th.randn(embed_dim, spacial_dim ** 2 + 1) / embed_dim ** 0.5)
|
||||
self.positional_embedding = nn.Parameter(
|
||||
th.randn(embed_dim, spacial_dim**2 + 1) / embed_dim**0.5
|
||||
)
|
||||
self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
|
||||
self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
|
||||
self.num_heads = embed_dim // num_heads_channels
|
||||
@ -97,37 +100,45 @@ class Upsample(nn.Module):
|
||||
upsampling occurs in the inner-two dimensions.
|
||||
"""
|
||||
|
||||
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
|
||||
def __init__(
|
||||
self, channels, use_conv, dims=2, out_channels=None, padding=1
|
||||
):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.out_channels = out_channels or channels
|
||||
self.use_conv = use_conv
|
||||
self.dims = dims
|
||||
if use_conv:
|
||||
self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding)
|
||||
self.conv = conv_nd(
|
||||
dims, self.channels, self.out_channels, 3, padding=padding
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
assert x.shape[1] == self.channels
|
||||
if self.dims == 3:
|
||||
x = F.interpolate(
|
||||
x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
|
||||
x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode='nearest'
|
||||
)
|
||||
else:
|
||||
x = F.interpolate(x, scale_factor=2, mode="nearest")
|
||||
x = F.interpolate(x, scale_factor=2, mode='nearest')
|
||||
if self.use_conv:
|
||||
x = self.conv(x)
|
||||
return x
|
||||
|
||||
|
||||
class TransposedUpsample(nn.Module):
|
||||
'Learned 2x upsampling without padding'
|
||||
"""Learned 2x upsampling without padding"""
|
||||
|
||||
def __init__(self, channels, out_channels=None, ks=5):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.out_channels = out_channels or channels
|
||||
|
||||
self.up = nn.ConvTranspose2d(self.channels,self.out_channels,kernel_size=ks,stride=2)
|
||||
self.up = nn.ConvTranspose2d(
|
||||
self.channels, self.out_channels, kernel_size=ks, stride=2
|
||||
)
|
||||
|
||||
def forward(self,x):
|
||||
def forward(self, x):
|
||||
return self.up(x)
|
||||
|
||||
|
||||
@ -140,7 +151,9 @@ class Downsample(nn.Module):
|
||||
downsampling occurs in the inner-two dimensions.
|
||||
"""
|
||||
|
||||
def __init__(self, channels, use_conv, dims=2, out_channels=None,padding=1):
|
||||
def __init__(
|
||||
self, channels, use_conv, dims=2, out_channels=None, padding=1
|
||||
):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.out_channels = out_channels or channels
|
||||
@ -149,7 +162,12 @@ class Downsample(nn.Module):
|
||||
stride = 2 if dims != 3 else (1, 2, 2)
|
||||
if use_conv:
|
||||
self.op = conv_nd(
|
||||
dims, self.channels, self.out_channels, 3, stride=stride, padding=padding
|
||||
dims,
|
||||
self.channels,
|
||||
self.out_channels,
|
||||
3,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
)
|
||||
else:
|
||||
assert self.channels == self.out_channels
|
||||
@ -219,7 +237,9 @@ class ResBlock(TimestepBlock):
|
||||
nn.SiLU(),
|
||||
linear(
|
||||
emb_channels,
|
||||
2 * self.out_channels if use_scale_shift_norm else self.out_channels,
|
||||
2 * self.out_channels
|
||||
if use_scale_shift_norm
|
||||
else self.out_channels,
|
||||
),
|
||||
)
|
||||
self.out_layers = nn.Sequential(
|
||||
@ -227,7 +247,9 @@ class ResBlock(TimestepBlock):
|
||||
nn.SiLU(),
|
||||
nn.Dropout(p=dropout),
|
||||
zero_module(
|
||||
conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
|
||||
conv_nd(
|
||||
dims, self.out_channels, self.out_channels, 3, padding=1
|
||||
)
|
||||
),
|
||||
)
|
||||
|
||||
@ -238,7 +260,9 @@ class ResBlock(TimestepBlock):
|
||||
dims, channels, self.out_channels, 3, padding=1
|
||||
)
|
||||
else:
|
||||
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
|
||||
self.skip_connection = conv_nd(
|
||||
dims, channels, self.out_channels, 1
|
||||
)
|
||||
|
||||
def forward(self, x, emb):
|
||||
"""
|
||||
@ -251,7 +275,6 @@ class ResBlock(TimestepBlock):
|
||||
self._forward, (x, emb), self.parameters(), self.use_checkpoint
|
||||
)
|
||||
|
||||
|
||||
def _forward(self, x, emb):
|
||||
if self.updown:
|
||||
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
|
||||
@ -297,7 +320,7 @@ class AttentionBlock(nn.Module):
|
||||
else:
|
||||
assert (
|
||||
channels % num_head_channels == 0
|
||||
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
|
||||
), f'q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}'
|
||||
self.num_heads = channels // num_head_channels
|
||||
self.use_checkpoint = use_checkpoint
|
||||
self.norm = normalization(channels)
|
||||
@ -312,8 +335,10 @@ class AttentionBlock(nn.Module):
|
||||
self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
|
||||
|
||||
def forward(self, x):
|
||||
return checkpoint(self._forward, (x,), self.parameters(), True) # TODO: check checkpoint usage, is True # TODO: fix the .half call!!!
|
||||
#return pt_checkpoint(self._forward, x) # pytorch
|
||||
return checkpoint(
|
||||
self._forward, (x,), self.parameters(), True
|
||||
) # TODO: check checkpoint usage, is True # TODO: fix the .half call!!!
|
||||
# return pt_checkpoint(self._forward, x) # pytorch
|
||||
|
||||
def _forward(self, x):
|
||||
b, c, *spatial = x.shape
|
||||
@ -340,7 +365,7 @@ def count_flops_attn(model, _x, y):
|
||||
# We perform two matmuls with the same number of ops.
|
||||
# The first computes the weight matrix, the second computes
|
||||
# the combination of the value vectors.
|
||||
matmul_ops = 2 * b * (num_spatial ** 2) * c
|
||||
matmul_ops = 2 * b * (num_spatial**2) * c
|
||||
model.total_ops += th.DoubleTensor([matmul_ops])
|
||||
|
||||
|
||||
@ -362,13 +387,15 @@ class QKVAttentionLegacy(nn.Module):
|
||||
bs, width, length = qkv.shape
|
||||
assert width % (3 * self.n_heads) == 0
|
||||
ch = width // (3 * self.n_heads)
|
||||
q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
|
||||
q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(
|
||||
ch, dim=1
|
||||
)
|
||||
scale = 1 / math.sqrt(math.sqrt(ch))
|
||||
weight = th.einsum(
|
||||
"bct,bcs->bts", q * scale, k * scale
|
||||
'bct,bcs->bts', q * scale, k * scale
|
||||
) # More stable with f16 than dividing afterwards
|
||||
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
||||
a = th.einsum("bts,bcs->bct", weight, v)
|
||||
a = th.einsum('bts,bcs->bct', weight, v)
|
||||
return a.reshape(bs, -1, length)
|
||||
|
||||
@staticmethod
|
||||
@ -397,12 +424,14 @@ class QKVAttention(nn.Module):
|
||||
q, k, v = qkv.chunk(3, dim=1)
|
||||
scale = 1 / math.sqrt(math.sqrt(ch))
|
||||
weight = th.einsum(
|
||||
"bct,bcs->bts",
|
||||
'bct,bcs->bts',
|
||||
(q * scale).view(bs * self.n_heads, ch, length),
|
||||
(k * scale).view(bs * self.n_heads, ch, length),
|
||||
) # More stable with f16 than dividing afterwards
|
||||
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
||||
a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length))
|
||||
a = th.einsum(
|
||||
'bts,bcs->bct', weight, v.reshape(bs * self.n_heads, ch, length)
|
||||
)
|
||||
return a.reshape(bs, -1, length)
|
||||
|
||||
@staticmethod
|
||||
@ -461,19 +490,24 @@ class UNetModel(nn.Module):
|
||||
use_scale_shift_norm=False,
|
||||
resblock_updown=False,
|
||||
use_new_attention_order=False,
|
||||
use_spatial_transformer=False, # custom transformer support
|
||||
transformer_depth=1, # custom transformer support
|
||||
context_dim=None, # custom transformer support
|
||||
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
|
||||
use_spatial_transformer=False, # custom transformer support
|
||||
transformer_depth=1, # custom transformer support
|
||||
context_dim=None, # custom transformer support
|
||||
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
|
||||
legacy=True,
|
||||
):
|
||||
super().__init__()
|
||||
if use_spatial_transformer:
|
||||
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
|
||||
assert (
|
||||
context_dim is not None
|
||||
), 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
|
||||
|
||||
if context_dim is not None:
|
||||
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
|
||||
assert (
|
||||
use_spatial_transformer
|
||||
), 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
|
||||
from omegaconf.listconfig import ListConfig
|
||||
|
||||
if type(context_dim) == ListConfig:
|
||||
context_dim = list(context_dim)
|
||||
|
||||
@ -481,10 +515,14 @@ class UNetModel(nn.Module):
|
||||
num_heads_upsample = num_heads
|
||||
|
||||
if num_heads == -1:
|
||||
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
|
||||
assert (
|
||||
num_head_channels != -1
|
||||
), 'Either num_heads or num_head_channels has to be set'
|
||||
|
||||
if num_head_channels == -1:
|
||||
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
|
||||
assert (
|
||||
num_heads != -1
|
||||
), 'Either num_heads or num_head_channels has to be set'
|
||||
|
||||
self.image_size = image_size
|
||||
self.in_channels = in_channels
|
||||
@ -545,8 +583,12 @@ class UNetModel(nn.Module):
|
||||
num_heads = ch // num_head_channels
|
||||
dim_head = num_head_channels
|
||||
if legacy:
|
||||
#num_heads = 1
|
||||
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
||||
# num_heads = 1
|
||||
dim_head = (
|
||||
ch // num_heads
|
||||
if use_spatial_transformer
|
||||
else num_head_channels
|
||||
)
|
||||
layers.append(
|
||||
AttentionBlock(
|
||||
ch,
|
||||
@ -554,8 +596,14 @@ class UNetModel(nn.Module):
|
||||
num_heads=num_heads,
|
||||
num_head_channels=dim_head,
|
||||
use_new_attention_order=use_new_attention_order,
|
||||
) if not use_spatial_transformer else SpatialTransformer(
|
||||
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim
|
||||
)
|
||||
if not use_spatial_transformer
|
||||
else SpatialTransformer(
|
||||
ch,
|
||||
num_heads,
|
||||
dim_head,
|
||||
depth=transformer_depth,
|
||||
context_dim=context_dim,
|
||||
)
|
||||
)
|
||||
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
||||
@ -592,8 +640,12 @@ class UNetModel(nn.Module):
|
||||
num_heads = ch // num_head_channels
|
||||
dim_head = num_head_channels
|
||||
if legacy:
|
||||
#num_heads = 1
|
||||
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
||||
# num_heads = 1
|
||||
dim_head = (
|
||||
ch // num_heads
|
||||
if use_spatial_transformer
|
||||
else num_head_channels
|
||||
)
|
||||
self.middle_block = TimestepEmbedSequential(
|
||||
ResBlock(
|
||||
ch,
|
||||
@ -609,9 +661,15 @@ class UNetModel(nn.Module):
|
||||
num_heads=num_heads,
|
||||
num_head_channels=dim_head,
|
||||
use_new_attention_order=use_new_attention_order,
|
||||
) if not use_spatial_transformer else SpatialTransformer(
|
||||
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim
|
||||
),
|
||||
)
|
||||
if not use_spatial_transformer
|
||||
else SpatialTransformer(
|
||||
ch,
|
||||
num_heads,
|
||||
dim_head,
|
||||
depth=transformer_depth,
|
||||
context_dim=context_dim,
|
||||
),
|
||||
ResBlock(
|
||||
ch,
|
||||
time_embed_dim,
|
||||
@ -646,8 +704,12 @@ class UNetModel(nn.Module):
|
||||
num_heads = ch // num_head_channels
|
||||
dim_head = num_head_channels
|
||||
if legacy:
|
||||
#num_heads = 1
|
||||
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
||||
# num_heads = 1
|
||||
dim_head = (
|
||||
ch // num_heads
|
||||
if use_spatial_transformer
|
||||
else num_head_channels
|
||||
)
|
||||
layers.append(
|
||||
AttentionBlock(
|
||||
ch,
|
||||
@ -655,8 +717,14 @@ class UNetModel(nn.Module):
|
||||
num_heads=num_heads_upsample,
|
||||
num_head_channels=dim_head,
|
||||
use_new_attention_order=use_new_attention_order,
|
||||
) if not use_spatial_transformer else SpatialTransformer(
|
||||
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim
|
||||
)
|
||||
if not use_spatial_transformer
|
||||
else SpatialTransformer(
|
||||
ch,
|
||||
num_heads,
|
||||
dim_head,
|
||||
depth=transformer_depth,
|
||||
context_dim=context_dim,
|
||||
)
|
||||
)
|
||||
if level and i == num_res_blocks:
|
||||
@ -673,7 +741,9 @@ class UNetModel(nn.Module):
|
||||
up=True,
|
||||
)
|
||||
if resblock_updown
|
||||
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
|
||||
else Upsample(
|
||||
ch, conv_resample, dims=dims, out_channels=out_ch
|
||||
)
|
||||
)
|
||||
ds //= 2
|
||||
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
||||
@ -682,14 +752,16 @@ class UNetModel(nn.Module):
|
||||
self.out = nn.Sequential(
|
||||
normalization(ch),
|
||||
nn.SiLU(),
|
||||
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
|
||||
zero_module(
|
||||
conv_nd(dims, model_channels, out_channels, 3, padding=1)
|
||||
),
|
||||
)
|
||||
if self.predict_codebook_ids:
|
||||
self.id_predictor = nn.Sequential(
|
||||
normalization(ch),
|
||||
conv_nd(dims, model_channels, n_embed, 1),
|
||||
#nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
|
||||
)
|
||||
normalization(ch),
|
||||
conv_nd(dims, model_channels, n_embed, 1),
|
||||
# nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
|
||||
)
|
||||
|
||||
def convert_to_fp16(self):
|
||||
"""
|
||||
@ -707,7 +779,7 @@ class UNetModel(nn.Module):
|
||||
self.middle_block.apply(convert_module_to_f32)
|
||||
self.output_blocks.apply(convert_module_to_f32)
|
||||
|
||||
def forward(self, x, timesteps=None, context=None, y=None,**kwargs):
|
||||
def forward(self, x, timesteps=None, context=None, y=None, **kwargs):
|
||||
"""
|
||||
Apply the model to an input batch.
|
||||
:param x: an [N x C x ...] Tensor of inputs.
|
||||
@ -718,9 +790,11 @@ class UNetModel(nn.Module):
|
||||
"""
|
||||
assert (y is not None) == (
|
||||
self.num_classes is not None
|
||||
), "must specify y if and only if the model is class-conditional"
|
||||
), 'must specify y if and only if the model is class-conditional'
|
||||
hs = []
|
||||
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
|
||||
t_emb = timestep_embedding(
|
||||
timesteps, self.model_channels, repeat_only=False
|
||||
)
|
||||
emb = self.time_embed(t_emb)
|
||||
|
||||
if self.num_classes is not None:
|
||||
@ -768,9 +842,9 @@ class EncoderUNetModel(nn.Module):
|
||||
use_scale_shift_norm=False,
|
||||
resblock_updown=False,
|
||||
use_new_attention_order=False,
|
||||
pool="adaptive",
|
||||
pool='adaptive',
|
||||
*args,
|
||||
**kwargs
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
@ -888,7 +962,7 @@ class EncoderUNetModel(nn.Module):
|
||||
)
|
||||
self._feature_size += ch
|
||||
self.pool = pool
|
||||
if pool == "adaptive":
|
||||
if pool == 'adaptive':
|
||||
self.out = nn.Sequential(
|
||||
normalization(ch),
|
||||
nn.SiLU(),
|
||||
@ -896,7 +970,7 @@ class EncoderUNetModel(nn.Module):
|
||||
zero_module(conv_nd(dims, ch, out_channels, 1)),
|
||||
nn.Flatten(),
|
||||
)
|
||||
elif pool == "attention":
|
||||
elif pool == 'attention':
|
||||
assert num_head_channels != -1
|
||||
self.out = nn.Sequential(
|
||||
normalization(ch),
|
||||
@ -905,13 +979,13 @@ class EncoderUNetModel(nn.Module):
|
||||
(image_size // ds), ch, num_head_channels, out_channels
|
||||
),
|
||||
)
|
||||
elif pool == "spatial":
|
||||
elif pool == 'spatial':
|
||||
self.out = nn.Sequential(
|
||||
nn.Linear(self._feature_size, 2048),
|
||||
nn.ReLU(),
|
||||
nn.Linear(2048, self.out_channels),
|
||||
)
|
||||
elif pool == "spatial_v2":
|
||||
elif pool == 'spatial_v2':
|
||||
self.out = nn.Sequential(
|
||||
nn.Linear(self._feature_size, 2048),
|
||||
normalization(2048),
|
||||
@ -919,7 +993,7 @@ class EncoderUNetModel(nn.Module):
|
||||
nn.Linear(2048, self.out_channels),
|
||||
)
|
||||
else:
|
||||
raise NotImplementedError(f"Unexpected {pool} pooling")
|
||||
raise NotImplementedError(f'Unexpected {pool} pooling')
|
||||
|
||||
def convert_to_fp16(self):
|
||||
"""
|
||||
@ -942,20 +1016,21 @@ class EncoderUNetModel(nn.Module):
|
||||
:param timesteps: a 1-D batch of timesteps.
|
||||
:return: an [N x K] Tensor of outputs.
|
||||
"""
|
||||
emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
|
||||
emb = self.time_embed(
|
||||
timestep_embedding(timesteps, self.model_channels)
|
||||
)
|
||||
|
||||
results = []
|
||||
h = x.type(self.dtype)
|
||||
for module in self.input_blocks:
|
||||
h = module(h, emb)
|
||||
if self.pool.startswith("spatial"):
|
||||
if self.pool.startswith('spatial'):
|
||||
results.append(h.type(x.dtype).mean(dim=(2, 3)))
|
||||
h = self.middle_block(h, emb)
|
||||
if self.pool.startswith("spatial"):
|
||||
if self.pool.startswith('spatial'):
|
||||
results.append(h.type(x.dtype).mean(dim=(2, 3)))
|
||||
h = th.cat(results, axis=-1)
|
||||
return self.out(h)
|
||||
else:
|
||||
h = h.type(x.dtype)
|
||||
return self.out(h)
|
||||
|
||||
|
@ -18,15 +18,24 @@ from einops import repeat
|
||||
from ldm.util import instantiate_from_config
|
||||
|
||||
|
||||
def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
||||
if schedule == "linear":
|
||||
def make_beta_schedule(
|
||||
schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3
|
||||
):
|
||||
if schedule == 'linear':
|
||||
betas = (
|
||||
torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2
|
||||
torch.linspace(
|
||||
linear_start**0.5,
|
||||
linear_end**0.5,
|
||||
n_timestep,
|
||||
dtype=torch.float64,
|
||||
)
|
||||
** 2
|
||||
)
|
||||
|
||||
elif schedule == "cosine":
|
||||
elif schedule == 'cosine':
|
||||
timesteps = (
|
||||
torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s
|
||||
torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep
|
||||
+ cosine_s
|
||||
)
|
||||
alphas = timesteps / (1 + cosine_s) * np.pi / 2
|
||||
alphas = torch.cos(alphas).pow(2)
|
||||
@ -34,23 +43,41 @@ def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2,
|
||||
betas = 1 - alphas[1:] / alphas[:-1]
|
||||
betas = np.clip(betas, a_min=0, a_max=0.999)
|
||||
|
||||
elif schedule == "sqrt_linear":
|
||||
betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
|
||||
elif schedule == "sqrt":
|
||||
betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5
|
||||
elif schedule == 'sqrt_linear':
|
||||
betas = torch.linspace(
|
||||
linear_start, linear_end, n_timestep, dtype=torch.float64
|
||||
)
|
||||
elif schedule == 'sqrt':
|
||||
betas = (
|
||||
torch.linspace(
|
||||
linear_start, linear_end, n_timestep, dtype=torch.float64
|
||||
)
|
||||
** 0.5
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"schedule '{schedule}' unknown.")
|
||||
return betas.numpy()
|
||||
|
||||
|
||||
def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True):
|
||||
def make_ddim_timesteps(
|
||||
ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True
|
||||
):
|
||||
if ddim_discr_method == 'uniform':
|
||||
c = num_ddpm_timesteps // num_ddim_timesteps
|
||||
ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
|
||||
elif ddim_discr_method == 'quad':
|
||||
ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8), num_ddim_timesteps)) ** 2).astype(int)
|
||||
ddim_timesteps = (
|
||||
(
|
||||
np.linspace(
|
||||
0, np.sqrt(num_ddpm_timesteps * 0.8), num_ddim_timesteps
|
||||
)
|
||||
)
|
||||
** 2
|
||||
).astype(int)
|
||||
else:
|
||||
raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"')
|
||||
raise NotImplementedError(
|
||||
f'There is no ddim discretization method called "{ddim_discr_method}"'
|
||||
)
|
||||
|
||||
# assert ddim_timesteps.shape[0] == num_ddim_timesteps
|
||||
# add one to get the final alpha values right (the ones from first scale to data during sampling)
|
||||
@ -60,17 +87,27 @@ def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timestep
|
||||
return steps_out
|
||||
|
||||
|
||||
def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True):
|
||||
def make_ddim_sampling_parameters(
|
||||
alphacums, ddim_timesteps, eta, verbose=True
|
||||
):
|
||||
# select alphas for computing the variance schedule
|
||||
alphas = alphacums[ddim_timesteps]
|
||||
alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist())
|
||||
alphas_prev = np.asarray(
|
||||
[alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist()
|
||||
)
|
||||
|
||||
# according the the formula provided in https://arxiv.org/abs/2010.02502
|
||||
sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev))
|
||||
sigmas = eta * np.sqrt(
|
||||
(1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev)
|
||||
)
|
||||
if verbose:
|
||||
print(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}')
|
||||
print(f'For the chosen value of eta, which is {eta}, '
|
||||
f'this results in the following sigma_t schedule for ddim sampler {sigmas}')
|
||||
print(
|
||||
f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}'
|
||||
)
|
||||
print(
|
||||
f'For the chosen value of eta, which is {eta}, '
|
||||
f'this results in the following sigma_t schedule for ddim sampler {sigmas}'
|
||||
)
|
||||
return sigmas, alphas, alphas_prev
|
||||
|
||||
|
||||
@ -109,7 +146,9 @@ def checkpoint(func, inputs, params, flag):
|
||||
explicitly take as arguments.
|
||||
:param flag: if False, disable gradient checkpointing.
|
||||
"""
|
||||
if False: # disabled checkpointing to allow requires_grad = False for main model
|
||||
if (
|
||||
False
|
||||
): # disabled checkpointing to allow requires_grad = False for main model
|
||||
args = tuple(inputs) + tuple(params)
|
||||
return CheckpointFunction.apply(func, len(inputs), *args)
|
||||
else:
|
||||
@ -129,7 +168,9 @@ class CheckpointFunction(torch.autograd.Function):
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, *output_grads):
|
||||
ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
|
||||
ctx.input_tensors = [
|
||||
x.detach().requires_grad_(True) for x in ctx.input_tensors
|
||||
]
|
||||
with torch.enable_grad():
|
||||
# Fixes a bug where the first op in run_function modifies the
|
||||
# Tensor storage in place, which is not allowed for detach()'d
|
||||
@ -160,12 +201,16 @@ def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
|
||||
if not repeat_only:
|
||||
half = dim // 2
|
||||
freqs = torch.exp(
|
||||
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
|
||||
-math.log(max_period)
|
||||
* torch.arange(start=0, end=half, dtype=torch.float32)
|
||||
/ half
|
||||
).to(device=timesteps.device)
|
||||
args = timesteps[:, None].float() * freqs[None]
|
||||
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
||||
if dim % 2:
|
||||
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
||||
embedding = torch.cat(
|
||||
[embedding, torch.zeros_like(embedding[:, :1])], dim=-1
|
||||
)
|
||||
else:
|
||||
embedding = repeat(timesteps, 'b -> b d', d=dim)
|
||||
return embedding
|
||||
@ -215,6 +260,7 @@ class GroupNorm32(nn.GroupNorm):
|
||||
def forward(self, x):
|
||||
return super().forward(x.float()).type(x.dtype)
|
||||
|
||||
|
||||
def conv_nd(dims, *args, **kwargs):
|
||||
"""
|
||||
Create a 1D, 2D, or 3D convolution module.
|
||||
@ -225,7 +271,7 @@ def conv_nd(dims, *args, **kwargs):
|
||||
return nn.Conv2d(*args, **kwargs)
|
||||
elif dims == 3:
|
||||
return nn.Conv3d(*args, **kwargs)
|
||||
raise ValueError(f"unsupported dimensions: {dims}")
|
||||
raise ValueError(f'unsupported dimensions: {dims}')
|
||||
|
||||
|
||||
def linear(*args, **kwargs):
|
||||
@ -245,15 +291,16 @@ def avg_pool_nd(dims, *args, **kwargs):
|
||||
return nn.AvgPool2d(*args, **kwargs)
|
||||
elif dims == 3:
|
||||
return nn.AvgPool3d(*args, **kwargs)
|
||||
raise ValueError(f"unsupported dimensions: {dims}")
|
||||
raise ValueError(f'unsupported dimensions: {dims}')
|
||||
|
||||
|
||||
class HybridConditioner(nn.Module):
|
||||
|
||||
def __init__(self, c_concat_config, c_crossattn_config):
|
||||
super().__init__()
|
||||
self.concat_conditioner = instantiate_from_config(c_concat_config)
|
||||
self.crossattn_conditioner = instantiate_from_config(c_crossattn_config)
|
||||
self.crossattn_conditioner = instantiate_from_config(
|
||||
c_crossattn_config
|
||||
)
|
||||
|
||||
def forward(self, c_concat, c_crossattn):
|
||||
c_concat = self.concat_conditioner(c_concat)
|
||||
@ -262,6 +309,8 @@ class HybridConditioner(nn.Module):
|
||||
|
||||
|
||||
def noise_like(shape, device, repeat=False):
|
||||
repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
|
||||
repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(
|
||||
shape[0], *((1,) * (len(shape) - 1))
|
||||
)
|
||||
noise = lambda: torch.randn(shape, device=device)
|
||||
return repeat_noise() if repeat else noise()
|
@ -30,33 +30,45 @@ class DiagonalGaussianDistribution(object):
|
||||
self.std = torch.exp(0.5 * self.logvar)
|
||||
self.var = torch.exp(self.logvar)
|
||||
if self.deterministic:
|
||||
self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device)
|
||||
self.var = self.std = torch.zeros_like(self.mean).to(
|
||||
device=self.parameters.device
|
||||
)
|
||||
|
||||
def sample(self):
|
||||
x = self.mean + self.std * torch.randn(self.mean.shape).to(device=self.parameters.device)
|
||||
x = self.mean + self.std * torch.randn(self.mean.shape).to(
|
||||
device=self.parameters.device
|
||||
)
|
||||
return x
|
||||
|
||||
def kl(self, other=None):
|
||||
if self.deterministic:
|
||||
return torch.Tensor([0.])
|
||||
return torch.Tensor([0.0])
|
||||
else:
|
||||
if other is None:
|
||||
return 0.5 * torch.sum(torch.pow(self.mean, 2)
|
||||
+ self.var - 1.0 - self.logvar,
|
||||
dim=[1, 2, 3])
|
||||
return 0.5 * torch.sum(
|
||||
torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar,
|
||||
dim=[1, 2, 3],
|
||||
)
|
||||
else:
|
||||
return 0.5 * torch.sum(
|
||||
torch.pow(self.mean - other.mean, 2) / other.var
|
||||
+ self.var / other.var - 1.0 - self.logvar + other.logvar,
|
||||
dim=[1, 2, 3])
|
||||
+ self.var / other.var
|
||||
- 1.0
|
||||
- self.logvar
|
||||
+ other.logvar,
|
||||
dim=[1, 2, 3],
|
||||
)
|
||||
|
||||
def nll(self, sample, dims=[1,2,3]):
|
||||
def nll(self, sample, dims=[1, 2, 3]):
|
||||
if self.deterministic:
|
||||
return torch.Tensor([0.])
|
||||
return torch.Tensor([0.0])
|
||||
logtwopi = np.log(2.0 * np.pi)
|
||||
return 0.5 * torch.sum(
|
||||
logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
|
||||
dim=dims)
|
||||
logtwopi
|
||||
+ self.logvar
|
||||
+ torch.pow(sample - self.mean, 2) / self.var,
|
||||
dim=dims,
|
||||
)
|
||||
|
||||
def mode(self):
|
||||
return self.mean
|
||||
@ -74,7 +86,7 @@ def normal_kl(mean1, logvar1, mean2, logvar2):
|
||||
if isinstance(obj, torch.Tensor):
|
||||
tensor = obj
|
||||
break
|
||||
assert tensor is not None, "at least one argument must be a Tensor"
|
||||
assert tensor is not None, 'at least one argument must be a Tensor'
|
||||
|
||||
# Force variances to be Tensors. Broadcasting helps convert scalars to
|
||||
# Tensors, but it does not work for torch.exp().
|
||||
|
@ -10,24 +10,30 @@ class LitEma(nn.Module):
|
||||
|
||||
self.m_name2s_name = {}
|
||||
self.register_buffer('decay', torch.tensor(decay, dtype=torch.float32))
|
||||
self.register_buffer('num_updates', torch.tensor(0,dtype=torch.int) if use_num_upates
|
||||
else torch.tensor(-1,dtype=torch.int))
|
||||
self.register_buffer(
|
||||
'num_updates',
|
||||
torch.tensor(0, dtype=torch.int)
|
||||
if use_num_upates
|
||||
else torch.tensor(-1, dtype=torch.int),
|
||||
)
|
||||
|
||||
for name, p in model.named_parameters():
|
||||
if p.requires_grad:
|
||||
#remove as '.'-character is not allowed in buffers
|
||||
s_name = name.replace('.','')
|
||||
self.m_name2s_name.update({name:s_name})
|
||||
self.register_buffer(s_name,p.clone().detach().data)
|
||||
# remove as '.'-character is not allowed in buffers
|
||||
s_name = name.replace('.', '')
|
||||
self.m_name2s_name.update({name: s_name})
|
||||
self.register_buffer(s_name, p.clone().detach().data)
|
||||
|
||||
self.collected_params = []
|
||||
|
||||
def forward(self,model):
|
||||
def forward(self, model):
|
||||
decay = self.decay
|
||||
|
||||
if self.num_updates >= 0:
|
||||
self.num_updates += 1
|
||||
decay = min(self.decay,(1 + self.num_updates) / (10 + self.num_updates))
|
||||
decay = min(
|
||||
self.decay, (1 + self.num_updates) / (10 + self.num_updates)
|
||||
)
|
||||
|
||||
one_minus_decay = 1.0 - decay
|
||||
|
||||
@ -38,8 +44,12 @@ class LitEma(nn.Module):
|
||||
for key in m_param:
|
||||
if m_param[key].requires_grad:
|
||||
sname = self.m_name2s_name[key]
|
||||
shadow_params[sname] = shadow_params[sname].type_as(m_param[key])
|
||||
shadow_params[sname].sub_(one_minus_decay * (shadow_params[sname] - m_param[key]))
|
||||
shadow_params[sname] = shadow_params[sname].type_as(
|
||||
m_param[key]
|
||||
)
|
||||
shadow_params[sname].sub_(
|
||||
one_minus_decay * (shadow_params[sname] - m_param[key])
|
||||
)
|
||||
else:
|
||||
assert not key in self.m_name2s_name
|
||||
|
||||
@ -48,7 +58,9 @@ class LitEma(nn.Module):
|
||||
shadow_params = dict(self.named_buffers())
|
||||
for key in m_param:
|
||||
if m_param[key].requires_grad:
|
||||
m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data)
|
||||
m_param[key].data.copy_(
|
||||
shadow_params[self.m_name2s_name[key]].data
|
||||
)
|
||||
else:
|
||||
assert not key in self.m_name2s_name
|
||||
|
||||
|
@ -8,18 +8,29 @@ from ldm.data.personalized import per_img_token_list
|
||||
from transformers import CLIPTokenizer
|
||||
from functools import partial
|
||||
|
||||
DEFAULT_PLACEHOLDER_TOKEN = ["*"]
|
||||
DEFAULT_PLACEHOLDER_TOKEN = ['*']
|
||||
|
||||
PROGRESSIVE_SCALE = 2000
|
||||
|
||||
|
||||
def get_clip_token_for_string(tokenizer, string):
|
||||
batch_encoding = tokenizer(string, truncation=True, max_length=77, return_length=True,
|
||||
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
||||
tokens = batch_encoding["input_ids"]
|
||||
assert torch.count_nonzero(tokens - 49407) == 2, f"String '{string}' maps to more than a single token. Please use another string"
|
||||
batch_encoding = tokenizer(
|
||||
string,
|
||||
truncation=True,
|
||||
max_length=77,
|
||||
return_length=True,
|
||||
return_overflowing_tokens=False,
|
||||
padding='max_length',
|
||||
return_tensors='pt',
|
||||
)
|
||||
tokens = batch_encoding['input_ids']
|
||||
assert (
|
||||
torch.count_nonzero(tokens - 49407) == 2
|
||||
), f"String '{string}' maps to more than a single token. Please use another string"
|
||||
|
||||
return tokens[0, 1]
|
||||
|
||||
|
||||
def get_bert_token_for_string(tokenizer, string):
|
||||
token = tokenizer(string)
|
||||
# assert torch.count_nonzero(token) == 3, f"String '{string}' maps to more than a single token. Please use another string"
|
||||
@ -28,20 +39,21 @@ def get_bert_token_for_string(tokenizer, string):
|
||||
|
||||
return token
|
||||
|
||||
|
||||
def get_embedding_for_clip_token(embedder, token):
|
||||
return embedder(token.unsqueeze(0))[0, 0]
|
||||
|
||||
|
||||
class EmbeddingManager(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
embedder,
|
||||
placeholder_strings=None,
|
||||
initializer_words=None,
|
||||
per_image_tokens=False,
|
||||
num_vectors_per_token=1,
|
||||
progressive_words=False,
|
||||
**kwargs
|
||||
self,
|
||||
embedder,
|
||||
placeholder_strings=None,
|
||||
initializer_words=None,
|
||||
per_image_tokens=False,
|
||||
num_vectors_per_token=1,
|
||||
progressive_words=False,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
@ -49,21 +61,32 @@ class EmbeddingManager(nn.Module):
|
||||
|
||||
self.string_to_param_dict = nn.ParameterDict()
|
||||
|
||||
self.initial_embeddings = nn.ParameterDict() # These should not be optimized
|
||||
self.initial_embeddings = (
|
||||
nn.ParameterDict()
|
||||
) # These should not be optimized
|
||||
|
||||
self.progressive_words = progressive_words
|
||||
self.progressive_counter = 0
|
||||
|
||||
self.max_vectors_per_token = num_vectors_per_token
|
||||
|
||||
if hasattr(embedder, 'tokenizer'): # using Stable Diffusion's CLIP encoder
|
||||
if hasattr(
|
||||
embedder, 'tokenizer'
|
||||
): # using Stable Diffusion's CLIP encoder
|
||||
self.is_clip = True
|
||||
get_token_for_string = partial(get_clip_token_for_string, embedder.tokenizer)
|
||||
get_embedding_for_tkn = partial(get_embedding_for_clip_token, embedder.transformer.text_model.embeddings)
|
||||
get_token_for_string = partial(
|
||||
get_clip_token_for_string, embedder.tokenizer
|
||||
)
|
||||
get_embedding_for_tkn = partial(
|
||||
get_embedding_for_clip_token,
|
||||
embedder.transformer.text_model.embeddings,
|
||||
)
|
||||
token_dim = 1280
|
||||
else: # using LDM's BERT encoder
|
||||
else: # using LDM's BERT encoder
|
||||
self.is_clip = False
|
||||
get_token_for_string = partial(get_bert_token_for_string, embedder.tknz_fn)
|
||||
get_token_for_string = partial(
|
||||
get_bert_token_for_string, embedder.tknz_fn
|
||||
)
|
||||
get_embedding_for_tkn = embedder.transformer.token_emb
|
||||
token_dim = 1280
|
||||
|
||||
@ -78,72 +101,133 @@ class EmbeddingManager(nn.Module):
|
||||
init_word_token = get_token_for_string(initializer_words[idx])
|
||||
|
||||
with torch.no_grad():
|
||||
init_word_embedding = get_embedding_for_tkn(init_word_token.cpu())
|
||||
init_word_embedding = get_embedding_for_tkn(
|
||||
init_word_token.cpu()
|
||||
)
|
||||
|
||||
token_params = torch.nn.Parameter(init_word_embedding.unsqueeze(0).repeat(num_vectors_per_token, 1), requires_grad=True)
|
||||
self.initial_embeddings[placeholder_string] = torch.nn.Parameter(init_word_embedding.unsqueeze(0).repeat(num_vectors_per_token, 1), requires_grad=False)
|
||||
token_params = torch.nn.Parameter(
|
||||
init_word_embedding.unsqueeze(0).repeat(
|
||||
num_vectors_per_token, 1
|
||||
),
|
||||
requires_grad=True,
|
||||
)
|
||||
self.initial_embeddings[
|
||||
placeholder_string
|
||||
] = torch.nn.Parameter(
|
||||
init_word_embedding.unsqueeze(0).repeat(
|
||||
num_vectors_per_token, 1
|
||||
),
|
||||
requires_grad=False,
|
||||
)
|
||||
else:
|
||||
token_params = torch.nn.Parameter(torch.rand(size=(num_vectors_per_token, token_dim), requires_grad=True))
|
||||
token_params = torch.nn.Parameter(
|
||||
torch.rand(
|
||||
size=(num_vectors_per_token, token_dim),
|
||||
requires_grad=True,
|
||||
)
|
||||
)
|
||||
|
||||
self.string_to_token_dict[placeholder_string] = token
|
||||
self.string_to_param_dict[placeholder_string] = token_params
|
||||
|
||||
def forward(
|
||||
self,
|
||||
tokenized_text,
|
||||
embedded_text,
|
||||
self,
|
||||
tokenized_text,
|
||||
embedded_text,
|
||||
):
|
||||
b, n, device = *tokenized_text.shape, tokenized_text.device
|
||||
|
||||
for placeholder_string, placeholder_token in self.string_to_token_dict.items():
|
||||
for (
|
||||
placeholder_string,
|
||||
placeholder_token,
|
||||
) in self.string_to_token_dict.items():
|
||||
|
||||
placeholder_embedding = self.string_to_param_dict[placeholder_string].to(device)
|
||||
placeholder_embedding = self.string_to_param_dict[
|
||||
placeholder_string
|
||||
].to(device)
|
||||
|
||||
if self.max_vectors_per_token == 1: # If there's only one vector per token, we can do a simple replacement
|
||||
placeholder_idx = torch.where(tokenized_text == placeholder_token.to(device))
|
||||
if (
|
||||
self.max_vectors_per_token == 1
|
||||
): # If there's only one vector per token, we can do a simple replacement
|
||||
placeholder_idx = torch.where(
|
||||
tokenized_text == placeholder_token.to(device)
|
||||
)
|
||||
embedded_text[placeholder_idx] = placeholder_embedding
|
||||
else: # otherwise, need to insert and keep track of changing indices
|
||||
else: # otherwise, need to insert and keep track of changing indices
|
||||
if self.progressive_words:
|
||||
self.progressive_counter += 1
|
||||
max_step_tokens = 1 + self.progressive_counter // PROGRESSIVE_SCALE
|
||||
max_step_tokens = (
|
||||
1 + self.progressive_counter // PROGRESSIVE_SCALE
|
||||
)
|
||||
else:
|
||||
max_step_tokens = self.max_vectors_per_token
|
||||
|
||||
num_vectors_for_token = min(placeholder_embedding.shape[0], max_step_tokens)
|
||||
num_vectors_for_token = min(
|
||||
placeholder_embedding.shape[0], max_step_tokens
|
||||
)
|
||||
|
||||
placeholder_rows, placeholder_cols = torch.where(tokenized_text == placeholder_token.to(device))
|
||||
placeholder_rows, placeholder_cols = torch.where(
|
||||
tokenized_text == placeholder_token.to(device)
|
||||
)
|
||||
|
||||
if placeholder_rows.nelement() == 0:
|
||||
continue
|
||||
|
||||
sorted_cols, sort_idx = torch.sort(placeholder_cols, descending=True)
|
||||
sorted_cols, sort_idx = torch.sort(
|
||||
placeholder_cols, descending=True
|
||||
)
|
||||
sorted_rows = placeholder_rows[sort_idx]
|
||||
|
||||
for idx in range(len(sorted_rows)):
|
||||
row = sorted_rows[idx]
|
||||
col = sorted_cols[idx]
|
||||
|
||||
new_token_row = torch.cat([tokenized_text[row][:col], placeholder_token.repeat(num_vectors_for_token).to(device), tokenized_text[row][col + 1:]], axis=0)[:n]
|
||||
new_embed_row = torch.cat([embedded_text[row][:col], placeholder_embedding[:num_vectors_for_token], embedded_text[row][col + 1:]], axis=0)[:n]
|
||||
new_token_row = torch.cat(
|
||||
[
|
||||
tokenized_text[row][:col],
|
||||
placeholder_token.repeat(num_vectors_for_token).to(
|
||||
device
|
||||
),
|
||||
tokenized_text[row][col + 1 :],
|
||||
],
|
||||
axis=0,
|
||||
)[:n]
|
||||
new_embed_row = torch.cat(
|
||||
[
|
||||
embedded_text[row][:col],
|
||||
placeholder_embedding[:num_vectors_for_token],
|
||||
embedded_text[row][col + 1 :],
|
||||
],
|
||||
axis=0,
|
||||
)[:n]
|
||||
|
||||
embedded_text[row] = new_embed_row
|
||||
embedded_text[row] = new_embed_row
|
||||
tokenized_text[row] = new_token_row
|
||||
|
||||
return embedded_text
|
||||
|
||||
def save(self, ckpt_path):
|
||||
torch.save({"string_to_token": self.string_to_token_dict,
|
||||
"string_to_param": self.string_to_param_dict}, ckpt_path)
|
||||
torch.save(
|
||||
{
|
||||
'string_to_token': self.string_to_token_dict,
|
||||
'string_to_param': self.string_to_param_dict,
|
||||
},
|
||||
ckpt_path,
|
||||
)
|
||||
|
||||
def load(self, ckpt_path):
|
||||
ckpt = torch.load(ckpt_path, map_location='cpu')
|
||||
|
||||
self.string_to_token_dict = ckpt["string_to_token"]
|
||||
self.string_to_param_dict = ckpt["string_to_param"]
|
||||
self.string_to_token_dict = ckpt['string_to_token']
|
||||
self.string_to_param_dict = ckpt['string_to_param']
|
||||
|
||||
def get_embedding_norms_squared(self):
|
||||
all_params = torch.cat(list(self.string_to_param_dict.values()), axis=0) # num_placeholders x embedding_dim
|
||||
param_norm_squared = (all_params * all_params).sum(axis=-1) # num_placeholders
|
||||
all_params = torch.cat(
|
||||
list(self.string_to_param_dict.values()), axis=0
|
||||
) # num_placeholders x embedding_dim
|
||||
param_norm_squared = (all_params * all_params).sum(
|
||||
axis=-1
|
||||
) # num_placeholders
|
||||
|
||||
return param_norm_squared
|
||||
|
||||
@ -152,13 +236,18 @@ class EmbeddingManager(nn.Module):
|
||||
|
||||
def embedding_to_coarse_loss(self):
|
||||
|
||||
loss = 0.
|
||||
loss = 0.0
|
||||
num_embeddings = len(self.initial_embeddings)
|
||||
|
||||
for key in self.initial_embeddings:
|
||||
optimized = self.string_to_param_dict[key]
|
||||
coarse = self.initial_embeddings[key].clone().to(optimized.device)
|
||||
|
||||
loss = loss + (optimized - coarse) @ (optimized - coarse).T / num_embeddings
|
||||
loss = (
|
||||
loss
|
||||
+ (optimized - coarse)
|
||||
@ (optimized - coarse).T
|
||||
/ num_embeddings
|
||||
)
|
||||
|
||||
return loss
|
@ -6,29 +6,39 @@ from einops import rearrange, repeat
|
||||
from transformers import CLIPTokenizer, CLIPTextModel
|
||||
import kornia
|
||||
|
||||
from ldm.modules.x_transformer import Encoder, TransformerWrapper # TODO: can we directly rely on lucidrains code and simply add this as a reuirement? --> test
|
||||
from ldm.modules.x_transformer import (
|
||||
Encoder,
|
||||
TransformerWrapper,
|
||||
) # TODO: can we directly rely on lucidrains code and simply add this as a reuirement? --> test
|
||||
|
||||
def _expand_mask(mask, dtype, tgt_len = None):
|
||||
|
||||
def _expand_mask(mask, dtype, tgt_len=None):
|
||||
"""
|
||||
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
||||
"""
|
||||
bsz, src_len = mask.size()
|
||||
tgt_len = tgt_len if tgt_len is not None else src_len
|
||||
|
||||
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
||||
expanded_mask = (
|
||||
mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
||||
)
|
||||
|
||||
inverted_mask = 1.0 - expanded_mask
|
||||
|
||||
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
||||
return inverted_mask.masked_fill(
|
||||
inverted_mask.to(torch.bool), torch.finfo(dtype).min
|
||||
)
|
||||
|
||||
|
||||
def _build_causal_attention_mask(bsz, seq_len, dtype):
|
||||
# lazily create causal attention mask, with full attention between the vision tokens
|
||||
# pytorch uses additive attention mask; fill with -inf
|
||||
mask = torch.empty(bsz, seq_len, seq_len, dtype=dtype)
|
||||
mask.fill_(torch.tensor(torch.finfo(dtype).min))
|
||||
mask.triu_(1) # zero out the lower diagonal
|
||||
mask = mask.unsqueeze(1) # expand mask
|
||||
return mask
|
||||
# lazily create causal attention mask, with full attention between the vision tokens
|
||||
# pytorch uses additive attention mask; fill with -inf
|
||||
mask = torch.empty(bsz, seq_len, seq_len, dtype=dtype)
|
||||
mask.fill_(torch.tensor(torch.finfo(dtype).min))
|
||||
mask.triu_(1) # zero out the lower diagonal
|
||||
mask = mask.unsqueeze(1) # expand mask
|
||||
return mask
|
||||
|
||||
|
||||
class AbstractEncoder(nn.Module):
|
||||
def __init__(self):
|
||||
@ -38,7 +48,6 @@ class AbstractEncoder(nn.Module):
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
|
||||
class ClassEmbedder(nn.Module):
|
||||
def __init__(self, embed_dim, n_classes=1000, key='class'):
|
||||
super().__init__()
|
||||
@ -56,11 +65,17 @@ class ClassEmbedder(nn.Module):
|
||||
|
||||
class TransformerEmbedder(AbstractEncoder):
|
||||
"""Some transformer encoder layers"""
|
||||
def __init__(self, n_embed, n_layer, vocab_size, max_seq_len=77, device="cuda"):
|
||||
|
||||
def __init__(
|
||||
self, n_embed, n_layer, vocab_size, max_seq_len=77, device='cuda'
|
||||
):
|
||||
super().__init__()
|
||||
self.device = device
|
||||
self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len,
|
||||
attn_layers=Encoder(dim=n_embed, depth=n_layer))
|
||||
self.transformer = TransformerWrapper(
|
||||
num_tokens=vocab_size,
|
||||
max_seq_len=max_seq_len,
|
||||
attn_layers=Encoder(dim=n_embed, depth=n_layer),
|
||||
)
|
||||
|
||||
def forward(self, tokens):
|
||||
tokens = tokens.to(self.device) # meh
|
||||
@ -72,27 +87,42 @@ class TransformerEmbedder(AbstractEncoder):
|
||||
|
||||
|
||||
class BERTTokenizer(AbstractEncoder):
|
||||
""" Uses a pretrained BERT tokenizer by huggingface. Vocab size: 30522 (?)"""
|
||||
def __init__(self, device="cuda", vq_interface=True, max_length=77):
|
||||
"""Uses a pretrained BERT tokenizer by huggingface. Vocab size: 30522 (?)"""
|
||||
|
||||
def __init__(self, device='cuda', vq_interface=True, max_length=77):
|
||||
super().__init__()
|
||||
from transformers import BertTokenizerFast # TODO: add to reuquirements
|
||||
from transformers import (
|
||||
BertTokenizerFast,
|
||||
) # TODO: add to reuquirements
|
||||
|
||||
# Modified to allow to run on non-internet connected compute nodes.
|
||||
# Model needs to be loaded into cache from an internet-connected machine
|
||||
# by running:
|
||||
# from transformers import BertTokenizerFast
|
||||
# BertTokenizerFast.from_pretrained("bert-base-uncased")
|
||||
try:
|
||||
self.tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased",local_files_only=True)
|
||||
self.tokenizer = BertTokenizerFast.from_pretrained(
|
||||
'bert-base-uncased', local_files_only=True
|
||||
)
|
||||
except OSError:
|
||||
raise SystemExit("* Couldn't load Bert tokenizer files. Try running scripts/preload_models.py from an internet-conected machine.")
|
||||
raise SystemExit(
|
||||
"* Couldn't load Bert tokenizer files. Try running scripts/preload_models.py from an internet-conected machine."
|
||||
)
|
||||
self.device = device
|
||||
self.vq_interface = vq_interface
|
||||
self.max_length = max_length
|
||||
|
||||
def forward(self, text):
|
||||
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
|
||||
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
||||
tokens = batch_encoding["input_ids"].to(self.device)
|
||||
batch_encoding = self.tokenizer(
|
||||
text,
|
||||
truncation=True,
|
||||
max_length=self.max_length,
|
||||
return_length=True,
|
||||
return_overflowing_tokens=False,
|
||||
padding='max_length',
|
||||
return_tensors='pt',
|
||||
)
|
||||
tokens = batch_encoding['input_ids'].to(self.device)
|
||||
return tokens
|
||||
|
||||
@torch.no_grad()
|
||||
@ -108,53 +138,84 @@ class BERTTokenizer(AbstractEncoder):
|
||||
|
||||
class BERTEmbedder(AbstractEncoder):
|
||||
"""Uses the BERT tokenizr model and add some transformer encoder layers"""
|
||||
def __init__(self, n_embed, n_layer, vocab_size=30522, max_seq_len=77,
|
||||
device="cuda",use_tokenizer=True, embedding_dropout=0.0):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
n_embed,
|
||||
n_layer,
|
||||
vocab_size=30522,
|
||||
max_seq_len=77,
|
||||
device='cuda',
|
||||
use_tokenizer=True,
|
||||
embedding_dropout=0.0,
|
||||
):
|
||||
super().__init__()
|
||||
self.use_tknz_fn = use_tokenizer
|
||||
if self.use_tknz_fn:
|
||||
self.tknz_fn = BERTTokenizer(vq_interface=False, max_length=max_seq_len)
|
||||
self.tknz_fn = BERTTokenizer(
|
||||
vq_interface=False, max_length=max_seq_len
|
||||
)
|
||||
self.device = device
|
||||
self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len,
|
||||
attn_layers=Encoder(dim=n_embed, depth=n_layer),
|
||||
emb_dropout=embedding_dropout)
|
||||
self.transformer = TransformerWrapper(
|
||||
num_tokens=vocab_size,
|
||||
max_seq_len=max_seq_len,
|
||||
attn_layers=Encoder(dim=n_embed, depth=n_layer),
|
||||
emb_dropout=embedding_dropout,
|
||||
)
|
||||
|
||||
def forward(self, text, embedding_manager=None):
|
||||
if self.use_tknz_fn:
|
||||
tokens = self.tknz_fn(text)#.to(self.device)
|
||||
tokens = self.tknz_fn(text) # .to(self.device)
|
||||
else:
|
||||
tokens = text
|
||||
z = self.transformer(tokens, return_embeddings=True, embedding_manager=embedding_manager)
|
||||
z = self.transformer(
|
||||
tokens, return_embeddings=True, embedding_manager=embedding_manager
|
||||
)
|
||||
return z
|
||||
|
||||
def encode(self, text, **kwargs):
|
||||
# output of length 77
|
||||
return self(text, **kwargs)
|
||||
|
||||
|
||||
class SpatialRescaler(nn.Module):
|
||||
def __init__(self,
|
||||
n_stages=1,
|
||||
method='bilinear',
|
||||
multiplier=0.5,
|
||||
in_channels=3,
|
||||
out_channels=None,
|
||||
bias=False):
|
||||
def __init__(
|
||||
self,
|
||||
n_stages=1,
|
||||
method='bilinear',
|
||||
multiplier=0.5,
|
||||
in_channels=3,
|
||||
out_channels=None,
|
||||
bias=False,
|
||||
):
|
||||
super().__init__()
|
||||
self.n_stages = n_stages
|
||||
assert self.n_stages >= 0
|
||||
assert method in ['nearest','linear','bilinear','trilinear','bicubic','area']
|
||||
assert method in [
|
||||
'nearest',
|
||||
'linear',
|
||||
'bilinear',
|
||||
'trilinear',
|
||||
'bicubic',
|
||||
'area',
|
||||
]
|
||||
self.multiplier = multiplier
|
||||
self.interpolator = partial(torch.nn.functional.interpolate, mode=method)
|
||||
self.interpolator = partial(
|
||||
torch.nn.functional.interpolate, mode=method
|
||||
)
|
||||
self.remap_output = out_channels is not None
|
||||
if self.remap_output:
|
||||
print(f'Spatial Rescaler mapping from {in_channels} to {out_channels} channels after resizing.')
|
||||
self.channel_mapper = nn.Conv2d(in_channels,out_channels,1,bias=bias)
|
||||
print(
|
||||
f'Spatial Rescaler mapping from {in_channels} to {out_channels} channels after resizing.'
|
||||
)
|
||||
self.channel_mapper = nn.Conv2d(
|
||||
in_channels, out_channels, 1, bias=bias
|
||||
)
|
||||
|
||||
def forward(self,x):
|
||||
def forward(self, x):
|
||||
for stage in range(self.n_stages):
|
||||
x = self.interpolator(x, scale_factor=self.multiplier)
|
||||
|
||||
|
||||
if self.remap_output:
|
||||
x = self.channel_mapper(x)
|
||||
return x
|
||||
@ -162,57 +223,83 @@ class SpatialRescaler(nn.Module):
|
||||
def encode(self, x):
|
||||
return self(x)
|
||||
|
||||
|
||||
class FrozenCLIPEmbedder(AbstractEncoder):
|
||||
"""Uses the CLIP transformer encoder for text (from Hugging Face)"""
|
||||
def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
version='openai/clip-vit-large-patch14',
|
||||
device='cuda',
|
||||
max_length=77,
|
||||
):
|
||||
super().__init__()
|
||||
self.tokenizer = CLIPTokenizer.from_pretrained(version,local_files_only=True)
|
||||
self.transformer = CLIPTextModel.from_pretrained(version,local_files_only=True)
|
||||
self.tokenizer = CLIPTokenizer.from_pretrained(
|
||||
version, local_files_only=True
|
||||
)
|
||||
self.transformer = CLIPTextModel.from_pretrained(
|
||||
version, local_files_only=True
|
||||
)
|
||||
self.device = device
|
||||
self.max_length = max_length
|
||||
self.freeze()
|
||||
|
||||
def embedding_forward(
|
||||
self,
|
||||
input_ids = None,
|
||||
position_ids = None,
|
||||
inputs_embeds = None,
|
||||
embedding_manager = None,
|
||||
) -> torch.Tensor:
|
||||
self,
|
||||
input_ids=None,
|
||||
position_ids=None,
|
||||
inputs_embeds=None,
|
||||
embedding_manager=None,
|
||||
) -> torch.Tensor:
|
||||
|
||||
seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]
|
||||
seq_length = (
|
||||
input_ids.shape[-1]
|
||||
if input_ids is not None
|
||||
else inputs_embeds.shape[-2]
|
||||
)
|
||||
|
||||
if position_ids is None:
|
||||
position_ids = self.position_ids[:, :seq_length]
|
||||
if position_ids is None:
|
||||
position_ids = self.position_ids[:, :seq_length]
|
||||
|
||||
if inputs_embeds is None:
|
||||
inputs_embeds = self.token_embedding(input_ids)
|
||||
if inputs_embeds is None:
|
||||
inputs_embeds = self.token_embedding(input_ids)
|
||||
|
||||
if embedding_manager is not None:
|
||||
inputs_embeds = embedding_manager(input_ids, inputs_embeds)
|
||||
if embedding_manager is not None:
|
||||
inputs_embeds = embedding_manager(input_ids, inputs_embeds)
|
||||
|
||||
position_embeddings = self.position_embedding(position_ids)
|
||||
embeddings = inputs_embeds + position_embeddings
|
||||
|
||||
position_embeddings = self.position_embedding(position_ids)
|
||||
embeddings = inputs_embeds + position_embeddings
|
||||
return embeddings
|
||||
|
||||
return embeddings
|
||||
|
||||
self.transformer.text_model.embeddings.forward = embedding_forward.__get__(self.transformer.text_model.embeddings)
|
||||
self.transformer.text_model.embeddings.forward = (
|
||||
embedding_forward.__get__(self.transformer.text_model.embeddings)
|
||||
)
|
||||
|
||||
def encoder_forward(
|
||||
self,
|
||||
inputs_embeds,
|
||||
attention_mask = None,
|
||||
causal_attention_mask = None,
|
||||
output_attentions = None,
|
||||
output_hidden_states = None,
|
||||
return_dict = None,
|
||||
attention_mask=None,
|
||||
causal_attention_mask=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
):
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
output_attentions = (
|
||||
output_attentions
|
||||
if output_attentions is not None
|
||||
else self.config.output_attentions
|
||||
)
|
||||
output_hidden_states = (
|
||||
output_hidden_states
|
||||
if output_hidden_states is not None
|
||||
else self.config.output_hidden_states
|
||||
)
|
||||
return_dict = (
|
||||
return_dict
|
||||
if return_dict is not None
|
||||
else self.config.use_return_dict
|
||||
)
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
encoder_states = () if output_hidden_states else None
|
||||
all_attentions = () if output_attentions else None
|
||||
@ -239,44 +326,61 @@ class FrozenCLIPEmbedder(AbstractEncoder):
|
||||
|
||||
return hidden_states
|
||||
|
||||
self.transformer.text_model.encoder.forward = encoder_forward.__get__(self.transformer.text_model.encoder)
|
||||
|
||||
self.transformer.text_model.encoder.forward = encoder_forward.__get__(
|
||||
self.transformer.text_model.encoder
|
||||
)
|
||||
|
||||
def text_encoder_forward(
|
||||
self,
|
||||
input_ids = None,
|
||||
attention_mask = None,
|
||||
position_ids = None,
|
||||
output_attentions = None,
|
||||
output_hidden_states = None,
|
||||
return_dict = None,
|
||||
embedding_manager = None,
|
||||
input_ids=None,
|
||||
attention_mask=None,
|
||||
position_ids=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
embedding_manager=None,
|
||||
):
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
output_attentions = (
|
||||
output_attentions
|
||||
if output_attentions is not None
|
||||
else self.config.output_attentions
|
||||
)
|
||||
output_hidden_states = (
|
||||
output_hidden_states
|
||||
if output_hidden_states is not None
|
||||
else self.config.output_hidden_states
|
||||
)
|
||||
return_dict = (
|
||||
return_dict
|
||||
if return_dict is not None
|
||||
else self.config.use_return_dict
|
||||
)
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
if input_ids is None:
|
||||
raise ValueError("You have to specify either input_ids")
|
||||
raise ValueError('You have to specify either input_ids')
|
||||
|
||||
input_shape = input_ids.size()
|
||||
input_ids = input_ids.view(-1, input_shape[-1])
|
||||
|
||||
hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids, embedding_manager=embedding_manager)
|
||||
hidden_states = self.embeddings(
|
||||
input_ids=input_ids,
|
||||
position_ids=position_ids,
|
||||
embedding_manager=embedding_manager,
|
||||
)
|
||||
|
||||
bsz, seq_len = input_shape
|
||||
# CLIP's text model uses causal mask, prepare it here.
|
||||
# https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324
|
||||
causal_attention_mask = _build_causal_attention_mask(bsz, seq_len, hidden_states.dtype).to(
|
||||
hidden_states.device
|
||||
)
|
||||
causal_attention_mask = _build_causal_attention_mask(
|
||||
bsz, seq_len, hidden_states.dtype
|
||||
).to(hidden_states.device)
|
||||
|
||||
# expand attention_mask
|
||||
if attention_mask is not None:
|
||||
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
||||
attention_mask = _expand_mask(attention_mask, hidden_states.dtype)
|
||||
attention_mask = _expand_mask(
|
||||
attention_mask, hidden_states.dtype
|
||||
)
|
||||
|
||||
last_hidden_state = self.encoder(
|
||||
inputs_embeds=hidden_states,
|
||||
@ -291,17 +395,19 @@ class FrozenCLIPEmbedder(AbstractEncoder):
|
||||
|
||||
return last_hidden_state
|
||||
|
||||
self.transformer.text_model.forward = text_encoder_forward.__get__(self.transformer.text_model)
|
||||
self.transformer.text_model.forward = text_encoder_forward.__get__(
|
||||
self.transformer.text_model
|
||||
)
|
||||
|
||||
def transformer_forward(
|
||||
self,
|
||||
input_ids = None,
|
||||
attention_mask = None,
|
||||
position_ids = None,
|
||||
output_attentions = None,
|
||||
output_hidden_states = None,
|
||||
return_dict = None,
|
||||
embedding_manager = None,
|
||||
input_ids=None,
|
||||
attention_mask=None,
|
||||
position_ids=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
embedding_manager=None,
|
||||
):
|
||||
return self.text_model(
|
||||
input_ids=input_ids,
|
||||
@ -310,11 +416,12 @@ class FrozenCLIPEmbedder(AbstractEncoder):
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
embedding_manager = embedding_manager
|
||||
embedding_manager=embedding_manager,
|
||||
)
|
||||
|
||||
self.transformer.forward = transformer_forward.__get__(self.transformer)
|
||||
|
||||
self.transformer.forward = transformer_forward.__get__(
|
||||
self.transformer
|
||||
)
|
||||
|
||||
def freeze(self):
|
||||
self.transformer = self.transformer.eval()
|
||||
@ -322,9 +429,16 @@ class FrozenCLIPEmbedder(AbstractEncoder):
|
||||
param.requires_grad = False
|
||||
|
||||
def forward(self, text, **kwargs):
|
||||
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
|
||||
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
||||
tokens = batch_encoding["input_ids"].to(self.device)
|
||||
batch_encoding = self.tokenizer(
|
||||
text,
|
||||
truncation=True,
|
||||
max_length=self.max_length,
|
||||
return_length=True,
|
||||
return_overflowing_tokens=False,
|
||||
padding='max_length',
|
||||
return_tensors='pt',
|
||||
)
|
||||
tokens = batch_encoding['input_ids'].to(self.device)
|
||||
z = self.transformer(input_ids=tokens, **kwargs)
|
||||
|
||||
return z
|
||||
@ -337,9 +451,17 @@ class FrozenCLIPTextEmbedder(nn.Module):
|
||||
"""
|
||||
Uses the CLIP transformer encoder for text.
|
||||
"""
|
||||
def __init__(self, version='ViT-L/14', device="cuda", max_length=77, n_repeat=1, normalize=True):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
version='ViT-L/14',
|
||||
device='cuda',
|
||||
max_length=77,
|
||||
n_repeat=1,
|
||||
normalize=True,
|
||||
):
|
||||
super().__init__()
|
||||
self.model, _ = clip.load(version, jit=False, device="cpu")
|
||||
self.model, _ = clip.load(version, jit=False, device='cpu')
|
||||
self.device = device
|
||||
self.max_length = max_length
|
||||
self.n_repeat = n_repeat
|
||||
@ -359,7 +481,7 @@ class FrozenCLIPTextEmbedder(nn.Module):
|
||||
|
||||
def encode(self, text):
|
||||
z = self(text)
|
||||
if z.ndim==2:
|
||||
if z.ndim == 2:
|
||||
z = z[:, None, :]
|
||||
z = repeat(z, 'b 1 d -> b k d', k=self.n_repeat)
|
||||
return z
|
||||
@ -367,29 +489,42 @@ class FrozenCLIPTextEmbedder(nn.Module):
|
||||
|
||||
class FrozenClipImageEmbedder(nn.Module):
|
||||
"""
|
||||
Uses the CLIP image encoder.
|
||||
"""
|
||||
Uses the CLIP image encoder.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model,
|
||||
jit=False,
|
||||
device='cuda' if torch.cuda.is_available() else 'cpu',
|
||||
antialias=False,
|
||||
):
|
||||
self,
|
||||
model,
|
||||
jit=False,
|
||||
device='cuda' if torch.cuda.is_available() else 'cpu',
|
||||
antialias=False,
|
||||
):
|
||||
super().__init__()
|
||||
self.model, _ = clip.load(name=model, device=device, jit=jit)
|
||||
|
||||
self.antialias = antialias
|
||||
|
||||
self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False)
|
||||
self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False)
|
||||
self.register_buffer(
|
||||
'mean',
|
||||
torch.Tensor([0.48145466, 0.4578275, 0.40821073]),
|
||||
persistent=False,
|
||||
)
|
||||
self.register_buffer(
|
||||
'std',
|
||||
torch.Tensor([0.26862954, 0.26130258, 0.27577711]),
|
||||
persistent=False,
|
||||
)
|
||||
|
||||
def preprocess(self, x):
|
||||
# normalize to [0,1]
|
||||
x = kornia.geometry.resize(x, (224, 224),
|
||||
interpolation='bicubic',align_corners=True,
|
||||
antialias=self.antialias)
|
||||
x = (x + 1.) / 2.
|
||||
x = kornia.geometry.resize(
|
||||
x,
|
||||
(224, 224),
|
||||
interpolation='bicubic',
|
||||
align_corners=True,
|
||||
antialias=self.antialias,
|
||||
)
|
||||
x = (x + 1.0) / 2.0
|
||||
# renormalize according to clip
|
||||
x = kornia.enhance.normalize(x, self.mean, self.std)
|
||||
return x
|
||||
@ -399,7 +534,8 @@ class FrozenClipImageEmbedder(nn.Module):
|
||||
return self.model.encode_image(self.preprocess(x))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if __name__ == '__main__':
|
||||
from ldm.util import count_params
|
||||
|
||||
model = FrozenCLIPEmbedder()
|
||||
count_params(model, verbose=True)
|
||||
|
@ -1,2 +1,6 @@
|
||||
from ldm.modules.image_degradation.bsrgan import degradation_bsrgan_variant as degradation_fn_bsr
|
||||
from ldm.modules.image_degradation.bsrgan_light import degradation_bsrgan_variant as degradation_fn_bsr_light
|
||||
from ldm.modules.image_degradation.bsrgan import (
|
||||
degradation_bsrgan_variant as degradation_fn_bsr,
|
||||
)
|
||||
from ldm.modules.image_degradation.bsrgan_light import (
|
||||
degradation_bsrgan_variant as degradation_fn_bsr_light,
|
||||
)
|
||||
|
@ -27,16 +27,16 @@ import ldm.modules.image_degradation.utils_image as util
|
||||
|
||||
|
||||
def modcrop_np(img, sf):
|
||||
'''
|
||||
"""
|
||||
Args:
|
||||
img: numpy image, WxH or WxHxC
|
||||
sf: scale factor
|
||||
Return:
|
||||
cropped image
|
||||
'''
|
||||
"""
|
||||
w, h = img.shape[:2]
|
||||
im = np.copy(img)
|
||||
return im[:w - w % sf, :h - h % sf, ...]
|
||||
return im[: w - w % sf, : h - h % sf, ...]
|
||||
|
||||
|
||||
"""
|
||||
@ -54,7 +54,9 @@ def analytic_kernel(k):
|
||||
# Loop over the small kernel to fill the big one
|
||||
for r in range(k_size):
|
||||
for c in range(k_size):
|
||||
big_k[2 * r:2 * r + k_size, 2 * c:2 * c + k_size] += k[r, c] * k
|
||||
big_k[2 * r : 2 * r + k_size, 2 * c : 2 * c + k_size] += (
|
||||
k[r, c] * k
|
||||
)
|
||||
# Crop the edges of the big kernel to ignore very small values and increase run time of SR
|
||||
crop = k_size // 2
|
||||
cropped_big_k = big_k[crop:-crop, crop:-crop]
|
||||
@ -63,7 +65,7 @@ def analytic_kernel(k):
|
||||
|
||||
|
||||
def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6):
|
||||
""" generate an anisotropic Gaussian kernel
|
||||
"""generate an anisotropic Gaussian kernel
|
||||
Args:
|
||||
ksize : e.g., 15, kernel size
|
||||
theta : [0, pi], rotation angle range
|
||||
@ -74,7 +76,12 @@ def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6):
|
||||
k : kernel
|
||||
"""
|
||||
|
||||
v = np.dot(np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]), np.array([1., 0.]))
|
||||
v = np.dot(
|
||||
np.array(
|
||||
[[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]
|
||||
),
|
||||
np.array([1.0, 0.0]),
|
||||
)
|
||||
V = np.array([[v[0], v[1]], [v[1], -v[0]]])
|
||||
D = np.array([[l1, 0], [0, l2]])
|
||||
Sigma = np.dot(np.dot(V, D), np.linalg.inv(V))
|
||||
@ -126,24 +133,32 @@ def shift_pixel(x, sf, upper_left=True):
|
||||
|
||||
|
||||
def blur(x, k):
|
||||
'''
|
||||
"""
|
||||
x: image, NxcxHxW
|
||||
k: kernel, Nx1xhxw
|
||||
'''
|
||||
"""
|
||||
n, c = x.shape[:2]
|
||||
p1, p2 = (k.shape[-2] - 1) // 2, (k.shape[-1] - 1) // 2
|
||||
x = torch.nn.functional.pad(x, pad=(p1, p2, p1, p2), mode='replicate')
|
||||
k = k.repeat(1, c, 1, 1)
|
||||
k = k.view(-1, 1, k.shape[2], k.shape[3])
|
||||
x = x.view(1, -1, x.shape[2], x.shape[3])
|
||||
x = torch.nn.functional.conv2d(x, k, bias=None, stride=1, padding=0, groups=n * c)
|
||||
x = torch.nn.functional.conv2d(
|
||||
x, k, bias=None, stride=1, padding=0, groups=n * c
|
||||
)
|
||||
x = x.view(n, c, x.shape[2], x.shape[3])
|
||||
|
||||
return x
|
||||
|
||||
|
||||
def gen_kernel(k_size=np.array([15, 15]), scale_factor=np.array([4, 4]), min_var=0.6, max_var=10., noise_level=0):
|
||||
""""
|
||||
def gen_kernel(
|
||||
k_size=np.array([15, 15]),
|
||||
scale_factor=np.array([4, 4]),
|
||||
min_var=0.6,
|
||||
max_var=10.0,
|
||||
noise_level=0,
|
||||
):
|
||||
""" "
|
||||
# modified version of https://github.com/assafshocher/BlindSR_dataset_generator
|
||||
# Kai Zhang
|
||||
# min_var = 0.175 * sf # variance of the gaussian kernel will be sampled between min_var and max_var
|
||||
@ -157,13 +172,16 @@ def gen_kernel(k_size=np.array([15, 15]), scale_factor=np.array([4, 4]), min_var
|
||||
|
||||
# Set COV matrix using Lambdas and Theta
|
||||
LAMBDA = np.diag([lambda_1, lambda_2])
|
||||
Q = np.array([[np.cos(theta), -np.sin(theta)],
|
||||
[np.sin(theta), np.cos(theta)]])
|
||||
Q = np.array(
|
||||
[[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]
|
||||
)
|
||||
SIGMA = Q @ LAMBDA @ Q.T
|
||||
INV_SIGMA = np.linalg.inv(SIGMA)[None, None, :, :]
|
||||
|
||||
# Set expectation position (shifting kernel for aligned image)
|
||||
MU = k_size // 2 - 0.5 * (scale_factor - 1) # - 0.5 * (scale_factor - k_size % 2)
|
||||
MU = k_size // 2 - 0.5 * (
|
||||
scale_factor - 1
|
||||
) # - 0.5 * (scale_factor - k_size % 2)
|
||||
MU = MU[None, None, :, None]
|
||||
|
||||
# Create meshgrid for Gaussian
|
||||
@ -188,7 +206,9 @@ def fspecial_gaussian(hsize, sigma):
|
||||
hsize = [hsize, hsize]
|
||||
siz = [(hsize[0] - 1.0) / 2.0, (hsize[1] - 1.0) / 2.0]
|
||||
std = sigma
|
||||
[x, y] = np.meshgrid(np.arange(-siz[1], siz[1] + 1), np.arange(-siz[0], siz[0] + 1))
|
||||
[x, y] = np.meshgrid(
|
||||
np.arange(-siz[1], siz[1] + 1), np.arange(-siz[0], siz[0] + 1)
|
||||
)
|
||||
arg = -(x * x + y * y) / (2 * std * std)
|
||||
h = np.exp(arg)
|
||||
h[h < scipy.finfo(float).eps * h.max()] = 0
|
||||
@ -208,10 +228,10 @@ def fspecial_laplacian(alpha):
|
||||
|
||||
|
||||
def fspecial(filter_type, *args, **kwargs):
|
||||
'''
|
||||
"""
|
||||
python code from:
|
||||
https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py
|
||||
'''
|
||||
"""
|
||||
if filter_type == 'gaussian':
|
||||
return fspecial_gaussian(*args, **kwargs)
|
||||
if filter_type == 'laplacian':
|
||||
@ -226,19 +246,19 @@ def fspecial(filter_type, *args, **kwargs):
|
||||
|
||||
|
||||
def bicubic_degradation(x, sf=3):
|
||||
'''
|
||||
"""
|
||||
Args:
|
||||
x: HxWxC image, [0, 1]
|
||||
sf: down-scale factor
|
||||
Return:
|
||||
bicubicly downsampled LR image
|
||||
'''
|
||||
"""
|
||||
x = util.imresize_np(x, scale=1 / sf)
|
||||
return x
|
||||
|
||||
|
||||
def srmd_degradation(x, k, sf=3):
|
||||
''' blur + bicubic downsampling
|
||||
"""blur + bicubic downsampling
|
||||
Args:
|
||||
x: HxWxC image, [0, 1]
|
||||
k: hxw, double
|
||||
@ -253,14 +273,16 @@ def srmd_degradation(x, k, sf=3):
|
||||
pages={3262--3271},
|
||||
year={2018}
|
||||
}
|
||||
'''
|
||||
x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap') # 'nearest' | 'mirror'
|
||||
"""
|
||||
x = ndimage.filters.convolve(
|
||||
x, np.expand_dims(k, axis=2), mode='wrap'
|
||||
) # 'nearest' | 'mirror'
|
||||
x = bicubic_degradation(x, sf=sf)
|
||||
return x
|
||||
|
||||
|
||||
def dpsr_degradation(x, k, sf=3):
|
||||
''' bicubic downsampling + blur
|
||||
"""bicubic downsampling + blur
|
||||
Args:
|
||||
x: HxWxC image, [0, 1]
|
||||
k: hxw, double
|
||||
@ -275,21 +297,21 @@ def dpsr_degradation(x, k, sf=3):
|
||||
pages={1671--1681},
|
||||
year={2019}
|
||||
}
|
||||
'''
|
||||
"""
|
||||
x = bicubic_degradation(x, sf=sf)
|
||||
x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
|
||||
return x
|
||||
|
||||
|
||||
def classical_degradation(x, k, sf=3):
|
||||
''' blur + downsampling
|
||||
"""blur + downsampling
|
||||
Args:
|
||||
x: HxWxC image, [0, 1]/[0, 255]
|
||||
k: hxw, double
|
||||
sf: down-scale factor
|
||||
Return:
|
||||
downsampled LR image
|
||||
'''
|
||||
"""
|
||||
x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
|
||||
# x = filters.correlate(x, np.expand_dims(np.flip(k), axis=2))
|
||||
st = 0
|
||||
@ -328,10 +350,19 @@ def add_blur(img, sf=4):
|
||||
if random.random() < 0.5:
|
||||
l1 = wd2 * random.random()
|
||||
l2 = wd2 * random.random()
|
||||
k = anisotropic_Gaussian(ksize=2 * random.randint(2, 11) + 3, theta=random.random() * np.pi, l1=l1, l2=l2)
|
||||
k = anisotropic_Gaussian(
|
||||
ksize=2 * random.randint(2, 11) + 3,
|
||||
theta=random.random() * np.pi,
|
||||
l1=l1,
|
||||
l2=l2,
|
||||
)
|
||||
else:
|
||||
k = fspecial('gaussian', 2 * random.randint(2, 11) + 3, wd * random.random())
|
||||
img = ndimage.filters.convolve(img, np.expand_dims(k, axis=2), mode='mirror')
|
||||
k = fspecial(
|
||||
'gaussian', 2 * random.randint(2, 11) + 3, wd * random.random()
|
||||
)
|
||||
img = ndimage.filters.convolve(
|
||||
img, np.expand_dims(k, axis=2), mode='mirror'
|
||||
)
|
||||
|
||||
return img
|
||||
|
||||
@ -344,7 +375,11 @@ def add_resize(img, sf=4):
|
||||
sf1 = random.uniform(0.5 / sf, 1)
|
||||
else:
|
||||
sf1 = 1.0
|
||||
img = cv2.resize(img, (int(sf1 * img.shape[1]), int(sf1 * img.shape[0])), interpolation=random.choice([1, 2, 3]))
|
||||
img = cv2.resize(
|
||||
img,
|
||||
(int(sf1 * img.shape[1]), int(sf1 * img.shape[0])),
|
||||
interpolation=random.choice([1, 2, 3]),
|
||||
)
|
||||
img = np.clip(img, 0.0, 1.0)
|
||||
|
||||
return img
|
||||
@ -366,19 +401,26 @@ def add_resize(img, sf=4):
|
||||
# img = np.clip(img, 0.0, 1.0)
|
||||
# return img
|
||||
|
||||
|
||||
def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
|
||||
noise_level = random.randint(noise_level1, noise_level2)
|
||||
rnum = np.random.rand()
|
||||
if rnum > 0.6: # add color Gaussian noise
|
||||
img = img + np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
|
||||
img = img + np.random.normal(0, noise_level / 255.0, img.shape).astype(
|
||||
np.float32
|
||||
)
|
||||
elif rnum < 0.4: # add grayscale Gaussian noise
|
||||
img = img + np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
|
||||
img = img + np.random.normal(
|
||||
0, noise_level / 255.0, (*img.shape[:2], 1)
|
||||
).astype(np.float32)
|
||||
else: # add noise
|
||||
L = noise_level2 / 255.
|
||||
L = noise_level2 / 255.0
|
||||
D = np.diag(np.random.rand(3))
|
||||
U = orth(np.random.rand(3, 3))
|
||||
conv = np.dot(np.dot(np.transpose(U), D), U)
|
||||
img = img + np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
|
||||
img = img + np.random.multivariate_normal(
|
||||
[0, 0, 0], np.abs(L**2 * conv), img.shape[:2]
|
||||
).astype(np.float32)
|
||||
img = np.clip(img, 0.0, 1.0)
|
||||
return img
|
||||
|
||||
@ -388,28 +430,37 @@ def add_speckle_noise(img, noise_level1=2, noise_level2=25):
|
||||
img = np.clip(img, 0.0, 1.0)
|
||||
rnum = random.random()
|
||||
if rnum > 0.6:
|
||||
img += img * np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
|
||||
img += img * np.random.normal(
|
||||
0, noise_level / 255.0, img.shape
|
||||
).astype(np.float32)
|
||||
elif rnum < 0.4:
|
||||
img += img * np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
|
||||
img += img * np.random.normal(
|
||||
0, noise_level / 255.0, (*img.shape[:2], 1)
|
||||
).astype(np.float32)
|
||||
else:
|
||||
L = noise_level2 / 255.
|
||||
L = noise_level2 / 255.0
|
||||
D = np.diag(np.random.rand(3))
|
||||
U = orth(np.random.rand(3, 3))
|
||||
conv = np.dot(np.dot(np.transpose(U), D), U)
|
||||
img += img * np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
|
||||
img += img * np.random.multivariate_normal(
|
||||
[0, 0, 0], np.abs(L**2 * conv), img.shape[:2]
|
||||
).astype(np.float32)
|
||||
img = np.clip(img, 0.0, 1.0)
|
||||
return img
|
||||
|
||||
|
||||
def add_Poisson_noise(img):
|
||||
img = np.clip((img * 255.0).round(), 0, 255) / 255.
|
||||
img = np.clip((img * 255.0).round(), 0, 255) / 255.0
|
||||
vals = 10 ** (2 * random.random() + 2.0) # [2, 4]
|
||||
if random.random() < 0.5:
|
||||
img = np.random.poisson(img * vals).astype(np.float32) / vals
|
||||
else:
|
||||
img_gray = np.dot(img[..., :3], [0.299, 0.587, 0.114])
|
||||
img_gray = np.clip((img_gray * 255.0).round(), 0, 255) / 255.
|
||||
noise_gray = np.random.poisson(img_gray * vals).astype(np.float32) / vals - img_gray
|
||||
img_gray = np.clip((img_gray * 255.0).round(), 0, 255) / 255.0
|
||||
noise_gray = (
|
||||
np.random.poisson(img_gray * vals).astype(np.float32) / vals
|
||||
- img_gray
|
||||
)
|
||||
img += noise_gray[:, :, np.newaxis]
|
||||
img = np.clip(img, 0.0, 1.0)
|
||||
return img
|
||||
@ -418,7 +469,9 @@ def add_Poisson_noise(img):
|
||||
def add_JPEG_noise(img):
|
||||
quality_factor = random.randint(30, 95)
|
||||
img = cv2.cvtColor(util.single2uint(img), cv2.COLOR_RGB2BGR)
|
||||
result, encimg = cv2.imencode('.jpg', img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor])
|
||||
result, encimg = cv2.imencode(
|
||||
'.jpg', img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor]
|
||||
)
|
||||
img = cv2.imdecode(encimg, 1)
|
||||
img = cv2.cvtColor(util.uint2single(img), cv2.COLOR_BGR2RGB)
|
||||
return img
|
||||
@ -428,10 +481,14 @@ def random_crop(lq, hq, sf=4, lq_patchsize=64):
|
||||
h, w = lq.shape[:2]
|
||||
rnd_h = random.randint(0, h - lq_patchsize)
|
||||
rnd_w = random.randint(0, w - lq_patchsize)
|
||||
lq = lq[rnd_h:rnd_h + lq_patchsize, rnd_w:rnd_w + lq_patchsize, :]
|
||||
lq = lq[rnd_h : rnd_h + lq_patchsize, rnd_w : rnd_w + lq_patchsize, :]
|
||||
|
||||
rnd_h_H, rnd_w_H = int(rnd_h * sf), int(rnd_w * sf)
|
||||
hq = hq[rnd_h_H:rnd_h_H + lq_patchsize * sf, rnd_w_H:rnd_w_H + lq_patchsize * sf, :]
|
||||
hq = hq[
|
||||
rnd_h_H : rnd_h_H + lq_patchsize * sf,
|
||||
rnd_w_H : rnd_w_H + lq_patchsize * sf,
|
||||
:,
|
||||
]
|
||||
return lq, hq
|
||||
|
||||
|
||||
@ -452,7 +509,7 @@ def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None):
|
||||
sf_ori = sf
|
||||
|
||||
h1, w1 = img.shape[:2]
|
||||
img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
|
||||
img = img.copy()[: w1 - w1 % sf, : h1 - h1 % sf, ...] # mod crop
|
||||
h, w = img.shape[:2]
|
||||
|
||||
if h < lq_patchsize * sf or w < lq_patchsize * sf:
|
||||
@ -462,8 +519,11 @@ def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None):
|
||||
|
||||
if sf == 4 and random.random() < scale2_prob: # downsample1
|
||||
if np.random.rand() < 0.5:
|
||||
img = cv2.resize(img, (int(1 / 2 * img.shape[1]), int(1 / 2 * img.shape[0])),
|
||||
interpolation=random.choice([1, 2, 3]))
|
||||
img = cv2.resize(
|
||||
img,
|
||||
(int(1 / 2 * img.shape[1]), int(1 / 2 * img.shape[0])),
|
||||
interpolation=random.choice([1, 2, 3]),
|
||||
)
|
||||
else:
|
||||
img = util.imresize_np(img, 1 / 2, True)
|
||||
img = np.clip(img, 0.0, 1.0)
|
||||
@ -472,7 +532,10 @@ def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None):
|
||||
shuffle_order = random.sample(range(7), 7)
|
||||
idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
|
||||
if idx1 > idx2: # keep downsample3 last
|
||||
shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
|
||||
shuffle_order[idx1], shuffle_order[idx2] = (
|
||||
shuffle_order[idx2],
|
||||
shuffle_order[idx1],
|
||||
)
|
||||
|
||||
for i in shuffle_order:
|
||||
|
||||
@ -487,19 +550,30 @@ def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None):
|
||||
# downsample2
|
||||
if random.random() < 0.75:
|
||||
sf1 = random.uniform(1, 2 * sf)
|
||||
img = cv2.resize(img, (int(1 / sf1 * img.shape[1]), int(1 / sf1 * img.shape[0])),
|
||||
interpolation=random.choice([1, 2, 3]))
|
||||
img = cv2.resize(
|
||||
img,
|
||||
(int(1 / sf1 * img.shape[1]), int(1 / sf1 * img.shape[0])),
|
||||
interpolation=random.choice([1, 2, 3]),
|
||||
)
|
||||
else:
|
||||
k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
|
||||
k_shifted = shift_pixel(k, sf)
|
||||
k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
|
||||
img = ndimage.filters.convolve(img, np.expand_dims(k_shifted, axis=2), mode='mirror')
|
||||
k_shifted = (
|
||||
k_shifted / k_shifted.sum()
|
||||
) # blur with shifted kernel
|
||||
img = ndimage.filters.convolve(
|
||||
img, np.expand_dims(k_shifted, axis=2), mode='mirror'
|
||||
)
|
||||
img = img[0::sf, 0::sf, ...] # nearest downsampling
|
||||
img = np.clip(img, 0.0, 1.0)
|
||||
|
||||
elif i == 3:
|
||||
# downsample3
|
||||
img = cv2.resize(img, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
|
||||
img = cv2.resize(
|
||||
img,
|
||||
(int(1 / sf * a), int(1 / sf * b)),
|
||||
interpolation=random.choice([1, 2, 3]),
|
||||
)
|
||||
img = np.clip(img, 0.0, 1.0)
|
||||
|
||||
elif i == 4:
|
||||
@ -544,15 +618,18 @@ def degradation_bsrgan_variant(image, sf=4, isp_model=None):
|
||||
sf_ori = sf
|
||||
|
||||
h1, w1 = image.shape[:2]
|
||||
image = image.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
|
||||
image = image.copy()[: w1 - w1 % sf, : h1 - h1 % sf, ...] # mod crop
|
||||
h, w = image.shape[:2]
|
||||
|
||||
hq = image.copy()
|
||||
|
||||
if sf == 4 and random.random() < scale2_prob: # downsample1
|
||||
if np.random.rand() < 0.5:
|
||||
image = cv2.resize(image, (int(1 / 2 * image.shape[1]), int(1 / 2 * image.shape[0])),
|
||||
interpolation=random.choice([1, 2, 3]))
|
||||
image = cv2.resize(
|
||||
image,
|
||||
(int(1 / 2 * image.shape[1]), int(1 / 2 * image.shape[0])),
|
||||
interpolation=random.choice([1, 2, 3]),
|
||||
)
|
||||
else:
|
||||
image = util.imresize_np(image, 1 / 2, True)
|
||||
image = np.clip(image, 0.0, 1.0)
|
||||
@ -561,7 +638,10 @@ def degradation_bsrgan_variant(image, sf=4, isp_model=None):
|
||||
shuffle_order = random.sample(range(7), 7)
|
||||
idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
|
||||
if idx1 > idx2: # keep downsample3 last
|
||||
shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
|
||||
shuffle_order[idx1], shuffle_order[idx2] = (
|
||||
shuffle_order[idx2],
|
||||
shuffle_order[idx1],
|
||||
)
|
||||
|
||||
for i in shuffle_order:
|
||||
|
||||
@ -576,19 +656,33 @@ def degradation_bsrgan_variant(image, sf=4, isp_model=None):
|
||||
# downsample2
|
||||
if random.random() < 0.75:
|
||||
sf1 = random.uniform(1, 2 * sf)
|
||||
image = cv2.resize(image, (int(1 / sf1 * image.shape[1]), int(1 / sf1 * image.shape[0])),
|
||||
interpolation=random.choice([1, 2, 3]))
|
||||
image = cv2.resize(
|
||||
image,
|
||||
(
|
||||
int(1 / sf1 * image.shape[1]),
|
||||
int(1 / sf1 * image.shape[0]),
|
||||
),
|
||||
interpolation=random.choice([1, 2, 3]),
|
||||
)
|
||||
else:
|
||||
k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
|
||||
k_shifted = shift_pixel(k, sf)
|
||||
k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
|
||||
image = ndimage.filters.convolve(image, np.expand_dims(k_shifted, axis=2), mode='mirror')
|
||||
k_shifted = (
|
||||
k_shifted / k_shifted.sum()
|
||||
) # blur with shifted kernel
|
||||
image = ndimage.filters.convolve(
|
||||
image, np.expand_dims(k_shifted, axis=2), mode='mirror'
|
||||
)
|
||||
image = image[0::sf, 0::sf, ...] # nearest downsampling
|
||||
image = np.clip(image, 0.0, 1.0)
|
||||
|
||||
elif i == 3:
|
||||
# downsample3
|
||||
image = cv2.resize(image, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
|
||||
image = cv2.resize(
|
||||
image,
|
||||
(int(1 / sf * a), int(1 / sf * b)),
|
||||
interpolation=random.choice([1, 2, 3]),
|
||||
)
|
||||
image = np.clip(image, 0.0, 1.0)
|
||||
|
||||
elif i == 4:
|
||||
@ -609,12 +703,19 @@ def degradation_bsrgan_variant(image, sf=4, isp_model=None):
|
||||
# add final JPEG compression noise
|
||||
image = add_JPEG_noise(image)
|
||||
image = util.single2uint(image)
|
||||
example = {"image":image}
|
||||
example = {'image': image}
|
||||
return example
|
||||
|
||||
|
||||
# TODO incase there is a pickle error one needs to replace a += x with a = a + x in add_speckle_noise etc...
|
||||
def degradation_bsrgan_plus(img, sf=4, shuffle_prob=0.5, use_sharp=True, lq_patchsize=64, isp_model=None):
|
||||
def degradation_bsrgan_plus(
|
||||
img,
|
||||
sf=4,
|
||||
shuffle_prob=0.5,
|
||||
use_sharp=True,
|
||||
lq_patchsize=64,
|
||||
isp_model=None,
|
||||
):
|
||||
"""
|
||||
This is an extended degradation model by combining
|
||||
the degradation models of BSRGAN and Real-ESRGAN
|
||||
@ -630,7 +731,7 @@ def degradation_bsrgan_plus(img, sf=4, shuffle_prob=0.5, use_sharp=True, lq_patc
|
||||
"""
|
||||
|
||||
h1, w1 = img.shape[:2]
|
||||
img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
|
||||
img = img.copy()[: w1 - w1 % sf, : h1 - h1 % sf, ...] # mod crop
|
||||
h, w = img.shape[:2]
|
||||
|
||||
if h < lq_patchsize * sf or w < lq_patchsize * sf:
|
||||
@ -645,8 +746,12 @@ def degradation_bsrgan_plus(img, sf=4, shuffle_prob=0.5, use_sharp=True, lq_patc
|
||||
else:
|
||||
shuffle_order = list(range(13))
|
||||
# local shuffle for noise, JPEG is always the last one
|
||||
shuffle_order[2:6] = random.sample(shuffle_order[2:6], len(range(2, 6)))
|
||||
shuffle_order[9:13] = random.sample(shuffle_order[9:13], len(range(9, 13)))
|
||||
shuffle_order[2:6] = random.sample(
|
||||
shuffle_order[2:6], len(range(2, 6))
|
||||
)
|
||||
shuffle_order[9:13] = random.sample(
|
||||
shuffle_order[9:13], len(range(9, 13))
|
||||
)
|
||||
|
||||
poisson_prob, speckle_prob, isp_prob = 0.1, 0.1, 0.1
|
||||
|
||||
@ -689,8 +794,11 @@ def degradation_bsrgan_plus(img, sf=4, shuffle_prob=0.5, use_sharp=True, lq_patc
|
||||
print('check the shuffle!')
|
||||
|
||||
# resize to desired size
|
||||
img = cv2.resize(img, (int(1 / sf * hq.shape[1]), int(1 / sf * hq.shape[0])),
|
||||
interpolation=random.choice([1, 2, 3]))
|
||||
img = cv2.resize(
|
||||
img,
|
||||
(int(1 / sf * hq.shape[1]), int(1 / sf * hq.shape[0])),
|
||||
interpolation=random.choice([1, 2, 3]),
|
||||
)
|
||||
|
||||
# add final JPEG compression noise
|
||||
img = add_JPEG_noise(img)
|
||||
@ -702,29 +810,37 @@ def degradation_bsrgan_plus(img, sf=4, shuffle_prob=0.5, use_sharp=True, lq_patc
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
print("hey")
|
||||
img = util.imread_uint('utils/test.png', 3)
|
||||
print(img)
|
||||
img = util.uint2single(img)
|
||||
print(img)
|
||||
img = img[:448, :448]
|
||||
h = img.shape[0] // 4
|
||||
print("resizing to", h)
|
||||
sf = 4
|
||||
deg_fn = partial(degradation_bsrgan_variant, sf=sf)
|
||||
for i in range(20):
|
||||
print(i)
|
||||
img_lq = deg_fn(img)
|
||||
print(img_lq)
|
||||
img_lq_bicubic = albumentations.SmallestMaxSize(max_size=h, interpolation=cv2.INTER_CUBIC)(image=img)["image"]
|
||||
print(img_lq.shape)
|
||||
print("bicubic", img_lq_bicubic.shape)
|
||||
print(img_hq.shape)
|
||||
lq_nearest = cv2.resize(util.single2uint(img_lq), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
|
||||
interpolation=0)
|
||||
lq_bicubic_nearest = cv2.resize(util.single2uint(img_lq_bicubic), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
|
||||
interpolation=0)
|
||||
img_concat = np.concatenate([lq_bicubic_nearest, lq_nearest, util.single2uint(img_hq)], axis=1)
|
||||
util.imsave(img_concat, str(i) + '.png')
|
||||
|
||||
|
||||
print('hey')
|
||||
img = util.imread_uint('utils/test.png', 3)
|
||||
print(img)
|
||||
img = util.uint2single(img)
|
||||
print(img)
|
||||
img = img[:448, :448]
|
||||
h = img.shape[0] // 4
|
||||
print('resizing to', h)
|
||||
sf = 4
|
||||
deg_fn = partial(degradation_bsrgan_variant, sf=sf)
|
||||
for i in range(20):
|
||||
print(i)
|
||||
img_lq = deg_fn(img)
|
||||
print(img_lq)
|
||||
img_lq_bicubic = albumentations.SmallestMaxSize(
|
||||
max_size=h, interpolation=cv2.INTER_CUBIC
|
||||
)(image=img)['image']
|
||||
print(img_lq.shape)
|
||||
print('bicubic', img_lq_bicubic.shape)
|
||||
print(img_hq.shape)
|
||||
lq_nearest = cv2.resize(
|
||||
util.single2uint(img_lq),
|
||||
(int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
|
||||
interpolation=0,
|
||||
)
|
||||
lq_bicubic_nearest = cv2.resize(
|
||||
util.single2uint(img_lq_bicubic),
|
||||
(int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
|
||||
interpolation=0,
|
||||
)
|
||||
img_concat = np.concatenate(
|
||||
[lq_bicubic_nearest, lq_nearest, util.single2uint(img_hq)], axis=1
|
||||
)
|
||||
util.imsave(img_concat, str(i) + '.png')
|
||||
|
@ -27,16 +27,16 @@ import ldm.modules.image_degradation.utils_image as util
|
||||
|
||||
|
||||
def modcrop_np(img, sf):
|
||||
'''
|
||||
"""
|
||||
Args:
|
||||
img: numpy image, WxH or WxHxC
|
||||
sf: scale factor
|
||||
Return:
|
||||
cropped image
|
||||
'''
|
||||
"""
|
||||
w, h = img.shape[:2]
|
||||
im = np.copy(img)
|
||||
return im[:w - w % sf, :h - h % sf, ...]
|
||||
return im[: w - w % sf, : h - h % sf, ...]
|
||||
|
||||
|
||||
"""
|
||||
@ -54,7 +54,9 @@ def analytic_kernel(k):
|
||||
# Loop over the small kernel to fill the big one
|
||||
for r in range(k_size):
|
||||
for c in range(k_size):
|
||||
big_k[2 * r:2 * r + k_size, 2 * c:2 * c + k_size] += k[r, c] * k
|
||||
big_k[2 * r : 2 * r + k_size, 2 * c : 2 * c + k_size] += (
|
||||
k[r, c] * k
|
||||
)
|
||||
# Crop the edges of the big kernel to ignore very small values and increase run time of SR
|
||||
crop = k_size // 2
|
||||
cropped_big_k = big_k[crop:-crop, crop:-crop]
|
||||
@ -63,7 +65,7 @@ def analytic_kernel(k):
|
||||
|
||||
|
||||
def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6):
|
||||
""" generate an anisotropic Gaussian kernel
|
||||
"""generate an anisotropic Gaussian kernel
|
||||
Args:
|
||||
ksize : e.g., 15, kernel size
|
||||
theta : [0, pi], rotation angle range
|
||||
@ -74,7 +76,12 @@ def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6):
|
||||
k : kernel
|
||||
"""
|
||||
|
||||
v = np.dot(np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]), np.array([1., 0.]))
|
||||
v = np.dot(
|
||||
np.array(
|
||||
[[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]
|
||||
),
|
||||
np.array([1.0, 0.0]),
|
||||
)
|
||||
V = np.array([[v[0], v[1]], [v[1], -v[0]]])
|
||||
D = np.array([[l1, 0], [0, l2]])
|
||||
Sigma = np.dot(np.dot(V, D), np.linalg.inv(V))
|
||||
@ -126,24 +133,32 @@ def shift_pixel(x, sf, upper_left=True):
|
||||
|
||||
|
||||
def blur(x, k):
|
||||
'''
|
||||
"""
|
||||
x: image, NxcxHxW
|
||||
k: kernel, Nx1xhxw
|
||||
'''
|
||||
"""
|
||||
n, c = x.shape[:2]
|
||||
p1, p2 = (k.shape[-2] - 1) // 2, (k.shape[-1] - 1) // 2
|
||||
x = torch.nn.functional.pad(x, pad=(p1, p2, p1, p2), mode='replicate')
|
||||
k = k.repeat(1, c, 1, 1)
|
||||
k = k.view(-1, 1, k.shape[2], k.shape[3])
|
||||
x = x.view(1, -1, x.shape[2], x.shape[3])
|
||||
x = torch.nn.functional.conv2d(x, k, bias=None, stride=1, padding=0, groups=n * c)
|
||||
x = torch.nn.functional.conv2d(
|
||||
x, k, bias=None, stride=1, padding=0, groups=n * c
|
||||
)
|
||||
x = x.view(n, c, x.shape[2], x.shape[3])
|
||||
|
||||
return x
|
||||
|
||||
|
||||
def gen_kernel(k_size=np.array([15, 15]), scale_factor=np.array([4, 4]), min_var=0.6, max_var=10., noise_level=0):
|
||||
""""
|
||||
def gen_kernel(
|
||||
k_size=np.array([15, 15]),
|
||||
scale_factor=np.array([4, 4]),
|
||||
min_var=0.6,
|
||||
max_var=10.0,
|
||||
noise_level=0,
|
||||
):
|
||||
""" "
|
||||
# modified version of https://github.com/assafshocher/BlindSR_dataset_generator
|
||||
# Kai Zhang
|
||||
# min_var = 0.175 * sf # variance of the gaussian kernel will be sampled between min_var and max_var
|
||||
@ -157,13 +172,16 @@ def gen_kernel(k_size=np.array([15, 15]), scale_factor=np.array([4, 4]), min_var
|
||||
|
||||
# Set COV matrix using Lambdas and Theta
|
||||
LAMBDA = np.diag([lambda_1, lambda_2])
|
||||
Q = np.array([[np.cos(theta), -np.sin(theta)],
|
||||
[np.sin(theta), np.cos(theta)]])
|
||||
Q = np.array(
|
||||
[[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]
|
||||
)
|
||||
SIGMA = Q @ LAMBDA @ Q.T
|
||||
INV_SIGMA = np.linalg.inv(SIGMA)[None, None, :, :]
|
||||
|
||||
# Set expectation position (shifting kernel for aligned image)
|
||||
MU = k_size // 2 - 0.5 * (scale_factor - 1) # - 0.5 * (scale_factor - k_size % 2)
|
||||
MU = k_size // 2 - 0.5 * (
|
||||
scale_factor - 1
|
||||
) # - 0.5 * (scale_factor - k_size % 2)
|
||||
MU = MU[None, None, :, None]
|
||||
|
||||
# Create meshgrid for Gaussian
|
||||
@ -188,7 +206,9 @@ def fspecial_gaussian(hsize, sigma):
|
||||
hsize = [hsize, hsize]
|
||||
siz = [(hsize[0] - 1.0) / 2.0, (hsize[1] - 1.0) / 2.0]
|
||||
std = sigma
|
||||
[x, y] = np.meshgrid(np.arange(-siz[1], siz[1] + 1), np.arange(-siz[0], siz[0] + 1))
|
||||
[x, y] = np.meshgrid(
|
||||
np.arange(-siz[1], siz[1] + 1), np.arange(-siz[0], siz[0] + 1)
|
||||
)
|
||||
arg = -(x * x + y * y) / (2 * std * std)
|
||||
h = np.exp(arg)
|
||||
h[h < scipy.finfo(float).eps * h.max()] = 0
|
||||
@ -208,10 +228,10 @@ def fspecial_laplacian(alpha):
|
||||
|
||||
|
||||
def fspecial(filter_type, *args, **kwargs):
|
||||
'''
|
||||
"""
|
||||
python code from:
|
||||
https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py
|
||||
'''
|
||||
"""
|
||||
if filter_type == 'gaussian':
|
||||
return fspecial_gaussian(*args, **kwargs)
|
||||
if filter_type == 'laplacian':
|
||||
@ -226,19 +246,19 @@ def fspecial(filter_type, *args, **kwargs):
|
||||
|
||||
|
||||
def bicubic_degradation(x, sf=3):
|
||||
'''
|
||||
"""
|
||||
Args:
|
||||
x: HxWxC image, [0, 1]
|
||||
sf: down-scale factor
|
||||
Return:
|
||||
bicubicly downsampled LR image
|
||||
'''
|
||||
"""
|
||||
x = util.imresize_np(x, scale=1 / sf)
|
||||
return x
|
||||
|
||||
|
||||
def srmd_degradation(x, k, sf=3):
|
||||
''' blur + bicubic downsampling
|
||||
"""blur + bicubic downsampling
|
||||
Args:
|
||||
x: HxWxC image, [0, 1]
|
||||
k: hxw, double
|
||||
@ -253,14 +273,16 @@ def srmd_degradation(x, k, sf=3):
|
||||
pages={3262--3271},
|
||||
year={2018}
|
||||
}
|
||||
'''
|
||||
x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap') # 'nearest' | 'mirror'
|
||||
"""
|
||||
x = ndimage.filters.convolve(
|
||||
x, np.expand_dims(k, axis=2), mode='wrap'
|
||||
) # 'nearest' | 'mirror'
|
||||
x = bicubic_degradation(x, sf=sf)
|
||||
return x
|
||||
|
||||
|
||||
def dpsr_degradation(x, k, sf=3):
|
||||
''' bicubic downsampling + blur
|
||||
"""bicubic downsampling + blur
|
||||
Args:
|
||||
x: HxWxC image, [0, 1]
|
||||
k: hxw, double
|
||||
@ -275,21 +297,21 @@ def dpsr_degradation(x, k, sf=3):
|
||||
pages={1671--1681},
|
||||
year={2019}
|
||||
}
|
||||
'''
|
||||
"""
|
||||
x = bicubic_degradation(x, sf=sf)
|
||||
x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
|
||||
return x
|
||||
|
||||
|
||||
def classical_degradation(x, k, sf=3):
|
||||
''' blur + downsampling
|
||||
"""blur + downsampling
|
||||
Args:
|
||||
x: HxWxC image, [0, 1]/[0, 255]
|
||||
k: hxw, double
|
||||
sf: down-scale factor
|
||||
Return:
|
||||
downsampled LR image
|
||||
'''
|
||||
"""
|
||||
x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
|
||||
# x = filters.correlate(x, np.expand_dims(np.flip(k), axis=2))
|
||||
st = 0
|
||||
@ -326,16 +348,25 @@ def add_blur(img, sf=4):
|
||||
wd2 = 4.0 + sf
|
||||
wd = 2.0 + 0.2 * sf
|
||||
|
||||
wd2 = wd2/4
|
||||
wd = wd/4
|
||||
wd2 = wd2 / 4
|
||||
wd = wd / 4
|
||||
|
||||
if random.random() < 0.5:
|
||||
l1 = wd2 * random.random()
|
||||
l2 = wd2 * random.random()
|
||||
k = anisotropic_Gaussian(ksize=random.randint(2, 11) + 3, theta=random.random() * np.pi, l1=l1, l2=l2)
|
||||
k = anisotropic_Gaussian(
|
||||
ksize=random.randint(2, 11) + 3,
|
||||
theta=random.random() * np.pi,
|
||||
l1=l1,
|
||||
l2=l2,
|
||||
)
|
||||
else:
|
||||
k = fspecial('gaussian', random.randint(2, 4) + 3, wd * random.random())
|
||||
img = ndimage.filters.convolve(img, np.expand_dims(k, axis=2), mode='mirror')
|
||||
k = fspecial(
|
||||
'gaussian', random.randint(2, 4) + 3, wd * random.random()
|
||||
)
|
||||
img = ndimage.filters.convolve(
|
||||
img, np.expand_dims(k, axis=2), mode='mirror'
|
||||
)
|
||||
|
||||
return img
|
||||
|
||||
@ -348,7 +379,11 @@ def add_resize(img, sf=4):
|
||||
sf1 = random.uniform(0.5 / sf, 1)
|
||||
else:
|
||||
sf1 = 1.0
|
||||
img = cv2.resize(img, (int(sf1 * img.shape[1]), int(sf1 * img.shape[0])), interpolation=random.choice([1, 2, 3]))
|
||||
img = cv2.resize(
|
||||
img,
|
||||
(int(sf1 * img.shape[1]), int(sf1 * img.shape[0])),
|
||||
interpolation=random.choice([1, 2, 3]),
|
||||
)
|
||||
img = np.clip(img, 0.0, 1.0)
|
||||
|
||||
return img
|
||||
@ -370,19 +405,26 @@ def add_resize(img, sf=4):
|
||||
# img = np.clip(img, 0.0, 1.0)
|
||||
# return img
|
||||
|
||||
|
||||
def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
|
||||
noise_level = random.randint(noise_level1, noise_level2)
|
||||
rnum = np.random.rand()
|
||||
if rnum > 0.6: # add color Gaussian noise
|
||||
img = img + np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
|
||||
img = img + np.random.normal(0, noise_level / 255.0, img.shape).astype(
|
||||
np.float32
|
||||
)
|
||||
elif rnum < 0.4: # add grayscale Gaussian noise
|
||||
img = img + np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
|
||||
img = img + np.random.normal(
|
||||
0, noise_level / 255.0, (*img.shape[:2], 1)
|
||||
).astype(np.float32)
|
||||
else: # add noise
|
||||
L = noise_level2 / 255.
|
||||
L = noise_level2 / 255.0
|
||||
D = np.diag(np.random.rand(3))
|
||||
U = orth(np.random.rand(3, 3))
|
||||
conv = np.dot(np.dot(np.transpose(U), D), U)
|
||||
img = img + np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
|
||||
img = img + np.random.multivariate_normal(
|
||||
[0, 0, 0], np.abs(L**2 * conv), img.shape[:2]
|
||||
).astype(np.float32)
|
||||
img = np.clip(img, 0.0, 1.0)
|
||||
return img
|
||||
|
||||
@ -392,28 +434,37 @@ def add_speckle_noise(img, noise_level1=2, noise_level2=25):
|
||||
img = np.clip(img, 0.0, 1.0)
|
||||
rnum = random.random()
|
||||
if rnum > 0.6:
|
||||
img += img * np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
|
||||
img += img * np.random.normal(
|
||||
0, noise_level / 255.0, img.shape
|
||||
).astype(np.float32)
|
||||
elif rnum < 0.4:
|
||||
img += img * np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
|
||||
img += img * np.random.normal(
|
||||
0, noise_level / 255.0, (*img.shape[:2], 1)
|
||||
).astype(np.float32)
|
||||
else:
|
||||
L = noise_level2 / 255.
|
||||
L = noise_level2 / 255.0
|
||||
D = np.diag(np.random.rand(3))
|
||||
U = orth(np.random.rand(3, 3))
|
||||
conv = np.dot(np.dot(np.transpose(U), D), U)
|
||||
img += img * np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
|
||||
img += img * np.random.multivariate_normal(
|
||||
[0, 0, 0], np.abs(L**2 * conv), img.shape[:2]
|
||||
).astype(np.float32)
|
||||
img = np.clip(img, 0.0, 1.0)
|
||||
return img
|
||||
|
||||
|
||||
def add_Poisson_noise(img):
|
||||
img = np.clip((img * 255.0).round(), 0, 255) / 255.
|
||||
img = np.clip((img * 255.0).round(), 0, 255) / 255.0
|
||||
vals = 10 ** (2 * random.random() + 2.0) # [2, 4]
|
||||
if random.random() < 0.5:
|
||||
img = np.random.poisson(img * vals).astype(np.float32) / vals
|
||||
else:
|
||||
img_gray = np.dot(img[..., :3], [0.299, 0.587, 0.114])
|
||||
img_gray = np.clip((img_gray * 255.0).round(), 0, 255) / 255.
|
||||
noise_gray = np.random.poisson(img_gray * vals).astype(np.float32) / vals - img_gray
|
||||
img_gray = np.clip((img_gray * 255.0).round(), 0, 255) / 255.0
|
||||
noise_gray = (
|
||||
np.random.poisson(img_gray * vals).astype(np.float32) / vals
|
||||
- img_gray
|
||||
)
|
||||
img += noise_gray[:, :, np.newaxis]
|
||||
img = np.clip(img, 0.0, 1.0)
|
||||
return img
|
||||
@ -422,7 +473,9 @@ def add_Poisson_noise(img):
|
||||
def add_JPEG_noise(img):
|
||||
quality_factor = random.randint(80, 95)
|
||||
img = cv2.cvtColor(util.single2uint(img), cv2.COLOR_RGB2BGR)
|
||||
result, encimg = cv2.imencode('.jpg', img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor])
|
||||
result, encimg = cv2.imencode(
|
||||
'.jpg', img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor]
|
||||
)
|
||||
img = cv2.imdecode(encimg, 1)
|
||||
img = cv2.cvtColor(util.uint2single(img), cv2.COLOR_BGR2RGB)
|
||||
return img
|
||||
@ -432,10 +485,14 @@ def random_crop(lq, hq, sf=4, lq_patchsize=64):
|
||||
h, w = lq.shape[:2]
|
||||
rnd_h = random.randint(0, h - lq_patchsize)
|
||||
rnd_w = random.randint(0, w - lq_patchsize)
|
||||
lq = lq[rnd_h:rnd_h + lq_patchsize, rnd_w:rnd_w + lq_patchsize, :]
|
||||
lq = lq[rnd_h : rnd_h + lq_patchsize, rnd_w : rnd_w + lq_patchsize, :]
|
||||
|
||||
rnd_h_H, rnd_w_H = int(rnd_h * sf), int(rnd_w * sf)
|
||||
hq = hq[rnd_h_H:rnd_h_H + lq_patchsize * sf, rnd_w_H:rnd_w_H + lq_patchsize * sf, :]
|
||||
hq = hq[
|
||||
rnd_h_H : rnd_h_H + lq_patchsize * sf,
|
||||
rnd_w_H : rnd_w_H + lq_patchsize * sf,
|
||||
:,
|
||||
]
|
||||
return lq, hq
|
||||
|
||||
|
||||
@ -456,7 +513,7 @@ def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None):
|
||||
sf_ori = sf
|
||||
|
||||
h1, w1 = img.shape[:2]
|
||||
img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
|
||||
img = img.copy()[: w1 - w1 % sf, : h1 - h1 % sf, ...] # mod crop
|
||||
h, w = img.shape[:2]
|
||||
|
||||
if h < lq_patchsize * sf or w < lq_patchsize * sf:
|
||||
@ -466,8 +523,11 @@ def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None):
|
||||
|
||||
if sf == 4 and random.random() < scale2_prob: # downsample1
|
||||
if np.random.rand() < 0.5:
|
||||
img = cv2.resize(img, (int(1 / 2 * img.shape[1]), int(1 / 2 * img.shape[0])),
|
||||
interpolation=random.choice([1, 2, 3]))
|
||||
img = cv2.resize(
|
||||
img,
|
||||
(int(1 / 2 * img.shape[1]), int(1 / 2 * img.shape[0])),
|
||||
interpolation=random.choice([1, 2, 3]),
|
||||
)
|
||||
else:
|
||||
img = util.imresize_np(img, 1 / 2, True)
|
||||
img = np.clip(img, 0.0, 1.0)
|
||||
@ -476,7 +536,10 @@ def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None):
|
||||
shuffle_order = random.sample(range(7), 7)
|
||||
idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
|
||||
if idx1 > idx2: # keep downsample3 last
|
||||
shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
|
||||
shuffle_order[idx1], shuffle_order[idx2] = (
|
||||
shuffle_order[idx2],
|
||||
shuffle_order[idx1],
|
||||
)
|
||||
|
||||
for i in shuffle_order:
|
||||
|
||||
@ -491,19 +554,30 @@ def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None):
|
||||
# downsample2
|
||||
if random.random() < 0.75:
|
||||
sf1 = random.uniform(1, 2 * sf)
|
||||
img = cv2.resize(img, (int(1 / sf1 * img.shape[1]), int(1 / sf1 * img.shape[0])),
|
||||
interpolation=random.choice([1, 2, 3]))
|
||||
img = cv2.resize(
|
||||
img,
|
||||
(int(1 / sf1 * img.shape[1]), int(1 / sf1 * img.shape[0])),
|
||||
interpolation=random.choice([1, 2, 3]),
|
||||
)
|
||||
else:
|
||||
k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
|
||||
k_shifted = shift_pixel(k, sf)
|
||||
k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
|
||||
img = ndimage.filters.convolve(img, np.expand_dims(k_shifted, axis=2), mode='mirror')
|
||||
k_shifted = (
|
||||
k_shifted / k_shifted.sum()
|
||||
) # blur with shifted kernel
|
||||
img = ndimage.filters.convolve(
|
||||
img, np.expand_dims(k_shifted, axis=2), mode='mirror'
|
||||
)
|
||||
img = img[0::sf, 0::sf, ...] # nearest downsampling
|
||||
img = np.clip(img, 0.0, 1.0)
|
||||
|
||||
elif i == 3:
|
||||
# downsample3
|
||||
img = cv2.resize(img, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
|
||||
img = cv2.resize(
|
||||
img,
|
||||
(int(1 / sf * a), int(1 / sf * b)),
|
||||
interpolation=random.choice([1, 2, 3]),
|
||||
)
|
||||
img = np.clip(img, 0.0, 1.0)
|
||||
|
||||
elif i == 4:
|
||||
@ -548,15 +622,18 @@ def degradation_bsrgan_variant(image, sf=4, isp_model=None):
|
||||
sf_ori = sf
|
||||
|
||||
h1, w1 = image.shape[:2]
|
||||
image = image.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
|
||||
image = image.copy()[: w1 - w1 % sf, : h1 - h1 % sf, ...] # mod crop
|
||||
h, w = image.shape[:2]
|
||||
|
||||
hq = image.copy()
|
||||
|
||||
if sf == 4 and random.random() < scale2_prob: # downsample1
|
||||
if np.random.rand() < 0.5:
|
||||
image = cv2.resize(image, (int(1 / 2 * image.shape[1]), int(1 / 2 * image.shape[0])),
|
||||
interpolation=random.choice([1, 2, 3]))
|
||||
image = cv2.resize(
|
||||
image,
|
||||
(int(1 / 2 * image.shape[1]), int(1 / 2 * image.shape[0])),
|
||||
interpolation=random.choice([1, 2, 3]),
|
||||
)
|
||||
else:
|
||||
image = util.imresize_np(image, 1 / 2, True)
|
||||
image = np.clip(image, 0.0, 1.0)
|
||||
@ -565,7 +642,10 @@ def degradation_bsrgan_variant(image, sf=4, isp_model=None):
|
||||
shuffle_order = random.sample(range(7), 7)
|
||||
idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
|
||||
if idx1 > idx2: # keep downsample3 last
|
||||
shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
|
||||
shuffle_order[idx1], shuffle_order[idx2] = (
|
||||
shuffle_order[idx2],
|
||||
shuffle_order[idx1],
|
||||
)
|
||||
|
||||
for i in shuffle_order:
|
||||
|
||||
@ -583,20 +663,34 @@ def degradation_bsrgan_variant(image, sf=4, isp_model=None):
|
||||
# downsample2
|
||||
if random.random() < 0.8:
|
||||
sf1 = random.uniform(1, 2 * sf)
|
||||
image = cv2.resize(image, (int(1 / sf1 * image.shape[1]), int(1 / sf1 * image.shape[0])),
|
||||
interpolation=random.choice([1, 2, 3]))
|
||||
image = cv2.resize(
|
||||
image,
|
||||
(
|
||||
int(1 / sf1 * image.shape[1]),
|
||||
int(1 / sf1 * image.shape[0]),
|
||||
),
|
||||
interpolation=random.choice([1, 2, 3]),
|
||||
)
|
||||
else:
|
||||
k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
|
||||
k_shifted = shift_pixel(k, sf)
|
||||
k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
|
||||
image = ndimage.filters.convolve(image, np.expand_dims(k_shifted, axis=2), mode='mirror')
|
||||
k_shifted = (
|
||||
k_shifted / k_shifted.sum()
|
||||
) # blur with shifted kernel
|
||||
image = ndimage.filters.convolve(
|
||||
image, np.expand_dims(k_shifted, axis=2), mode='mirror'
|
||||
)
|
||||
image = image[0::sf, 0::sf, ...] # nearest downsampling
|
||||
|
||||
image = np.clip(image, 0.0, 1.0)
|
||||
|
||||
elif i == 3:
|
||||
# downsample3
|
||||
image = cv2.resize(image, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
|
||||
image = cv2.resize(
|
||||
image,
|
||||
(int(1 / sf * a), int(1 / sf * b)),
|
||||
interpolation=random.choice([1, 2, 3]),
|
||||
)
|
||||
image = np.clip(image, 0.0, 1.0)
|
||||
|
||||
elif i == 4:
|
||||
@ -617,34 +711,41 @@ def degradation_bsrgan_variant(image, sf=4, isp_model=None):
|
||||
# add final JPEG compression noise
|
||||
image = add_JPEG_noise(image)
|
||||
image = util.single2uint(image)
|
||||
example = {"image": image}
|
||||
example = {'image': image}
|
||||
return example
|
||||
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
print("hey")
|
||||
print('hey')
|
||||
img = util.imread_uint('utils/test.png', 3)
|
||||
img = img[:448, :448]
|
||||
h = img.shape[0] // 4
|
||||
print("resizing to", h)
|
||||
print('resizing to', h)
|
||||
sf = 4
|
||||
deg_fn = partial(degradation_bsrgan_variant, sf=sf)
|
||||
for i in range(20):
|
||||
print(i)
|
||||
img_hq = img
|
||||
img_lq = deg_fn(img)["image"]
|
||||
img_lq = deg_fn(img)['image']
|
||||
img_hq, img_lq = util.uint2single(img_hq), util.uint2single(img_lq)
|
||||
print(img_lq)
|
||||
img_lq_bicubic = albumentations.SmallestMaxSize(max_size=h, interpolation=cv2.INTER_CUBIC)(image=img_hq)["image"]
|
||||
img_lq_bicubic = albumentations.SmallestMaxSize(
|
||||
max_size=h, interpolation=cv2.INTER_CUBIC
|
||||
)(image=img_hq)['image']
|
||||
print(img_lq.shape)
|
||||
print("bicubic", img_lq_bicubic.shape)
|
||||
print('bicubic', img_lq_bicubic.shape)
|
||||
print(img_hq.shape)
|
||||
lq_nearest = cv2.resize(util.single2uint(img_lq), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
|
||||
interpolation=0)
|
||||
lq_bicubic_nearest = cv2.resize(util.single2uint(img_lq_bicubic),
|
||||
(int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
|
||||
interpolation=0)
|
||||
img_concat = np.concatenate([lq_bicubic_nearest, lq_nearest, util.single2uint(img_hq)], axis=1)
|
||||
lq_nearest = cv2.resize(
|
||||
util.single2uint(img_lq),
|
||||
(int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
|
||||
interpolation=0,
|
||||
)
|
||||
lq_bicubic_nearest = cv2.resize(
|
||||
util.single2uint(img_lq_bicubic),
|
||||
(int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
|
||||
interpolation=0,
|
||||
)
|
||||
img_concat = np.concatenate(
|
||||
[lq_bicubic_nearest, lq_nearest, util.single2uint(img_hq)], axis=1
|
||||
)
|
||||
util.imsave(img_concat, str(i) + '.png')
|
||||
|
@ -6,13 +6,14 @@ import torch
|
||||
import cv2
|
||||
from torchvision.utils import make_grid
|
||||
from datetime import datetime
|
||||
#import matplotlib.pyplot as plt # TODO: check with Dominik, also bsrgan.py vs bsrgan_light.py
|
||||
|
||||
# import matplotlib.pyplot as plt # TODO: check with Dominik, also bsrgan.py vs bsrgan_light.py
|
||||
|
||||
|
||||
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
|
||||
os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE'
|
||||
|
||||
|
||||
'''
|
||||
"""
|
||||
# --------------------------------------------
|
||||
# Kai Zhang (github: https://github.com/cszn)
|
||||
# 03/Mar/2019
|
||||
@ -20,10 +21,22 @@ os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
|
||||
# https://github.com/twhui/SRGAN-pyTorch
|
||||
# https://github.com/xinntao/BasicSR
|
||||
# --------------------------------------------
|
||||
'''
|
||||
"""
|
||||
|
||||
|
||||
IMG_EXTENSIONS = ['.jpg', '.JPG', '.jpeg', '.JPEG', '.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP', '.tif']
|
||||
IMG_EXTENSIONS = [
|
||||
'.jpg',
|
||||
'.JPG',
|
||||
'.jpeg',
|
||||
'.JPEG',
|
||||
'.png',
|
||||
'.PNG',
|
||||
'.ppm',
|
||||
'.PPM',
|
||||
'.bmp',
|
||||
'.BMP',
|
||||
'.tif',
|
||||
]
|
||||
|
||||
|
||||
def is_image_file(filename):
|
||||
@ -49,19 +62,19 @@ def surf(Z, cmap='rainbow', figsize=None):
|
||||
ax3 = plt.axes(projection='3d')
|
||||
|
||||
w, h = Z.shape[:2]
|
||||
xx = np.arange(0,w,1)
|
||||
yy = np.arange(0,h,1)
|
||||
xx = np.arange(0, w, 1)
|
||||
yy = np.arange(0, h, 1)
|
||||
X, Y = np.meshgrid(xx, yy)
|
||||
ax3.plot_surface(X,Y,Z,cmap=cmap)
|
||||
#ax3.contour(X,Y,Z, zdim='z',offset=-2,cmap=cmap)
|
||||
ax3.plot_surface(X, Y, Z, cmap=cmap)
|
||||
# ax3.contour(X,Y,Z, zdim='z',offset=-2,cmap=cmap)
|
||||
plt.show()
|
||||
|
||||
|
||||
'''
|
||||
"""
|
||||
# --------------------------------------------
|
||||
# get image pathes
|
||||
# --------------------------------------------
|
||||
'''
|
||||
"""
|
||||
|
||||
|
||||
def get_image_paths(dataroot):
|
||||
@ -83,26 +96,26 @@ def _get_paths_from_images(path):
|
||||
return images
|
||||
|
||||
|
||||
'''
|
||||
"""
|
||||
# --------------------------------------------
|
||||
# split large images into small images
|
||||
# --------------------------------------------
|
||||
'''
|
||||
"""
|
||||
|
||||
|
||||
def patches_from_image(img, p_size=512, p_overlap=64, p_max=800):
|
||||
w, h = img.shape[:2]
|
||||
patches = []
|
||||
if w > p_max and h > p_max:
|
||||
w1 = list(np.arange(0, w-p_size, p_size-p_overlap, dtype=np.int))
|
||||
h1 = list(np.arange(0, h-p_size, p_size-p_overlap, dtype=np.int))
|
||||
w1.append(w-p_size)
|
||||
h1.append(h-p_size)
|
||||
# print(w1)
|
||||
# print(h1)
|
||||
w1 = list(np.arange(0, w - p_size, p_size - p_overlap, dtype=np.int))
|
||||
h1 = list(np.arange(0, h - p_size, p_size - p_overlap, dtype=np.int))
|
||||
w1.append(w - p_size)
|
||||
h1.append(h - p_size)
|
||||
# print(w1)
|
||||
# print(h1)
|
||||
for i in w1:
|
||||
for j in h1:
|
||||
patches.append(img[i:i+p_size, j:j+p_size,:])
|
||||
patches.append(img[i : i + p_size, j : j + p_size, :])
|
||||
else:
|
||||
patches.append(img)
|
||||
|
||||
@ -118,11 +131,21 @@ def imssave(imgs, img_path):
|
||||
for i, img in enumerate(imgs):
|
||||
if img.ndim == 3:
|
||||
img = img[:, :, [2, 1, 0]]
|
||||
new_path = os.path.join(os.path.dirname(img_path), img_name+str('_s{:04d}'.format(i))+'.png')
|
||||
new_path = os.path.join(
|
||||
os.path.dirname(img_path),
|
||||
img_name + str('_s{:04d}'.format(i)) + '.png',
|
||||
)
|
||||
cv2.imwrite(new_path, img)
|
||||
|
||||
|
||||
def split_imageset(original_dataroot, taget_dataroot, n_channels=3, p_size=800, p_overlap=96, p_max=1000):
|
||||
def split_imageset(
|
||||
original_dataroot,
|
||||
taget_dataroot,
|
||||
n_channels=3,
|
||||
p_size=800,
|
||||
p_overlap=96,
|
||||
p_max=1000,
|
||||
):
|
||||
"""
|
||||
split the large images from original_dataroot into small overlapped images with size (p_size)x(p_size),
|
||||
and save them into taget_dataroot; only the images with larger size than (p_max)x(p_max)
|
||||
@ -139,15 +162,18 @@ def split_imageset(original_dataroot, taget_dataroot, n_channels=3, p_size=800,
|
||||
# img_name, ext = os.path.splitext(os.path.basename(img_path))
|
||||
img = imread_uint(img_path, n_channels=n_channels)
|
||||
patches = patches_from_image(img, p_size, p_overlap, p_max)
|
||||
imssave(patches, os.path.join(taget_dataroot,os.path.basename(img_path)))
|
||||
#if original_dataroot == taget_dataroot:
|
||||
#del img_path
|
||||
imssave(
|
||||
patches, os.path.join(taget_dataroot, os.path.basename(img_path))
|
||||
)
|
||||
# if original_dataroot == taget_dataroot:
|
||||
# del img_path
|
||||
|
||||
'''
|
||||
|
||||
"""
|
||||
# --------------------------------------------
|
||||
# makedir
|
||||
# --------------------------------------------
|
||||
'''
|
||||
"""
|
||||
|
||||
|
||||
def mkdir(path):
|
||||
@ -171,12 +197,12 @@ def mkdir_and_rename(path):
|
||||
os.makedirs(path)
|
||||
|
||||
|
||||
'''
|
||||
"""
|
||||
# --------------------------------------------
|
||||
# read image from path
|
||||
# opencv is fast, but read BGR numpy image
|
||||
# --------------------------------------------
|
||||
'''
|
||||
"""
|
||||
|
||||
|
||||
# --------------------------------------------
|
||||
@ -206,6 +232,7 @@ def imsave(img, img_path):
|
||||
img = img[:, :, [2, 1, 0]]
|
||||
cv2.imwrite(img_path, img)
|
||||
|
||||
|
||||
def imwrite(img, img_path):
|
||||
img = np.squeeze(img)
|
||||
if img.ndim == 3:
|
||||
@ -213,7 +240,6 @@ def imwrite(img, img_path):
|
||||
cv2.imwrite(img_path, img)
|
||||
|
||||
|
||||
|
||||
# --------------------------------------------
|
||||
# get single image of size HxWxn_channles (BGR)
|
||||
# --------------------------------------------
|
||||
@ -221,7 +247,7 @@ def read_img(path):
|
||||
# read image by cv2
|
||||
# return: Numpy float32, HWC, BGR, [0,1]
|
||||
img = cv2.imread(path, cv2.IMREAD_UNCHANGED) # cv2.IMREAD_GRAYSCALE
|
||||
img = img.astype(np.float32) / 255.
|
||||
img = img.astype(np.float32) / 255.0
|
||||
if img.ndim == 2:
|
||||
img = np.expand_dims(img, axis=2)
|
||||
# some images have 4 channels
|
||||
@ -230,7 +256,7 @@ def read_img(path):
|
||||
return img
|
||||
|
||||
|
||||
'''
|
||||
"""
|
||||
# --------------------------------------------
|
||||
# image format conversion
|
||||
# --------------------------------------------
|
||||
@ -238,7 +264,7 @@ def read_img(path):
|
||||
# numpy(single) <---> tensor
|
||||
# numpy(unit) <---> tensor
|
||||
# --------------------------------------------
|
||||
'''
|
||||
"""
|
||||
|
||||
|
||||
# --------------------------------------------
|
||||
@ -248,22 +274,22 @@ def read_img(path):
|
||||
|
||||
def uint2single(img):
|
||||
|
||||
return np.float32(img/255.)
|
||||
return np.float32(img / 255.0)
|
||||
|
||||
|
||||
def single2uint(img):
|
||||
|
||||
return np.uint8((img.clip(0, 1)*255.).round())
|
||||
return np.uint8((img.clip(0, 1) * 255.0).round())
|
||||
|
||||
|
||||
def uint162single(img):
|
||||
|
||||
return np.float32(img/65535.)
|
||||
return np.float32(img / 65535.0)
|
||||
|
||||
|
||||
def single2uint16(img):
|
||||
|
||||
return np.uint16((img.clip(0, 1)*65535.).round())
|
||||
return np.uint16((img.clip(0, 1) * 65535.0).round())
|
||||
|
||||
|
||||
# --------------------------------------------
|
||||
@ -275,14 +301,25 @@ def single2uint16(img):
|
||||
def uint2tensor4(img):
|
||||
if img.ndim == 2:
|
||||
img = np.expand_dims(img, axis=2)
|
||||
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().div(255.).unsqueeze(0)
|
||||
return (
|
||||
torch.from_numpy(np.ascontiguousarray(img))
|
||||
.permute(2, 0, 1)
|
||||
.float()
|
||||
.div(255.0)
|
||||
.unsqueeze(0)
|
||||
)
|
||||
|
||||
|
||||
# convert uint to 3-dimensional torch tensor
|
||||
def uint2tensor3(img):
|
||||
if img.ndim == 2:
|
||||
img = np.expand_dims(img, axis=2)
|
||||
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().div(255.)
|
||||
return (
|
||||
torch.from_numpy(np.ascontiguousarray(img))
|
||||
.permute(2, 0, 1)
|
||||
.float()
|
||||
.div(255.0)
|
||||
)
|
||||
|
||||
|
||||
# convert 2/3/4-dimensional torch tensor to uint
|
||||
@ -290,7 +327,7 @@ def tensor2uint(img):
|
||||
img = img.data.squeeze().float().clamp_(0, 1).cpu().numpy()
|
||||
if img.ndim == 3:
|
||||
img = np.transpose(img, (1, 2, 0))
|
||||
return np.uint8((img*255.0).round())
|
||||
return np.uint8((img * 255.0).round())
|
||||
|
||||
|
||||
# --------------------------------------------
|
||||
@ -305,7 +342,12 @@ def single2tensor3(img):
|
||||
|
||||
# convert single (HxWxC) to 4-dimensional torch tensor
|
||||
def single2tensor4(img):
|
||||
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().unsqueeze(0)
|
||||
return (
|
||||
torch.from_numpy(np.ascontiguousarray(img))
|
||||
.permute(2, 0, 1)
|
||||
.float()
|
||||
.unsqueeze(0)
|
||||
)
|
||||
|
||||
|
||||
# convert torch tensor to single
|
||||
@ -316,6 +358,7 @@ def tensor2single(img):
|
||||
|
||||
return img
|
||||
|
||||
|
||||
# convert torch tensor to single
|
||||
def tensor2single3(img):
|
||||
img = img.data.squeeze().float().cpu().numpy()
|
||||
@ -327,30 +370,48 @@ def tensor2single3(img):
|
||||
|
||||
|
||||
def single2tensor5(img):
|
||||
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1, 3).float().unsqueeze(0)
|
||||
return (
|
||||
torch.from_numpy(np.ascontiguousarray(img))
|
||||
.permute(2, 0, 1, 3)
|
||||
.float()
|
||||
.unsqueeze(0)
|
||||
)
|
||||
|
||||
|
||||
def single32tensor5(img):
|
||||
return torch.from_numpy(np.ascontiguousarray(img)).float().unsqueeze(0).unsqueeze(0)
|
||||
return (
|
||||
torch.from_numpy(np.ascontiguousarray(img))
|
||||
.float()
|
||||
.unsqueeze(0)
|
||||
.unsqueeze(0)
|
||||
)
|
||||
|
||||
|
||||
def single42tensor4(img):
|
||||
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1, 3).float()
|
||||
return (
|
||||
torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1, 3).float()
|
||||
)
|
||||
|
||||
|
||||
# from skimage.io import imread, imsave
|
||||
def tensor2img(tensor, out_type=np.uint8, min_max=(0, 1)):
|
||||
'''
|
||||
"""
|
||||
Converts a torch Tensor into an image Numpy array of BGR channel order
|
||||
Input: 4D(B,(3/1),H,W), 3D(C,H,W), or 2D(H,W), any range, RGB channel order
|
||||
Output: 3D(H,W,C) or 2D(H,W), [0,255], np.uint8 (default)
|
||||
'''
|
||||
tensor = tensor.squeeze().float().cpu().clamp_(*min_max) # squeeze first, then clamp
|
||||
tensor = (tensor - min_max[0]) / (min_max[1] - min_max[0]) # to range [0,1]
|
||||
"""
|
||||
tensor = (
|
||||
tensor.squeeze().float().cpu().clamp_(*min_max)
|
||||
) # squeeze first, then clamp
|
||||
tensor = (tensor - min_max[0]) / (
|
||||
min_max[1] - min_max[0]
|
||||
) # to range [0,1]
|
||||
n_dim = tensor.dim()
|
||||
if n_dim == 4:
|
||||
n_img = len(tensor)
|
||||
img_np = make_grid(tensor, nrow=int(math.sqrt(n_img)), normalize=False).numpy()
|
||||
img_np = make_grid(
|
||||
tensor, nrow=int(math.sqrt(n_img)), normalize=False
|
||||
).numpy()
|
||||
img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR
|
||||
elif n_dim == 3:
|
||||
img_np = tensor.numpy()
|
||||
@ -359,14 +420,17 @@ def tensor2img(tensor, out_type=np.uint8, min_max=(0, 1)):
|
||||
img_np = tensor.numpy()
|
||||
else:
|
||||
raise TypeError(
|
||||
'Only support 4D, 3D and 2D tensor. But received with dimension: {:d}'.format(n_dim))
|
||||
'Only support 4D, 3D and 2D tensor. But received with dimension: {:d}'.format(
|
||||
n_dim
|
||||
)
|
||||
)
|
||||
if out_type == np.uint8:
|
||||
img_np = (img_np * 255.0).round()
|
||||
# Important. Unlike matlab, numpy.unit8() WILL NOT round by default.
|
||||
return img_np.astype(out_type)
|
||||
|
||||
|
||||
'''
|
||||
"""
|
||||
# --------------------------------------------
|
||||
# Augmentation, flipe and/or rotate
|
||||
# --------------------------------------------
|
||||
@ -374,12 +438,11 @@ def tensor2img(tensor, out_type=np.uint8, min_max=(0, 1)):
|
||||
# (1) augmet_img: numpy image of WxHxC or WxH
|
||||
# (2) augment_img_tensor4: tensor image 1xCxWxH
|
||||
# --------------------------------------------
|
||||
'''
|
||||
"""
|
||||
|
||||
|
||||
def augment_img(img, mode=0):
|
||||
'''Kai Zhang (github: https://github.com/cszn)
|
||||
'''
|
||||
"""Kai Zhang (github: https://github.com/cszn)"""
|
||||
if mode == 0:
|
||||
return img
|
||||
elif mode == 1:
|
||||
@ -399,8 +462,7 @@ def augment_img(img, mode=0):
|
||||
|
||||
|
||||
def augment_img_tensor4(img, mode=0):
|
||||
'''Kai Zhang (github: https://github.com/cszn)
|
||||
'''
|
||||
"""Kai Zhang (github: https://github.com/cszn)"""
|
||||
if mode == 0:
|
||||
return img
|
||||
elif mode == 1:
|
||||
@ -420,8 +482,7 @@ def augment_img_tensor4(img, mode=0):
|
||||
|
||||
|
||||
def augment_img_tensor(img, mode=0):
|
||||
'''Kai Zhang (github: https://github.com/cszn)
|
||||
'''
|
||||
"""Kai Zhang (github: https://github.com/cszn)"""
|
||||
img_size = img.size()
|
||||
img_np = img.data.cpu().numpy()
|
||||
if len(img_size) == 3:
|
||||
@ -484,11 +545,11 @@ def augment_imgs(img_list, hflip=True, rot=True):
|
||||
return [_augment(img) for img in img_list]
|
||||
|
||||
|
||||
'''
|
||||
"""
|
||||
# --------------------------------------------
|
||||
# modcrop and shave
|
||||
# --------------------------------------------
|
||||
'''
|
||||
"""
|
||||
|
||||
|
||||
def modcrop(img_in, scale):
|
||||
@ -497,11 +558,11 @@ def modcrop(img_in, scale):
|
||||
if img.ndim == 2:
|
||||
H, W = img.shape
|
||||
H_r, W_r = H % scale, W % scale
|
||||
img = img[:H - H_r, :W - W_r]
|
||||
img = img[: H - H_r, : W - W_r]
|
||||
elif img.ndim == 3:
|
||||
H, W, C = img.shape
|
||||
H_r, W_r = H % scale, W % scale
|
||||
img = img[:H - H_r, :W - W_r, :]
|
||||
img = img[: H - H_r, : W - W_r, :]
|
||||
else:
|
||||
raise ValueError('Wrong img ndim: [{:d}].'.format(img.ndim))
|
||||
return img
|
||||
@ -511,11 +572,11 @@ def shave(img_in, border=0):
|
||||
# img_in: Numpy, HWC or HW
|
||||
img = np.copy(img_in)
|
||||
h, w = img.shape[:2]
|
||||
img = img[border:h-border, border:w-border]
|
||||
img = img[border : h - border, border : w - border]
|
||||
return img
|
||||
|
||||
|
||||
'''
|
||||
"""
|
||||
# --------------------------------------------
|
||||
# image processing process on numpy image
|
||||
# channel_convert(in_c, tar_type, img_list):
|
||||
@ -523,74 +584,92 @@ def shave(img_in, border=0):
|
||||
# bgr2ycbcr(img, only_y=True):
|
||||
# ycbcr2rgb(img):
|
||||
# --------------------------------------------
|
||||
'''
|
||||
"""
|
||||
|
||||
|
||||
def rgb2ycbcr(img, only_y=True):
|
||||
'''same as matlab rgb2ycbcr
|
||||
"""same as matlab rgb2ycbcr
|
||||
only_y: only return Y channel
|
||||
Input:
|
||||
uint8, [0, 255]
|
||||
float, [0, 1]
|
||||
'''
|
||||
"""
|
||||
in_img_type = img.dtype
|
||||
img.astype(np.float32)
|
||||
if in_img_type != np.uint8:
|
||||
img *= 255.
|
||||
img *= 255.0
|
||||
# convert
|
||||
if only_y:
|
||||
rlt = np.dot(img, [65.481, 128.553, 24.966]) / 255.0 + 16.0
|
||||
else:
|
||||
rlt = np.matmul(img, [[65.481, -37.797, 112.0], [128.553, -74.203, -93.786],
|
||||
[24.966, 112.0, -18.214]]) / 255.0 + [16, 128, 128]
|
||||
rlt = np.matmul(
|
||||
img,
|
||||
[
|
||||
[65.481, -37.797, 112.0],
|
||||
[128.553, -74.203, -93.786],
|
||||
[24.966, 112.0, -18.214],
|
||||
],
|
||||
) / 255.0 + [16, 128, 128]
|
||||
if in_img_type == np.uint8:
|
||||
rlt = rlt.round()
|
||||
else:
|
||||
rlt /= 255.
|
||||
rlt /= 255.0
|
||||
return rlt.astype(in_img_type)
|
||||
|
||||
|
||||
def ycbcr2rgb(img):
|
||||
'''same as matlab ycbcr2rgb
|
||||
"""same as matlab ycbcr2rgb
|
||||
Input:
|
||||
uint8, [0, 255]
|
||||
float, [0, 1]
|
||||
'''
|
||||
"""
|
||||
in_img_type = img.dtype
|
||||
img.astype(np.float32)
|
||||
if in_img_type != np.uint8:
|
||||
img *= 255.
|
||||
img *= 255.0
|
||||
# convert
|
||||
rlt = np.matmul(img, [[0.00456621, 0.00456621, 0.00456621], [0, -0.00153632, 0.00791071],
|
||||
[0.00625893, -0.00318811, 0]]) * 255.0 + [-222.921, 135.576, -276.836]
|
||||
rlt = np.matmul(
|
||||
img,
|
||||
[
|
||||
[0.00456621, 0.00456621, 0.00456621],
|
||||
[0, -0.00153632, 0.00791071],
|
||||
[0.00625893, -0.00318811, 0],
|
||||
],
|
||||
) * 255.0 + [-222.921, 135.576, -276.836]
|
||||
if in_img_type == np.uint8:
|
||||
rlt = rlt.round()
|
||||
else:
|
||||
rlt /= 255.
|
||||
rlt /= 255.0
|
||||
return rlt.astype(in_img_type)
|
||||
|
||||
|
||||
def bgr2ycbcr(img, only_y=True):
|
||||
'''bgr version of rgb2ycbcr
|
||||
"""bgr version of rgb2ycbcr
|
||||
only_y: only return Y channel
|
||||
Input:
|
||||
uint8, [0, 255]
|
||||
float, [0, 1]
|
||||
'''
|
||||
"""
|
||||
in_img_type = img.dtype
|
||||
img.astype(np.float32)
|
||||
if in_img_type != np.uint8:
|
||||
img *= 255.
|
||||
img *= 255.0
|
||||
# convert
|
||||
if only_y:
|
||||
rlt = np.dot(img, [24.966, 128.553, 65.481]) / 255.0 + 16.0
|
||||
else:
|
||||
rlt = np.matmul(img, [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786],
|
||||
[65.481, -37.797, 112.0]]) / 255.0 + [16, 128, 128]
|
||||
rlt = np.matmul(
|
||||
img,
|
||||
[
|
||||
[24.966, 112.0, -18.214],
|
||||
[128.553, -74.203, -93.786],
|
||||
[65.481, -37.797, 112.0],
|
||||
],
|
||||
) / 255.0 + [16, 128, 128]
|
||||
if in_img_type == np.uint8:
|
||||
rlt = rlt.round()
|
||||
else:
|
||||
rlt /= 255.
|
||||
rlt /= 255.0
|
||||
return rlt.astype(in_img_type)
|
||||
|
||||
|
||||
@ -608,11 +687,11 @@ def channel_convert(in_c, tar_type, img_list):
|
||||
return img_list
|
||||
|
||||
|
||||
'''
|
||||
"""
|
||||
# --------------------------------------------
|
||||
# metric, PSNR and SSIM
|
||||
# --------------------------------------------
|
||||
'''
|
||||
"""
|
||||
|
||||
|
||||
# --------------------------------------------
|
||||
@ -620,17 +699,17 @@ def channel_convert(in_c, tar_type, img_list):
|
||||
# --------------------------------------------
|
||||
def calculate_psnr(img1, img2, border=0):
|
||||
# img1 and img2 have range [0, 255]
|
||||
#img1 = img1.squeeze()
|
||||
#img2 = img2.squeeze()
|
||||
# img1 = img1.squeeze()
|
||||
# img2 = img2.squeeze()
|
||||
if not img1.shape == img2.shape:
|
||||
raise ValueError('Input images must have the same dimensions.')
|
||||
h, w = img1.shape[:2]
|
||||
img1 = img1[border:h-border, border:w-border]
|
||||
img2 = img2[border:h-border, border:w-border]
|
||||
img1 = img1[border : h - border, border : w - border]
|
||||
img2 = img2[border : h - border, border : w - border]
|
||||
|
||||
img1 = img1.astype(np.float64)
|
||||
img2 = img2.astype(np.float64)
|
||||
mse = np.mean((img1 - img2)**2)
|
||||
mse = np.mean((img1 - img2) ** 2)
|
||||
if mse == 0:
|
||||
return float('inf')
|
||||
return 20 * math.log10(255.0 / math.sqrt(mse))
|
||||
@ -640,17 +719,17 @@ def calculate_psnr(img1, img2, border=0):
|
||||
# SSIM
|
||||
# --------------------------------------------
|
||||
def calculate_ssim(img1, img2, border=0):
|
||||
'''calculate SSIM
|
||||
"""calculate SSIM
|
||||
the same outputs as MATLAB's
|
||||
img1, img2: [0, 255]
|
||||
'''
|
||||
#img1 = img1.squeeze()
|
||||
#img2 = img2.squeeze()
|
||||
"""
|
||||
# img1 = img1.squeeze()
|
||||
# img2 = img2.squeeze()
|
||||
if not img1.shape == img2.shape:
|
||||
raise ValueError('Input images must have the same dimensions.')
|
||||
h, w = img1.shape[:2]
|
||||
img1 = img1[border:h-border, border:w-border]
|
||||
img2 = img2[border:h-border, border:w-border]
|
||||
img1 = img1[border : h - border, border : w - border]
|
||||
img2 = img2[border : h - border, border : w - border]
|
||||
|
||||
if img1.ndim == 2:
|
||||
return ssim(img1, img2)
|
||||
@ -658,7 +737,7 @@ def calculate_ssim(img1, img2, border=0):
|
||||
if img1.shape[2] == 3:
|
||||
ssims = []
|
||||
for i in range(3):
|
||||
ssims.append(ssim(img1[:,:,i], img2[:,:,i]))
|
||||
ssims.append(ssim(img1[:, :, i], img2[:, :, i]))
|
||||
return np.array(ssims).mean()
|
||||
elif img1.shape[2] == 1:
|
||||
return ssim(np.squeeze(img1), np.squeeze(img2))
|
||||
@ -667,8 +746,8 @@ def calculate_ssim(img1, img2, border=0):
|
||||
|
||||
|
||||
def ssim(img1, img2):
|
||||
C1 = (0.01 * 255)**2
|
||||
C2 = (0.03 * 255)**2
|
||||
C1 = (0.01 * 255) ** 2
|
||||
C2 = (0.03 * 255) ** 2
|
||||
|
||||
img1 = img1.astype(np.float64)
|
||||
img2 = img2.astype(np.float64)
|
||||
@ -684,16 +763,17 @@ def ssim(img1, img2):
|
||||
sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq
|
||||
sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2
|
||||
|
||||
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) *
|
||||
(sigma1_sq + sigma2_sq + C2))
|
||||
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / (
|
||||
(mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2)
|
||||
)
|
||||
return ssim_map.mean()
|
||||
|
||||
|
||||
'''
|
||||
"""
|
||||
# --------------------------------------------
|
||||
# matlab's bicubic imresize (numpy and torch) [0, 1]
|
||||
# --------------------------------------------
|
||||
'''
|
||||
"""
|
||||
|
||||
|
||||
# matlab 'imresize' function, now only support 'bicubic'
|
||||
@ -701,11 +781,14 @@ def cubic(x):
|
||||
absx = torch.abs(x)
|
||||
absx2 = absx**2
|
||||
absx3 = absx**3
|
||||
return (1.5*absx3 - 2.5*absx2 + 1) * ((absx <= 1).type_as(absx)) + \
|
||||
(-0.5*absx3 + 2.5*absx2 - 4*absx + 2) * (((absx > 1)*(absx <= 2)).type_as(absx))
|
||||
return (1.5 * absx3 - 2.5 * absx2 + 1) * ((absx <= 1).type_as(absx)) + (
|
||||
-0.5 * absx3 + 2.5 * absx2 - 4 * absx + 2
|
||||
) * (((absx > 1) * (absx <= 2)).type_as(absx))
|
||||
|
||||
|
||||
def calculate_weights_indices(in_length, out_length, scale, kernel, kernel_width, antialiasing):
|
||||
def calculate_weights_indices(
|
||||
in_length, out_length, scale, kernel, kernel_width, antialiasing
|
||||
):
|
||||
if (scale < 1) and (antialiasing):
|
||||
# Use a modified kernel to simultaneously interpolate and antialias- larger kernel width
|
||||
kernel_width = kernel_width / scale
|
||||
@ -729,8 +812,9 @@ def calculate_weights_indices(in_length, out_length, scale, kernel, kernel_width
|
||||
|
||||
# The indices of the input pixels involved in computing the k-th output
|
||||
# pixel are in row k of the indices matrix.
|
||||
indices = left.view(out_length, 1).expand(out_length, P) + torch.linspace(0, P - 1, P).view(
|
||||
1, P).expand(out_length, P)
|
||||
indices = left.view(out_length, 1).expand(out_length, P) + torch.linspace(
|
||||
0, P - 1, P
|
||||
).view(1, P).expand(out_length, P)
|
||||
|
||||
# The weights used to compute the k-th output pixel are in row k of the
|
||||
# weights matrix.
|
||||
@ -771,7 +855,11 @@ def imresize(img, scale, antialiasing=True):
|
||||
if need_squeeze:
|
||||
img.unsqueeze_(0)
|
||||
in_C, in_H, in_W = img.size()
|
||||
out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale)
|
||||
out_C, out_H, out_W = (
|
||||
in_C,
|
||||
math.ceil(in_H * scale),
|
||||
math.ceil(in_W * scale),
|
||||
)
|
||||
kernel_width = 4
|
||||
kernel = 'cubic'
|
||||
|
||||
@ -782,9 +870,11 @@ def imresize(img, scale, antialiasing=True):
|
||||
|
||||
# get weights and indices
|
||||
weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices(
|
||||
in_H, out_H, scale, kernel, kernel_width, antialiasing)
|
||||
in_H, out_H, scale, kernel, kernel_width, antialiasing
|
||||
)
|
||||
weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices(
|
||||
in_W, out_W, scale, kernel, kernel_width, antialiasing)
|
||||
in_W, out_W, scale, kernel, kernel_width, antialiasing
|
||||
)
|
||||
# process H dimension
|
||||
# symmetric copying
|
||||
img_aug = torch.FloatTensor(in_C, in_H + sym_len_Hs + sym_len_He, in_W)
|
||||
@ -805,7 +895,11 @@ def imresize(img, scale, antialiasing=True):
|
||||
for i in range(out_H):
|
||||
idx = int(indices_H[i][0])
|
||||
for j in range(out_C):
|
||||
out_1[j, i, :] = img_aug[j, idx:idx + kernel_width, :].transpose(0, 1).mv(weights_H[i])
|
||||
out_1[j, i, :] = (
|
||||
img_aug[j, idx : idx + kernel_width, :]
|
||||
.transpose(0, 1)
|
||||
.mv(weights_H[i])
|
||||
)
|
||||
|
||||
# process W dimension
|
||||
# symmetric copying
|
||||
@ -827,7 +921,9 @@ def imresize(img, scale, antialiasing=True):
|
||||
for i in range(out_W):
|
||||
idx = int(indices_W[i][0])
|
||||
for j in range(out_C):
|
||||
out_2[j, :, i] = out_1_aug[j, :, idx:idx + kernel_width].mv(weights_W[i])
|
||||
out_2[j, :, i] = out_1_aug[j, :, idx : idx + kernel_width].mv(
|
||||
weights_W[i]
|
||||
)
|
||||
if need_squeeze:
|
||||
out_2.squeeze_()
|
||||
return out_2
|
||||
@ -846,7 +942,11 @@ def imresize_np(img, scale, antialiasing=True):
|
||||
img.unsqueeze_(2)
|
||||
|
||||
in_H, in_W, in_C = img.size()
|
||||
out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale)
|
||||
out_C, out_H, out_W = (
|
||||
in_C,
|
||||
math.ceil(in_H * scale),
|
||||
math.ceil(in_W * scale),
|
||||
)
|
||||
kernel_width = 4
|
||||
kernel = 'cubic'
|
||||
|
||||
@ -857,9 +957,11 @@ def imresize_np(img, scale, antialiasing=True):
|
||||
|
||||
# get weights and indices
|
||||
weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices(
|
||||
in_H, out_H, scale, kernel, kernel_width, antialiasing)
|
||||
in_H, out_H, scale, kernel, kernel_width, antialiasing
|
||||
)
|
||||
weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices(
|
||||
in_W, out_W, scale, kernel, kernel_width, antialiasing)
|
||||
in_W, out_W, scale, kernel, kernel_width, antialiasing
|
||||
)
|
||||
# process H dimension
|
||||
# symmetric copying
|
||||
img_aug = torch.FloatTensor(in_H + sym_len_Hs + sym_len_He, in_W, in_C)
|
||||
@ -880,7 +982,11 @@ def imresize_np(img, scale, antialiasing=True):
|
||||
for i in range(out_H):
|
||||
idx = int(indices_H[i][0])
|
||||
for j in range(out_C):
|
||||
out_1[i, :, j] = img_aug[idx:idx + kernel_width, :, j].transpose(0, 1).mv(weights_H[i])
|
||||
out_1[i, :, j] = (
|
||||
img_aug[idx : idx + kernel_width, :, j]
|
||||
.transpose(0, 1)
|
||||
.mv(weights_H[i])
|
||||
)
|
||||
|
||||
# process W dimension
|
||||
# symmetric copying
|
||||
@ -902,7 +1008,9 @@ def imresize_np(img, scale, antialiasing=True):
|
||||
for i in range(out_W):
|
||||
idx = int(indices_W[i][0])
|
||||
for j in range(out_C):
|
||||
out_2[:, i, j] = out_1_aug[:, idx:idx + kernel_width, j].mv(weights_W[i])
|
||||
out_2[:, i, j] = out_1_aug[:, idx : idx + kernel_width, j].mv(
|
||||
weights_W[i]
|
||||
)
|
||||
if need_squeeze:
|
||||
out_2.squeeze_()
|
||||
|
||||
|
@ -5,13 +5,24 @@ from taming.modules.losses.vqperceptual import * # TODO: taming dependency yes/
|
||||
|
||||
|
||||
class LPIPSWithDiscriminator(nn.Module):
|
||||
def __init__(self, disc_start, logvar_init=0.0, kl_weight=1.0, pixelloss_weight=1.0,
|
||||
disc_num_layers=3, disc_in_channels=3, disc_factor=1.0, disc_weight=1.0,
|
||||
perceptual_weight=1.0, use_actnorm=False, disc_conditional=False,
|
||||
disc_loss="hinge"):
|
||||
def __init__(
|
||||
self,
|
||||
disc_start,
|
||||
logvar_init=0.0,
|
||||
kl_weight=1.0,
|
||||
pixelloss_weight=1.0,
|
||||
disc_num_layers=3,
|
||||
disc_in_channels=3,
|
||||
disc_factor=1.0,
|
||||
disc_weight=1.0,
|
||||
perceptual_weight=1.0,
|
||||
use_actnorm=False,
|
||||
disc_conditional=False,
|
||||
disc_loss='hinge',
|
||||
):
|
||||
|
||||
super().__init__()
|
||||
assert disc_loss in ["hinge", "vanilla"]
|
||||
assert disc_loss in ['hinge', 'vanilla']
|
||||
self.kl_weight = kl_weight
|
||||
self.pixel_weight = pixelloss_weight
|
||||
self.perceptual_loss = LPIPS().eval()
|
||||
@ -19,42 +30,68 @@ class LPIPSWithDiscriminator(nn.Module):
|
||||
# output log variance
|
||||
self.logvar = nn.Parameter(torch.ones(size=()) * logvar_init)
|
||||
|
||||
self.discriminator = NLayerDiscriminator(input_nc=disc_in_channels,
|
||||
n_layers=disc_num_layers,
|
||||
use_actnorm=use_actnorm
|
||||
).apply(weights_init)
|
||||
self.discriminator = NLayerDiscriminator(
|
||||
input_nc=disc_in_channels,
|
||||
n_layers=disc_num_layers,
|
||||
use_actnorm=use_actnorm,
|
||||
).apply(weights_init)
|
||||
self.discriminator_iter_start = disc_start
|
||||
self.disc_loss = hinge_d_loss if disc_loss == "hinge" else vanilla_d_loss
|
||||
self.disc_loss = (
|
||||
hinge_d_loss if disc_loss == 'hinge' else vanilla_d_loss
|
||||
)
|
||||
self.disc_factor = disc_factor
|
||||
self.discriminator_weight = disc_weight
|
||||
self.disc_conditional = disc_conditional
|
||||
|
||||
def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None):
|
||||
if last_layer is not None:
|
||||
nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0]
|
||||
g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0]
|
||||
nll_grads = torch.autograd.grad(
|
||||
nll_loss, last_layer, retain_graph=True
|
||||
)[0]
|
||||
g_grads = torch.autograd.grad(
|
||||
g_loss, last_layer, retain_graph=True
|
||||
)[0]
|
||||
else:
|
||||
nll_grads = torch.autograd.grad(nll_loss, self.last_layer[0], retain_graph=True)[0]
|
||||
g_grads = torch.autograd.grad(g_loss, self.last_layer[0], retain_graph=True)[0]
|
||||
nll_grads = torch.autograd.grad(
|
||||
nll_loss, self.last_layer[0], retain_graph=True
|
||||
)[0]
|
||||
g_grads = torch.autograd.grad(
|
||||
g_loss, self.last_layer[0], retain_graph=True
|
||||
)[0]
|
||||
|
||||
d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4)
|
||||
d_weight = torch.clamp(d_weight, 0.0, 1e4).detach()
|
||||
d_weight = d_weight * self.discriminator_weight
|
||||
return d_weight
|
||||
|
||||
def forward(self, inputs, reconstructions, posteriors, optimizer_idx,
|
||||
global_step, last_layer=None, cond=None, split="train",
|
||||
weights=None):
|
||||
rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous())
|
||||
def forward(
|
||||
self,
|
||||
inputs,
|
||||
reconstructions,
|
||||
posteriors,
|
||||
optimizer_idx,
|
||||
global_step,
|
||||
last_layer=None,
|
||||
cond=None,
|
||||
split='train',
|
||||
weights=None,
|
||||
):
|
||||
rec_loss = torch.abs(
|
||||
inputs.contiguous() - reconstructions.contiguous()
|
||||
)
|
||||
if self.perceptual_weight > 0:
|
||||
p_loss = self.perceptual_loss(inputs.contiguous(), reconstructions.contiguous())
|
||||
p_loss = self.perceptual_loss(
|
||||
inputs.contiguous(), reconstructions.contiguous()
|
||||
)
|
||||
rec_loss = rec_loss + self.perceptual_weight * p_loss
|
||||
|
||||
nll_loss = rec_loss / torch.exp(self.logvar) + self.logvar
|
||||
weighted_nll_loss = nll_loss
|
||||
if weights is not None:
|
||||
weighted_nll_loss = weights*nll_loss
|
||||
weighted_nll_loss = torch.sum(weighted_nll_loss) / weighted_nll_loss.shape[0]
|
||||
weighted_nll_loss = weights * nll_loss
|
||||
weighted_nll_loss = (
|
||||
torch.sum(weighted_nll_loss) / weighted_nll_loss.shape[0]
|
||||
)
|
||||
nll_loss = torch.sum(nll_loss) / nll_loss.shape[0]
|
||||
kl_loss = posteriors.kl()
|
||||
kl_loss = torch.sum(kl_loss) / kl_loss.shape[0]
|
||||
@ -67,45 +104,72 @@ class LPIPSWithDiscriminator(nn.Module):
|
||||
logits_fake = self.discriminator(reconstructions.contiguous())
|
||||
else:
|
||||
assert self.disc_conditional
|
||||
logits_fake = self.discriminator(torch.cat((reconstructions.contiguous(), cond), dim=1))
|
||||
logits_fake = self.discriminator(
|
||||
torch.cat((reconstructions.contiguous(), cond), dim=1)
|
||||
)
|
||||
g_loss = -torch.mean(logits_fake)
|
||||
|
||||
if self.disc_factor > 0.0:
|
||||
try:
|
||||
d_weight = self.calculate_adaptive_weight(nll_loss, g_loss, last_layer=last_layer)
|
||||
d_weight = self.calculate_adaptive_weight(
|
||||
nll_loss, g_loss, last_layer=last_layer
|
||||
)
|
||||
except RuntimeError:
|
||||
assert not self.training
|
||||
d_weight = torch.tensor(0.0)
|
||||
else:
|
||||
d_weight = torch.tensor(0.0)
|
||||
|
||||
disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
|
||||
loss = weighted_nll_loss + self.kl_weight * kl_loss + d_weight * disc_factor * g_loss
|
||||
disc_factor = adopt_weight(
|
||||
self.disc_factor,
|
||||
global_step,
|
||||
threshold=self.discriminator_iter_start,
|
||||
)
|
||||
loss = (
|
||||
weighted_nll_loss
|
||||
+ self.kl_weight * kl_loss
|
||||
+ d_weight * disc_factor * g_loss
|
||||
)
|
||||
|
||||
log = {"{}/total_loss".format(split): loss.clone().detach().mean(), "{}/logvar".format(split): self.logvar.detach(),
|
||||
"{}/kl_loss".format(split): kl_loss.detach().mean(), "{}/nll_loss".format(split): nll_loss.detach().mean(),
|
||||
"{}/rec_loss".format(split): rec_loss.detach().mean(),
|
||||
"{}/d_weight".format(split): d_weight.detach(),
|
||||
"{}/disc_factor".format(split): torch.tensor(disc_factor),
|
||||
"{}/g_loss".format(split): g_loss.detach().mean(),
|
||||
}
|
||||
log = {
|
||||
'{}/total_loss'.format(split): loss.clone().detach().mean(),
|
||||
'{}/logvar'.format(split): self.logvar.detach(),
|
||||
'{}/kl_loss'.format(split): kl_loss.detach().mean(),
|
||||
'{}/nll_loss'.format(split): nll_loss.detach().mean(),
|
||||
'{}/rec_loss'.format(split): rec_loss.detach().mean(),
|
||||
'{}/d_weight'.format(split): d_weight.detach(),
|
||||
'{}/disc_factor'.format(split): torch.tensor(disc_factor),
|
||||
'{}/g_loss'.format(split): g_loss.detach().mean(),
|
||||
}
|
||||
return loss, log
|
||||
|
||||
if optimizer_idx == 1:
|
||||
# second pass for discriminator update
|
||||
if cond is None:
|
||||
logits_real = self.discriminator(inputs.contiguous().detach())
|
||||
logits_fake = self.discriminator(reconstructions.contiguous().detach())
|
||||
logits_fake = self.discriminator(
|
||||
reconstructions.contiguous().detach()
|
||||
)
|
||||
else:
|
||||
logits_real = self.discriminator(torch.cat((inputs.contiguous().detach(), cond), dim=1))
|
||||
logits_fake = self.discriminator(torch.cat((reconstructions.contiguous().detach(), cond), dim=1))
|
||||
logits_real = self.discriminator(
|
||||
torch.cat((inputs.contiguous().detach(), cond), dim=1)
|
||||
)
|
||||
logits_fake = self.discriminator(
|
||||
torch.cat(
|
||||
(reconstructions.contiguous().detach(), cond), dim=1
|
||||
)
|
||||
)
|
||||
|
||||
disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
|
||||
disc_factor = adopt_weight(
|
||||
self.disc_factor,
|
||||
global_step,
|
||||
threshold=self.discriminator_iter_start,
|
||||
)
|
||||
d_loss = disc_factor * self.disc_loss(logits_real, logits_fake)
|
||||
|
||||
log = {"{}/disc_loss".format(split): d_loss.clone().detach().mean(),
|
||||
"{}/logits_real".format(split): logits_real.detach().mean(),
|
||||
"{}/logits_fake".format(split): logits_fake.detach().mean()
|
||||
}
|
||||
log = {
|
||||
'{}/disc_loss'.format(split): d_loss.clone().detach().mean(),
|
||||
'{}/logits_real'.format(split): logits_real.detach().mean(),
|
||||
'{}/logits_fake'.format(split): logits_fake.detach().mean(),
|
||||
}
|
||||
return d_loss, log
|
||||
|
||||
|
@ -3,21 +3,25 @@ from torch import nn
|
||||
import torch.nn.functional as F
|
||||
from einops import repeat
|
||||
|
||||
from taming.modules.discriminator.model import NLayerDiscriminator, weights_init
|
||||
from taming.modules.discriminator.model import (
|
||||
NLayerDiscriminator,
|
||||
weights_init,
|
||||
)
|
||||
from taming.modules.losses.lpips import LPIPS
|
||||
from taming.modules.losses.vqperceptual import hinge_d_loss, vanilla_d_loss
|
||||
|
||||
|
||||
def hinge_d_loss_with_exemplar_weights(logits_real, logits_fake, weights):
|
||||
assert weights.shape[0] == logits_real.shape[0] == logits_fake.shape[0]
|
||||
loss_real = torch.mean(F.relu(1. - logits_real), dim=[1,2,3])
|
||||
loss_fake = torch.mean(F.relu(1. + logits_fake), dim=[1,2,3])
|
||||
loss_real = torch.mean(F.relu(1.0 - logits_real), dim=[1, 2, 3])
|
||||
loss_fake = torch.mean(F.relu(1.0 + logits_fake), dim=[1, 2, 3])
|
||||
loss_real = (weights * loss_real).sum() / weights.sum()
|
||||
loss_fake = (weights * loss_fake).sum() / weights.sum()
|
||||
d_loss = 0.5 * (loss_real + loss_fake)
|
||||
return d_loss
|
||||
|
||||
def adopt_weight(weight, global_step, threshold=0, value=0.):
|
||||
|
||||
def adopt_weight(weight, global_step, threshold=0, value=0.0):
|
||||
if global_step < threshold:
|
||||
weight = value
|
||||
return weight
|
||||
@ -26,57 +30,76 @@ def adopt_weight(weight, global_step, threshold=0, value=0.):
|
||||
def measure_perplexity(predicted_indices, n_embed):
|
||||
# src: https://github.com/karpathy/deep-vector-quantization/blob/main/model.py
|
||||
# eval cluster perplexity. when perplexity == num_embeddings then all clusters are used exactly equally
|
||||
encodings = F.one_hot(predicted_indices, n_embed).float().reshape(-1, n_embed)
|
||||
encodings = (
|
||||
F.one_hot(predicted_indices, n_embed).float().reshape(-1, n_embed)
|
||||
)
|
||||
avg_probs = encodings.mean(0)
|
||||
perplexity = (-(avg_probs * torch.log(avg_probs + 1e-10)).sum()).exp()
|
||||
cluster_use = torch.sum(avg_probs > 0)
|
||||
return perplexity, cluster_use
|
||||
|
||||
|
||||
def l1(x, y):
|
||||
return torch.abs(x-y)
|
||||
return torch.abs(x - y)
|
||||
|
||||
|
||||
def l2(x, y):
|
||||
return torch.pow((x-y), 2)
|
||||
return torch.pow((x - y), 2)
|
||||
|
||||
|
||||
class VQLPIPSWithDiscriminator(nn.Module):
|
||||
def __init__(self, disc_start, codebook_weight=1.0, pixelloss_weight=1.0,
|
||||
disc_num_layers=3, disc_in_channels=3, disc_factor=1.0, disc_weight=1.0,
|
||||
perceptual_weight=1.0, use_actnorm=False, disc_conditional=False,
|
||||
disc_ndf=64, disc_loss="hinge", n_classes=None, perceptual_loss="lpips",
|
||||
pixel_loss="l1"):
|
||||
def __init__(
|
||||
self,
|
||||
disc_start,
|
||||
codebook_weight=1.0,
|
||||
pixelloss_weight=1.0,
|
||||
disc_num_layers=3,
|
||||
disc_in_channels=3,
|
||||
disc_factor=1.0,
|
||||
disc_weight=1.0,
|
||||
perceptual_weight=1.0,
|
||||
use_actnorm=False,
|
||||
disc_conditional=False,
|
||||
disc_ndf=64,
|
||||
disc_loss='hinge',
|
||||
n_classes=None,
|
||||
perceptual_loss='lpips',
|
||||
pixel_loss='l1',
|
||||
):
|
||||
super().__init__()
|
||||
assert disc_loss in ["hinge", "vanilla"]
|
||||
assert perceptual_loss in ["lpips", "clips", "dists"]
|
||||
assert pixel_loss in ["l1", "l2"]
|
||||
assert disc_loss in ['hinge', 'vanilla']
|
||||
assert perceptual_loss in ['lpips', 'clips', 'dists']
|
||||
assert pixel_loss in ['l1', 'l2']
|
||||
self.codebook_weight = codebook_weight
|
||||
self.pixel_weight = pixelloss_weight
|
||||
if perceptual_loss == "lpips":
|
||||
print(f"{self.__class__.__name__}: Running with LPIPS.")
|
||||
if perceptual_loss == 'lpips':
|
||||
print(f'{self.__class__.__name__}: Running with LPIPS.')
|
||||
self.perceptual_loss = LPIPS().eval()
|
||||
else:
|
||||
raise ValueError(f"Unknown perceptual loss: >> {perceptual_loss} <<")
|
||||
raise ValueError(
|
||||
f'Unknown perceptual loss: >> {perceptual_loss} <<'
|
||||
)
|
||||
self.perceptual_weight = perceptual_weight
|
||||
|
||||
if pixel_loss == "l1":
|
||||
if pixel_loss == 'l1':
|
||||
self.pixel_loss = l1
|
||||
else:
|
||||
self.pixel_loss = l2
|
||||
|
||||
self.discriminator = NLayerDiscriminator(input_nc=disc_in_channels,
|
||||
n_layers=disc_num_layers,
|
||||
use_actnorm=use_actnorm,
|
||||
ndf=disc_ndf
|
||||
).apply(weights_init)
|
||||
self.discriminator = NLayerDiscriminator(
|
||||
input_nc=disc_in_channels,
|
||||
n_layers=disc_num_layers,
|
||||
use_actnorm=use_actnorm,
|
||||
ndf=disc_ndf,
|
||||
).apply(weights_init)
|
||||
self.discriminator_iter_start = disc_start
|
||||
if disc_loss == "hinge":
|
||||
if disc_loss == 'hinge':
|
||||
self.disc_loss = hinge_d_loss
|
||||
elif disc_loss == "vanilla":
|
||||
elif disc_loss == 'vanilla':
|
||||
self.disc_loss = vanilla_d_loss
|
||||
else:
|
||||
raise ValueError(f"Unknown GAN loss '{disc_loss}'.")
|
||||
print(f"VQLPIPSWithDiscriminator running with {disc_loss} loss.")
|
||||
print(f'VQLPIPSWithDiscriminator running with {disc_loss} loss.')
|
||||
self.disc_factor = disc_factor
|
||||
self.discriminator_weight = disc_weight
|
||||
self.disc_conditional = disc_conditional
|
||||
@ -84,31 +107,53 @@ class VQLPIPSWithDiscriminator(nn.Module):
|
||||
|
||||
def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None):
|
||||
if last_layer is not None:
|
||||
nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0]
|
||||
g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0]
|
||||
nll_grads = torch.autograd.grad(
|
||||
nll_loss, last_layer, retain_graph=True
|
||||
)[0]
|
||||
g_grads = torch.autograd.grad(
|
||||
g_loss, last_layer, retain_graph=True
|
||||
)[0]
|
||||
else:
|
||||
nll_grads = torch.autograd.grad(nll_loss, self.last_layer[0], retain_graph=True)[0]
|
||||
g_grads = torch.autograd.grad(g_loss, self.last_layer[0], retain_graph=True)[0]
|
||||
nll_grads = torch.autograd.grad(
|
||||
nll_loss, self.last_layer[0], retain_graph=True
|
||||
)[0]
|
||||
g_grads = torch.autograd.grad(
|
||||
g_loss, self.last_layer[0], retain_graph=True
|
||||
)[0]
|
||||
|
||||
d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4)
|
||||
d_weight = torch.clamp(d_weight, 0.0, 1e4).detach()
|
||||
d_weight = d_weight * self.discriminator_weight
|
||||
return d_weight
|
||||
|
||||
def forward(self, codebook_loss, inputs, reconstructions, optimizer_idx,
|
||||
global_step, last_layer=None, cond=None, split="train", predicted_indices=None):
|
||||
def forward(
|
||||
self,
|
||||
codebook_loss,
|
||||
inputs,
|
||||
reconstructions,
|
||||
optimizer_idx,
|
||||
global_step,
|
||||
last_layer=None,
|
||||
cond=None,
|
||||
split='train',
|
||||
predicted_indices=None,
|
||||
):
|
||||
if not exists(codebook_loss):
|
||||
codebook_loss = torch.tensor([0.]).to(inputs.device)
|
||||
#rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous())
|
||||
rec_loss = self.pixel_loss(inputs.contiguous(), reconstructions.contiguous())
|
||||
codebook_loss = torch.tensor([0.0]).to(inputs.device)
|
||||
# rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous())
|
||||
rec_loss = self.pixel_loss(
|
||||
inputs.contiguous(), reconstructions.contiguous()
|
||||
)
|
||||
if self.perceptual_weight > 0:
|
||||
p_loss = self.perceptual_loss(inputs.contiguous(), reconstructions.contiguous())
|
||||
p_loss = self.perceptual_loss(
|
||||
inputs.contiguous(), reconstructions.contiguous()
|
||||
)
|
||||
rec_loss = rec_loss + self.perceptual_weight * p_loss
|
||||
else:
|
||||
p_loss = torch.tensor([0.0])
|
||||
|
||||
nll_loss = rec_loss
|
||||
#nll_loss = torch.sum(nll_loss) / nll_loss.shape[0]
|
||||
# nll_loss = torch.sum(nll_loss) / nll_loss.shape[0]
|
||||
nll_loss = torch.mean(nll_loss)
|
||||
|
||||
# now the GAN part
|
||||
@ -119,49 +164,77 @@ class VQLPIPSWithDiscriminator(nn.Module):
|
||||
logits_fake = self.discriminator(reconstructions.contiguous())
|
||||
else:
|
||||
assert self.disc_conditional
|
||||
logits_fake = self.discriminator(torch.cat((reconstructions.contiguous(), cond), dim=1))
|
||||
logits_fake = self.discriminator(
|
||||
torch.cat((reconstructions.contiguous(), cond), dim=1)
|
||||
)
|
||||
g_loss = -torch.mean(logits_fake)
|
||||
|
||||
try:
|
||||
d_weight = self.calculate_adaptive_weight(nll_loss, g_loss, last_layer=last_layer)
|
||||
d_weight = self.calculate_adaptive_weight(
|
||||
nll_loss, g_loss, last_layer=last_layer
|
||||
)
|
||||
except RuntimeError:
|
||||
assert not self.training
|
||||
d_weight = torch.tensor(0.0)
|
||||
|
||||
disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
|
||||
loss = nll_loss + d_weight * disc_factor * g_loss + self.codebook_weight * codebook_loss.mean()
|
||||
disc_factor = adopt_weight(
|
||||
self.disc_factor,
|
||||
global_step,
|
||||
threshold=self.discriminator_iter_start,
|
||||
)
|
||||
loss = (
|
||||
nll_loss
|
||||
+ d_weight * disc_factor * g_loss
|
||||
+ self.codebook_weight * codebook_loss.mean()
|
||||
)
|
||||
|
||||
log = {"{}/total_loss".format(split): loss.clone().detach().mean(),
|
||||
"{}/quant_loss".format(split): codebook_loss.detach().mean(),
|
||||
"{}/nll_loss".format(split): nll_loss.detach().mean(),
|
||||
"{}/rec_loss".format(split): rec_loss.detach().mean(),
|
||||
"{}/p_loss".format(split): p_loss.detach().mean(),
|
||||
"{}/d_weight".format(split): d_weight.detach(),
|
||||
"{}/disc_factor".format(split): torch.tensor(disc_factor),
|
||||
"{}/g_loss".format(split): g_loss.detach().mean(),
|
||||
}
|
||||
log = {
|
||||
'{}/total_loss'.format(split): loss.clone().detach().mean(),
|
||||
'{}/quant_loss'.format(split): codebook_loss.detach().mean(),
|
||||
'{}/nll_loss'.format(split): nll_loss.detach().mean(),
|
||||
'{}/rec_loss'.format(split): rec_loss.detach().mean(),
|
||||
'{}/p_loss'.format(split): p_loss.detach().mean(),
|
||||
'{}/d_weight'.format(split): d_weight.detach(),
|
||||
'{}/disc_factor'.format(split): torch.tensor(disc_factor),
|
||||
'{}/g_loss'.format(split): g_loss.detach().mean(),
|
||||
}
|
||||
if predicted_indices is not None:
|
||||
assert self.n_classes is not None
|
||||
with torch.no_grad():
|
||||
perplexity, cluster_usage = measure_perplexity(predicted_indices, self.n_classes)
|
||||
log[f"{split}/perplexity"] = perplexity
|
||||
log[f"{split}/cluster_usage"] = cluster_usage
|
||||
perplexity, cluster_usage = measure_perplexity(
|
||||
predicted_indices, self.n_classes
|
||||
)
|
||||
log[f'{split}/perplexity'] = perplexity
|
||||
log[f'{split}/cluster_usage'] = cluster_usage
|
||||
return loss, log
|
||||
|
||||
if optimizer_idx == 1:
|
||||
# second pass for discriminator update
|
||||
if cond is None:
|
||||
logits_real = self.discriminator(inputs.contiguous().detach())
|
||||
logits_fake = self.discriminator(reconstructions.contiguous().detach())
|
||||
logits_fake = self.discriminator(
|
||||
reconstructions.contiguous().detach()
|
||||
)
|
||||
else:
|
||||
logits_real = self.discriminator(torch.cat((inputs.contiguous().detach(), cond), dim=1))
|
||||
logits_fake = self.discriminator(torch.cat((reconstructions.contiguous().detach(), cond), dim=1))
|
||||
logits_real = self.discriminator(
|
||||
torch.cat((inputs.contiguous().detach(), cond), dim=1)
|
||||
)
|
||||
logits_fake = self.discriminator(
|
||||
torch.cat(
|
||||
(reconstructions.contiguous().detach(), cond), dim=1
|
||||
)
|
||||
)
|
||||
|
||||
disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
|
||||
disc_factor = adopt_weight(
|
||||
self.disc_factor,
|
||||
global_step,
|
||||
threshold=self.discriminator_iter_start,
|
||||
)
|
||||
d_loss = disc_factor * self.disc_loss(logits_real, logits_fake)
|
||||
|
||||
log = {"{}/disc_loss".format(split): d_loss.clone().detach().mean(),
|
||||
"{}/logits_real".format(split): logits_real.detach().mean(),
|
||||
"{}/logits_fake".format(split): logits_fake.detach().mean()
|
||||
}
|
||||
log = {
|
||||
'{}/disc_loss'.format(split): d_loss.clone().detach().mean(),
|
||||
'{}/logits_real'.format(split): logits_real.detach().mean(),
|
||||
'{}/logits_fake'.format(split): logits_fake.detach().mean(),
|
||||
}
|
||||
return d_loss, log
|
||||
|
@ -11,15 +11,13 @@ from einops import rearrange, repeat, reduce
|
||||
|
||||
DEFAULT_DIM_HEAD = 64
|
||||
|
||||
Intermediates = namedtuple('Intermediates', [
|
||||
'pre_softmax_attn',
|
||||
'post_softmax_attn'
|
||||
])
|
||||
Intermediates = namedtuple(
|
||||
'Intermediates', ['pre_softmax_attn', 'post_softmax_attn']
|
||||
)
|
||||
|
||||
LayerIntermediates = namedtuple('Intermediates', [
|
||||
'hiddens',
|
||||
'attn_intermediates'
|
||||
])
|
||||
LayerIntermediates = namedtuple(
|
||||
'Intermediates', ['hiddens', 'attn_intermediates']
|
||||
)
|
||||
|
||||
|
||||
class AbsolutePositionalEmbedding(nn.Module):
|
||||
@ -39,11 +37,16 @@ class AbsolutePositionalEmbedding(nn.Module):
|
||||
class FixedPositionalEmbedding(nn.Module):
|
||||
def __init__(self, dim):
|
||||
super().__init__()
|
||||
inv_freq = 1. / (10000 ** (torch.arange(0, dim, 2).float() / dim))
|
||||
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim))
|
||||
self.register_buffer('inv_freq', inv_freq)
|
||||
|
||||
def forward(self, x, seq_dim=1, offset=0):
|
||||
t = torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq) + offset
|
||||
t = (
|
||||
torch.arange(x.shape[seq_dim], device=x.device).type_as(
|
||||
self.inv_freq
|
||||
)
|
||||
+ offset
|
||||
)
|
||||
sinusoid_inp = torch.einsum('i , j -> i j', t, self.inv_freq)
|
||||
emb = torch.cat((sinusoid_inp.sin(), sinusoid_inp.cos()), dim=-1)
|
||||
return emb[None, :, :]
|
||||
@ -51,6 +54,7 @@ class FixedPositionalEmbedding(nn.Module):
|
||||
|
||||
# helpers
|
||||
|
||||
|
||||
def exists(val):
|
||||
return val is not None
|
||||
|
||||
@ -64,18 +68,21 @@ def default(val, d):
|
||||
def always(val):
|
||||
def inner(*args, **kwargs):
|
||||
return val
|
||||
|
||||
return inner
|
||||
|
||||
|
||||
def not_equals(val):
|
||||
def inner(x):
|
||||
return x != val
|
||||
|
||||
return inner
|
||||
|
||||
|
||||
def equals(val):
|
||||
def inner(x):
|
||||
return x == val
|
||||
|
||||
return inner
|
||||
|
||||
|
||||
@ -85,6 +92,7 @@ def max_neg_value(tensor):
|
||||
|
||||
# keyword argument helpers
|
||||
|
||||
|
||||
def pick_and_pop(keys, d):
|
||||
values = list(map(lambda key: d.pop(key), keys))
|
||||
return dict(zip(keys, values))
|
||||
@ -108,8 +116,15 @@ def group_by_key_prefix(prefix, d):
|
||||
|
||||
|
||||
def groupby_prefix_and_trim(prefix, d):
|
||||
kwargs_with_prefix, kwargs = group_dict_by_key(partial(string_begins_with, prefix), d)
|
||||
kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix):], x[1]), tuple(kwargs_with_prefix.items())))
|
||||
kwargs_with_prefix, kwargs = group_dict_by_key(
|
||||
partial(string_begins_with, prefix), d
|
||||
)
|
||||
kwargs_without_prefix = dict(
|
||||
map(
|
||||
lambda x: (x[0][len(prefix) :], x[1]),
|
||||
tuple(kwargs_with_prefix.items()),
|
||||
)
|
||||
)
|
||||
return kwargs_without_prefix, kwargs
|
||||
|
||||
|
||||
@ -139,7 +154,7 @@ class Rezero(nn.Module):
|
||||
class ScaleNorm(nn.Module):
|
||||
def __init__(self, dim, eps=1e-5):
|
||||
super().__init__()
|
||||
self.scale = dim ** -0.5
|
||||
self.scale = dim**-0.5
|
||||
self.eps = eps
|
||||
self.g = nn.Parameter(torch.ones(1))
|
||||
|
||||
@ -151,7 +166,7 @@ class ScaleNorm(nn.Module):
|
||||
class RMSNorm(nn.Module):
|
||||
def __init__(self, dim, eps=1e-8):
|
||||
super().__init__()
|
||||
self.scale = dim ** -0.5
|
||||
self.scale = dim**-0.5
|
||||
self.eps = eps
|
||||
self.g = nn.Parameter(torch.ones(dim))
|
||||
|
||||
@ -173,7 +188,7 @@ class GRUGating(nn.Module):
|
||||
def forward(self, x, residual):
|
||||
gated_output = self.gru(
|
||||
rearrange(x, 'b n d -> (b n) d'),
|
||||
rearrange(residual, 'b n d -> (b n) d')
|
||||
rearrange(residual, 'b n d -> (b n) d'),
|
||||
)
|
||||
|
||||
return gated_output.reshape_as(x)
|
||||
@ -181,6 +196,7 @@ class GRUGating(nn.Module):
|
||||
|
||||
# feedforward
|
||||
|
||||
|
||||
class GEGLU(nn.Module):
|
||||
def __init__(self, dim_in, dim_out):
|
||||
super().__init__()
|
||||
@ -192,19 +208,18 @@ class GEGLU(nn.Module):
|
||||
|
||||
|
||||
class FeedForward(nn.Module):
|
||||
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
|
||||
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0):
|
||||
super().__init__()
|
||||
inner_dim = int(dim * mult)
|
||||
dim_out = default(dim_out, dim)
|
||||
project_in = nn.Sequential(
|
||||
nn.Linear(dim, inner_dim),
|
||||
nn.GELU()
|
||||
) if not glu else GEGLU(dim, inner_dim)
|
||||
project_in = (
|
||||
nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU())
|
||||
if not glu
|
||||
else GEGLU(dim, inner_dim)
|
||||
)
|
||||
|
||||
self.net = nn.Sequential(
|
||||
project_in,
|
||||
nn.Dropout(dropout),
|
||||
nn.Linear(inner_dim, dim_out)
|
||||
project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
@ -214,23 +229,25 @@ class FeedForward(nn.Module):
|
||||
# attention.
|
||||
class Attention(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
dim_head=DEFAULT_DIM_HEAD,
|
||||
heads=8,
|
||||
causal=False,
|
||||
mask=None,
|
||||
talking_heads=False,
|
||||
sparse_topk=None,
|
||||
use_entmax15=False,
|
||||
num_mem_kv=0,
|
||||
dropout=0.,
|
||||
on_attn=False
|
||||
self,
|
||||
dim,
|
||||
dim_head=DEFAULT_DIM_HEAD,
|
||||
heads=8,
|
||||
causal=False,
|
||||
mask=None,
|
||||
talking_heads=False,
|
||||
sparse_topk=None,
|
||||
use_entmax15=False,
|
||||
num_mem_kv=0,
|
||||
dropout=0.0,
|
||||
on_attn=False,
|
||||
):
|
||||
super().__init__()
|
||||
if use_entmax15:
|
||||
raise NotImplementedError("Check out entmax activation instead of softmax activation!")
|
||||
self.scale = dim_head ** -0.5
|
||||
raise NotImplementedError(
|
||||
'Check out entmax activation instead of softmax activation!'
|
||||
)
|
||||
self.scale = dim_head**-0.5
|
||||
self.heads = heads
|
||||
self.causal = causal
|
||||
self.mask = mask
|
||||
@ -252,7 +269,7 @@ class Attention(nn.Module):
|
||||
self.sparse_topk = sparse_topk
|
||||
|
||||
# entmax
|
||||
#self.attn_fn = entmax15 if use_entmax15 else F.softmax
|
||||
# self.attn_fn = entmax15 if use_entmax15 else F.softmax
|
||||
self.attn_fn = F.softmax
|
||||
|
||||
# add memory key / values
|
||||
@ -263,20 +280,29 @@ class Attention(nn.Module):
|
||||
|
||||
# attention on attention
|
||||
self.attn_on_attn = on_attn
|
||||
self.to_out = nn.Sequential(nn.Linear(inner_dim, dim * 2), nn.GLU()) if on_attn else nn.Linear(inner_dim, dim)
|
||||
self.to_out = (
|
||||
nn.Sequential(nn.Linear(inner_dim, dim * 2), nn.GLU())
|
||||
if on_attn
|
||||
else nn.Linear(inner_dim, dim)
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x,
|
||||
context=None,
|
||||
mask=None,
|
||||
context_mask=None,
|
||||
rel_pos=None,
|
||||
sinusoidal_emb=None,
|
||||
prev_attn=None,
|
||||
mem=None
|
||||
self,
|
||||
x,
|
||||
context=None,
|
||||
mask=None,
|
||||
context_mask=None,
|
||||
rel_pos=None,
|
||||
sinusoidal_emb=None,
|
||||
prev_attn=None,
|
||||
mem=None,
|
||||
):
|
||||
b, n, _, h, talking_heads, device = *x.shape, self.heads, self.talking_heads, x.device
|
||||
b, n, _, h, talking_heads, device = (
|
||||
*x.shape,
|
||||
self.heads,
|
||||
self.talking_heads,
|
||||
x.device,
|
||||
)
|
||||
kv_input = default(context, x)
|
||||
|
||||
q_input = x
|
||||
@ -297,23 +323,35 @@ class Attention(nn.Module):
|
||||
k = self.to_k(k_input)
|
||||
v = self.to_v(v_input)
|
||||
|
||||
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=h), (q, k, v))
|
||||
q, k, v = map(
|
||||
lambda t: rearrange(t, 'b n (h d) -> b h n d', h=h), (q, k, v)
|
||||
)
|
||||
|
||||
input_mask = None
|
||||
if any(map(exists, (mask, context_mask))):
|
||||
q_mask = default(mask, lambda: torch.ones((b, n), device=device).bool())
|
||||
q_mask = default(
|
||||
mask, lambda: torch.ones((b, n), device=device).bool()
|
||||
)
|
||||
k_mask = q_mask if not exists(context) else context_mask
|
||||
k_mask = default(k_mask, lambda: torch.ones((b, k.shape[-2]), device=device).bool())
|
||||
k_mask = default(
|
||||
k_mask,
|
||||
lambda: torch.ones((b, k.shape[-2]), device=device).bool(),
|
||||
)
|
||||
q_mask = rearrange(q_mask, 'b i -> b () i ()')
|
||||
k_mask = rearrange(k_mask, 'b j -> b () () j')
|
||||
input_mask = q_mask * k_mask
|
||||
|
||||
if self.num_mem_kv > 0:
|
||||
mem_k, mem_v = map(lambda t: repeat(t, 'h n d -> b h n d', b=b), (self.mem_k, self.mem_v))
|
||||
mem_k, mem_v = map(
|
||||
lambda t: repeat(t, 'h n d -> b h n d', b=b),
|
||||
(self.mem_k, self.mem_v),
|
||||
)
|
||||
k = torch.cat((mem_k, k), dim=-2)
|
||||
v = torch.cat((mem_v, v), dim=-2)
|
||||
if exists(input_mask):
|
||||
input_mask = F.pad(input_mask, (self.num_mem_kv, 0), value=True)
|
||||
input_mask = F.pad(
|
||||
input_mask, (self.num_mem_kv, 0), value=True
|
||||
)
|
||||
|
||||
dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
|
||||
mask_value = max_neg_value(dots)
|
||||
@ -324,7 +362,9 @@ class Attention(nn.Module):
|
||||
pre_softmax_attn = dots
|
||||
|
||||
if talking_heads:
|
||||
dots = einsum('b h i j, h k -> b k i j', dots, self.pre_softmax_proj).contiguous()
|
||||
dots = einsum(
|
||||
'b h i j, h k -> b k i j', dots, self.pre_softmax_proj
|
||||
).contiguous()
|
||||
|
||||
if exists(rel_pos):
|
||||
dots = rel_pos(dots)
|
||||
@ -336,7 +376,9 @@ class Attention(nn.Module):
|
||||
if self.causal:
|
||||
i, j = dots.shape[-2:]
|
||||
r = torch.arange(i, device=device)
|
||||
mask = rearrange(r, 'i -> () () i ()') < rearrange(r, 'j -> () () () j')
|
||||
mask = rearrange(r, 'i -> () () i ()') < rearrange(
|
||||
r, 'j -> () () () j'
|
||||
)
|
||||
mask = F.pad(mask, (j - i, 0), value=False)
|
||||
dots.masked_fill_(mask, mask_value)
|
||||
del mask
|
||||
@ -354,14 +396,16 @@ class Attention(nn.Module):
|
||||
attn = self.dropout(attn)
|
||||
|
||||
if talking_heads:
|
||||
attn = einsum('b h i j, h k -> b k i j', attn, self.post_softmax_proj).contiguous()
|
||||
attn = einsum(
|
||||
'b h i j, h k -> b k i j', attn, self.post_softmax_proj
|
||||
).contiguous()
|
||||
|
||||
out = einsum('b h i j, b h j d -> b h i d', attn, v)
|
||||
out = rearrange(out, 'b h n d -> b n (h d)')
|
||||
|
||||
intermediates = Intermediates(
|
||||
pre_softmax_attn=pre_softmax_attn,
|
||||
post_softmax_attn=post_softmax_attn
|
||||
post_softmax_attn=post_softmax_attn,
|
||||
)
|
||||
|
||||
return self.to_out(out), intermediates
|
||||
@ -369,28 +413,28 @@ class Attention(nn.Module):
|
||||
|
||||
class AttentionLayers(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
depth,
|
||||
heads=8,
|
||||
causal=False,
|
||||
cross_attend=False,
|
||||
only_cross=False,
|
||||
use_scalenorm=False,
|
||||
use_rmsnorm=False,
|
||||
use_rezero=False,
|
||||
rel_pos_num_buckets=32,
|
||||
rel_pos_max_distance=128,
|
||||
position_infused_attn=False,
|
||||
custom_layers=None,
|
||||
sandwich_coef=None,
|
||||
par_ratio=None,
|
||||
residual_attn=False,
|
||||
cross_residual_attn=False,
|
||||
macaron=False,
|
||||
pre_norm=True,
|
||||
gate_residual=False,
|
||||
**kwargs
|
||||
self,
|
||||
dim,
|
||||
depth,
|
||||
heads=8,
|
||||
causal=False,
|
||||
cross_attend=False,
|
||||
only_cross=False,
|
||||
use_scalenorm=False,
|
||||
use_rmsnorm=False,
|
||||
use_rezero=False,
|
||||
rel_pos_num_buckets=32,
|
||||
rel_pos_max_distance=128,
|
||||
position_infused_attn=False,
|
||||
custom_layers=None,
|
||||
sandwich_coef=None,
|
||||
par_ratio=None,
|
||||
residual_attn=False,
|
||||
cross_residual_attn=False,
|
||||
macaron=False,
|
||||
pre_norm=True,
|
||||
gate_residual=False,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__()
|
||||
ff_kwargs, kwargs = groupby_prefix_and_trim('ff_', kwargs)
|
||||
@ -403,10 +447,14 @@ class AttentionLayers(nn.Module):
|
||||
self.layers = nn.ModuleList([])
|
||||
|
||||
self.has_pos_emb = position_infused_attn
|
||||
self.pia_pos_emb = FixedPositionalEmbedding(dim) if position_infused_attn else None
|
||||
self.pia_pos_emb = (
|
||||
FixedPositionalEmbedding(dim) if position_infused_attn else None
|
||||
)
|
||||
self.rotary_pos_emb = always(None)
|
||||
|
||||
assert rel_pos_num_buckets <= rel_pos_max_distance, 'number of relative position buckets must be less than the relative position max distance'
|
||||
assert (
|
||||
rel_pos_num_buckets <= rel_pos_max_distance
|
||||
), 'number of relative position buckets must be less than the relative position max distance'
|
||||
self.rel_pos = None
|
||||
|
||||
self.pre_norm = pre_norm
|
||||
@ -438,15 +486,27 @@ class AttentionLayers(nn.Module):
|
||||
assert 1 < par_ratio <= par_depth, 'par ratio out of range'
|
||||
default_block = tuple(filter(not_equals('f'), default_block))
|
||||
par_attn = par_depth // par_ratio
|
||||
depth_cut = par_depth * 2 // 3 # 2 / 3 attention layer cutoff suggested by PAR paper
|
||||
depth_cut = (
|
||||
par_depth * 2 // 3
|
||||
) # 2 / 3 attention layer cutoff suggested by PAR paper
|
||||
par_width = (depth_cut + depth_cut // par_attn) // par_attn
|
||||
assert len(default_block) <= par_width, 'default block is too large for par_ratio'
|
||||
par_block = default_block + ('f',) * (par_width - len(default_block))
|
||||
assert (
|
||||
len(default_block) <= par_width
|
||||
), 'default block is too large for par_ratio'
|
||||
par_block = default_block + ('f',) * (
|
||||
par_width - len(default_block)
|
||||
)
|
||||
par_head = par_block * par_attn
|
||||
layer_types = par_head + ('f',) * (par_depth - len(par_head))
|
||||
elif exists(sandwich_coef):
|
||||
assert sandwich_coef > 0 and sandwich_coef <= depth, 'sandwich coefficient should be less than the depth'
|
||||
layer_types = ('a',) * sandwich_coef + default_block * (depth - sandwich_coef) + ('f',) * sandwich_coef
|
||||
assert (
|
||||
sandwich_coef > 0 and sandwich_coef <= depth
|
||||
), 'sandwich coefficient should be less than the depth'
|
||||
layer_types = (
|
||||
('a',) * sandwich_coef
|
||||
+ default_block * (depth - sandwich_coef)
|
||||
+ ('f',) * sandwich_coef
|
||||
)
|
||||
else:
|
||||
layer_types = default_block * depth
|
||||
|
||||
@ -455,7 +515,9 @@ class AttentionLayers(nn.Module):
|
||||
|
||||
for layer_type in self.layer_types:
|
||||
if layer_type == 'a':
|
||||
layer = Attention(dim, heads=heads, causal=causal, **attn_kwargs)
|
||||
layer = Attention(
|
||||
dim, heads=heads, causal=causal, **attn_kwargs
|
||||
)
|
||||
elif layer_type == 'c':
|
||||
layer = Attention(dim, heads=heads, **attn_kwargs)
|
||||
elif layer_type == 'f':
|
||||
@ -472,21 +534,17 @@ class AttentionLayers(nn.Module):
|
||||
else:
|
||||
residual_fn = Residual()
|
||||
|
||||
self.layers.append(nn.ModuleList([
|
||||
norm_fn(),
|
||||
layer,
|
||||
residual_fn
|
||||
]))
|
||||
self.layers.append(nn.ModuleList([norm_fn(), layer, residual_fn]))
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x,
|
||||
context=None,
|
||||
mask=None,
|
||||
context_mask=None,
|
||||
mems=None,
|
||||
return_hiddens=False,
|
||||
**kwargs
|
||||
self,
|
||||
x,
|
||||
context=None,
|
||||
mask=None,
|
||||
context_mask=None,
|
||||
mems=None,
|
||||
return_hiddens=False,
|
||||
**kwargs,
|
||||
):
|
||||
hiddens = []
|
||||
intermediates = []
|
||||
@ -495,7 +553,9 @@ class AttentionLayers(nn.Module):
|
||||
|
||||
mems = mems.copy() if exists(mems) else [None] * self.num_attn_layers
|
||||
|
||||
for ind, (layer_type, (norm, block, residual_fn)) in enumerate(zip(self.layer_types, self.layers)):
|
||||
for ind, (layer_type, (norm, block, residual_fn)) in enumerate(
|
||||
zip(self.layer_types, self.layers)
|
||||
):
|
||||
is_last = ind == (len(self.layers) - 1)
|
||||
|
||||
if layer_type == 'a':
|
||||
@ -508,10 +568,22 @@ class AttentionLayers(nn.Module):
|
||||
x = norm(x)
|
||||
|
||||
if layer_type == 'a':
|
||||
out, inter = block(x, mask=mask, sinusoidal_emb=self.pia_pos_emb, rel_pos=self.rel_pos,
|
||||
prev_attn=prev_attn, mem=layer_mem)
|
||||
out, inter = block(
|
||||
x,
|
||||
mask=mask,
|
||||
sinusoidal_emb=self.pia_pos_emb,
|
||||
rel_pos=self.rel_pos,
|
||||
prev_attn=prev_attn,
|
||||
mem=layer_mem,
|
||||
)
|
||||
elif layer_type == 'c':
|
||||
out, inter = block(x, context=context, mask=mask, context_mask=context_mask, prev_attn=prev_cross_attn)
|
||||
out, inter = block(
|
||||
x,
|
||||
context=context,
|
||||
mask=mask,
|
||||
context_mask=context_mask,
|
||||
prev_attn=prev_cross_attn,
|
||||
)
|
||||
elif layer_type == 'f':
|
||||
out = block(x)
|
||||
|
||||
@ -530,8 +602,7 @@ class AttentionLayers(nn.Module):
|
||||
|
||||
if return_hiddens:
|
||||
intermediates = LayerIntermediates(
|
||||
hiddens=hiddens,
|
||||
attn_intermediates=intermediates
|
||||
hiddens=hiddens, attn_intermediates=intermediates
|
||||
)
|
||||
|
||||
return x, intermediates
|
||||
@ -545,23 +616,24 @@ class Encoder(AttentionLayers):
|
||||
super().__init__(causal=False, **kwargs)
|
||||
|
||||
|
||||
|
||||
class TransformerWrapper(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
num_tokens,
|
||||
max_seq_len,
|
||||
attn_layers,
|
||||
emb_dim=None,
|
||||
max_mem_len=0.,
|
||||
emb_dropout=0.,
|
||||
num_memory_tokens=None,
|
||||
tie_embedding=False,
|
||||
use_pos_emb=True
|
||||
self,
|
||||
*,
|
||||
num_tokens,
|
||||
max_seq_len,
|
||||
attn_layers,
|
||||
emb_dim=None,
|
||||
max_mem_len=0.0,
|
||||
emb_dropout=0.0,
|
||||
num_memory_tokens=None,
|
||||
tie_embedding=False,
|
||||
use_pos_emb=True,
|
||||
):
|
||||
super().__init__()
|
||||
assert isinstance(attn_layers, AttentionLayers), 'attention layers must be one of Encoder or Decoder'
|
||||
assert isinstance(
|
||||
attn_layers, AttentionLayers
|
||||
), 'attention layers must be one of Encoder or Decoder'
|
||||
|
||||
dim = attn_layers.dim
|
||||
emb_dim = default(emb_dim, dim)
|
||||
@ -571,23 +643,34 @@ class TransformerWrapper(nn.Module):
|
||||
self.num_tokens = num_tokens
|
||||
|
||||
self.token_emb = nn.Embedding(num_tokens, emb_dim)
|
||||
self.pos_emb = AbsolutePositionalEmbedding(emb_dim, max_seq_len) if (
|
||||
use_pos_emb and not attn_layers.has_pos_emb) else always(0)
|
||||
self.pos_emb = (
|
||||
AbsolutePositionalEmbedding(emb_dim, max_seq_len)
|
||||
if (use_pos_emb and not attn_layers.has_pos_emb)
|
||||
else always(0)
|
||||
)
|
||||
self.emb_dropout = nn.Dropout(emb_dropout)
|
||||
|
||||
self.project_emb = nn.Linear(emb_dim, dim) if emb_dim != dim else nn.Identity()
|
||||
self.project_emb = (
|
||||
nn.Linear(emb_dim, dim) if emb_dim != dim else nn.Identity()
|
||||
)
|
||||
self.attn_layers = attn_layers
|
||||
self.norm = nn.LayerNorm(dim)
|
||||
|
||||
self.init_()
|
||||
|
||||
self.to_logits = nn.Linear(dim, num_tokens) if not tie_embedding else lambda t: t @ self.token_emb.weight.t()
|
||||
self.to_logits = (
|
||||
nn.Linear(dim, num_tokens)
|
||||
if not tie_embedding
|
||||
else lambda t: t @ self.token_emb.weight.t()
|
||||
)
|
||||
|
||||
# memory tokens (like [cls]) from Memory Transformers paper
|
||||
num_memory_tokens = default(num_memory_tokens, 0)
|
||||
self.num_memory_tokens = num_memory_tokens
|
||||
if num_memory_tokens > 0:
|
||||
self.memory_tokens = nn.Parameter(torch.randn(num_memory_tokens, dim))
|
||||
self.memory_tokens = nn.Parameter(
|
||||
torch.randn(num_memory_tokens, dim)
|
||||
)
|
||||
|
||||
# let funnel encoder know number of memory tokens, if specified
|
||||
if hasattr(attn_layers, 'num_memory_tokens'):
|
||||
@ -597,15 +680,15 @@ class TransformerWrapper(nn.Module):
|
||||
nn.init.normal_(self.token_emb.weight, std=0.02)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x,
|
||||
return_embeddings=False,
|
||||
mask=None,
|
||||
return_mems=False,
|
||||
return_attn=False,
|
||||
mems=None,
|
||||
embedding_manager=None,
|
||||
**kwargs
|
||||
self,
|
||||
x,
|
||||
return_embeddings=False,
|
||||
mask=None,
|
||||
return_mems=False,
|
||||
return_attn=False,
|
||||
mems=None,
|
||||
embedding_manager=None,
|
||||
**kwargs,
|
||||
):
|
||||
b, n, device, num_mem = *x.shape, x.device, self.num_memory_tokens
|
||||
|
||||
@ -629,7 +712,9 @@ class TransformerWrapper(nn.Module):
|
||||
if exists(mask):
|
||||
mask = F.pad(mask, (num_mem, 0), value=True)
|
||||
|
||||
x, intermediates = self.attn_layers(x, mask=mask, mems=mems, return_hiddens=True, **kwargs)
|
||||
x, intermediates = self.attn_layers(
|
||||
x, mask=mask, mems=mems, return_hiddens=True, **kwargs
|
||||
)
|
||||
x = self.norm(x)
|
||||
|
||||
mem, x = x[:, :num_mem], x[:, num_mem:]
|
||||
@ -638,13 +723,30 @@ class TransformerWrapper(nn.Module):
|
||||
|
||||
if return_mems:
|
||||
hiddens = intermediates.hiddens
|
||||
new_mems = list(map(lambda pair: torch.cat(pair, dim=-2), zip(mems, hiddens))) if exists(mems) else hiddens
|
||||
new_mems = list(map(lambda t: t[..., -self.max_mem_len:, :].detach(), new_mems))
|
||||
new_mems = (
|
||||
list(
|
||||
map(
|
||||
lambda pair: torch.cat(pair, dim=-2),
|
||||
zip(mems, hiddens),
|
||||
)
|
||||
)
|
||||
if exists(mems)
|
||||
else hiddens
|
||||
)
|
||||
new_mems = list(
|
||||
map(
|
||||
lambda t: t[..., -self.max_mem_len :, :].detach(), new_mems
|
||||
)
|
||||
)
|
||||
return out, new_mems
|
||||
|
||||
if return_attn:
|
||||
attn_maps = list(map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates))
|
||||
attn_maps = list(
|
||||
map(
|
||||
lambda t: t.post_softmax_attn,
|
||||
intermediates.attn_intermediates,
|
||||
)
|
||||
)
|
||||
return out, attn_maps
|
||||
|
||||
return out
|
||||
|
||||
|
499
ldm/simplet2i.py
499
ldm/simplet2i.py
@ -24,10 +24,10 @@ import re
|
||||
import traceback
|
||||
|
||||
from ldm.util import instantiate_from_config
|
||||
from ldm.models.diffusion.ddim import DDIMSampler
|
||||
from ldm.models.diffusion.plms import PLMSSampler
|
||||
from ldm.models.diffusion.ddim import DDIMSampler
|
||||
from ldm.models.diffusion.plms import PLMSSampler
|
||||
from ldm.models.diffusion.ksampler import KSampler
|
||||
from ldm.dream.pngwriter import PngWriter
|
||||
from ldm.dream.pngwriter import PngWriter
|
||||
|
||||
"""Simplified text to image API for stable diffusion/latent diffusion
|
||||
|
||||
@ -93,67 +93,69 @@ still work.
|
||||
|
||||
class T2I:
|
||||
"""T2I class
|
||||
Attributes
|
||||
----------
|
||||
model
|
||||
config
|
||||
iterations
|
||||
batch_size
|
||||
steps
|
||||
seed
|
||||
sampler_name
|
||||
width
|
||||
height
|
||||
cfg_scale
|
||||
latent_channels
|
||||
downsampling_factor
|
||||
precision
|
||||
strength
|
||||
embedding_path
|
||||
Attributes
|
||||
----------
|
||||
model
|
||||
config
|
||||
iterations
|
||||
batch_size
|
||||
steps
|
||||
seed
|
||||
sampler_name
|
||||
width
|
||||
height
|
||||
cfg_scale
|
||||
latent_channels
|
||||
downsampling_factor
|
||||
precision
|
||||
strength
|
||||
embedding_path
|
||||
|
||||
The vast majority of these arguments default to reasonable values.
|
||||
The vast majority of these arguments default to reasonable values.
|
||||
"""
|
||||
def __init__(self,
|
||||
batch_size=1,
|
||||
iterations = 1,
|
||||
steps=50,
|
||||
seed=None,
|
||||
cfg_scale=7.5,
|
||||
weights="models/ldm/stable-diffusion-v1/model.ckpt",
|
||||
config = "configs/stable-diffusion/v1-inference.yaml",
|
||||
width=512,
|
||||
height=512,
|
||||
sampler_name="klms",
|
||||
latent_channels=4,
|
||||
downsampling_factor=8,
|
||||
ddim_eta=0.0, # deterministic
|
||||
precision='autocast',
|
||||
full_precision=False,
|
||||
strength=0.75, # default in scripts/img2img.py
|
||||
embedding_path=None,
|
||||
latent_diffusion_weights=False, # just to keep track of this parameter when regenerating prompt
|
||||
device='cuda',
|
||||
gfpgan=None,
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
batch_size=1,
|
||||
iterations=1,
|
||||
steps=50,
|
||||
seed=None,
|
||||
cfg_scale=7.5,
|
||||
weights='models/ldm/stable-diffusion-v1/model.ckpt',
|
||||
config='configs/stable-diffusion/v1-inference.yaml',
|
||||
width=512,
|
||||
height=512,
|
||||
sampler_name='klms',
|
||||
latent_channels=4,
|
||||
downsampling_factor=8,
|
||||
ddim_eta=0.0, # deterministic
|
||||
precision='autocast',
|
||||
full_precision=False,
|
||||
strength=0.75, # default in scripts/img2img.py
|
||||
embedding_path=None,
|
||||
latent_diffusion_weights=False, # just to keep track of this parameter when regenerating prompt
|
||||
device='cuda',
|
||||
gfpgan=None,
|
||||
):
|
||||
self.batch_size = batch_size
|
||||
self.batch_size = batch_size
|
||||
self.iterations = iterations
|
||||
self.width = width
|
||||
self.height = height
|
||||
self.steps = steps
|
||||
self.cfg_scale = cfg_scale
|
||||
self.weights = weights
|
||||
self.config = config
|
||||
self.sampler_name = sampler_name
|
||||
self.latent_channels = latent_channels
|
||||
self.width = width
|
||||
self.height = height
|
||||
self.steps = steps
|
||||
self.cfg_scale = cfg_scale
|
||||
self.weights = weights
|
||||
self.config = config
|
||||
self.sampler_name = sampler_name
|
||||
self.latent_channels = latent_channels
|
||||
self.downsampling_factor = downsampling_factor
|
||||
self.ddim_eta = ddim_eta
|
||||
self.precision = precision
|
||||
self.full_precision = full_precision
|
||||
self.strength = strength
|
||||
self.embedding_path = embedding_path
|
||||
self.model = None # empty for now
|
||||
self.sampler = None
|
||||
self.latent_diffusion_weights=latent_diffusion_weights
|
||||
self.ddim_eta = ddim_eta
|
||||
self.precision = precision
|
||||
self.full_precision = full_precision
|
||||
self.strength = strength
|
||||
self.embedding_path = embedding_path
|
||||
self.model = None # empty for now
|
||||
self.sampler = None
|
||||
self.latent_diffusion_weights = latent_diffusion_weights
|
||||
self.device = device
|
||||
self.gfpgan = gfpgan
|
||||
if seed is None:
|
||||
@ -162,49 +164,55 @@ The vast majority of these arguments default to reasonable values.
|
||||
self.seed = seed
|
||||
transformers.logging.set_verbosity_error()
|
||||
|
||||
def prompt2png(self,prompt,outdir,**kwargs):
|
||||
'''
|
||||
def prompt2png(self, prompt, outdir, **kwargs):
|
||||
"""
|
||||
Takes a prompt and an output directory, writes out the requested number
|
||||
of PNG files, and returns an array of [[filename,seed],[filename,seed]...]
|
||||
Optional named arguments are the same as those passed to T2I and prompt2image()
|
||||
'''
|
||||
results = self.prompt2image(prompt,**kwargs)
|
||||
pngwriter = PngWriter(outdir,prompt,kwargs.get('batch_size',self.batch_size))
|
||||
"""
|
||||
results = self.prompt2image(prompt, **kwargs)
|
||||
pngwriter = PngWriter(
|
||||
outdir, prompt, kwargs.get('batch_size', self.batch_size)
|
||||
)
|
||||
for r in results:
|
||||
metadata_str = f'prompt2png("{prompt}" {kwargs} seed={r[1]}' # gets written into the PNG
|
||||
pngwriter.write_image(r[0],r[1])
|
||||
pngwriter.write_image(r[0], r[1])
|
||||
return pngwriter.files_written
|
||||
|
||||
def txt2img(self,prompt,**kwargs):
|
||||
outdir = kwargs.get('outdir','outputs/img-samples')
|
||||
return self.prompt2png(prompt,outdir,**kwargs)
|
||||
def txt2img(self, prompt, **kwargs):
|
||||
outdir = kwargs.get('outdir', 'outputs/img-samples')
|
||||
return self.prompt2png(prompt, outdir, **kwargs)
|
||||
|
||||
def img2img(self,prompt,**kwargs):
|
||||
outdir = kwargs.get('outdir','outputs/img-samples')
|
||||
assert 'init_img' in kwargs,'call to img2img() must include the init_img argument'
|
||||
return self.prompt2png(prompt,outdir,**kwargs)
|
||||
def img2img(self, prompt, **kwargs):
|
||||
outdir = kwargs.get('outdir', 'outputs/img-samples')
|
||||
assert (
|
||||
'init_img' in kwargs
|
||||
), 'call to img2img() must include the init_img argument'
|
||||
return self.prompt2png(prompt, outdir, **kwargs)
|
||||
|
||||
def prompt2image(self,
|
||||
# these are common
|
||||
prompt,
|
||||
batch_size=None,
|
||||
iterations=None,
|
||||
steps=None,
|
||||
seed=None,
|
||||
cfg_scale=None,
|
||||
ddim_eta=None,
|
||||
skip_normalize=False,
|
||||
image_callback=None,
|
||||
# these are specific to txt2img
|
||||
width=None,
|
||||
height=None,
|
||||
# these are specific to img2img
|
||||
init_img=None,
|
||||
strength=None,
|
||||
gfpgan_strength=None,
|
||||
variants=None,
|
||||
**args): # eat up additional cruft
|
||||
'''
|
||||
def prompt2image(
|
||||
self,
|
||||
# these are common
|
||||
prompt,
|
||||
batch_size=None,
|
||||
iterations=None,
|
||||
steps=None,
|
||||
seed=None,
|
||||
cfg_scale=None,
|
||||
ddim_eta=None,
|
||||
skip_normalize=False,
|
||||
image_callback=None,
|
||||
# these are specific to txt2img
|
||||
width=None,
|
||||
height=None,
|
||||
# these are specific to img2img
|
||||
init_img=None,
|
||||
strength=None,
|
||||
gfpgan_strength=None,
|
||||
variants=None,
|
||||
**args,
|
||||
): # eat up additional cruft
|
||||
"""
|
||||
ldm.prompt2image() is the common entry point for txt2img() and img2img()
|
||||
It takes the following arguments:
|
||||
prompt // prompt string (no default)
|
||||
@ -232,118 +240,157 @@ The vast majority of these arguments default to reasonable values.
|
||||
The callback used by the prompt2png() can be found in ldm/dream_util.py. It contains code
|
||||
to create the requested output directory, select a unique informative name for each image, and
|
||||
write the prompt into the PNG metadata.
|
||||
'''
|
||||
steps = steps or self.steps
|
||||
seed = seed or self.seed
|
||||
width = width or self.width
|
||||
height = height or self.height
|
||||
cfg_scale = cfg_scale or self.cfg_scale
|
||||
ddim_eta = ddim_eta or self.ddim_eta
|
||||
"""
|
||||
steps = steps or self.steps
|
||||
seed = seed or self.seed
|
||||
width = width or self.width
|
||||
height = height or self.height
|
||||
cfg_scale = cfg_scale or self.cfg_scale
|
||||
ddim_eta = ddim_eta or self.ddim_eta
|
||||
batch_size = batch_size or self.batch_size
|
||||
iterations = iterations or self.iterations
|
||||
strength = strength or self.strength
|
||||
strength = strength or self.strength
|
||||
|
||||
model = self.load_model() # will instantiate the model or return it from cache
|
||||
assert cfg_scale>1.0, "CFG_Scale (-C) must be >1.0"
|
||||
assert 0. <= strength <= 1., 'can only work with strength in [0.0, 1.0]'
|
||||
w = int(width/64) * 64
|
||||
h = int(height/64) * 64
|
||||
model = (
|
||||
self.load_model()
|
||||
) # will instantiate the model or return it from cache
|
||||
assert cfg_scale > 1.0, 'CFG_Scale (-C) must be >1.0'
|
||||
assert (
|
||||
0.0 <= strength <= 1.0
|
||||
), 'can only work with strength in [0.0, 1.0]'
|
||||
w = int(width / 64) * 64
|
||||
h = int(height / 64) * 64
|
||||
if h != height or w != width:
|
||||
print(f'Height and width must be multiples of 64. Resizing to {h}x{w}')
|
||||
print(
|
||||
f'Height and width must be multiples of 64. Resizing to {h}x{w}'
|
||||
)
|
||||
height = h
|
||||
width = w
|
||||
width = w
|
||||
|
||||
scope = autocast if self.precision=="autocast" else nullcontext
|
||||
scope = autocast if self.precision == 'autocast' else nullcontext
|
||||
|
||||
tic = time.time()
|
||||
results = list()
|
||||
|
||||
try:
|
||||
if init_img:
|
||||
assert os.path.exists(init_img),f'{init_img}: File not found'
|
||||
images_iterator = self._img2img(prompt,
|
||||
precision_scope=scope,
|
||||
batch_size=batch_size,
|
||||
steps=steps,cfg_scale=cfg_scale,ddim_eta=ddim_eta,
|
||||
skip_normalize=skip_normalize,
|
||||
init_img=init_img,strength=strength)
|
||||
assert os.path.exists(init_img), f'{init_img}: File not found'
|
||||
images_iterator = self._img2img(
|
||||
prompt,
|
||||
precision_scope=scope,
|
||||
batch_size=batch_size,
|
||||
steps=steps,
|
||||
cfg_scale=cfg_scale,
|
||||
ddim_eta=ddim_eta,
|
||||
skip_normalize=skip_normalize,
|
||||
init_img=init_img,
|
||||
strength=strength,
|
||||
)
|
||||
else:
|
||||
images_iterator = self._txt2img(prompt,
|
||||
precision_scope=scope,
|
||||
batch_size=batch_size,
|
||||
steps=steps,cfg_scale=cfg_scale,ddim_eta=ddim_eta,
|
||||
skip_normalize=skip_normalize,
|
||||
width=width,height=height)
|
||||
images_iterator = self._txt2img(
|
||||
prompt,
|
||||
precision_scope=scope,
|
||||
batch_size=batch_size,
|
||||
steps=steps,
|
||||
cfg_scale=cfg_scale,
|
||||
ddim_eta=ddim_eta,
|
||||
skip_normalize=skip_normalize,
|
||||
width=width,
|
||||
height=height,
|
||||
)
|
||||
|
||||
with scope(self.device.type), self.model.ema_scope():
|
||||
for n in trange(iterations, desc="Sampling"):
|
||||
for n in trange(iterations, desc='Sampling'):
|
||||
seed_everything(seed)
|
||||
iter_images = next(images_iterator)
|
||||
for image in iter_images:
|
||||
try:
|
||||
if gfpgan_strength > 0:
|
||||
image = self._run_gfpgan(image, gfpgan_strength)
|
||||
image = self._run_gfpgan(
|
||||
image, gfpgan_strength
|
||||
)
|
||||
except Exception as e:
|
||||
print(f"Error running GFPGAN - Your image was not enhanced.\n{e}")
|
||||
print(
|
||||
f'Error running GFPGAN - Your image was not enhanced.\n{e}'
|
||||
)
|
||||
results.append([image, seed])
|
||||
if image_callback is not None:
|
||||
image_callback(image,seed)
|
||||
image_callback(image, seed)
|
||||
seed = self._new_seed()
|
||||
|
||||
except KeyboardInterrupt:
|
||||
print('*interrupted*')
|
||||
print('Partial results will be returned; if --grid was requested, nothing will be returned.')
|
||||
print(
|
||||
'Partial results will be returned; if --grid was requested, nothing will be returned.'
|
||||
)
|
||||
except RuntimeError as e:
|
||||
print(str(e))
|
||||
print('Are you sure your system has an adequate NVIDIA GPU?')
|
||||
|
||||
toc = time.time()
|
||||
print(f'{len(results)} images generated in',"%4.2fs"% (toc-tic))
|
||||
toc = time.time()
|
||||
print(f'{len(results)} images generated in', '%4.2fs' % (toc - tic))
|
||||
return results
|
||||
|
||||
@torch.no_grad()
|
||||
def _txt2img(self,
|
||||
prompt,
|
||||
precision_scope,
|
||||
batch_size,
|
||||
steps,cfg_scale,ddim_eta,
|
||||
skip_normalize,
|
||||
width,height):
|
||||
def _txt2img(
|
||||
self,
|
||||
prompt,
|
||||
precision_scope,
|
||||
batch_size,
|
||||
steps,
|
||||
cfg_scale,
|
||||
ddim_eta,
|
||||
skip_normalize,
|
||||
width,
|
||||
height,
|
||||
):
|
||||
"""
|
||||
An infinite iterator of images from the prompt.
|
||||
"""
|
||||
|
||||
|
||||
sampler = self.sampler
|
||||
|
||||
while True:
|
||||
uc, c = self._get_uc_and_c(prompt, batch_size, skip_normalize)
|
||||
shape = [self.latent_channels, height // self.downsampling_factor, width // self.downsampling_factor]
|
||||
samples, _ = sampler.sample(S=steps,
|
||||
conditioning=c,
|
||||
batch_size=batch_size,
|
||||
shape=shape,
|
||||
verbose=False,
|
||||
unconditional_guidance_scale=cfg_scale,
|
||||
unconditional_conditioning=uc,
|
||||
eta=ddim_eta)
|
||||
shape = [
|
||||
self.latent_channels,
|
||||
height // self.downsampling_factor,
|
||||
width // self.downsampling_factor,
|
||||
]
|
||||
samples, _ = sampler.sample(
|
||||
S=steps,
|
||||
conditioning=c,
|
||||
batch_size=batch_size,
|
||||
shape=shape,
|
||||
verbose=False,
|
||||
unconditional_guidance_scale=cfg_scale,
|
||||
unconditional_conditioning=uc,
|
||||
eta=ddim_eta,
|
||||
)
|
||||
yield self._samples_to_images(samples)
|
||||
|
||||
@torch.no_grad()
|
||||
def _img2img(self,
|
||||
prompt,
|
||||
precision_scope,
|
||||
batch_size,
|
||||
steps,cfg_scale,ddim_eta,
|
||||
skip_normalize,
|
||||
init_img,strength):
|
||||
def _img2img(
|
||||
self,
|
||||
prompt,
|
||||
precision_scope,
|
||||
batch_size,
|
||||
steps,
|
||||
cfg_scale,
|
||||
ddim_eta,
|
||||
skip_normalize,
|
||||
init_img,
|
||||
strength,
|
||||
):
|
||||
"""
|
||||
An infinite iterator of images from the prompt and the initial image
|
||||
"""
|
||||
|
||||
# PLMS sampler not supported yet, so ignore previous sampler
|
||||
if self.sampler_name!='ddim':
|
||||
print(f"sampler '{self.sampler_name}' is not yet supported. Using DDM sampler")
|
||||
if self.sampler_name != 'ddim':
|
||||
print(
|
||||
f"sampler '{self.sampler_name}' is not yet supported. Using DDM sampler"
|
||||
)
|
||||
sampler = DDIMSampler(self.model, device=self.device)
|
||||
else:
|
||||
sampler = self.sampler
|
||||
@ -351,9 +398,13 @@ The vast majority of these arguments default to reasonable values.
|
||||
init_image = self._load_img(init_img).to(self.device)
|
||||
init_image = repeat(init_image, '1 ... -> b ...', b=batch_size)
|
||||
with precision_scope(self.device.type):
|
||||
init_latent = self.model.get_first_stage_encoding(self.model.encode_first_stage(init_image)) # move to latent space
|
||||
init_latent = self.model.get_first_stage_encoding(
|
||||
self.model.encode_first_stage(init_image)
|
||||
) # move to latent space
|
||||
|
||||
sampler.make_schedule(ddim_num_steps=steps, ddim_eta=ddim_eta, verbose=False)
|
||||
sampler.make_schedule(
|
||||
ddim_num_steps=steps, ddim_eta=ddim_eta, verbose=False
|
||||
)
|
||||
|
||||
t_enc = int(strength * steps)
|
||||
# print(f"target t_enc is {t_enc} steps")
|
||||
@ -362,31 +413,44 @@ The vast majority of these arguments default to reasonable values.
|
||||
uc, c = self._get_uc_and_c(prompt, batch_size, skip_normalize)
|
||||
|
||||
# encode (scaled latent)
|
||||
z_enc = sampler.stochastic_encode(init_latent, torch.tensor([t_enc]*batch_size).to(self.device))
|
||||
z_enc = sampler.stochastic_encode(
|
||||
init_latent, torch.tensor([t_enc] * batch_size).to(self.device)
|
||||
)
|
||||
# decode it
|
||||
samples = sampler.decode(z_enc, c, t_enc, unconditional_guidance_scale=cfg_scale,
|
||||
unconditional_conditioning=uc,)
|
||||
samples = sampler.decode(
|
||||
z_enc,
|
||||
c,
|
||||
t_enc,
|
||||
unconditional_guidance_scale=cfg_scale,
|
||||
unconditional_conditioning=uc,
|
||||
)
|
||||
yield self._samples_to_images(samples)
|
||||
|
||||
# TODO: does this actually need to run every loop? does anything in it vary by random seed?
|
||||
def _get_uc_and_c(self, prompt, batch_size, skip_normalize):
|
||||
|
||||
uc = self.model.get_learned_conditioning(batch_size * [""])
|
||||
uc = self.model.get_learned_conditioning(batch_size * [''])
|
||||
|
||||
# weighted sub-prompts
|
||||
subprompts,weights = T2I._split_weighted_subprompts(prompt)
|
||||
subprompts, weights = T2I._split_weighted_subprompts(prompt)
|
||||
if len(subprompts) > 1:
|
||||
# i dont know if this is correct.. but it works
|
||||
c = torch.zeros_like(uc)
|
||||
# get total weight for normalizing
|
||||
totalWeight = sum(weights)
|
||||
# normalize each "sub prompt" and add it
|
||||
for i in range(0,len(subprompts)):
|
||||
for i in range(0, len(subprompts)):
|
||||
weight = weights[i]
|
||||
if not skip_normalize:
|
||||
weight = weight / totalWeight
|
||||
c = torch.add(c, self.model.get_learned_conditioning(batch_size * [subprompts[i]]), alpha=weight)
|
||||
else: # just standard 1 prompt
|
||||
c = torch.add(
|
||||
c,
|
||||
self.model.get_learned_conditioning(
|
||||
batch_size * [subprompts[i]]
|
||||
),
|
||||
alpha=weight,
|
||||
)
|
||||
else: # just standard 1 prompt
|
||||
c = self.model.get_learned_conditioning(batch_size * [prompt])
|
||||
return (uc, c)
|
||||
|
||||
@ -395,23 +459,29 @@ The vast majority of these arguments default to reasonable values.
|
||||
x_samples = torch.clamp((x_samples + 1.0) / 2.0, min=0.0, max=1.0)
|
||||
images = list()
|
||||
for x_sample in x_samples:
|
||||
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
|
||||
x_sample = 255.0 * rearrange(
|
||||
x_sample.cpu().numpy(), 'c h w -> h w c'
|
||||
)
|
||||
image = Image.fromarray(x_sample.astype(np.uint8))
|
||||
images.append(image)
|
||||
return images
|
||||
|
||||
def _new_seed(self):
|
||||
self.seed = random.randrange(0,np.iinfo(np.uint32).max)
|
||||
self.seed = random.randrange(0, np.iinfo(np.uint32).max)
|
||||
return self.seed
|
||||
|
||||
def load_model(self):
|
||||
""" Load and initialize the model from configuration variables passed at object creation time """
|
||||
"""Load and initialize the model from configuration variables passed at object creation time"""
|
||||
if self.model is None:
|
||||
seed_everything(self.seed)
|
||||
try:
|
||||
config = OmegaConf.load(self.config)
|
||||
self.device = torch.device(self.device) if torch.cuda.is_available() else torch.device("cpu")
|
||||
model = self._load_model_from_config(config,self.weights)
|
||||
self.device = (
|
||||
torch.device(self.device)
|
||||
if torch.cuda.is_available()
|
||||
else torch.device('cpu')
|
||||
)
|
||||
model = self._load_model_from_config(config, self.weights)
|
||||
if self.embedding_path is not None:
|
||||
model.embedding_manager.load(self.embedding_path)
|
||||
self.model = model.to(self.device)
|
||||
@ -421,18 +491,26 @@ The vast majority of these arguments default to reasonable values.
|
||||
raise SystemExit
|
||||
|
||||
msg = f'setting sampler to {self.sampler_name}'
|
||||
if self.sampler_name=='plms':
|
||||
if self.sampler_name == 'plms':
|
||||
self.sampler = PLMSSampler(self.model, device=self.device)
|
||||
elif self.sampler_name == 'ddim':
|
||||
self.sampler = DDIMSampler(self.model, device=self.device)
|
||||
elif self.sampler_name == 'k_dpm_2_a':
|
||||
self.sampler = KSampler(self.model, 'dpm_2_ancestral', device=self.device)
|
||||
self.sampler = KSampler(
|
||||
self.model, 'dpm_2_ancestral', device=self.device
|
||||
)
|
||||
elif self.sampler_name == 'k_dpm_2':
|
||||
self.sampler = KSampler(self.model, 'dpm_2', device=self.device)
|
||||
self.sampler = KSampler(
|
||||
self.model, 'dpm_2', device=self.device
|
||||
)
|
||||
elif self.sampler_name == 'k_euler_a':
|
||||
self.sampler = KSampler(self.model, 'euler_ancestral', device=self.device)
|
||||
self.sampler = KSampler(
|
||||
self.model, 'euler_ancestral', device=self.device
|
||||
)
|
||||
elif self.sampler_name == 'k_euler':
|
||||
self.sampler = KSampler(self.model, 'euler', device=self.device)
|
||||
self.sampler = KSampler(
|
||||
self.model, 'euler', device=self.device
|
||||
)
|
||||
elif self.sampler_name == 'k_heun':
|
||||
self.sampler = KSampler(self.model, 'heun', device=self.device)
|
||||
elif self.sampler_name == 'k_lms':
|
||||
@ -446,32 +524,38 @@ The vast majority of these arguments default to reasonable values.
|
||||
return self.model
|
||||
|
||||
def _load_model_from_config(self, config, ckpt):
|
||||
print(f"Loading model from {ckpt}")
|
||||
pl_sd = torch.load(ckpt, map_location="cpu")
|
||||
# if "global_step" in pl_sd:
|
||||
# print(f"Global Step: {pl_sd['global_step']}")
|
||||
sd = pl_sd["state_dict"]
|
||||
print(f'Loading model from {ckpt}')
|
||||
pl_sd = torch.load(ckpt, map_location='cpu')
|
||||
# if "global_step" in pl_sd:
|
||||
# print(f"Global Step: {pl_sd['global_step']}")
|
||||
sd = pl_sd['state_dict']
|
||||
model = instantiate_from_config(config.model)
|
||||
m, u = model.load_state_dict(sd, strict=False)
|
||||
model.to(self.device)
|
||||
model.eval()
|
||||
if self.full_precision:
|
||||
print('Using slower but more accurate full-precision math (--full_precision)')
|
||||
print(
|
||||
'Using slower but more accurate full-precision math (--full_precision)'
|
||||
)
|
||||
else:
|
||||
print('Using half precision math. Call with --full_precision to use slower but more accurate full precision.')
|
||||
print(
|
||||
'Using half precision math. Call with --full_precision to use slower but more accurate full precision.'
|
||||
)
|
||||
model.half()
|
||||
return model
|
||||
|
||||
def _load_img(self,path):
|
||||
image = Image.open(path).convert("RGB")
|
||||
def _load_img(self, path):
|
||||
image = Image.open(path).convert('RGB')
|
||||
w, h = image.size
|
||||
print(f"loaded input image of size ({w}, {h}) from {path}")
|
||||
w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
|
||||
print(f'loaded input image of size ({w}, {h}) from {path}')
|
||||
w, h = map(
|
||||
lambda x: x - x % 32, (w, h)
|
||||
) # resize to integer multiple of 32
|
||||
image = image.resize((w, h), resample=Image.Resampling.LANCZOS)
|
||||
image = np.array(image).astype(np.float32) / 255.0
|
||||
image = image[None].transpose(0, 3, 1, 2)
|
||||
image = torch.from_numpy(image)
|
||||
return 2.*image - 1.
|
||||
return 2.0 * image - 1.0
|
||||
|
||||
def _split_weighted_subprompts(text):
|
||||
"""
|
||||
@ -484,34 +568,36 @@ The vast majority of these arguments default to reasonable values.
|
||||
prompts = []
|
||||
weights = []
|
||||
while remaining > 0:
|
||||
if ":" in text:
|
||||
idx = text.index(":") # first occurrence from start
|
||||
if ':' in text:
|
||||
idx = text.index(':') # first occurrence from start
|
||||
# grab up to index as sub-prompt
|
||||
prompt = text[:idx]
|
||||
remaining -= idx
|
||||
# remove from main text
|
||||
text = text[idx+1:]
|
||||
text = text[idx + 1 :]
|
||||
# find value for weight
|
||||
if " " in text:
|
||||
idx = text.index(" ") # first occurence
|
||||
else: # no space, read to end
|
||||
if ' ' in text:
|
||||
idx = text.index(' ') # first occurence
|
||||
else: # no space, read to end
|
||||
idx = len(text)
|
||||
if idx != 0:
|
||||
try:
|
||||
weight = float(text[:idx])
|
||||
except: # couldn't treat as float
|
||||
print(f"Warning: '{text[:idx]}' is not a value, are you missing a space?")
|
||||
except: # couldn't treat as float
|
||||
print(
|
||||
f"Warning: '{text[:idx]}' is not a value, are you missing a space?"
|
||||
)
|
||||
weight = 1.0
|
||||
else: # no value found
|
||||
else: # no value found
|
||||
weight = 1.0
|
||||
# remove from main text
|
||||
remaining -= idx
|
||||
text = text[idx+1:]
|
||||
text = text[idx + 1 :]
|
||||
# append the sub-prompt and its weight
|
||||
prompts.append(prompt)
|
||||
weights.append(weight)
|
||||
else: # no : found
|
||||
if len(text) > 0: # there is still text though
|
||||
else: # no : found
|
||||
if len(text) > 0: # there is still text though
|
||||
# take remainder as weight 1
|
||||
prompts.append(text)
|
||||
weights.append(1.0)
|
||||
@ -519,13 +605,20 @@ The vast majority of these arguments default to reasonable values.
|
||||
return prompts, weights
|
||||
|
||||
def _run_gfpgan(self, image, strength):
|
||||
if (self.gfpgan is None):
|
||||
print(f"GFPGAN not initialized, it must be loaded via the --gfpgan argument")
|
||||
if self.gfpgan is None:
|
||||
print(
|
||||
f'GFPGAN not initialized, it must be loaded via the --gfpgan argument'
|
||||
)
|
||||
return image
|
||||
|
||||
image = image.convert("RGB")
|
||||
image = image.convert('RGB')
|
||||
|
||||
cropped_faces, restored_faces, restored_img = self.gfpgan.enhance(np.array(image, dtype=np.uint8), has_aligned=False, only_center_face=False, paste_back=True)
|
||||
cropped_faces, restored_faces, restored_img = self.gfpgan.enhance(
|
||||
np.array(image, dtype=np.uint8),
|
||||
has_aligned=False,
|
||||
only_center_face=False,
|
||||
paste_back=True,
|
||||
)
|
||||
res = Image.fromarray(restored_img)
|
||||
|
||||
if strength < 1.0:
|
||||
|
56
ldm/util.py
56
ldm/util.py
@ -13,22 +13,25 @@ from queue import Queue
|
||||
from inspect import isfunction
|
||||
from PIL import Image, ImageDraw, ImageFont
|
||||
|
||||
|
||||
def log_txt_as_img(wh, xc, size=10):
|
||||
# wh a tuple of (width, height)
|
||||
# xc a list of captions to plot
|
||||
b = len(xc)
|
||||
txts = list()
|
||||
for bi in range(b):
|
||||
txt = Image.new("RGB", wh, color="white")
|
||||
txt = Image.new('RGB', wh, color='white')
|
||||
draw = ImageDraw.Draw(txt)
|
||||
font = ImageFont.load_default()
|
||||
nc = int(40 * (wh[0] / 256))
|
||||
lines = "\n".join(xc[bi][start:start + nc] for start in range(0, len(xc[bi]), nc))
|
||||
lines = '\n'.join(
|
||||
xc[bi][start : start + nc] for start in range(0, len(xc[bi]), nc)
|
||||
)
|
||||
|
||||
try:
|
||||
draw.text((0, 0), lines, fill="black", font=font)
|
||||
draw.text((0, 0), lines, fill='black', font=font)
|
||||
except UnicodeEncodeError:
|
||||
print("Cant encode string for logging. Skipping.")
|
||||
print('Cant encode string for logging. Skipping.')
|
||||
|
||||
txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0
|
||||
txts.append(txt)
|
||||
@ -70,22 +73,26 @@ def mean_flat(tensor):
|
||||
def count_params(model, verbose=False):
|
||||
total_params = sum(p.numel() for p in model.parameters())
|
||||
if verbose:
|
||||
print(f"{model.__class__.__name__} has {total_params * 1.e-6:.2f} M params.")
|
||||
print(
|
||||
f'{model.__class__.__name__} has {total_params * 1.e-6:.2f} M params.'
|
||||
)
|
||||
return total_params
|
||||
|
||||
|
||||
def instantiate_from_config(config, **kwargs):
|
||||
if not "target" in config:
|
||||
if not 'target' in config:
|
||||
if config == '__is_first_stage__':
|
||||
return None
|
||||
elif config == "__is_unconditional__":
|
||||
elif config == '__is_unconditional__':
|
||||
return None
|
||||
raise KeyError("Expected key `target` to instantiate.")
|
||||
return get_obj_from_str(config["target"])(**config.get("params", dict()), **kwargs)
|
||||
raise KeyError('Expected key `target` to instantiate.')
|
||||
return get_obj_from_str(config['target'])(
|
||||
**config.get('params', dict()), **kwargs
|
||||
)
|
||||
|
||||
|
||||
def get_obj_from_str(string, reload=False):
|
||||
module, cls = string.rsplit(".", 1)
|
||||
module, cls = string.rsplit('.', 1)
|
||||
if reload:
|
||||
module_imp = importlib.import_module(module)
|
||||
importlib.reload(module_imp)
|
||||
@ -101,31 +108,36 @@ def _do_parallel_data_prefetch(func, Q, data, idx, idx_to_fn=False):
|
||||
else:
|
||||
res = func(data)
|
||||
Q.put([idx, res])
|
||||
Q.put("Done")
|
||||
Q.put('Done')
|
||||
|
||||
|
||||
def parallel_data_prefetch(
|
||||
func: callable, data, n_proc, target_data_type="ndarray", cpu_intensive=True, use_worker_id=False
|
||||
func: callable,
|
||||
data,
|
||||
n_proc,
|
||||
target_data_type='ndarray',
|
||||
cpu_intensive=True,
|
||||
use_worker_id=False,
|
||||
):
|
||||
# if target_data_type not in ["ndarray", "list"]:
|
||||
# raise ValueError(
|
||||
# "Data, which is passed to parallel_data_prefetch has to be either of type list or ndarray."
|
||||
# )
|
||||
if isinstance(data, np.ndarray) and target_data_type == "list":
|
||||
raise ValueError("list expected but function got ndarray.")
|
||||
if isinstance(data, np.ndarray) and target_data_type == 'list':
|
||||
raise ValueError('list expected but function got ndarray.')
|
||||
elif isinstance(data, abc.Iterable):
|
||||
if isinstance(data, dict):
|
||||
print(
|
||||
f'WARNING:"data" argument passed to parallel_data_prefetch is a dict: Using only its values and disregarding keys.'
|
||||
)
|
||||
data = list(data.values())
|
||||
if target_data_type == "ndarray":
|
||||
if target_data_type == 'ndarray':
|
||||
data = np.asarray(data)
|
||||
else:
|
||||
data = list(data)
|
||||
else:
|
||||
raise TypeError(
|
||||
f"The data, that shall be processed parallel has to be either an np.ndarray or an Iterable, but is actually {type(data)}."
|
||||
f'The data, that shall be processed parallel has to be either an np.ndarray or an Iterable, but is actually {type(data)}.'
|
||||
)
|
||||
|
||||
if cpu_intensive:
|
||||
@ -135,7 +147,7 @@ def parallel_data_prefetch(
|
||||
Q = Queue(1000)
|
||||
proc = Thread
|
||||
# spawn processes
|
||||
if target_data_type == "ndarray":
|
||||
if target_data_type == 'ndarray':
|
||||
arguments = [
|
||||
[func, Q, part, i, use_worker_id]
|
||||
for i, part in enumerate(np.array_split(data, n_proc))
|
||||
@ -149,7 +161,7 @@ def parallel_data_prefetch(
|
||||
arguments = [
|
||||
[func, Q, part, i, use_worker_id]
|
||||
for i, part in enumerate(
|
||||
[data[i: i + step] for i in range(0, len(data), step)]
|
||||
[data[i : i + step] for i in range(0, len(data), step)]
|
||||
)
|
||||
]
|
||||
processes = []
|
||||
@ -158,7 +170,7 @@ def parallel_data_prefetch(
|
||||
processes += [p]
|
||||
|
||||
# start processes
|
||||
print(f"Start prefetching...")
|
||||
print(f'Start prefetching...')
|
||||
import time
|
||||
|
||||
start = time.time()
|
||||
@ -171,13 +183,13 @@ def parallel_data_prefetch(
|
||||
while k < n_proc:
|
||||
# get result
|
||||
res = Q.get()
|
||||
if res == "Done":
|
||||
if res == 'Done':
|
||||
k += 1
|
||||
else:
|
||||
gather_res[res[0]] = res[1]
|
||||
|
||||
except Exception as e:
|
||||
print("Exception: ", e)
|
||||
print('Exception: ', e)
|
||||
for p in processes:
|
||||
p.terminate()
|
||||
|
||||
@ -185,7 +197,7 @@ def parallel_data_prefetch(
|
||||
finally:
|
||||
for p in processes:
|
||||
p.join()
|
||||
print(f"Prefetching complete. [{time.time() - start} sec.]")
|
||||
print(f'Prefetching complete. [{time.time() - start} sec.]')
|
||||
|
||||
if target_data_type == 'ndarray':
|
||||
if not isinstance(gather_res[0], np.ndarray):
|
||||
|
462
scripts/dream.py
462
scripts/dream.py
@ -8,49 +8,53 @@ import sys
|
||||
import copy
|
||||
import warnings
|
||||
import ldm.dream.readline
|
||||
from ldm.dream.pngwriter import PngWriter,PromptFormatter
|
||||
from ldm.dream.pngwriter import PngWriter, PromptFormatter
|
||||
|
||||
debugging = False
|
||||
|
||||
|
||||
def main():
|
||||
''' Initialize command-line parsers and the diffusion model '''
|
||||
"""Initialize command-line parsers and the diffusion model"""
|
||||
arg_parser = create_argv_parser()
|
||||
opt = arg_parser.parse_args()
|
||||
opt = arg_parser.parse_args()
|
||||
if opt.laion400m:
|
||||
# defaults suitable to the older latent diffusion weights
|
||||
width = 256
|
||||
height = 256
|
||||
config = "configs/latent-diffusion/txt2img-1p4B-eval.yaml"
|
||||
weights = "models/ldm/text2img-large/model.ckpt"
|
||||
width = 256
|
||||
height = 256
|
||||
config = 'configs/latent-diffusion/txt2img-1p4B-eval.yaml'
|
||||
weights = 'models/ldm/text2img-large/model.ckpt'
|
||||
else:
|
||||
# some defaults suitable for stable diffusion weights
|
||||
width = 512
|
||||
height = 512
|
||||
config = "configs/stable-diffusion/v1-inference.yaml"
|
||||
weights = "models/ldm/stable-diffusion-v1/model.ckpt"
|
||||
width = 512
|
||||
height = 512
|
||||
config = 'configs/stable-diffusion/v1-inference.yaml'
|
||||
weights = 'models/ldm/stable-diffusion-v1/model.ckpt'
|
||||
|
||||
print("* Initializing, be patient...\n")
|
||||
print('* Initializing, be patient...\n')
|
||||
sys.path.append('.')
|
||||
from pytorch_lightning import logging
|
||||
from ldm.simplet2i import T2I
|
||||
|
||||
# these two lines prevent a horrible warning message from appearing
|
||||
# when the frozen CLIP tokenizer is imported
|
||||
import transformers
|
||||
|
||||
transformers.logging.set_verbosity_error()
|
||||
|
||||
# creating a simple text2image object with a handful of
|
||||
# defaults passed on the command line.
|
||||
# additional parameters will be added (or overriden) during
|
||||
# the user input loop
|
||||
t2i = T2I(width=width,
|
||||
height=height,
|
||||
sampler_name=opt.sampler_name,
|
||||
weights=weights,
|
||||
full_precision=opt.full_precision,
|
||||
config=config,
|
||||
latent_diffusion_weights=opt.laion400m, # this is solely for recreating the prompt
|
||||
embedding_path=opt.embedding_path,
|
||||
device=opt.device
|
||||
t2i = T2I(
|
||||
width=width,
|
||||
height=height,
|
||||
sampler_name=opt.sampler_name,
|
||||
weights=weights,
|
||||
full_precision=opt.full_precision,
|
||||
config=config,
|
||||
latent_diffusion_weights=opt.laion400m, # this is solely for recreating the prompt
|
||||
embedding_path=opt.embedding_path,
|
||||
device=opt.device,
|
||||
)
|
||||
|
||||
# make sure the output directory exists
|
||||
@ -58,12 +62,12 @@ def main():
|
||||
os.makedirs(opt.outdir)
|
||||
|
||||
# gets rid of annoying messages about random seed
|
||||
logging.getLogger("pytorch_lightning").setLevel(logging.ERROR)
|
||||
logging.getLogger('pytorch_lightning').setLevel(logging.ERROR)
|
||||
|
||||
infile = None
|
||||
try:
|
||||
if opt.infile is not None:
|
||||
infile = open(opt.infile,'r')
|
||||
infile = open(opt.infile, 'r')
|
||||
except FileNotFoundError as e:
|
||||
print(e)
|
||||
exit(-1)
|
||||
@ -73,59 +77,74 @@ def main():
|
||||
|
||||
# load GFPGAN if requested
|
||||
if opt.use_gfpgan:
|
||||
print("\n* --gfpgan was specified, loading gfpgan...")
|
||||
print('\n* --gfpgan was specified, loading gfpgan...')
|
||||
with warnings.catch_warnings():
|
||||
warnings.filterwarnings("ignore", category=DeprecationWarning)
|
||||
warnings.filterwarnings('ignore', category=DeprecationWarning)
|
||||
|
||||
try:
|
||||
model_path = os.path.join(opt.gfpgan_dir, opt.gfpgan_model_path)
|
||||
model_path = os.path.join(
|
||||
opt.gfpgan_dir, opt.gfpgan_model_path
|
||||
)
|
||||
if not os.path.isfile(model_path):
|
||||
raise Exception("GFPGAN model not found at path "+model_path)
|
||||
raise Exception(
|
||||
'GFPGAN model not found at path ' + model_path
|
||||
)
|
||||
|
||||
sys.path.append(os.path.abspath(opt.gfpgan_dir))
|
||||
from gfpgan import GFPGANer
|
||||
|
||||
bg_upsampler = load_gfpgan_bg_upsampler(opt.gfpgan_bg_upsampler, opt.gfpgan_bg_tile)
|
||||
bg_upsampler = load_gfpgan_bg_upsampler(
|
||||
opt.gfpgan_bg_upsampler, opt.gfpgan_bg_tile
|
||||
)
|
||||
|
||||
t2i.gfpgan = GFPGANer(model_path=model_path, upscale=opt.gfpgan_upscale, arch='clean', channel_multiplier=2, bg_upsampler=bg_upsampler)
|
||||
t2i.gfpgan = GFPGANer(
|
||||
model_path=model_path,
|
||||
upscale=opt.gfpgan_upscale,
|
||||
arch='clean',
|
||||
channel_multiplier=2,
|
||||
bg_upsampler=bg_upsampler,
|
||||
)
|
||||
except Exception:
|
||||
import traceback
|
||||
print("Error loading GFPGAN:", file=sys.stderr)
|
||||
|
||||
print('Error loading GFPGAN:', file=sys.stderr)
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
|
||||
print("\n* Initialization done! Awaiting your command (-h for help, 'q' to quit, 'cd' to change output dir, 'pwd' to print output dir)...")
|
||||
print(
|
||||
"\n* Initialization done! Awaiting your command (-h for help, 'q' to quit, 'cd' to change output dir, 'pwd' to print output dir)..."
|
||||
)
|
||||
|
||||
log_path = os.path.join(opt.outdir,'dream_log.txt')
|
||||
with open(log_path,'a') as log:
|
||||
log_path = os.path.join(opt.outdir, 'dream_log.txt')
|
||||
with open(log_path, 'a') as log:
|
||||
cmd_parser = create_cmd_parser()
|
||||
main_loop(t2i,opt.outdir,cmd_parser,log,infile)
|
||||
main_loop(t2i, opt.outdir, cmd_parser, log, infile)
|
||||
log.close()
|
||||
if infile:
|
||||
infile.close()
|
||||
|
||||
|
||||
def main_loop(t2i,outdir,parser,log,infile):
|
||||
''' prompt/read/execute loop '''
|
||||
done = False
|
||||
def main_loop(t2i, outdir, parser, log, infile):
|
||||
"""prompt/read/execute loop"""
|
||||
done = False
|
||||
last_seeds = []
|
||||
|
||||
while not done:
|
||||
try:
|
||||
command = infile.readline() if infile else input("dream> ")
|
||||
command = infile.readline() if infile else input('dream> ')
|
||||
except EOFError:
|
||||
done = True
|
||||
break
|
||||
|
||||
if infile and len(command)==0:
|
||||
if infile and len(command) == 0:
|
||||
done = True
|
||||
break
|
||||
|
||||
if command.startswith(('#','//')):
|
||||
if command.startswith(('#', '//')):
|
||||
continue
|
||||
|
||||
# before splitting, escape single quotes so as not to mess
|
||||
# up the parser
|
||||
command = command.replace("'","\\'")
|
||||
command = command.replace("'", "\\'")
|
||||
|
||||
try:
|
||||
elements = shlex.split(command)
|
||||
@ -133,26 +152,28 @@ def main_loop(t2i,outdir,parser,log,infile):
|
||||
print(str(e))
|
||||
continue
|
||||
|
||||
if len(elements)==0:
|
||||
if len(elements) == 0:
|
||||
continue
|
||||
|
||||
if elements[0]=='q':
|
||||
if elements[0] == 'q':
|
||||
done = True
|
||||
break
|
||||
|
||||
if elements[0]=='cd' and len(elements)>1:
|
||||
if elements[0] == 'cd' and len(elements) > 1:
|
||||
if os.path.exists(elements[1]):
|
||||
print(f"setting image output directory to {elements[1]}")
|
||||
outdir=elements[1]
|
||||
print(f'setting image output directory to {elements[1]}')
|
||||
outdir = elements[1]
|
||||
else:
|
||||
print(f"directory {elements[1]} does not exist")
|
||||
print(f'directory {elements[1]} does not exist')
|
||||
continue
|
||||
|
||||
if elements[0]=='pwd':
|
||||
print(f"current output directory is {outdir}")
|
||||
if elements[0] == 'pwd':
|
||||
print(f'current output directory is {outdir}')
|
||||
continue
|
||||
|
||||
if elements[0].startswith('!dream'): # in case a stored prompt still contains the !dream command
|
||||
if elements[0].startswith(
|
||||
'!dream'
|
||||
): # in case a stored prompt still contains the !dream command
|
||||
elements.pop(0)
|
||||
|
||||
# rearrange the arguments to mimic how it works in the Dream bot.
|
||||
@ -160,48 +181,52 @@ def main_loop(t2i,outdir,parser,log,infile):
|
||||
switches_started = False
|
||||
|
||||
for el in elements:
|
||||
if el[0]=='-' and not switches_started:
|
||||
if el[0] == '-' and not switches_started:
|
||||
switches_started = True
|
||||
if switches_started:
|
||||
switches.append(el)
|
||||
else:
|
||||
switches[0] += el
|
||||
switches[0] += ' '
|
||||
switches[0] = switches[0][:len(switches[0])-1]
|
||||
switches[0] = switches[0][: len(switches[0]) - 1]
|
||||
|
||||
try:
|
||||
opt = parser.parse_args(switches)
|
||||
opt = parser.parse_args(switches)
|
||||
except SystemExit:
|
||||
parser.print_help()
|
||||
continue
|
||||
if len(opt.prompt)==0:
|
||||
print("Try again with a prompt!")
|
||||
if len(opt.prompt) == 0:
|
||||
print('Try again with a prompt!')
|
||||
continue
|
||||
if opt.seed is not None and opt.seed<0: # retrieve previous value!
|
||||
if opt.seed is not None and opt.seed < 0: # retrieve previous value!
|
||||
try:
|
||||
opt.seed = last_seeds[opt.seed]
|
||||
print(f"reusing previous seed {opt.seed}")
|
||||
print(f'reusing previous seed {opt.seed}')
|
||||
except IndexError:
|
||||
print(f"No previous seed at position {opt.seed} found")
|
||||
print(f'No previous seed at position {opt.seed} found')
|
||||
opt.seed = None
|
||||
|
||||
normalized_prompt = PromptFormatter(t2i,opt).normalize_prompt()
|
||||
individual_images = not opt.grid
|
||||
normalized_prompt = PromptFormatter(t2i, opt).normalize_prompt()
|
||||
individual_images = not opt.grid
|
||||
|
||||
try:
|
||||
file_writer = PngWriter(outdir,normalized_prompt,opt.batch_size)
|
||||
callback = file_writer.write_image if individual_images else None
|
||||
file_writer = PngWriter(outdir, normalized_prompt, opt.batch_size)
|
||||
callback = file_writer.write_image if individual_images else None
|
||||
|
||||
image_list = t2i.prompt2image(image_callback=callback,**vars(opt))
|
||||
results = file_writer.files_written if individual_images else image_list
|
||||
image_list = t2i.prompt2image(image_callback=callback, **vars(opt))
|
||||
results = (
|
||||
file_writer.files_written if individual_images else image_list
|
||||
)
|
||||
|
||||
if opt.grid and len(results) > 0:
|
||||
grid_img = file_writer.make_grid([r[0] for r in results])
|
||||
filename = file_writer.unique_filename(results[0][1])
|
||||
seeds = [a[1] for a in results]
|
||||
results = [[filename,seeds]]
|
||||
metadata_prompt = f'{normalized_prompt} -S{results[0][1]}'
|
||||
file_writer.save_image_and_prompt_to_png(grid_img,metadata_prompt,filename)
|
||||
seeds = [a[1] for a in results]
|
||||
results = [[filename, seeds]]
|
||||
metadata_prompt = f'{normalized_prompt} -S{results[0][1]}'
|
||||
file_writer.save_image_and_prompt_to_png(
|
||||
grid_img, metadata_prompt, filename
|
||||
)
|
||||
|
||||
last_seeds = [r[1] for r in results]
|
||||
|
||||
@ -213,10 +238,11 @@ def main_loop(t2i,outdir,parser,log,infile):
|
||||
print(e)
|
||||
continue
|
||||
|
||||
print("Outputs:")
|
||||
write_log_message(t2i,normalized_prompt,results,log)
|
||||
print('Outputs:')
|
||||
write_log_message(t2i, normalized_prompt, results, log)
|
||||
|
||||
print('goodbye!')
|
||||
|
||||
print("goodbye!")
|
||||
|
||||
def load_gfpgan_bg_upsampler(bg_upsampler, bg_tile=400):
|
||||
import torch
|
||||
@ -224,13 +250,24 @@ def load_gfpgan_bg_upsampler(bg_upsampler, bg_tile=400):
|
||||
if bg_upsampler == 'realesrgan':
|
||||
if not torch.cuda.is_available(): # CPU
|
||||
import warnings
|
||||
warnings.warn('The unoptimized RealESRGAN is slow on CPU. We do not use it. '
|
||||
'If you really want to use it, please modify the corresponding codes.')
|
||||
|
||||
warnings.warn(
|
||||
'The unoptimized RealESRGAN is slow on CPU. We do not use it. '
|
||||
'If you really want to use it, please modify the corresponding codes.'
|
||||
)
|
||||
bg_upsampler = None
|
||||
else:
|
||||
from basicsr.archs.rrdbnet_arch import RRDBNet
|
||||
from realesrgan import RealESRGANer
|
||||
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
|
||||
|
||||
model = RRDBNet(
|
||||
num_in_ch=3,
|
||||
num_out_ch=3,
|
||||
num_feat=64,
|
||||
num_block=23,
|
||||
num_grow_ch=32,
|
||||
scale=2,
|
||||
)
|
||||
bg_upsampler = RealESRGANer(
|
||||
scale=2,
|
||||
model_path='https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth',
|
||||
@ -238,12 +275,14 @@ def load_gfpgan_bg_upsampler(bg_upsampler, bg_tile=400):
|
||||
tile=bg_tile,
|
||||
tile_pad=10,
|
||||
pre_pad=0,
|
||||
half=True) # need to set False in CPU mode
|
||||
half=True,
|
||||
) # need to set False in CPU mode
|
||||
else:
|
||||
bg_upsampler = None
|
||||
|
||||
return bg_upsampler
|
||||
|
||||
|
||||
# variant generation is going to be superseded by a generalized
|
||||
# "prompt-morph" functionality
|
||||
# def generate_variants(t2i,outdir,opt,previous_gens):
|
||||
@ -270,108 +309,207 @@ def load_gfpgan_bg_upsampler(bg_upsampler, bg_tile=400):
|
||||
# return variants
|
||||
|
||||
|
||||
def write_log_message(t2i,prompt,results,logfile):
|
||||
''' logs the name of the output image, its prompt and seed to the terminal, log file, and a Dream text chunk in the PNG metadata'''
|
||||
last_seed = None
|
||||
img_num = 1
|
||||
seenit = {}
|
||||
def write_log_message(t2i, prompt, results, logfile):
|
||||
"""logs the name of the output image, its prompt and seed to the terminal, log file, and a Dream text chunk in the PNG metadata"""
|
||||
last_seed = None
|
||||
img_num = 1
|
||||
seenit = {}
|
||||
|
||||
for r in results:
|
||||
seed = r[1]
|
||||
log_message = (f'{r[0]}: {prompt} -S{seed}')
|
||||
log_message = f'{r[0]}: {prompt} -S{seed}'
|
||||
|
||||
print(log_message)
|
||||
logfile.write(log_message+"\n")
|
||||
logfile.write(log_message + '\n')
|
||||
logfile.flush()
|
||||
|
||||
|
||||
def create_argv_parser():
|
||||
parser = argparse.ArgumentParser(description="Parse script's command line args")
|
||||
parser.add_argument("--laion400m",
|
||||
"--latent_diffusion",
|
||||
"-l",
|
||||
dest='laion400m',
|
||||
action='store_true',
|
||||
help="fallback to the latent diffusion (laion400m) weights and config")
|
||||
parser.add_argument("--from_file",
|
||||
dest='infile',
|
||||
type=str,
|
||||
help="if specified, load prompts from this file")
|
||||
parser.add_argument('-n','--iterations',
|
||||
type=int,
|
||||
default=1,
|
||||
help="number of images to generate")
|
||||
parser.add_argument('-F','--full_precision',
|
||||
dest='full_precision',
|
||||
action='store_true',
|
||||
help="use slower full precision math for calculations")
|
||||
parser.add_argument('--sampler','-m',
|
||||
dest="sampler_name",
|
||||
choices=['ddim', 'k_dpm_2_a', 'k_dpm_2', 'k_euler_a', 'k_euler', 'k_heun', 'k_lms', 'plms'],
|
||||
default='k_lms',
|
||||
help="which sampler to use (k_lms) - can only be set on command line")
|
||||
parser.add_argument('--outdir',
|
||||
'-o',
|
||||
type=str,
|
||||
default="outputs/img-samples",
|
||||
help="directory in which to place generated images and a log of prompts and seeds (outputs/img-samples")
|
||||
parser.add_argument('--embedding_path',
|
||||
type=str,
|
||||
help="Path to a pre-trained embedding manager checkpoint - can only be set on command line")
|
||||
parser.add_argument('--device',
|
||||
'-d',
|
||||
type=str,
|
||||
default="cuda",
|
||||
help="device to run stable diffusion on. defaults to cuda `torch.cuda.current_device()` if avalible")
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Parse script's command line args"
|
||||
)
|
||||
parser.add_argument(
|
||||
'--laion400m',
|
||||
'--latent_diffusion',
|
||||
'-l',
|
||||
dest='laion400m',
|
||||
action='store_true',
|
||||
help='fallback to the latent diffusion (laion400m) weights and config',
|
||||
)
|
||||
parser.add_argument(
|
||||
'--from_file',
|
||||
dest='infile',
|
||||
type=str,
|
||||
help='if specified, load prompts from this file',
|
||||
)
|
||||
parser.add_argument(
|
||||
'-n',
|
||||
'--iterations',
|
||||
type=int,
|
||||
default=1,
|
||||
help='number of images to generate',
|
||||
)
|
||||
parser.add_argument(
|
||||
'-F',
|
||||
'--full_precision',
|
||||
dest='full_precision',
|
||||
action='store_true',
|
||||
help='use slower full precision math for calculations',
|
||||
)
|
||||
parser.add_argument(
|
||||
'--sampler',
|
||||
'-m',
|
||||
dest='sampler_name',
|
||||
choices=[
|
||||
'ddim',
|
||||
'k_dpm_2_a',
|
||||
'k_dpm_2',
|
||||
'k_euler_a',
|
||||
'k_euler',
|
||||
'k_heun',
|
||||
'k_lms',
|
||||
'plms',
|
||||
],
|
||||
default='k_lms',
|
||||
help='which sampler to use (k_lms) - can only be set on command line',
|
||||
)
|
||||
parser.add_argument(
|
||||
'--outdir',
|
||||
'-o',
|
||||
type=str,
|
||||
default='outputs/img-samples',
|
||||
help='directory in which to place generated images and a log of prompts and seeds (outputs/img-samples',
|
||||
)
|
||||
parser.add_argument(
|
||||
'--embedding_path',
|
||||
type=str,
|
||||
help='Path to a pre-trained embedding manager checkpoint - can only be set on command line',
|
||||
)
|
||||
parser.add_argument(
|
||||
'--device',
|
||||
'-d',
|
||||
type=str,
|
||||
default='cuda',
|
||||
help='device to run stable diffusion on. defaults to cuda `torch.cuda.current_device()` if avalible',
|
||||
)
|
||||
# GFPGAN related args
|
||||
parser.add_argument('--gfpgan',
|
||||
dest='use_gfpgan',
|
||||
action='store_true',
|
||||
help="load gfpgan for use in the dreambot. Note: Enabling GFPGAN will require more GPU memory")
|
||||
parser.add_argument("--gfpgan_upscale",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The final upsampling scale of the image. Default: 2. Only used if --gfpgan is specified")
|
||||
parser.add_argument("--gfpgan_bg_upsampler",
|
||||
type=str,
|
||||
default='realesrgan',
|
||||
help="Background upsampler. Default: None. Options: realesrgan, none. Only used if --gfpgan is specified")
|
||||
parser.add_argument("--gfpgan_bg_tile",
|
||||
type=int,
|
||||
default=400,
|
||||
help="Tile size for background sampler, 0 for no tile during testing. Default: 400. Only used if --gfpgan is specified")
|
||||
parser.add_argument("--gfpgan_model_path",
|
||||
type=str,
|
||||
default='experiments/pretrained_models/GFPGANv1.3.pth',
|
||||
help="indicates the path to the GFPGAN model, relative to --gfpgan_dir. Only used if --gfpgan is specified")
|
||||
parser.add_argument("--gfpgan_dir",
|
||||
type=str,
|
||||
default='../GFPGAN',
|
||||
help="indicates the directory containing the GFPGAN code. Only used if --gfpgan is specified")
|
||||
parser.add_argument(
|
||||
'--gfpgan',
|
||||
dest='use_gfpgan',
|
||||
action='store_true',
|
||||
help='load gfpgan for use in the dreambot. Note: Enabling GFPGAN will require more GPU memory',
|
||||
)
|
||||
parser.add_argument(
|
||||
'--gfpgan_upscale',
|
||||
type=int,
|
||||
default=2,
|
||||
help='The final upsampling scale of the image. Default: 2. Only used if --gfpgan is specified',
|
||||
)
|
||||
parser.add_argument(
|
||||
'--gfpgan_bg_upsampler',
|
||||
type=str,
|
||||
default='realesrgan',
|
||||
help='Background upsampler. Default: None. Options: realesrgan, none. Only used if --gfpgan is specified',
|
||||
)
|
||||
parser.add_argument(
|
||||
'--gfpgan_bg_tile',
|
||||
type=int,
|
||||
default=400,
|
||||
help='Tile size for background sampler, 0 for no tile during testing. Default: 400. Only used if --gfpgan is specified',
|
||||
)
|
||||
parser.add_argument(
|
||||
'--gfpgan_model_path',
|
||||
type=str,
|
||||
default='experiments/pretrained_models/GFPGANv1.3.pth',
|
||||
help='indicates the path to the GFPGAN model, relative to --gfpgan_dir. Only used if --gfpgan is specified',
|
||||
)
|
||||
parser.add_argument(
|
||||
'--gfpgan_dir',
|
||||
type=str,
|
||||
default='../GFPGAN',
|
||||
help='indicates the directory containing the GFPGAN code. Only used if --gfpgan is specified',
|
||||
)
|
||||
return parser
|
||||
|
||||
|
||||
def create_cmd_parser():
|
||||
parser = argparse.ArgumentParser(description='Example: dream> a fantastic alien landscape -W1024 -H960 -s100 -n12')
|
||||
parser = argparse.ArgumentParser(
|
||||
description='Example: dream> a fantastic alien landscape -W1024 -H960 -s100 -n12'
|
||||
)
|
||||
parser.add_argument('prompt')
|
||||
parser.add_argument('-s','--steps',type=int,help="number of steps")
|
||||
parser.add_argument('-S','--seed',type=int,help="image seed; a +ve integer, or use -1 for the previous seed, -2 for the one before that, etc")
|
||||
parser.add_argument('-n','--iterations',type=int,default=1,help="number of samplings to perform (slower, but will provide seeds for individual images)")
|
||||
parser.add_argument('-b','--batch_size',type=int,default=1,help="number of images to produce per sampling (will not provide seeds for individual images!)")
|
||||
parser.add_argument('-W','--width',type=int,help="image width, multiple of 64")
|
||||
parser.add_argument('-H','--height',type=int,help="image height, multiple of 64")
|
||||
parser.add_argument('-C','--cfg_scale',default=7.5,type=float,help="prompt configuration scale")
|
||||
parser.add_argument('-g','--grid',action='store_true',help="generate a grid")
|
||||
parser.add_argument('-i','--individual',action='store_true',help="generate individual files (default)")
|
||||
parser.add_argument('-I','--init_img',type=str,help="path to input image for img2img mode (supersedes width and height)")
|
||||
parser.add_argument('-f','--strength',default=0.75,type=float,help="strength for noising/unnoising. 0.0 preserves image exactly, 1.0 replaces it completely")
|
||||
parser.add_argument('-G','--gfpgan_strength', default=0.5, type=float, help="The strength at which to apply the GFPGAN model to the result, in order to improve faces.")
|
||||
# variants is going to be superseded by a generalized "prompt-morph" function
|
||||
# parser.add_argument('-v','--variants',type=int,help="in img2img mode, the first generated image will get passed back to img2img to generate the requested number of variants")
|
||||
parser.add_argument('-x','--skip_normalize',action='store_true',help="skip subprompt weight normalization")
|
||||
parser.add_argument('-s', '--steps', type=int, help='number of steps')
|
||||
parser.add_argument(
|
||||
'-S',
|
||||
'--seed',
|
||||
type=int,
|
||||
help='image seed; a +ve integer, or use -1 for the previous seed, -2 for the one before that, etc',
|
||||
)
|
||||
parser.add_argument(
|
||||
'-n',
|
||||
'--iterations',
|
||||
type=int,
|
||||
default=1,
|
||||
help='number of samplings to perform (slower, but will provide seeds for individual images)',
|
||||
)
|
||||
parser.add_argument(
|
||||
'-b',
|
||||
'--batch_size',
|
||||
type=int,
|
||||
default=1,
|
||||
help='number of images to produce per sampling (will not provide seeds for individual images!)',
|
||||
)
|
||||
parser.add_argument(
|
||||
'-W', '--width', type=int, help='image width, multiple of 64'
|
||||
)
|
||||
parser.add_argument(
|
||||
'-H', '--height', type=int, help='image height, multiple of 64'
|
||||
)
|
||||
parser.add_argument(
|
||||
'-C',
|
||||
'--cfg_scale',
|
||||
default=7.5,
|
||||
type=float,
|
||||
help='prompt configuration scale',
|
||||
)
|
||||
parser.add_argument(
|
||||
'-g', '--grid', action='store_true', help='generate a grid'
|
||||
)
|
||||
parser.add_argument(
|
||||
'-i',
|
||||
'--individual',
|
||||
action='store_true',
|
||||
help='generate individual files (default)',
|
||||
)
|
||||
parser.add_argument(
|
||||
'-I',
|
||||
'--init_img',
|
||||
type=str,
|
||||
help='path to input image for img2img mode (supersedes width and height)',
|
||||
)
|
||||
parser.add_argument(
|
||||
'-f',
|
||||
'--strength',
|
||||
default=0.75,
|
||||
type=float,
|
||||
help='strength for noising/unnoising. 0.0 preserves image exactly, 1.0 replaces it completely',
|
||||
)
|
||||
parser.add_argument(
|
||||
'-G',
|
||||
'--gfpgan_strength',
|
||||
default=0.5,
|
||||
type=float,
|
||||
help='The strength at which to apply the GFPGAN model to the result, in order to improve faces.',
|
||||
)
|
||||
# variants is going to be superseded by a generalized "prompt-morph" function
|
||||
# parser.add_argument('-v','--variants',type=int,help="in img2img mode, the first generated image will get passed back to img2img to generate the requested number of variants")
|
||||
parser.add_argument(
|
||||
'-x',
|
||||
'--skip_normalize',
|
||||
action='store_true',
|
||||
help='skip subprompt weight normalization',
|
||||
)
|
||||
return parser
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
|
||||
|
@ -11,26 +11,28 @@ import warnings
|
||||
transformers.logging.set_verbosity_error()
|
||||
|
||||
# this will preload the Bert tokenizer fles
|
||||
print("preloading bert tokenizer...")
|
||||
print('preloading bert tokenizer...')
|
||||
from transformers import BertTokenizerFast
|
||||
tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased")
|
||||
print("...success")
|
||||
|
||||
tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased')
|
||||
print('...success')
|
||||
|
||||
# this will download requirements for Kornia
|
||||
print("preloading Kornia requirements (ignore the deprecation warnings)...")
|
||||
print('preloading Kornia requirements (ignore the deprecation warnings)...')
|
||||
with warnings.catch_warnings():
|
||||
warnings.filterwarnings("ignore", category=DeprecationWarning)
|
||||
warnings.filterwarnings('ignore', category=DeprecationWarning)
|
||||
import kornia
|
||||
print("...success")
|
||||
print('...success')
|
||||
|
||||
version='openai/clip-vit-large-patch14'
|
||||
version = 'openai/clip-vit-large-patch14'
|
||||
|
||||
print('preloading CLIP model (Ignore the deprecation warnings)...')
|
||||
sys.stdout.flush()
|
||||
import clip
|
||||
from transformers import CLIPTokenizer, CLIPTextModel
|
||||
tokenizer =CLIPTokenizer.from_pretrained(version)
|
||||
transformer=CLIPTextModel.from_pretrained(version)
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained(version)
|
||||
transformer = CLIPTextModel.from_pretrained(version)
|
||||
print('\n\n...success')
|
||||
|
||||
# In the event that the user has installed GFPGAN and also elected to use
|
||||
@ -38,23 +40,33 @@ print('\n\n...success')
|
||||
gfpgan = False
|
||||
try:
|
||||
from realesrgan import RealESRGANer
|
||||
|
||||
gfpgan = True
|
||||
except ModuleNotFoundError:
|
||||
pass
|
||||
|
||||
if gfpgan:
|
||||
print("Loading models from RealESRGAN and facexlib")
|
||||
print('Loading models from RealESRGAN and facexlib')
|
||||
try:
|
||||
from basicsr.archs.rrdbnet_arch import RRDBNet
|
||||
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
|
||||
RealESRGANer(scale=2,
|
||||
model_path='https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth',
|
||||
model=RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2))
|
||||
FaceRestoreHelper(1,det_model='retinaface_resnet50')
|
||||
print("...success")
|
||||
|
||||
RealESRGANer(
|
||||
scale=2,
|
||||
model_path='https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth',
|
||||
model=RRDBNet(
|
||||
num_in_ch=3,
|
||||
num_out_ch=3,
|
||||
num_feat=64,
|
||||
num_block=23,
|
||||
num_grow_ch=32,
|
||||
scale=2,
|
||||
),
|
||||
)
|
||||
FaceRestoreHelper(1, det_model='retinaface_resnet50')
|
||||
print('...success')
|
||||
except Exception:
|
||||
import traceback
|
||||
print("Error loading GFPGAN:")
|
||||
|
||||
print('Error loading GFPGAN:')
|
||||
print(traceback.format_exc())
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user