mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
feat(db,nodes,api): refactor metadata
Metadata for the Linear UI is now sneakily provided via a `MetadataAccumulator` node, which the client populates / hooks up while building the graph. Additionally, we provide the unexpanded graph with the metadata API response. Both of these are embedded into the PNGs. - Remove `metadata` from `ImageDTO` - Split up the `images/` routes to accomodate this; metadata is only retrieved per-image - `images/{image_name}` now gets the DTO - `images/{image_name}/metadata` gets the new metadata - `images/{image_name}/full` gets the full-sized image file - Remove old metadata service - Add `MetadataAccumulator` node, `CoreMetadataField`, hook up to `LatentsToImage` node - Add `get_raw()` method to `ItemStorage`, retrieves the row from DB as a string, no pydantic parsing - Update `images`related services to handle storing and retrieving the new metadata - Add `get_metadata_graph_from_raw_session` which extracts the `graph` from `session` without needing to hydrate the session in pydantic, in preparation for providing it as metadata; also removes all references to the `MetadataAccumulator` node
This commit is contained in:
@ -9,9 +9,9 @@ from diffusers.image_processor import VaeImageProcessor
|
||||
from diffusers.schedulers import SchedulerMixin as Scheduler
|
||||
from pydantic import BaseModel, Field, validator
|
||||
|
||||
from invokeai.app.invocations.metadata import CoreMetadata
|
||||
from invokeai.app.util.step_callback import stable_diffusion_step_callback
|
||||
|
||||
from ..models.image import ImageCategory, ImageField, ResourceOrigin
|
||||
from ...backend.model_management.lora import ModelPatcher
|
||||
from ...backend.stable_diffusion import PipelineIntermediateState
|
||||
from ...backend.stable_diffusion.diffusers_pipeline import (
|
||||
@ -21,6 +21,7 @@ from ...backend.stable_diffusion.diffusion.shared_invokeai_diffusion import \
|
||||
PostprocessingSettings
|
||||
from ...backend.stable_diffusion.schedulers import SCHEDULER_MAP
|
||||
from ...backend.util.devices import torch_dtype
|
||||
from ..models.image import ImageCategory, ImageField, ResourceOrigin
|
||||
from .baseinvocation import (BaseInvocation, BaseInvocationOutput,
|
||||
InvocationConfig, InvocationContext)
|
||||
from .compel import ConditioningField
|
||||
@ -449,6 +450,8 @@ class LatentsToImageInvocation(BaseInvocation):
|
||||
tiled: bool = Field(
|
||||
default=False,
|
||||
description="Decode latents by overlaping tiles(less memory consumption)")
|
||||
metadata: Optional[CoreMetadata] = Field(default=None, description="Optional core metadata to be written to the image")
|
||||
|
||||
|
||||
# Schema customisation
|
||||
class Config(InvocationConfig):
|
||||
@ -493,7 +496,8 @@ class LatentsToImageInvocation(BaseInvocation):
|
||||
image_category=ImageCategory.GENERAL,
|
||||
node_id=self.id,
|
||||
session_id=context.graph_execution_state_id,
|
||||
is_intermediate=self.is_intermediate
|
||||
is_intermediate=self.is_intermediate,
|
||||
metadata=self.metadata.dict() if self.metadata else None,
|
||||
)
|
||||
|
||||
return ImageOutput(
|
||||
|
Reference in New Issue
Block a user