mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Merge branch 'main' into feat/batch-graphs
This commit is contained in:
commit
50816432dc
@ -71,6 +71,9 @@ class FieldDescriptions:
|
|||||||
safe_mode = "Whether or not to use safe mode"
|
safe_mode = "Whether or not to use safe mode"
|
||||||
scribble_mode = "Whether or not to use scribble mode"
|
scribble_mode = "Whether or not to use scribble mode"
|
||||||
scale_factor = "The factor by which to scale"
|
scale_factor = "The factor by which to scale"
|
||||||
|
blend_alpha = (
|
||||||
|
"Blending factor. 0.0 = use input A only, 1.0 = use input B only, 0.5 = 50% mix of input A and input B."
|
||||||
|
)
|
||||||
num_1 = "The first number"
|
num_1 = "The first number"
|
||||||
num_2 = "The second number"
|
num_2 = "The second number"
|
||||||
mask = "The mask to use for the operation"
|
mask = "The mask to use for the operation"
|
||||||
|
@ -233,7 +233,7 @@ class SDXLPromptInvocationBase:
|
|||||||
dtype_for_device_getter=torch_dtype,
|
dtype_for_device_getter=torch_dtype,
|
||||||
truncate_long_prompts=True, # TODO:
|
truncate_long_prompts=True, # TODO:
|
||||||
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, # TODO: clip skip
|
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, # TODO: clip skip
|
||||||
requires_pooled=True,
|
requires_pooled=get_pooled,
|
||||||
)
|
)
|
||||||
|
|
||||||
conjunction = Compel.parse_prompt_string(prompt)
|
conjunction = Compel.parse_prompt_string(prompt)
|
||||||
|
@ -4,6 +4,7 @@ from contextlib import ExitStack
|
|||||||
from typing import List, Literal, Optional, Union
|
from typing import List, Literal, Optional, Union
|
||||||
|
|
||||||
import einops
|
import einops
|
||||||
|
import numpy as np
|
||||||
import torch
|
import torch
|
||||||
import torchvision.transforms as T
|
import torchvision.transforms as T
|
||||||
from diffusers.image_processor import VaeImageProcessor
|
from diffusers.image_processor import VaeImageProcessor
|
||||||
@ -720,3 +721,81 @@ class ImageToLatentsInvocation(BaseInvocation):
|
|||||||
latents = latents.to("cpu")
|
latents = latents.to("cpu")
|
||||||
context.services.latents.save(name, latents)
|
context.services.latents.save(name, latents)
|
||||||
return build_latents_output(latents_name=name, latents=latents, seed=None)
|
return build_latents_output(latents_name=name, latents=latents, seed=None)
|
||||||
|
|
||||||
|
|
||||||
|
@title("Blend Latents")
|
||||||
|
@tags("latents", "blend")
|
||||||
|
class BlendLatentsInvocation(BaseInvocation):
|
||||||
|
"""Blend two latents using a given alpha. Latents must have same size."""
|
||||||
|
|
||||||
|
type: Literal["lblend"] = "lblend"
|
||||||
|
|
||||||
|
# Inputs
|
||||||
|
latents_a: LatentsField = InputField(
|
||||||
|
description=FieldDescriptions.latents,
|
||||||
|
input=Input.Connection,
|
||||||
|
)
|
||||||
|
latents_b: LatentsField = InputField(
|
||||||
|
description=FieldDescriptions.latents,
|
||||||
|
input=Input.Connection,
|
||||||
|
)
|
||||||
|
alpha: float = InputField(default=0.5, description=FieldDescriptions.blend_alpha)
|
||||||
|
|
||||||
|
def invoke(self, context: InvocationContext) -> LatentsOutput:
|
||||||
|
latents_a = context.services.latents.get(self.latents_a.latents_name)
|
||||||
|
latents_b = context.services.latents.get(self.latents_b.latents_name)
|
||||||
|
|
||||||
|
if latents_a.shape != latents_b.shape:
|
||||||
|
raise "Latents to blend must be the same size."
|
||||||
|
|
||||||
|
# TODO:
|
||||||
|
device = choose_torch_device()
|
||||||
|
|
||||||
|
def slerp(t, v0, v1, DOT_THRESHOLD=0.9995):
|
||||||
|
"""
|
||||||
|
Spherical linear interpolation
|
||||||
|
Args:
|
||||||
|
t (float/np.ndarray): Float value between 0.0 and 1.0
|
||||||
|
v0 (np.ndarray): Starting vector
|
||||||
|
v1 (np.ndarray): Final vector
|
||||||
|
DOT_THRESHOLD (float): Threshold for considering the two vectors as
|
||||||
|
colineal. Not recommended to alter this.
|
||||||
|
Returns:
|
||||||
|
v2 (np.ndarray): Interpolation vector between v0 and v1
|
||||||
|
"""
|
||||||
|
inputs_are_torch = False
|
||||||
|
if not isinstance(v0, np.ndarray):
|
||||||
|
inputs_are_torch = True
|
||||||
|
v0 = v0.detach().cpu().numpy()
|
||||||
|
if not isinstance(v1, np.ndarray):
|
||||||
|
inputs_are_torch = True
|
||||||
|
v1 = v1.detach().cpu().numpy()
|
||||||
|
|
||||||
|
dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1)))
|
||||||
|
if np.abs(dot) > DOT_THRESHOLD:
|
||||||
|
v2 = (1 - t) * v0 + t * v1
|
||||||
|
else:
|
||||||
|
theta_0 = np.arccos(dot)
|
||||||
|
sin_theta_0 = np.sin(theta_0)
|
||||||
|
theta_t = theta_0 * t
|
||||||
|
sin_theta_t = np.sin(theta_t)
|
||||||
|
s0 = np.sin(theta_0 - theta_t) / sin_theta_0
|
||||||
|
s1 = sin_theta_t / sin_theta_0
|
||||||
|
v2 = s0 * v0 + s1 * v1
|
||||||
|
|
||||||
|
if inputs_are_torch:
|
||||||
|
v2 = torch.from_numpy(v2).to(device)
|
||||||
|
|
||||||
|
return v2
|
||||||
|
|
||||||
|
# blend
|
||||||
|
blended_latents = slerp(self.alpha, latents_a, latents_b)
|
||||||
|
|
||||||
|
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
|
||||||
|
blended_latents = blended_latents.to("cpu")
|
||||||
|
torch.cuda.empty_cache()
|
||||||
|
|
||||||
|
name = f"{context.graph_execution_state_id}__{self.id}"
|
||||||
|
# context.services.latents.set(name, resized_latents)
|
||||||
|
context.services.latents.save(name, blended_latents)
|
||||||
|
return build_latents_output(latents_name=name, latents=blended_latents)
|
||||||
|
Loading…
Reference in New Issue
Block a user