Same changes as in other PRs, add check for running inpainting on inpaint model without source image

Co-Authored-By: Ryan Dick <14897797+RyanJDick@users.noreply.github.com>
This commit is contained in:
Sergey Borisov 2024-07-22 23:47:39 +03:00
parent 58f3072b91
commit 5003e5d763
3 changed files with 32 additions and 31 deletions

View File

@ -718,7 +718,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
return seed, noise, latents return seed, noise, latents
def invoke(self, context: InvocationContext) -> LatentsOutput: def invoke(self, context: InvocationContext) -> LatentsOutput:
if os.environ.get("USE_MODULAR_DENOISE", False): if os.environ.get("USE_MODULAR_DENOISE", True):
return self._new_invoke(context) return self._new_invoke(context)
else: else:
return self._old_invoke(context) return self._old_invoke(context)

View File

@ -1,6 +1,6 @@
from __future__ import annotations from __future__ import annotations
from typing import TYPE_CHECKING from typing import TYPE_CHECKING, Optional
import einops import einops
import torch import torch
@ -20,8 +20,9 @@ class InpaintExt(ExtensionBase):
is_gradient_mask: bool, is_gradient_mask: bool,
): ):
super().__init__() super().__init__()
self.mask = mask self._mask = mask
self.is_gradient_mask = is_gradient_mask self._is_gradient_mask = is_gradient_mask
self._noise: Optional[torch.Tensor] = None
@staticmethod @staticmethod
def _is_normal_model(unet: UNet2DConditionModel): def _is_normal_model(unet: UNet2DConditionModel):
@ -29,18 +30,18 @@ class InpaintExt(ExtensionBase):
def _apply_mask(self, ctx: DenoiseContext, latents: torch.Tensor, t: torch.Tensor) -> torch.Tensor: def _apply_mask(self, ctx: DenoiseContext, latents: torch.Tensor, t: torch.Tensor) -> torch.Tensor:
batch_size = latents.size(0) batch_size = latents.size(0)
mask = einops.repeat(self.mask, "b c h w -> (repeat b) c h w", repeat=batch_size) mask = einops.repeat(self._mask, "b c h w -> (repeat b) c h w", repeat=batch_size)
if t.dim() == 0: if t.dim() == 0:
# some schedulers expect t to be one-dimensional. # some schedulers expect t to be one-dimensional.
# TODO: file diffusers bug about inconsistency? # TODO: file diffusers bug about inconsistency?
t = einops.repeat(t, "-> batch", batch=batch_size) t = einops.repeat(t, "-> batch", batch=batch_size)
# Noise shouldn't be re-randomized between steps here. The multistep schedulers # Noise shouldn't be re-randomized between steps here. The multistep schedulers
# get very confused about what is happening from step to step when we do that. # get very confused about what is happening from step to step when we do that.
mask_latents = ctx.scheduler.add_noise(ctx.inputs.orig_latents, self.noise, t) mask_latents = ctx.scheduler.add_noise(ctx.inputs.orig_latents, self._noise, t)
# TODO: Do we need to also apply scheduler.scale_model_input? Or is add_noise appropriately scaled already? # TODO: Do we need to also apply scheduler.scale_model_input? Or is add_noise appropriately scaled already?
# mask_latents = self.scheduler.scale_model_input(mask_latents, t) # mask_latents = self.scheduler.scale_model_input(mask_latents, t)
mask_latents = einops.repeat(mask_latents, "b c h w -> (repeat b) c h w", repeat=batch_size) mask_latents = einops.repeat(mask_latents, "b c h w -> (repeat b) c h w", repeat=batch_size)
if self.is_gradient_mask: if self._is_gradient_mask:
threshhold = (t.item()) / ctx.scheduler.config.num_train_timesteps threshhold = (t.item()) / ctx.scheduler.config.num_train_timesteps
mask_bool = mask > threshhold # I don't know when mask got inverted, but it did mask_bool = mask > threshhold # I don't know when mask got inverted, but it did
masked_input = torch.where(mask_bool, latents, mask_latents) masked_input = torch.where(mask_bool, latents, mask_latents)
@ -53,11 +54,11 @@ class InpaintExt(ExtensionBase):
if not self._is_normal_model(ctx.unet): if not self._is_normal_model(ctx.unet):
raise Exception("InpaintExt should be used only on normal models!") raise Exception("InpaintExt should be used only on normal models!")
self.mask = self.mask.to(device=ctx.latents.device, dtype=ctx.latents.dtype) self._mask = self._mask.to(device=ctx.latents.device, dtype=ctx.latents.dtype)
self.noise = ctx.inputs.noise self._noise = ctx.inputs.noise
if self.noise is None: if self._noise is None:
self.noise = torch.randn( self._noise = torch.randn(
ctx.latents.shape, ctx.latents.shape,
dtype=torch.float32, dtype=torch.float32,
device="cpu", device="cpu",
@ -85,7 +86,7 @@ class InpaintExt(ExtensionBase):
# restore unmasked part after the last step is completed # restore unmasked part after the last step is completed
@callback(ExtensionCallbackType.POST_DENOISE_LOOP) @callback(ExtensionCallbackType.POST_DENOISE_LOOP)
def restore_unmasked(self, ctx: DenoiseContext): def restore_unmasked(self, ctx: DenoiseContext):
if self.is_gradient_mask: if self._is_gradient_mask:
ctx.latents = torch.where(self.mask > 0, ctx.latents, ctx.inputs.orig_latents) ctx.latents = torch.where(self._mask > 0, ctx.latents, ctx.inputs.orig_latents)
else: else:
ctx.latents = torch.lerp(ctx.inputs.orig_latents, ctx.latents, self.mask) ctx.latents = torch.lerp(ctx.inputs.orig_latents, ctx.latents, self._mask)

View File

@ -20,9 +20,12 @@ class InpaintModelExt(ExtensionBase):
is_gradient_mask: bool, is_gradient_mask: bool,
): ):
super().__init__() super().__init__()
self.mask = mask if mask is not None and masked_latents is None:
self.masked_latents = masked_latents raise ValueError("Source image required for inpaint mask when inpaint model used!")
self.is_gradient_mask = is_gradient_mask
self._mask = mask
self._masked_latents = masked_latents
self._is_gradient_mask = is_gradient_mask
@staticmethod @staticmethod
def _is_inpaint_model(unet: UNet2DConditionModel): def _is_inpaint_model(unet: UNet2DConditionModel):
@ -33,21 +36,21 @@ class InpaintModelExt(ExtensionBase):
if not self._is_inpaint_model(ctx.unet): if not self._is_inpaint_model(ctx.unet):
raise Exception("InpaintModelExt should be used only on inpaint models!") raise Exception("InpaintModelExt should be used only on inpaint models!")
if self.mask is None: if self._mask is None:
self.mask = torch.ones_like(ctx.latents[:1, :1]) self._mask = torch.ones_like(ctx.latents[:1, :1])
self.mask = self.mask.to(device=ctx.latents.device, dtype=ctx.latents.dtype) self._mask = self._mask.to(device=ctx.latents.device, dtype=ctx.latents.dtype)
if self.masked_latents is None: if self._masked_latents is None:
self.masked_latents = torch.zeros_like(ctx.latents[:1]) self._masked_latents = torch.zeros_like(ctx.latents[:1])
self.masked_latents = self.masked_latents.to(device=ctx.latents.device, dtype=ctx.latents.dtype) self._masked_latents = self._masked_latents.to(device=ctx.latents.device, dtype=ctx.latents.dtype)
# TODO: any ideas about order value? # TODO: any ideas about order value?
# do last so that other extensions works with normal latents # do last so that other extensions works with normal latents
@callback(ExtensionCallbackType.PRE_UNET, order=1000) @callback(ExtensionCallbackType.PRE_UNET, order=1000)
def append_inpaint_layers(self, ctx: DenoiseContext): def append_inpaint_layers(self, ctx: DenoiseContext):
batch_size = ctx.unet_kwargs.sample.shape[0] batch_size = ctx.unet_kwargs.sample.shape[0]
b_mask = torch.cat([self.mask] * batch_size) b_mask = torch.cat([self._mask] * batch_size)
b_masked_latents = torch.cat([self.masked_latents] * batch_size) b_masked_latents = torch.cat([self._masked_latents] * batch_size)
ctx.unet_kwargs.sample = torch.cat( ctx.unet_kwargs.sample = torch.cat(
[ctx.unet_kwargs.sample, b_mask, b_masked_latents], [ctx.unet_kwargs.sample, b_mask, b_masked_latents],
dim=1, dim=1,
@ -57,10 +60,7 @@ class InpaintModelExt(ExtensionBase):
# restore unmasked part as inpaint model can change unmasked part slightly # restore unmasked part as inpaint model can change unmasked part slightly
@callback(ExtensionCallbackType.POST_DENOISE_LOOP) @callback(ExtensionCallbackType.POST_DENOISE_LOOP)
def restore_unmasked(self, ctx: DenoiseContext): def restore_unmasked(self, ctx: DenoiseContext):
if self.mask is None: if self._is_gradient_mask:
return ctx.latents = torch.where(self._mask > 0, ctx.latents, ctx.inputs.orig_latents)
if self.is_gradient_mask:
ctx.latents = torch.where(self.mask > 0, ctx.latents, ctx.inputs.orig_latents)
else: else:
ctx.latents = torch.lerp(ctx.inputs.orig_latents, ctx.latents, self.mask) ctx.latents = torch.lerp(ctx.inputs.orig_latents, ctx.latents, self._mask)