mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
chore: ruff check - fix pycodestyle
This commit is contained in:
@ -266,7 +266,7 @@ class FloatMathInvocation(BaseInvocation):
|
|||||||
raise ValueError("Cannot divide by zero")
|
raise ValueError("Cannot divide by zero")
|
||||||
elif info.data["operation"] == "EXP" and info.data["a"] == 0 and v < 0:
|
elif info.data["operation"] == "EXP" and info.data["a"] == 0 and v < 0:
|
||||||
raise ValueError("Cannot raise zero to a negative power")
|
raise ValueError("Cannot raise zero to a negative power")
|
||||||
elif info.data["operation"] == "EXP" and type(info.data["a"] ** v) is complex:
|
elif info.data["operation"] == "EXP" and isinstance(info.data["a"] ** v, complex):
|
||||||
raise ValueError("Root operation resulted in a complex number")
|
raise ValueError("Root operation resulted in a complex number")
|
||||||
return v
|
return v
|
||||||
|
|
||||||
|
@ -21,11 +21,11 @@ def get_metadata_graph_from_raw_session(session_raw: str) -> Optional[dict]:
|
|||||||
|
|
||||||
# sanity check make sure the graph is at least reasonably shaped
|
# sanity check make sure the graph is at least reasonably shaped
|
||||||
if (
|
if (
|
||||||
type(graph) is not dict
|
not isinstance(graph, dict)
|
||||||
or "nodes" not in graph
|
or "nodes" not in graph
|
||||||
or type(graph["nodes"]) is not dict
|
or not isinstance(graph["nodes"], dict)
|
||||||
or "edges" not in graph
|
or "edges" not in graph
|
||||||
or type(graph["edges"]) is not list
|
or not isinstance(graph["edges"], list)
|
||||||
):
|
):
|
||||||
# something has gone terribly awry, return an empty dict
|
# something has gone terribly awry, return an empty dict
|
||||||
return None
|
return None
|
||||||
|
@ -88,7 +88,7 @@ class Txt2Mask(object):
|
|||||||
provided image and returns a SegmentedGrayscale object in which the brighter
|
provided image and returns a SegmentedGrayscale object in which the brighter
|
||||||
pixels indicate where the object is inferred to be.
|
pixels indicate where the object is inferred to be.
|
||||||
"""
|
"""
|
||||||
if type(image) is str:
|
if isinstance(image, str):
|
||||||
image = Image.open(image).convert("RGB")
|
image = Image.open(image).convert("RGB")
|
||||||
|
|
||||||
image = ImageOps.exif_transpose(image)
|
image = ImageOps.exif_transpose(image)
|
||||||
|
@ -56,7 +56,7 @@ class PerceiverAttention(nn.Module):
|
|||||||
x = self.norm1(x)
|
x = self.norm1(x)
|
||||||
latents = self.norm2(latents)
|
latents = self.norm2(latents)
|
||||||
|
|
||||||
b, l, _ = latents.shape
|
b, L, _ = latents.shape
|
||||||
|
|
||||||
q = self.to_q(latents)
|
q = self.to_q(latents)
|
||||||
kv_input = torch.cat((x, latents), dim=-2)
|
kv_input = torch.cat((x, latents), dim=-2)
|
||||||
@ -72,7 +72,7 @@ class PerceiverAttention(nn.Module):
|
|||||||
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
|
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
|
||||||
out = weight @ v
|
out = weight @ v
|
||||||
|
|
||||||
out = out.permute(0, 2, 1, 3).reshape(b, l, -1)
|
out = out.permute(0, 2, 1, 3).reshape(b, L, -1)
|
||||||
|
|
||||||
return self.to_out(out)
|
return self.to_out(out)
|
||||||
|
|
||||||
|
@ -642,7 +642,7 @@ class InvokeAIDiffuserComponent:
|
|||||||
|
|
||||||
deltas = None
|
deltas = None
|
||||||
uncond_latents = None
|
uncond_latents = None
|
||||||
weighted_cond_list = c_or_weighted_c_list if type(c_or_weighted_c_list) is list else [(c_or_weighted_c_list, 1)]
|
weighted_cond_list = c_or_weighted_c_list if isinstance(c_or_weighted_c_list, list) else [(c_or_weighted_c_list, 1)]
|
||||||
|
|
||||||
# below is fugly omg
|
# below is fugly omg
|
||||||
conditionings = [uc] + [c for c, weight in weighted_cond_list]
|
conditionings = [uc] + [c for c, weight in weighted_cond_list]
|
||||||
|
@ -228,11 +228,8 @@ def rand_perlin_2d(shape, res, device, fade=lambda t: 6 * t**5 - 15 * t**4 + 10
|
|||||||
angles = 2 * math.pi * rand_val
|
angles = 2 * math.pi * rand_val
|
||||||
gradients = torch.stack((torch.cos(angles), torch.sin(angles)), dim=-1).to(device)
|
gradients = torch.stack((torch.cos(angles), torch.sin(angles)), dim=-1).to(device)
|
||||||
|
|
||||||
tile_grads = (
|
def tile_grads(slice1, slice2):
|
||||||
lambda slice1, slice2: gradients[slice1[0] : slice1[1], slice2[0] : slice2[1]]
|
return gradients[slice1[0]:slice1[1], slice2[0]:slice2[1]].repeat_interleave(d[0], 0).repeat_interleave(d[1], 1)
|
||||||
.repeat_interleave(d[0], 0)
|
|
||||||
.repeat_interleave(d[1], 1)
|
|
||||||
)
|
|
||||||
|
|
||||||
def dot(grad, shift):
|
def dot(grad, shift):
|
||||||
return (
|
return (
|
||||||
|
@ -169,7 +169,7 @@ def test_prepare_values_to_insert(batch_data_collection, batch_graph):
|
|||||||
|
|
||||||
NodeFieldValueValidator = TypeAdapter(list[NodeFieldValue])
|
NodeFieldValueValidator = TypeAdapter(list[NodeFieldValue])
|
||||||
# should have 3 node field values
|
# should have 3 node field values
|
||||||
assert type(values[0].field_values) is str
|
assert isinstance(values[0].field_values, str)
|
||||||
assert len(NodeFieldValueValidator.validate_json(values[0].field_values)) == 3
|
assert len(NodeFieldValueValidator.validate_json(values[0].field_values)) == 3
|
||||||
|
|
||||||
# should have batch id and priority
|
# should have batch id and priority
|
||||||
|
Reference in New Issue
Block a user