Resolving merge conflicts for flake8

This commit is contained in:
Martin Kristiansen
2023-08-17 18:45:25 -04:00
committed by psychedelicious
parent f6db9da06c
commit 537ae2f901
101 changed files with 393 additions and 408 deletions

View File

@ -4,7 +4,6 @@ Read a checkpoint/safetensors file and write out a template .json file containin
its metadata for use in fast model probing.
"""
import sys
import argparse
import json

View File

@ -3,11 +3,12 @@
import warnings
from invokeai.app.cli_app import invoke_cli
warnings.warn(
"dream.py is being deprecated, please run invoke.py for the " "new UI/API or legacy_api.py for the old API",
DeprecationWarning,
)
from invokeai.app.cli_app import invoke_cli
invoke_cli()

View File

@ -2,7 +2,7 @@
"""This script reads the "Invoke" Stable Diffusion prompt embedded in files generated by invoke.py"""
import sys
from PIL import Image, PngImagePlugin
from PIL import Image
if len(sys.argv) < 2:
print("Usage: file2prompt.py <file1.png> <file2.png> <file3.png>...")

View File

@ -2,13 +2,11 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
import os
import logging
logging.getLogger("xformers").addFilter(lambda record: "A matching Triton is not available" not in record.getMessage())
import os
import sys
def main():
# Change working directory to the repo root

View File

@ -2,13 +2,11 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
import os
import logging
logging.getLogger("xformers").addFilter(lambda record: "A matching Triton is not available" not in record.getMessage())
import os
import sys
def main():
# Change working directory to the repo root

View File

@ -1,6 +1,7 @@
"""make variations of input image"""
import argparse, os, sys, glob
import argparse
import os
import PIL
import torch
import numpy as np
@ -12,7 +13,6 @@ from einops import rearrange, repeat
from torchvision.utils import make_grid
from torch import autocast
from contextlib import nullcontext
import time
from pytorch_lightning import seed_everything
from ldm.util import instantiate_from_config
@ -234,7 +234,6 @@ def main():
with torch.no_grad():
with precision_scope(device.type):
with model.ema_scope():
tic = time.time()
all_samples = list()
for n in trange(opt.n_iter, desc="Sampling"):
for prompts in tqdm(data, desc="data"):
@ -279,8 +278,6 @@ def main():
Image.fromarray(grid.astype(np.uint8)).save(os.path.join(outpath, f"grid-{grid_count:04}.png"))
grid_count += 1
toc = time.time()
print(f"Your samples are ready and waiting for you here: \n{outpath} \n" f" \nEnjoy.")

View File

@ -1,4 +1,6 @@
import argparse, os, sys, glob
import argparse
import glob
import os
from omegaconf import OmegaConf
from PIL import Image
from tqdm import tqdm

View File

@ -1,13 +1,13 @@
import argparse, os, sys, glob
import clip
import argparse
import glob
import os
import torch
import torch.nn as nn
import numpy as np
from omegaconf import OmegaConf
from PIL import Image
from tqdm import tqdm, trange
from itertools import islice
from einops import rearrange, repeat
from einops import rearrange
from torchvision.utils import make_grid
import scann
import time
@ -390,8 +390,8 @@ if __name__ == "__main__":
grid = make_grid(grid, nrow=n_rows)
# to image
grid = 255.0 * rearrange(grid, "c h w -> h w c").cpu().numpy()
Image.fromarray(grid.astype(np.uint8)).save(os.path.join(outpath, f"grid-{grid_count:04}.png"))
grid_np = 255.0 * rearrange(grid, "c h w -> h w c").cpu().numpy()
Image.fromarray(grid_np.astype(np.uint8)).save(os.path.join(outpath, f"grid-{grid_count:04}.png"))
grid_count += 1
print(f"Your samples are ready and waiting for you here: \n{outpath} \nEnjoy.")

View File

@ -1,24 +1,24 @@
import argparse, os, sys, datetime, glob, importlib, csv
import argparse
import datetime
import glob
import os
import sys
import numpy as np
import time
import torch
import torchvision
import pytorch_lightning as pl
from packaging import version
from omegaconf import OmegaConf
from torch.utils.data import random_split, DataLoader, Dataset, Subset
from torch.utils.data import DataLoader, Dataset
from functools import partial
from PIL import Image
from pytorch_lightning import seed_everything
from pytorch_lightning.trainer import Trainer
from pytorch_lightning.callbacks import (
ModelCheckpoint,
Callback,
LearningRateMonitor,
)
from pytorch_lightning.callbacks import Callback
from pytorch_lightning.utilities.distributed import rank_zero_only
from pytorch_lightning.utilities import rank_zero_info
@ -651,7 +651,7 @@ if __name__ == "__main__":
trainer_config["accelerator"] = "auto"
for k in nondefault_trainer_args(opt):
trainer_config[k] = getattr(opt, k)
if not "gpus" in trainer_config:
if "gpus" not in trainer_config:
del trainer_config["accelerator"]
cpu = True
else:
@ -803,7 +803,7 @@ if __name__ == "__main__":
trainer_opt.detect_anomaly = False
trainer = Trainer.from_argparse_args(trainer_opt, **trainer_kwargs)
trainer.logdir = logdir ###
trainer.logdir = logdir
# data
config.data.params.train.params.data_root = opt.data_root

View File

@ -2,7 +2,7 @@ from ldm.modules.encoders.modules import FrozenCLIPEmbedder, BERTEmbedder
from ldm.modules.embedding_manager import EmbeddingManager
from ldm.invoke.globals import Globals
import argparse, os
import argparse
from functools import partial
import torch
@ -108,7 +108,7 @@ if __name__ == "__main__":
manager.load(manager_ckpt)
for placeholder_string in manager.string_to_token_dict:
if not placeholder_string in string_to_token_dict:
if placeholder_string not in string_to_token_dict:
string_to_token_dict[placeholder_string] = manager.string_to_token_dict[placeholder_string]
string_to_param_dict[placeholder_string] = manager.string_to_param_dict[placeholder_string]

View File

@ -1,6 +1,12 @@
import argparse, os, sys, glob, datetime, yaml
import torch
import argparse
import datetime
import glob
import os
import sys
import time
import yaml
import torch
import numpy as np
from tqdm import trange
@ -10,7 +16,9 @@ from PIL import Image
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.util import instantiate_from_config
rescale = lambda x: (x + 1.0) / 2.0
def rescale(x: float) -> float:
return (x + 1.0) / 2.0
def custom_to_pil(x):
@ -45,7 +53,7 @@ def logs2pil(logs, keys=["sample"]):
else:
print(f"Unknown format for key {k}. ")
img = None
except:
except Exception:
img = None
imgs[k] = img
return imgs

View File

@ -1,4 +1,5 @@
import os, sys
import os
import sys
import numpy as np
import scann
import argparse

View File

@ -1,4 +1,5 @@
import argparse, os, sys, glob
import argparse
import os
import torch
import numpy as np
from omegaconf import OmegaConf
@ -7,10 +8,9 @@ from tqdm import tqdm, trange
from itertools import islice
from einops import rearrange
from torchvision.utils import make_grid
import time
from pytorch_lightning import seed_everything
from torch import autocast
from contextlib import contextmanager, nullcontext
from contextlib import nullcontext
import k_diffusion as K
import torch.nn as nn
@ -251,7 +251,6 @@ def main():
with torch.no_grad():
with precision_scope(device.type):
with model.ema_scope():
tic = time.time()
all_samples = list()
for n in trange(opt.n_iter, desc="Sampling"):
for prompts in tqdm(data, desc="data"):
@ -310,8 +309,6 @@ def main():
Image.fromarray(grid.astype(np.uint8)).save(os.path.join(outpath, f"grid-{grid_count:04}.png"))
grid_count += 1
toc = time.time()
print(f"Your samples are ready and waiting for you here: \n{outpath} \n" f" \nEnjoy.")

View File

@ -1,7 +1,6 @@
#!/bin/env python
import argparse
import sys
from pathlib import Path
from invokeai.backend.model_management.model_probe import ModelProbe