mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Merge branch 'main' into feat/api/image-max-age
This commit is contained in:
commit
545e2f557f
@ -1,25 +1,9 @@
|
||||
# use this file as a whitelist
|
||||
*
|
||||
!invokeai
|
||||
!ldm
|
||||
!pyproject.toml
|
||||
!docker/docker-entrypoint.sh
|
||||
!LICENSE
|
||||
|
||||
# ignore frontend/web but whitelist dist
|
||||
invokeai/frontend/web/
|
||||
!invokeai/frontend/web/dist/
|
||||
|
||||
# ignore invokeai/assets but whitelist invokeai/assets/web
|
||||
invokeai/assets/
|
||||
!invokeai/assets/web/
|
||||
|
||||
# Guard against pulling in any models that might exist in the directory tree
|
||||
**/*.pt*
|
||||
**/*.ckpt
|
||||
|
||||
# Byte-compiled / optimized / DLL files
|
||||
**/__pycache__/
|
||||
**/*.py[cod]
|
||||
|
||||
# Distribution / packaging
|
||||
**/*.egg-info/
|
||||
**/*.egg
|
||||
**/node_modules
|
||||
**/__pycache__
|
||||
**/*.egg-info
|
83
.github/workflows/build-container.yml
vendored
83
.github/workflows/build-container.yml
vendored
@ -3,17 +3,15 @@ on:
|
||||
push:
|
||||
branches:
|
||||
- 'main'
|
||||
- 'update/ci/docker/*'
|
||||
- 'update/docker/*'
|
||||
- 'dev/ci/docker/*'
|
||||
- 'dev/docker/*'
|
||||
paths:
|
||||
- 'pyproject.toml'
|
||||
- '.dockerignore'
|
||||
- 'invokeai/**'
|
||||
- 'docker/Dockerfile'
|
||||
- 'docker/docker-entrypoint.sh'
|
||||
- 'workflows/build-container.yml'
|
||||
tags:
|
||||
- 'v*.*.*'
|
||||
- 'v*'
|
||||
workflow_dispatch:
|
||||
|
||||
permissions:
|
||||
@ -26,23 +24,27 @@ jobs:
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
flavor:
|
||||
- rocm
|
||||
- cuda
|
||||
- cpu
|
||||
include:
|
||||
- flavor: rocm
|
||||
pip-extra-index-url: 'https://download.pytorch.org/whl/rocm5.2'
|
||||
- flavor: cuda
|
||||
pip-extra-index-url: ''
|
||||
- flavor: cpu
|
||||
pip-extra-index-url: 'https://download.pytorch.org/whl/cpu'
|
||||
gpu-driver:
|
||||
- cuda
|
||||
- cpu
|
||||
- rocm
|
||||
runs-on: ubuntu-latest
|
||||
name: ${{ matrix.flavor }}
|
||||
name: ${{ matrix.gpu-driver }}
|
||||
env:
|
||||
PLATFORMS: 'linux/amd64,linux/arm64'
|
||||
DOCKERFILE: 'docker/Dockerfile'
|
||||
# torch/arm64 does not support GPU currently, so arm64 builds
|
||||
# would not be GPU-accelerated.
|
||||
# re-enable arm64 if there is sufficient demand.
|
||||
# PLATFORMS: 'linux/amd64,linux/arm64'
|
||||
PLATFORMS: 'linux/amd64'
|
||||
steps:
|
||||
- name: Free up more disk space on the runner
|
||||
# https://github.com/actions/runner-images/issues/2840#issuecomment-1284059930
|
||||
run: |
|
||||
sudo rm -rf /usr/share/dotnet
|
||||
sudo rm -rf "$AGENT_TOOLSDIRECTORY"
|
||||
sudo swapoff /mnt/swapfile
|
||||
sudo rm -rf /mnt/swapfile
|
||||
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v3
|
||||
|
||||
@ -53,7 +55,7 @@ jobs:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
images: |
|
||||
ghcr.io/${{ github.repository }}
|
||||
${{ vars.DOCKERHUB_REPOSITORY }}
|
||||
${{ env.DOCKERHUB_REPOSITORY }}
|
||||
tags: |
|
||||
type=ref,event=branch
|
||||
type=ref,event=tag
|
||||
@ -62,8 +64,8 @@ jobs:
|
||||
type=pep440,pattern={{major}}
|
||||
type=sha,enable=true,prefix=sha-,format=short
|
||||
flavor: |
|
||||
latest=${{ matrix.flavor == 'cuda' && github.ref == 'refs/heads/main' }}
|
||||
suffix=-${{ matrix.flavor }},onlatest=false
|
||||
latest=${{ matrix.gpu-driver == 'cuda' && github.ref == 'refs/heads/main' }}
|
||||
suffix=-${{ matrix.gpu-driver }},onlatest=false
|
||||
|
||||
- name: Set up QEMU
|
||||
uses: docker/setup-qemu-action@v2
|
||||
@ -81,34 +83,33 @@ jobs:
|
||||
username: ${{ github.repository_owner }}
|
||||
password: ${{ secrets.GITHUB_TOKEN }}
|
||||
|
||||
- name: Login to Docker Hub
|
||||
if: github.event_name != 'pull_request' && vars.DOCKERHUB_REPOSITORY != ''
|
||||
uses: docker/login-action@v2
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USERNAME }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
# - name: Login to Docker Hub
|
||||
# if: github.event_name != 'pull_request' && vars.DOCKERHUB_REPOSITORY != ''
|
||||
# uses: docker/login-action@v2
|
||||
# with:
|
||||
# username: ${{ secrets.DOCKERHUB_USERNAME }}
|
||||
# password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
|
||||
- name: Build container
|
||||
id: docker_build
|
||||
uses: docker/build-push-action@v4
|
||||
with:
|
||||
context: .
|
||||
file: ${{ env.DOCKERFILE }}
|
||||
file: docker/Dockerfile
|
||||
platforms: ${{ env.PLATFORMS }}
|
||||
push: ${{ github.ref == 'refs/heads/main' || github.ref_type == 'tag' }}
|
||||
tags: ${{ steps.meta.outputs.tags }}
|
||||
labels: ${{ steps.meta.outputs.labels }}
|
||||
build-args: PIP_EXTRA_INDEX_URL=${{ matrix.pip-extra-index-url }}
|
||||
cache-from: |
|
||||
type=gha,scope=${{ github.ref_name }}-${{ matrix.flavor }}
|
||||
type=gha,scope=main-${{ matrix.flavor }}
|
||||
cache-to: type=gha,mode=max,scope=${{ github.ref_name }}-${{ matrix.flavor }}
|
||||
type=gha,scope=${{ github.ref_name }}-${{ matrix.gpu-driver }}
|
||||
type=gha,scope=main-${{ matrix.gpu-driver }}
|
||||
cache-to: type=gha,mode=max,scope=${{ github.ref_name }}-${{ matrix.gpu-driver }}
|
||||
|
||||
- name: Docker Hub Description
|
||||
if: github.ref == 'refs/heads/main' || github.ref == 'refs/tags/*' && vars.DOCKERHUB_REPOSITORY != ''
|
||||
uses: peter-evans/dockerhub-description@v3
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USERNAME }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: ${{ vars.DOCKERHUB_REPOSITORY }}
|
||||
short-description: ${{ github.event.repository.description }}
|
||||
# - name: Docker Hub Description
|
||||
# if: github.ref == 'refs/heads/main' || github.ref == 'refs/tags/*' && vars.DOCKERHUB_REPOSITORY != ''
|
||||
# uses: peter-evans/dockerhub-description@v3
|
||||
# with:
|
||||
# username: ${{ secrets.DOCKERHUB_USERNAME }}
|
||||
# password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
# repository: ${{ vars.DOCKERHUB_REPOSITORY }}
|
||||
# short-description: ${{ github.event.repository.description }}
|
||||
|
189
LICENSE
189
LICENSE
@ -1,21 +1,176 @@
|
||||
MIT License
|
||||
Apache License
|
||||
Version 2.0, January 2004
|
||||
http://www.apache.org/licenses/
|
||||
|
||||
Copyright (c) 2022 InvokeAI Team
|
||||
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
1. Definitions.
|
||||
|
||||
"License" shall mean the terms and conditions for use, reproduction,
|
||||
and distribution as defined by Sections 1 through 9 of this document.
|
||||
|
||||
"Licensor" shall mean the copyright owner or entity authorized by
|
||||
the copyright owner that is granting the License.
|
||||
|
||||
"Legal Entity" shall mean the union of the acting entity and all
|
||||
other entities that control, are controlled by, or are under common
|
||||
control with that entity. For the purposes of this definition,
|
||||
"control" means (i) the power, direct or indirect, to cause the
|
||||
direction or management of such entity, whether by contract or
|
||||
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
||||
outstanding shares, or (iii) beneficial ownership of such entity.
|
||||
|
||||
"You" (or "Your") shall mean an individual or Legal Entity
|
||||
exercising permissions granted by this License.
|
||||
|
||||
"Source" form shall mean the preferred form for making modifications,
|
||||
including but not limited to software source code, documentation
|
||||
source, and configuration files.
|
||||
|
||||
"Object" form shall mean any form resulting from mechanical
|
||||
transformation or translation of a Source form, including but
|
||||
not limited to compiled object code, generated documentation,
|
||||
and conversions to other media types.
|
||||
|
||||
"Work" shall mean the work of authorship, whether in Source or
|
||||
Object form, made available under the License, as indicated by a
|
||||
copyright notice that is included in or attached to the work
|
||||
(an example is provided in the Appendix below).
|
||||
|
||||
"Derivative Works" shall mean any work, whether in Source or Object
|
||||
form, that is based on (or derived from) the Work and for which the
|
||||
editorial revisions, annotations, elaborations, or other modifications
|
||||
represent, as a whole, an original work of authorship. For the purposes
|
||||
of this License, Derivative Works shall not include works that remain
|
||||
separable from, or merely link (or bind by name) to the interfaces of,
|
||||
the Work and Derivative Works thereof.
|
||||
|
||||
"Contribution" shall mean any work of authorship, including
|
||||
the original version of the Work and any modifications or additions
|
||||
to that Work or Derivative Works thereof, that is intentionally
|
||||
submitted to Licensor for inclusion in the Work by the copyright owner
|
||||
or by an individual or Legal Entity authorized to submit on behalf of
|
||||
the copyright owner. For the purposes of this definition, "submitted"
|
||||
means any form of electronic, verbal, or written communication sent
|
||||
to the Licensor or its representatives, including but not limited to
|
||||
communication on electronic mailing lists, source code control systems,
|
||||
and issue tracking systems that are managed by, or on behalf of, the
|
||||
Licensor for the purpose of discussing and improving the Work, but
|
||||
excluding communication that is conspicuously marked or otherwise
|
||||
designated in writing by the copyright owner as "Not a Contribution."
|
||||
|
||||
"Contributor" shall mean Licensor and any individual or Legal Entity
|
||||
on behalf of whom a Contribution has been received by Licensor and
|
||||
subsequently incorporated within the Work.
|
||||
|
||||
2. Grant of Copyright License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
copyright license to reproduce, prepare Derivative Works of,
|
||||
publicly display, publicly perform, sublicense, and distribute the
|
||||
Work and such Derivative Works in Source or Object form.
|
||||
|
||||
3. Grant of Patent License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
(except as stated in this section) patent license to make, have made,
|
||||
use, offer to sell, sell, import, and otherwise transfer the Work,
|
||||
where such license applies only to those patent claims licensable
|
||||
by such Contributor that are necessarily infringed by their
|
||||
Contribution(s) alone or by combination of their Contribution(s)
|
||||
with the Work to which such Contribution(s) was submitted. If You
|
||||
institute patent litigation against any entity (including a
|
||||
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
||||
or a Contribution incorporated within the Work constitutes direct
|
||||
or contributory patent infringement, then any patent licenses
|
||||
granted to You under this License for that Work shall terminate
|
||||
as of the date such litigation is filed.
|
||||
|
||||
4. Redistribution. You may reproduce and distribute copies of the
|
||||
Work or Derivative Works thereof in any medium, with or without
|
||||
modifications, and in Source or Object form, provided that You
|
||||
meet the following conditions:
|
||||
|
||||
(a) You must give any other recipients of the Work or
|
||||
Derivative Works a copy of this License; and
|
||||
|
||||
(b) You must cause any modified files to carry prominent notices
|
||||
stating that You changed the files; and
|
||||
|
||||
(c) You must retain, in the Source form of any Derivative Works
|
||||
that You distribute, all copyright, patent, trademark, and
|
||||
attribution notices from the Source form of the Work,
|
||||
excluding those notices that do not pertain to any part of
|
||||
the Derivative Works; and
|
||||
|
||||
(d) If the Work includes a "NOTICE" text file as part of its
|
||||
distribution, then any Derivative Works that You distribute must
|
||||
include a readable copy of the attribution notices contained
|
||||
within such NOTICE file, excluding those notices that do not
|
||||
pertain to any part of the Derivative Works, in at least one
|
||||
of the following places: within a NOTICE text file distributed
|
||||
as part of the Derivative Works; within the Source form or
|
||||
documentation, if provided along with the Derivative Works; or,
|
||||
within a display generated by the Derivative Works, if and
|
||||
wherever such third-party notices normally appear. The contents
|
||||
of the NOTICE file are for informational purposes only and
|
||||
do not modify the License. You may add Your own attribution
|
||||
notices within Derivative Works that You distribute, alongside
|
||||
or as an addendum to the NOTICE text from the Work, provided
|
||||
that such additional attribution notices cannot be construed
|
||||
as modifying the License.
|
||||
|
||||
You may add Your own copyright statement to Your modifications and
|
||||
may provide additional or different license terms and conditions
|
||||
for use, reproduction, or distribution of Your modifications, or
|
||||
for any such Derivative Works as a whole, provided Your use,
|
||||
reproduction, and distribution of the Work otherwise complies with
|
||||
the conditions stated in this License.
|
||||
|
||||
5. Submission of Contributions. Unless You explicitly state otherwise,
|
||||
any Contribution intentionally submitted for inclusion in the Work
|
||||
by You to the Licensor shall be under the terms and conditions of
|
||||
this License, without any additional terms or conditions.
|
||||
Notwithstanding the above, nothing herein shall supersede or modify
|
||||
the terms of any separate license agreement you may have executed
|
||||
with Licensor regarding such Contributions.
|
||||
|
||||
6. Trademarks. This License does not grant permission to use the trade
|
||||
names, trademarks, service marks, or product names of the Licensor,
|
||||
except as required for reasonable and customary use in describing the
|
||||
origin of the Work and reproducing the content of the NOTICE file.
|
||||
|
||||
7. Disclaimer of Warranty. Unless required by applicable law or
|
||||
agreed to in writing, Licensor provides the Work (and each
|
||||
Contributor provides its Contributions) on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
||||
implied, including, without limitation, any warranties or conditions
|
||||
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
||||
PARTICULAR PURPOSE. You are solely responsible for determining the
|
||||
appropriateness of using or redistributing the Work and assume any
|
||||
risks associated with Your exercise of permissions under this License.
|
||||
|
||||
8. Limitation of Liability. In no event and under no legal theory,
|
||||
whether in tort (including negligence), contract, or otherwise,
|
||||
unless required by applicable law (such as deliberate and grossly
|
||||
negligent acts) or agreed to in writing, shall any Contributor be
|
||||
liable to You for damages, including any direct, indirect, special,
|
||||
incidental, or consequential damages of any character arising as a
|
||||
result of this License or out of the use or inability to use the
|
||||
Work (including but not limited to damages for loss of goodwill,
|
||||
work stoppage, computer failure or malfunction, or any and all
|
||||
other commercial damages or losses), even if such Contributor
|
||||
has been advised of the possibility of such damages.
|
||||
|
||||
9. Accepting Warranty or Additional Liability. While redistributing
|
||||
the Work or Derivative Works thereof, You may choose to offer,
|
||||
and charge a fee for, acceptance of support, warranty, indemnity,
|
||||
or other liability obligations and/or rights consistent with this
|
||||
License. However, in accepting such obligations, You may act only
|
||||
on Your own behalf and on Your sole responsibility, not on behalf
|
||||
of any other Contributor, and only if You agree to indemnify,
|
||||
defend, and hold each Contributor harmless for any liability
|
||||
incurred by, or claims asserted against, such Contributor by reason
|
||||
of your accepting any such warranty or additional liability.
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all
|
||||
copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
||||
|
20
README.md
20
README.md
@ -3,8 +3,8 @@
|
||||
![project hero](https://github.com/invoke-ai/InvokeAI/assets/31807370/1a917d94-e099-4fa1-a70f-7dd8d0691018)
|
||||
|
||||
# Invoke AI - Generative AI for Professional Creatives
|
||||
## Image Generation for Stable Diffusion, Custom-Trained Models, and more.
|
||||
Learn more about us and get started instantly at [invoke.ai](https://invoke.ai)
|
||||
## Professional Creative Tools for Stable Diffusion, Custom-Trained Models, and more.
|
||||
To learn more about Invoke AI, get started instantly, or implement our Business solutions, visit [invoke.ai](https://invoke.ai)
|
||||
|
||||
|
||||
[![discord badge]][discord link]
|
||||
@ -329,24 +329,24 @@ InvokeAI offers a locally hosted Web Server & React Frontend, with an industry l
|
||||
|
||||
The Unified Canvas is a fully integrated canvas implementation with support for all core generation capabilities, in/outpainting, brush tools, and more. This creative tool unlocks the capability for artists to create with AI as a creative collaborator, and can be used to augment AI-generated imagery, sketches, photography, renders, and more.
|
||||
|
||||
### *Advanced Prompt Syntax*
|
||||
### *Node Architecture & Editor (Beta)*
|
||||
|
||||
Invoke AI's advanced prompt syntax allows for token weighting, cross-attention control, and prompt blending, allowing for fine-tuned tweaking of your invocations and exploration of the latent space.
|
||||
Invoke AI's backend is built on a graph-based execution architecture. This allows for customizable generation pipelines to be developed by professional users looking to create specific workflows to support their production use-cases, and will be extended in the future with additional capabilities.
|
||||
|
||||
### *Command Line Interface*
|
||||
### *Board & Gallery Management*
|
||||
|
||||
For users utilizing a terminal-based environment, or who want to take advantage of CLI features, InvokeAI offers an extensive and actively supported command-line interface that provides the full suite of generation functionality available in the tool.
|
||||
Invoke AI provides an organized gallery system for easily storing, accessing, and remixing your content in the Invoke workspace. Images can be dragged/dropped onto any Image-base UI element in the application, and rich metadata within the Image allows for easy recall of key prompts or settings used in your workflow.
|
||||
|
||||
### Other features
|
||||
|
||||
- *Support for both ckpt and diffusers models*
|
||||
- *SD 2.0, 2.1 support*
|
||||
- *Upscaling & Face Restoration Tools*
|
||||
- *Upscaling Tools*
|
||||
- *Embedding Manager & Support*
|
||||
- *Model Manager & Support*
|
||||
- *Node-Based Architecture*
|
||||
- *Node-Based Plug-&-Play UI (Beta)*
|
||||
- *Boards & Gallery Management
|
||||
- *SDXL Support* (Coming soon)
|
||||
|
||||
### Latest Changes
|
||||
|
||||
@ -359,7 +359,7 @@ Notes](https://github.com/invoke-ai/InvokeAI/releases) and the
|
||||
Please check out our **[Q&A](https://invoke-ai.github.io/InvokeAI/help/TROUBLESHOOT/#faq)** to get solutions for common installation
|
||||
problems and other issues.
|
||||
|
||||
## 🤝 Contributing
|
||||
## Contributing
|
||||
|
||||
Anyone who wishes to contribute to this project, whether documentation, features, bug fixes, code
|
||||
cleanup, testing, or code reviews, is very much encouraged to do so.
|
||||
@ -378,7 +378,7 @@ to become part of our community.
|
||||
|
||||
Welcome to InvokeAI!
|
||||
|
||||
### 👥 Contributors
|
||||
### Contributors
|
||||
|
||||
This fork is a combined effort of various people from across the world.
|
||||
[Check out the list of all these amazing people](https://invoke-ai.github.io/InvokeAI/other/CONTRIBUTORS/). We thank them for
|
||||
|
13
docker/.env.sample
Normal file
13
docker/.env.sample
Normal file
@ -0,0 +1,13 @@
|
||||
## Make a copy of this file named `.env` and fill in the values below.
|
||||
## Any environment variables supported by InvokeAI can be specified here.
|
||||
|
||||
# INVOKEAI_ROOT is the path to a path on the local filesystem where InvokeAI will store data.
|
||||
# Outputs will also be stored here by default.
|
||||
# This **must** be an absolute path.
|
||||
INVOKEAI_ROOT=
|
||||
|
||||
HUGGINGFACE_TOKEN=
|
||||
|
||||
## optional variables specific to the docker setup
|
||||
# GPU_DRIVER=cuda
|
||||
# CONTAINER_UID=1000
|
@ -1,107 +1,129 @@
|
||||
# syntax=docker/dockerfile:1
|
||||
# syntax=docker/dockerfile:1.4
|
||||
|
||||
ARG PYTHON_VERSION=3.9
|
||||
##################
|
||||
## base image ##
|
||||
##################
|
||||
FROM --platform=${TARGETPLATFORM} python:${PYTHON_VERSION}-slim AS python-base
|
||||
## Builder stage
|
||||
|
||||
LABEL org.opencontainers.image.authors="mauwii@outlook.de"
|
||||
FROM library/ubuntu:22.04 AS builder
|
||||
|
||||
# Prepare apt for buildkit cache
|
||||
RUN rm -f /etc/apt/apt.conf.d/docker-clean \
|
||||
&& echo 'Binary::apt::APT::Keep-Downloaded-Packages "true";' >/etc/apt/apt.conf.d/keep-cache
|
||||
ARG DEBIAN_FRONTEND=noninteractive
|
||||
RUN rm -f /etc/apt/apt.conf.d/docker-clean; echo 'Binary::apt::APT::Keep-Downloaded-Packages "true";' > /etc/apt/apt.conf.d/keep-cache
|
||||
RUN --mount=type=cache,target=/var/cache/apt,sharing=locked \
|
||||
--mount=type=cache,target=/var/lib/apt,sharing=locked \
|
||||
apt update && apt-get install -y \
|
||||
git \
|
||||
python3.10-venv \
|
||||
python3-pip \
|
||||
build-essential
|
||||
|
||||
# Install dependencies
|
||||
RUN \
|
||||
--mount=type=cache,target=/var/cache/apt,sharing=locked \
|
||||
--mount=type=cache,target=/var/lib/apt,sharing=locked \
|
||||
apt-get update \
|
||||
&& apt-get install -y \
|
||||
--no-install-recommends \
|
||||
libgl1-mesa-glx=20.3.* \
|
||||
libglib2.0-0=2.66.* \
|
||||
libopencv-dev=4.5.*
|
||||
ENV INVOKEAI_SRC=/opt/invokeai
|
||||
ENV VIRTUAL_ENV=/opt/venv/invokeai
|
||||
|
||||
# Set working directory and env
|
||||
ARG APPDIR=/usr/src
|
||||
ARG APPNAME=InvokeAI
|
||||
WORKDIR ${APPDIR}
|
||||
ENV PATH ${APPDIR}/${APPNAME}/bin:$PATH
|
||||
# Keeps Python from generating .pyc files in the container
|
||||
ENV PYTHONDONTWRITEBYTECODE 1
|
||||
# Turns off buffering for easier container logging
|
||||
ENV PYTHONUNBUFFERED 1
|
||||
# Don't fall back to legacy build system
|
||||
ENV PIP_USE_PEP517=1
|
||||
ENV PATH="$VIRTUAL_ENV/bin:$PATH"
|
||||
ARG TORCH_VERSION=2.0.1
|
||||
ARG TORCHVISION_VERSION=0.15.2
|
||||
ARG GPU_DRIVER=cuda
|
||||
ARG TARGETPLATFORM="linux/amd64"
|
||||
# unused but available
|
||||
ARG BUILDPLATFORM
|
||||
|
||||
#######################
|
||||
## build pyproject ##
|
||||
#######################
|
||||
FROM python-base AS pyproject-builder
|
||||
WORKDIR ${INVOKEAI_SRC}
|
||||
|
||||
# Install build dependencies
|
||||
RUN \
|
||||
--mount=type=cache,target=/var/cache/apt,sharing=locked \
|
||||
--mount=type=cache,target=/var/lib/apt,sharing=locked \
|
||||
apt-get update \
|
||||
&& apt-get install -y \
|
||||
--no-install-recommends \
|
||||
build-essential=12.9 \
|
||||
gcc=4:10.2.* \
|
||||
python3-dev=3.9.*
|
||||
# Install pytorch before all other pip packages
|
||||
# NOTE: there are no pytorch builds for arm64 + cuda, only cpu
|
||||
# x86_64/CUDA is default
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
python3 -m venv ${VIRTUAL_ENV} &&\
|
||||
if [ "$TARGETPLATFORM" = "linux/arm64" ] || [ "$GPU_DRIVER" = "cpu" ]; then \
|
||||
extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/cpu"; \
|
||||
elif [ "$GPU_DRIVER" = "rocm" ]; then \
|
||||
extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/rocm5.4.2"; \
|
||||
else \
|
||||
extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/cu118"; \
|
||||
fi &&\
|
||||
pip install $extra_index_url_arg \
|
||||
torch==$TORCH_VERSION \
|
||||
torchvision==$TORCHVISION_VERSION
|
||||
|
||||
# Prepare pip for buildkit cache
|
||||
ARG PIP_CACHE_DIR=/var/cache/buildkit/pip
|
||||
ENV PIP_CACHE_DIR ${PIP_CACHE_DIR}
|
||||
RUN mkdir -p ${PIP_CACHE_DIR}
|
||||
# Install the local package.
|
||||
# Editable mode helps use the same image for development:
|
||||
# the local working copy can be bind-mounted into the image
|
||||
# at path defined by ${INVOKEAI_SRC}
|
||||
COPY invokeai ./invokeai
|
||||
COPY pyproject.toml ./
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
# xformers + triton fails to install on arm64
|
||||
if [ "$GPU_DRIVER" = "cuda" ] && [ "$TARGETPLATFORM" = "linux/amd64" ]; then \
|
||||
pip install -e ".[xformers]"; \
|
||||
else \
|
||||
pip install -e "."; \
|
||||
fi
|
||||
|
||||
# Create virtual environment
|
||||
RUN --mount=type=cache,target=${PIP_CACHE_DIR} \
|
||||
python3 -m venv "${APPNAME}" \
|
||||
--upgrade-deps
|
||||
# #### Build the Web UI ------------------------------------
|
||||
|
||||
# Install requirements
|
||||
COPY --link pyproject.toml .
|
||||
COPY --link invokeai/version/invokeai_version.py invokeai/version/__init__.py invokeai/version/
|
||||
ARG PIP_EXTRA_INDEX_URL
|
||||
ENV PIP_EXTRA_INDEX_URL ${PIP_EXTRA_INDEX_URL}
|
||||
RUN --mount=type=cache,target=${PIP_CACHE_DIR} \
|
||||
"${APPNAME}"/bin/pip install .
|
||||
FROM node:18 AS web-builder
|
||||
WORKDIR /build
|
||||
COPY invokeai/frontend/web/ ./
|
||||
RUN --mount=type=cache,target=/usr/lib/node_modules \
|
||||
npm install --include dev
|
||||
RUN --mount=type=cache,target=/usr/lib/node_modules \
|
||||
yarn vite build
|
||||
|
||||
# Install pyproject.toml
|
||||
COPY --link . .
|
||||
RUN --mount=type=cache,target=${PIP_CACHE_DIR} \
|
||||
"${APPNAME}/bin/pip" install .
|
||||
|
||||
# Build patchmatch
|
||||
#### Runtime stage ---------------------------------------
|
||||
|
||||
FROM library/ubuntu:22.04 AS runtime
|
||||
|
||||
ARG DEBIAN_FRONTEND=noninteractive
|
||||
ENV PYTHONUNBUFFERED=1
|
||||
ENV PYTHONDONTWRITEBYTECODE=1
|
||||
|
||||
RUN apt update && apt install -y --no-install-recommends \
|
||||
git \
|
||||
curl \
|
||||
vim \
|
||||
tmux \
|
||||
ncdu \
|
||||
iotop \
|
||||
bzip2 \
|
||||
gosu \
|
||||
libglib2.0-0 \
|
||||
libgl1-mesa-glx \
|
||||
python3-venv \
|
||||
python3-pip \
|
||||
build-essential \
|
||||
libopencv-dev \
|
||||
libstdc++-10-dev &&\
|
||||
apt-get clean && apt-get autoclean
|
||||
|
||||
# globally add magic-wormhole
|
||||
# for ease of transferring data to and from the container
|
||||
# when running in sandboxed cloud environments; e.g. Runpod etc.
|
||||
RUN pip install magic-wormhole
|
||||
|
||||
ENV INVOKEAI_SRC=/opt/invokeai
|
||||
ENV VIRTUAL_ENV=/opt/venv/invokeai
|
||||
ENV INVOKEAI_ROOT=/invokeai
|
||||
ENV PATH="$VIRTUAL_ENV/bin:$INVOKEAI_SRC:$PATH"
|
||||
|
||||
# --link requires buldkit w/ dockerfile syntax 1.4
|
||||
COPY --link --from=builder ${INVOKEAI_SRC} ${INVOKEAI_SRC}
|
||||
COPY --link --from=builder ${VIRTUAL_ENV} ${VIRTUAL_ENV}
|
||||
COPY --link --from=web-builder /build/dist ${INVOKEAI_SRC}/invokeai/frontend/web/dist
|
||||
|
||||
# Link amdgpu.ids for ROCm builds
|
||||
# contributed by https://github.com/Rubonnek
|
||||
RUN mkdir -p "/opt/amdgpu/share/libdrm" &&\
|
||||
ln -s "/usr/share/libdrm/amdgpu.ids" "/opt/amdgpu/share/libdrm/amdgpu.ids"
|
||||
|
||||
WORKDIR ${INVOKEAI_SRC}
|
||||
|
||||
# build patchmatch
|
||||
RUN cd /usr/lib/$(uname -p)-linux-gnu/pkgconfig/ && ln -sf opencv4.pc opencv.pc
|
||||
RUN python3 -c "from patchmatch import patch_match"
|
||||
|
||||
#####################
|
||||
## runtime image ##
|
||||
#####################
|
||||
FROM python-base AS runtime
|
||||
# Create unprivileged user and make the local dir
|
||||
RUN useradd --create-home --shell /bin/bash -u 1000 --comment "container local user" invoke
|
||||
RUN mkdir -p ${INVOKEAI_ROOT} && chown -R invoke:invoke ${INVOKEAI_ROOT}
|
||||
|
||||
# Create a new user
|
||||
ARG UNAME=appuser
|
||||
RUN useradd \
|
||||
--no-log-init \
|
||||
-m \
|
||||
-U \
|
||||
"${UNAME}"
|
||||
|
||||
# Create volume directory
|
||||
ARG VOLUME_DIR=/data
|
||||
RUN mkdir -p "${VOLUME_DIR}" \
|
||||
&& chown -hR "${UNAME}:${UNAME}" "${VOLUME_DIR}"
|
||||
|
||||
# Setup runtime environment
|
||||
USER ${UNAME}:${UNAME}
|
||||
COPY --chown=${UNAME}:${UNAME} --from=pyproject-builder ${APPDIR}/${APPNAME} ${APPNAME}
|
||||
ENV INVOKEAI_ROOT ${VOLUME_DIR}
|
||||
ENV TRANSFORMERS_CACHE ${VOLUME_DIR}/.cache
|
||||
ENV INVOKE_MODEL_RECONFIGURE "--yes --default_only"
|
||||
EXPOSE 9090
|
||||
ENTRYPOINT [ "invokeai" ]
|
||||
CMD [ "--web", "--host", "0.0.0.0", "--port", "9090" ]
|
||||
VOLUME [ "${VOLUME_DIR}" ]
|
||||
COPY docker/docker-entrypoint.sh ./
|
||||
ENTRYPOINT ["/opt/invokeai/docker-entrypoint.sh"]
|
||||
CMD ["invokeai-web", "--host", "0.0.0.0"]
|
||||
|
77
docker/README.md
Normal file
77
docker/README.md
Normal file
@ -0,0 +1,77 @@
|
||||
# InvokeAI Containerized
|
||||
|
||||
All commands are to be run from the `docker` directory: `cd docker`
|
||||
|
||||
#### Linux
|
||||
|
||||
1. Ensure builkit is enabled in the Docker daemon settings (`/etc/docker/daemon.json`)
|
||||
2. Install the `docker compose` plugin using your package manager, or follow a [tutorial](https://www.digitalocean.com/community/tutorials/how-to-install-and-use-docker-compose-on-ubuntu-22-04).
|
||||
- The deprecated `docker-compose` (hyphenated) CLI continues to work for now.
|
||||
3. Ensure docker daemon is able to access the GPU.
|
||||
- You may need to install [nvidia-container-toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html)
|
||||
|
||||
#### macOS
|
||||
|
||||
1. Ensure Docker has at least 16GB RAM
|
||||
2. Enable VirtioFS for file sharing
|
||||
3. Enable `docker compose` V2 support
|
||||
|
||||
This is done via Docker Desktop preferences
|
||||
|
||||
## Quickstart
|
||||
|
||||
|
||||
1. Make a copy of `env.sample` and name it `.env` (`cp env.sample .env` (Mac/Linux) or `copy example.env .env` (Windows)). Make changes as necessary. Set `INVOKEAI_ROOT` to an absolute path to:
|
||||
a. the desired location of the InvokeAI runtime directory, or
|
||||
b. an existing, v3.0.0 compatible runtime directory.
|
||||
1. `docker compose up`
|
||||
|
||||
The image will be built automatically if needed.
|
||||
|
||||
The runtime directory (holding models and outputs) will be created in the location specified by `INVOKEAI_ROOT`. The default location is `~/invokeai`. The runtime directory will be populated with the base configs and models necessary to start generating.
|
||||
|
||||
### Use a GPU
|
||||
|
||||
- Linux is *recommended* for GPU support in Docker.
|
||||
- WSL2 is *required* for Windows.
|
||||
- only `x86_64` architecture is supported.
|
||||
|
||||
The Docker daemon on the system must be already set up to use the GPU. In case of Linux, this involves installing `nvidia-docker-runtime` and configuring the `nvidia` runtime as default. Steps will be different for AMD. Please see Docker documentation for the most up-to-date instructions for using your GPU with Docker.
|
||||
|
||||
## Customize
|
||||
|
||||
Check the `.env.sample` file. It contains some environment variables for running in Docker. Copy it, name it `.env`, and fill it in with your own values. Next time you run `docker compose up`, your custom values will be used.
|
||||
|
||||
You can also set these values in `docker compose.yml` directly, but `.env` will help avoid conflicts when code is updated.
|
||||
|
||||
Example (most values are optional):
|
||||
|
||||
```
|
||||
INVOKEAI_ROOT=/Volumes/WorkDrive/invokeai
|
||||
HUGGINGFACE_TOKEN=the_actual_token
|
||||
CONTAINER_UID=1000
|
||||
GPU_DRIVER=cuda
|
||||
```
|
||||
|
||||
## Even Moar Customizing!
|
||||
|
||||
See the `docker compose.yaml` file. The `command` instruction can be uncommented and used to run arbitrary startup commands. Some examples below.
|
||||
|
||||
### Reconfigure the runtime directory
|
||||
|
||||
Can be used to download additional models from the supported model list
|
||||
|
||||
In conjunction with `INVOKEAI_ROOT` can be also used to initialize a runtime directory
|
||||
|
||||
```
|
||||
command:
|
||||
- invokeai-configure
|
||||
- --yes
|
||||
```
|
||||
|
||||
Or install models:
|
||||
|
||||
```
|
||||
command:
|
||||
- invokeai-model-install
|
||||
```
|
@ -1,51 +1,11 @@
|
||||
#!/usr/bin/env bash
|
||||
set -e
|
||||
|
||||
# If you want to build a specific flavor, set the CONTAINER_FLAVOR environment variable
|
||||
# e.g. CONTAINER_FLAVOR=cpu ./build.sh
|
||||
# Possible Values are:
|
||||
# - cpu
|
||||
# - cuda
|
||||
# - rocm
|
||||
# Don't forget to also set it when executing run.sh
|
||||
# if it is not set, the script will try to detect the flavor by itself.
|
||||
#
|
||||
# Doc can be found here:
|
||||
# https://invoke-ai.github.io/InvokeAI/installation/040_INSTALL_DOCKER/
|
||||
build_args=""
|
||||
|
||||
SCRIPTDIR=$(dirname "${BASH_SOURCE[0]}")
|
||||
cd "$SCRIPTDIR" || exit 1
|
||||
[[ -f ".env" ]] && build_args=$(awk '$1 ~ /\=[^$]/ {print "--build-arg " $0 " "}' .env)
|
||||
|
||||
source ./env.sh
|
||||
echo "docker-compose build args:"
|
||||
echo $build_args
|
||||
|
||||
DOCKERFILE=${INVOKE_DOCKERFILE:-./Dockerfile}
|
||||
|
||||
# print the settings
|
||||
echo -e "You are using these values:\n"
|
||||
echo -e "Dockerfile:\t\t${DOCKERFILE}"
|
||||
echo -e "index-url:\t\t${PIP_EXTRA_INDEX_URL:-none}"
|
||||
echo -e "Volumename:\t\t${VOLUMENAME}"
|
||||
echo -e "Platform:\t\t${PLATFORM}"
|
||||
echo -e "Container Registry:\t${CONTAINER_REGISTRY}"
|
||||
echo -e "Container Repository:\t${CONTAINER_REPOSITORY}"
|
||||
echo -e "Container Tag:\t\t${CONTAINER_TAG}"
|
||||
echo -e "Container Flavor:\t${CONTAINER_FLAVOR}"
|
||||
echo -e "Container Image:\t${CONTAINER_IMAGE}\n"
|
||||
|
||||
# Create docker volume
|
||||
if [[ -n "$(docker volume ls -f name="${VOLUMENAME}" -q)" ]]; then
|
||||
echo -e "Volume already exists\n"
|
||||
else
|
||||
echo -n "creating docker volume "
|
||||
docker volume create "${VOLUMENAME}"
|
||||
fi
|
||||
|
||||
# Build Container
|
||||
docker build \
|
||||
--platform="${PLATFORM:-linux/amd64}" \
|
||||
--tag="${CONTAINER_IMAGE:-invokeai}" \
|
||||
${CONTAINER_FLAVOR:+--build-arg="CONTAINER_FLAVOR=${CONTAINER_FLAVOR}"} \
|
||||
${PIP_EXTRA_INDEX_URL:+--build-arg="PIP_EXTRA_INDEX_URL=${PIP_EXTRA_INDEX_URL}"} \
|
||||
${PIP_PACKAGE:+--build-arg="PIP_PACKAGE=${PIP_PACKAGE}"} \
|
||||
--file="${DOCKERFILE}" \
|
||||
..
|
||||
docker-compose build $build_args
|
||||
|
48
docker/docker-compose.yml
Normal file
48
docker/docker-compose.yml
Normal file
@ -0,0 +1,48 @@
|
||||
# Copyright (c) 2023 Eugene Brodsky https://github.com/ebr
|
||||
|
||||
version: '3.8'
|
||||
|
||||
services:
|
||||
invokeai:
|
||||
image: "local/invokeai:latest"
|
||||
# edit below to run on a container runtime other than nvidia-container-runtime.
|
||||
# not yet tested with rocm/AMD GPUs
|
||||
# Comment out the "deploy" section to run on CPU only
|
||||
deploy:
|
||||
resources:
|
||||
reservations:
|
||||
devices:
|
||||
- driver: nvidia
|
||||
count: 1
|
||||
capabilities: [gpu]
|
||||
build:
|
||||
context: ..
|
||||
dockerfile: docker/Dockerfile
|
||||
|
||||
# variables without a default will automatically inherit from the host environment
|
||||
environment:
|
||||
- INVOKEAI_ROOT
|
||||
- HF_HOME
|
||||
|
||||
# Create a .env file in the same directory as this docker-compose.yml file
|
||||
# and populate it with environment variables. See .env.sample
|
||||
env_file:
|
||||
- .env
|
||||
|
||||
ports:
|
||||
- "${INVOKEAI_PORT:-9090}:9090"
|
||||
volumes:
|
||||
- ${INVOKEAI_ROOT:-~/invokeai}:${INVOKEAI_ROOT:-/invokeai}
|
||||
- ${HF_HOME:-~/.cache/huggingface}:${HF_HOME:-/invokeai/.cache/huggingface}
|
||||
# - ${INVOKEAI_MODELS_DIR:-${INVOKEAI_ROOT:-/invokeai/models}}
|
||||
# - ${INVOKEAI_MODELS_CONFIG_PATH:-${INVOKEAI_ROOT:-/invokeai/configs/models.yaml}}
|
||||
tty: true
|
||||
stdin_open: true
|
||||
|
||||
# # Example of running alternative commands/scripts in the container
|
||||
# command:
|
||||
# - bash
|
||||
# - -c
|
||||
# - |
|
||||
# invokeai-model-install --yes --default-only --config_file ${INVOKEAI_ROOT}/config_custom.yaml
|
||||
# invokeai-nodes-web --host 0.0.0.0
|
65
docker/docker-entrypoint.sh
Executable file
65
docker/docker-entrypoint.sh
Executable file
@ -0,0 +1,65 @@
|
||||
#!/bin/bash
|
||||
set -e -o pipefail
|
||||
|
||||
### Container entrypoint
|
||||
# Runs the CMD as defined by the Dockerfile or passed to `docker run`
|
||||
# Can be used to configure the runtime dir
|
||||
# Bypass by using ENTRYPOINT or `--entrypoint`
|
||||
|
||||
### Set INVOKEAI_ROOT pointing to a valid runtime directory
|
||||
# Otherwise configure the runtime dir first.
|
||||
|
||||
### Configure the InvokeAI runtime directory (done by default)):
|
||||
# docker run --rm -it <this image> --configure
|
||||
# or skip with --no-configure
|
||||
|
||||
### Set the CONTAINER_UID envvar to match your user.
|
||||
# Ensures files created in the container are owned by you:
|
||||
# docker run --rm -it -v /some/path:/invokeai -e CONTAINER_UID=$(id -u) <this image>
|
||||
# Default UID: 1000 chosen due to popularity on Linux systems. Possibly 501 on MacOS.
|
||||
|
||||
USER_ID=${CONTAINER_UID:-1000}
|
||||
USER=invoke
|
||||
usermod -u ${USER_ID} ${USER} 1>/dev/null
|
||||
|
||||
configure() {
|
||||
# Configure the runtime directory
|
||||
if [[ -f ${INVOKEAI_ROOT}/invokeai.yaml ]]; then
|
||||
echo "${INVOKEAI_ROOT}/invokeai.yaml exists. InvokeAI is already configured."
|
||||
echo "To reconfigure InvokeAI, delete the above file."
|
||||
echo "======================================================================"
|
||||
else
|
||||
mkdir -p ${INVOKEAI_ROOT}
|
||||
chown --recursive ${USER} ${INVOKEAI_ROOT}
|
||||
gosu ${USER} invokeai-configure --yes --default_only
|
||||
fi
|
||||
}
|
||||
|
||||
## Skip attempting to configure.
|
||||
## Must be passed first, before any other args.
|
||||
if [[ $1 != "--no-configure" ]]; then
|
||||
configure
|
||||
else
|
||||
shift
|
||||
fi
|
||||
|
||||
### Set the $PUBLIC_KEY env var to enable SSH access.
|
||||
# We do not install openssh-server in the image by default to avoid bloat.
|
||||
# but it is useful to have the full SSH server e.g. on Runpod.
|
||||
# (use SCP to copy files to/from the image, etc)
|
||||
if [[ -v "PUBLIC_KEY" ]] && [[ ! -d "${HOME}/.ssh" ]]; then
|
||||
apt-get update
|
||||
apt-get install -y openssh-server
|
||||
pushd $HOME
|
||||
mkdir -p .ssh
|
||||
echo ${PUBLIC_KEY} > .ssh/authorized_keys
|
||||
chmod -R 700 .ssh
|
||||
popd
|
||||
service ssh start
|
||||
fi
|
||||
|
||||
|
||||
cd ${INVOKEAI_ROOT}
|
||||
|
||||
# Run the CMD as the Container User (not root).
|
||||
exec gosu ${USER} "$@"
|
@ -1,54 +0,0 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
# This file is used to set environment variables for the build.sh and run.sh scripts.
|
||||
|
||||
# Try to detect the container flavor if no PIP_EXTRA_INDEX_URL got specified
|
||||
if [[ -z "$PIP_EXTRA_INDEX_URL" ]]; then
|
||||
|
||||
# Activate virtual environment if not already activated and exists
|
||||
if [[ -z $VIRTUAL_ENV ]]; then
|
||||
[[ -e "$(dirname "${BASH_SOURCE[0]}")/../.venv/bin/activate" ]] \
|
||||
&& source "$(dirname "${BASH_SOURCE[0]}")/../.venv/bin/activate" \
|
||||
&& echo "Activated virtual environment: $VIRTUAL_ENV"
|
||||
fi
|
||||
|
||||
# Decide which container flavor to build if not specified
|
||||
if [[ -z "$CONTAINER_FLAVOR" ]] && python -c "import torch" &>/dev/null; then
|
||||
# Check for CUDA and ROCm
|
||||
CUDA_AVAILABLE=$(python -c "import torch;print(torch.cuda.is_available())")
|
||||
ROCM_AVAILABLE=$(python -c "import torch;print(torch.version.hip is not None)")
|
||||
if [[ "${CUDA_AVAILABLE}" == "True" ]]; then
|
||||
CONTAINER_FLAVOR="cuda"
|
||||
elif [[ "${ROCM_AVAILABLE}" == "True" ]]; then
|
||||
CONTAINER_FLAVOR="rocm"
|
||||
else
|
||||
CONTAINER_FLAVOR="cpu"
|
||||
fi
|
||||
fi
|
||||
|
||||
# Set PIP_EXTRA_INDEX_URL based on container flavor
|
||||
if [[ "$CONTAINER_FLAVOR" == "rocm" ]]; then
|
||||
PIP_EXTRA_INDEX_URL="https://download.pytorch.org/whl/rocm"
|
||||
elif [[ "$CONTAINER_FLAVOR" == "cpu" ]]; then
|
||||
PIP_EXTRA_INDEX_URL="https://download.pytorch.org/whl/cpu"
|
||||
# elif [[ -z "$CONTAINER_FLAVOR" || "$CONTAINER_FLAVOR" == "cuda" ]]; then
|
||||
# PIP_PACKAGE=${PIP_PACKAGE-".[xformers]"}
|
||||
fi
|
||||
fi
|
||||
|
||||
# Variables shared by build.sh and run.sh
|
||||
REPOSITORY_NAME="${REPOSITORY_NAME-$(basename "$(git rev-parse --show-toplevel)")}"
|
||||
REPOSITORY_NAME="${REPOSITORY_NAME,,}"
|
||||
VOLUMENAME="${VOLUMENAME-"${REPOSITORY_NAME}_data"}"
|
||||
ARCH="${ARCH-$(uname -m)}"
|
||||
PLATFORM="${PLATFORM-linux/${ARCH}}"
|
||||
INVOKEAI_BRANCH="${INVOKEAI_BRANCH-$(git branch --show)}"
|
||||
CONTAINER_REGISTRY="${CONTAINER_REGISTRY-"ghcr.io"}"
|
||||
CONTAINER_REPOSITORY="${CONTAINER_REPOSITORY-"$(whoami)/${REPOSITORY_NAME}"}"
|
||||
CONTAINER_FLAVOR="${CONTAINER_FLAVOR-cuda}"
|
||||
CONTAINER_TAG="${CONTAINER_TAG-"${INVOKEAI_BRANCH##*/}-${CONTAINER_FLAVOR}"}"
|
||||
CONTAINER_IMAGE="${CONTAINER_REGISTRY}/${CONTAINER_REPOSITORY}:${CONTAINER_TAG}"
|
||||
CONTAINER_IMAGE="${CONTAINER_IMAGE,,}"
|
||||
|
||||
# enable docker buildkit
|
||||
export DOCKER_BUILDKIT=1
|
@ -1,41 +1,8 @@
|
||||
#!/usr/bin/env bash
|
||||
set -e
|
||||
|
||||
# How to use: https://invoke-ai.github.io/InvokeAI/installation/040_INSTALL_DOCKER/
|
||||
|
||||
SCRIPTDIR=$(dirname "${BASH_SOURCE[0]}")
|
||||
cd "$SCRIPTDIR" || exit 1
|
||||
|
||||
source ./env.sh
|
||||
|
||||
# Create outputs directory if it does not exist
|
||||
[[ -d ./outputs ]] || mkdir ./outputs
|
||||
|
||||
echo -e "You are using these values:\n"
|
||||
echo -e "Volumename:\t${VOLUMENAME}"
|
||||
echo -e "Invokeai_tag:\t${CONTAINER_IMAGE}"
|
||||
echo -e "local Models:\t${MODELSPATH:-unset}\n"
|
||||
|
||||
docker run \
|
||||
--interactive \
|
||||
--tty \
|
||||
--rm \
|
||||
--platform="${PLATFORM}" \
|
||||
--name="${REPOSITORY_NAME}" \
|
||||
--hostname="${REPOSITORY_NAME}" \
|
||||
--mount type=volume,volume-driver=local,source="${VOLUMENAME}",target=/data \
|
||||
--mount type=bind,source="$(pwd)"/outputs/,target=/data/outputs/ \
|
||||
${MODELSPATH:+--mount="type=bind,source=${MODELSPATH},target=/data/models"} \
|
||||
${HUGGING_FACE_HUB_TOKEN:+--env="HUGGING_FACE_HUB_TOKEN=${HUGGING_FACE_HUB_TOKEN}"} \
|
||||
--publish=9090:9090 \
|
||||
--cap-add=sys_nice \
|
||||
${GPU_FLAGS:+--gpus="${GPU_FLAGS}"} \
|
||||
"${CONTAINER_IMAGE}" ${@:+$@}
|
||||
|
||||
echo -e "\nCleaning trash folder ..."
|
||||
for f in outputs/.Trash*; do
|
||||
if [ -e "$f" ]; then
|
||||
rm -Rf "$f"
|
||||
break
|
||||
fi
|
||||
done
|
||||
docker-compose up --build -d
|
||||
docker-compose logs -f
|
||||
|
60
docker/runpod-readme.md
Normal file
60
docker/runpod-readme.md
Normal file
@ -0,0 +1,60 @@
|
||||
# InvokeAI - A Stable Diffusion Toolkit
|
||||
|
||||
Stable Diffusion distribution by InvokeAI: https://github.com/invoke-ai
|
||||
|
||||
The Docker image tracks the `main` branch of the InvokeAI project, which means it includes the latest features, but may contain some bugs.
|
||||
|
||||
Your working directory is mounted under the `/workspace` path inside the pod. The models are in `/workspace/invokeai/models`, and outputs are in `/workspace/invokeai/outputs`.
|
||||
|
||||
> **Only the /workspace directory will persist between pod restarts!**
|
||||
|
||||
> **If you _terminate_ (not just _stop_) the pod, the /workspace will be lost.**
|
||||
|
||||
## Quickstart
|
||||
|
||||
1. Launch a pod from this template. **It will take about 5-10 minutes to run through the initial setup**. Be patient.
|
||||
1. Wait for the application to load.
|
||||
- TIP: you know it's ready when the CPU usage goes idle
|
||||
- You can also check the logs for a line that says "_Point your browser at..._"
|
||||
1. Open the Invoke AI web UI: click the `Connect` => `connect over HTTP` button.
|
||||
1. Generate some art!
|
||||
|
||||
## Other things you can do
|
||||
|
||||
At any point you may edit the pod configuration and set an arbitrary Docker command. For example, you could run a command to downloads some models using `curl`, or fetch some images and place them into your outputs to continue a working session.
|
||||
|
||||
If you need to run *multiple commands*, define them in the Docker Command field like this:
|
||||
|
||||
`bash -c "cd ${INVOKEAI_ROOT}/outputs; wormhole receive 2-foo-bar; invoke.py --web --host 0.0.0.0"`
|
||||
|
||||
### Copying your data in and out of the pod
|
||||
|
||||
This image includes a couple of handy tools to help you get the data into the pod (such as your custom models or embeddings), and out of the pod (such as downloading your outputs). Here are your options for getting your data in and out of the pod:
|
||||
|
||||
- **SSH server**:
|
||||
1. Make sure to create and set your Public Key in the RunPod settings (follow the official instructions)
|
||||
1. Add an exposed port 22 (TCP) in the pod settings!
|
||||
1. When your pod restarts, you will see a new entry in the `Connect` dialog. Use this SSH server to `scp` or `sftp` your files as necessary, or SSH into the pod using the fully fledged SSH server.
|
||||
|
||||
- [**Magic Wormhole**](https://magic-wormhole.readthedocs.io/en/latest/welcome.html):
|
||||
1. On your computer, `pip install magic-wormhole` (see above instructions for details)
|
||||
1. Connect to the command line **using the "light" SSH client** or the browser-based console. _Currently there's a bug where `wormhole` isn't available when connected to "full" SSH server, as described above_.
|
||||
1. `wormhole send /workspace/invokeai/outputs` will send the entire `outputs` directory. You can also send individual files.
|
||||
1. Once packaged, you will see a `wormhole receive <123-some-words>` command. Copy it
|
||||
1. Paste this command into the terminal on your local machine to securely download the payload.
|
||||
1. It works the same in reverse: you can `wormhole send` some models from your computer to the pod. Again, save your files somewhere in `/workspace` or they will be lost when the pod is stopped.
|
||||
|
||||
- **RunPod's Cloud Sync feature** may be used to sync the persistent volume to cloud storage. You could, for example, copy the entire `/workspace` to S3, add some custom models to it, and copy it back from S3 when launching new pod configurations. Follow the Cloud Sync instructions.
|
||||
|
||||
|
||||
### Disable the NSFW checker
|
||||
|
||||
The NSFW checker is enabled by default. To disable it, edit the pod configuration and set the following command:
|
||||
|
||||
```
|
||||
invoke --web --host 0.0.0.0 --no-nsfw_checker
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
Template ©2023 Eugene Brodsky [ebr](https://github.com/ebr)
|
BIN
docs/assets/contributing/resize_invocation.png
Normal file
BIN
docs/assets/contributing/resize_invocation.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 7.1 KiB |
BIN
docs/assets/contributing/resize_node_editor.png
Normal file
BIN
docs/assets/contributing/resize_node_editor.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 17 KiB |
@ -1,8 +1,521 @@
|
||||
# Invocations
|
||||
|
||||
Invocations represent a single operation, its inputs, and its outputs. These
|
||||
operations and their outputs can be chained together to generate and modify
|
||||
images.
|
||||
Features in InvokeAI are added in the form of modular node-like systems called
|
||||
**Invocations**.
|
||||
|
||||
An Invocation is simply a single operation that takes in some inputs and gives
|
||||
out some outputs. We can then chain multiple Invocations together to create more
|
||||
complex functionality.
|
||||
|
||||
## Invocations Directory
|
||||
|
||||
InvokeAI Invocations can be found in the `invokeai/app/invocations` directory.
|
||||
|
||||
You can add your new functionality to one of the existing Invocations in this
|
||||
directory or create a new file in this directory as per your needs.
|
||||
|
||||
**Note:** _All Invocations must be inside this directory for InvokeAI to
|
||||
recognize them as valid Invocations._
|
||||
|
||||
## Creating A New Invocation
|
||||
|
||||
In order to understand the process of creating a new Invocation, let us actually
|
||||
create one.
|
||||
|
||||
In our example, let us create an Invocation that will take in an image, resize
|
||||
it and output the resized image.
|
||||
|
||||
The first set of things we need to do when creating a new Invocation are -
|
||||
|
||||
- Create a new class that derives from a predefined parent class called
|
||||
`BaseInvocation`.
|
||||
- The name of every Invocation must end with the word `Invocation` in order for
|
||||
it to be recognized as an Invocation.
|
||||
- Every Invocation must have a `docstring` that describes what this Invocation
|
||||
does.
|
||||
- Every Invocation must have a unique `type` field defined which becomes its
|
||||
indentifier.
|
||||
- Invocations are strictly typed. We make use of the native
|
||||
[typing](https://docs.python.org/3/library/typing.html) library and the
|
||||
installed [pydantic](https://pydantic-docs.helpmanual.io/) library for
|
||||
validation.
|
||||
|
||||
So let us do that.
|
||||
|
||||
```python
|
||||
from typing import Literal
|
||||
from .baseinvocation import BaseInvocation
|
||||
|
||||
class ResizeInvocation(BaseInvocation):
|
||||
'''Resizes an image'''
|
||||
type: Literal['resize'] = 'resize'
|
||||
```
|
||||
|
||||
That's great.
|
||||
|
||||
Now we have setup the base of our new Invocation. Let us think about what inputs
|
||||
our Invocation takes.
|
||||
|
||||
- We need an `image` that we are going to resize.
|
||||
- We will need new `width` and `height` values to which we need to resize the
|
||||
image to.
|
||||
|
||||
### **Inputs**
|
||||
|
||||
Every Invocation input is a pydantic `Field` and like everything else should be
|
||||
strictly typed and defined.
|
||||
|
||||
So let us create these inputs for our Invocation. First up, the `image` input we
|
||||
need. Generally, we can use standard variable types in Python but InvokeAI
|
||||
already has a custom `ImageField` type that handles all the stuff that is needed
|
||||
for image inputs.
|
||||
|
||||
But what is this `ImageField` ..? It is a special class type specifically
|
||||
written to handle how images are dealt with in InvokeAI. We will cover how to
|
||||
create your own custom field types later in this guide. For now, let's go ahead
|
||||
and use it.
|
||||
|
||||
```python
|
||||
from typing import Literal, Union
|
||||
from pydantic import Field
|
||||
|
||||
from .baseinvocation import BaseInvocation
|
||||
from ..models.image import ImageField
|
||||
|
||||
class ResizeInvocation(BaseInvocation):
|
||||
'''Resizes an image'''
|
||||
type: Literal['resize'] = 'resize'
|
||||
|
||||
# Inputs
|
||||
image: Union[ImageField, None] = Field(description="The input image", default=None)
|
||||
```
|
||||
|
||||
Let us break down our input code.
|
||||
|
||||
```python
|
||||
image: Union[ImageField, None] = Field(description="The input image", default=None)
|
||||
```
|
||||
|
||||
| Part | Value | Description |
|
||||
| --------- | ---------------------------------------------------- | -------------------------------------------------------------------------------------------------- |
|
||||
| Name | `image` | The variable that will hold our image |
|
||||
| Type Hint | `Union[ImageField, None]` | The types for our field. Indicates that the image can either be an `ImageField` type or `None` |
|
||||
| Field | `Field(description="The input image", default=None)` | The image variable is a field which needs a description and a default value that we set to `None`. |
|
||||
|
||||
Great. Now let us create our other inputs for `width` and `height`
|
||||
|
||||
```python
|
||||
from typing import Literal, Union
|
||||
from pydantic import Field
|
||||
|
||||
from .baseinvocation import BaseInvocation
|
||||
from ..models.image import ImageField
|
||||
|
||||
class ResizeInvocation(BaseInvocation):
|
||||
'''Resizes an image'''
|
||||
type: Literal['resize'] = 'resize'
|
||||
|
||||
# Inputs
|
||||
image: Union[ImageField, None] = Field(description="The input image", default=None)
|
||||
width: int = Field(default=512, ge=64, le=2048, description="Width of the new image")
|
||||
height: int = Field(default=512, ge=64, le=2048, description="Height of the new image")
|
||||
```
|
||||
|
||||
As you might have noticed, we added two new parameters to the field type for
|
||||
`width` and `height` called `gt` and `le`. These basically stand for _greater
|
||||
than or equal to_ and _less than or equal to_. There are various other param
|
||||
types for field that you can find on the **pydantic** documentation.
|
||||
|
||||
**Note:** _Any time it is possible to define constraints for our field, we
|
||||
should do it so the frontend has more information on how to parse this field._
|
||||
|
||||
Perfect. We now have our inputs. Let us do something with these.
|
||||
|
||||
### **Invoke Function**
|
||||
|
||||
The `invoke` function is where all the magic happens. This function provides you
|
||||
the `context` parameter that is of the type `InvocationContext` which will give
|
||||
you access to the current context of the generation and all the other services
|
||||
that are provided by it by InvokeAI.
|
||||
|
||||
Let us create this function first.
|
||||
|
||||
```python
|
||||
from typing import Literal, Union
|
||||
from pydantic import Field
|
||||
|
||||
from .baseinvocation import BaseInvocation, InvocationContext
|
||||
from ..models.image import ImageField
|
||||
|
||||
class ResizeInvocation(BaseInvocation):
|
||||
'''Resizes an image'''
|
||||
type: Literal['resize'] = 'resize'
|
||||
|
||||
# Inputs
|
||||
image: Union[ImageField, None] = Field(description="The input image", default=None)
|
||||
width: int = Field(default=512, ge=64, le=2048, description="Width of the new image")
|
||||
height: int = Field(default=512, ge=64, le=2048, description="Height of the new image")
|
||||
|
||||
def invoke(self, context: InvocationContext):
|
||||
pass
|
||||
```
|
||||
|
||||
### **Outputs**
|
||||
|
||||
The output of our Invocation will be whatever is returned by this `invoke`
|
||||
function. Like with our inputs, we need to strongly type and define our outputs
|
||||
too.
|
||||
|
||||
What is our output going to be? Another image. Normally you'd have to create a
|
||||
type for this but InvokeAI already offers you an `ImageOutput` type that handles
|
||||
all the necessary info related to image outputs. So let us use that.
|
||||
|
||||
We will cover how to create your own output types later in this guide.
|
||||
|
||||
```python
|
||||
from typing import Literal, Union
|
||||
from pydantic import Field
|
||||
|
||||
from .baseinvocation import BaseInvocation, InvocationContext
|
||||
from ..models.image import ImageField
|
||||
from .image import ImageOutput
|
||||
|
||||
class ResizeInvocation(BaseInvocation):
|
||||
'''Resizes an image'''
|
||||
type: Literal['resize'] = 'resize'
|
||||
|
||||
# Inputs
|
||||
image: Union[ImageField, None] = Field(description="The input image", default=None)
|
||||
width: int = Field(default=512, ge=64, le=2048, description="Width of the new image")
|
||||
height: int = Field(default=512, ge=64, le=2048, description="Height of the new image")
|
||||
|
||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||
pass
|
||||
```
|
||||
|
||||
Perfect. Now that we have our Invocation setup, let us do what we want to do.
|
||||
|
||||
- We will first load the image. Generally we do this using the `PIL` library but
|
||||
we can use one of the services provided by InvokeAI to load the image.
|
||||
- We will resize the image using `PIL` to our input data.
|
||||
- We will output this image in the format we set above.
|
||||
|
||||
So let's do that.
|
||||
|
||||
```python
|
||||
from typing import Literal, Union
|
||||
from pydantic import Field
|
||||
|
||||
from .baseinvocation import BaseInvocation, InvocationContext
|
||||
from ..models.image import ImageField, ResourceOrigin, ImageCategory
|
||||
from .image import ImageOutput
|
||||
|
||||
class ResizeInvocation(BaseInvocation):
|
||||
'''Resizes an image'''
|
||||
type: Literal['resize'] = 'resize'
|
||||
|
||||
# Inputs
|
||||
image: Union[ImageField, None] = Field(description="The input image", default=None)
|
||||
width: int = Field(default=512, ge=64, le=2048, description="Width of the new image")
|
||||
height: int = Field(default=512, ge=64, le=2048, description="Height of the new image")
|
||||
|
||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||
# Load the image using InvokeAI's predefined Image Service.
|
||||
image = context.services.images.get_pil_image(self.image.image_origin, self.image.image_name)
|
||||
|
||||
# Resizing the image
|
||||
# Because we used the above service, we already have a PIL image. So we can simply resize.
|
||||
resized_image = image.resize((self.width, self.height))
|
||||
|
||||
# Preparing the image for output using InvokeAI's predefined Image Service.
|
||||
output_image = context.services.images.create(
|
||||
image=resized_image,
|
||||
image_origin=ResourceOrigin.INTERNAL,
|
||||
image_category=ImageCategory.GENERAL,
|
||||
node_id=self.id,
|
||||
session_id=context.graph_execution_state_id,
|
||||
is_intermediate=self.is_intermediate,
|
||||
)
|
||||
|
||||
# Returning the Image
|
||||
return ImageOutput(
|
||||
image=ImageField(
|
||||
image_name=output_image.image_name,
|
||||
image_origin=output_image.image_origin,
|
||||
),
|
||||
width=output_image.width,
|
||||
height=output_image.height,
|
||||
)
|
||||
```
|
||||
|
||||
**Note:** Do not be overwhelmed by the `ImageOutput` process. InvokeAI has a
|
||||
certain way that the images need to be dispatched in order to be stored and read
|
||||
correctly. In 99% of the cases when dealing with an image output, you can simply
|
||||
copy-paste the template above.
|
||||
|
||||
That's it. You made your own **Resize Invocation**.
|
||||
|
||||
## Result
|
||||
|
||||
Once you make your Invocation correctly, the rest of the process is fully
|
||||
automated for you.
|
||||
|
||||
When you launch InvokeAI, you can go to `http://localhost:9090/docs` and see
|
||||
your new Invocation show up there with all the relevant info.
|
||||
|
||||
![resize invocation](../assets/contributing/resize_invocation.png)
|
||||
|
||||
When you launch the frontend UI, you can go to the Node Editor tab and find your
|
||||
new Invocation ready to be used.
|
||||
|
||||
![resize node editor](../assets/contributing/resize_node_editor.png)
|
||||
|
||||
# Advanced
|
||||
|
||||
## Custom Input Fields
|
||||
|
||||
Now that you know how to create your own Invocations, let us dive into slightly
|
||||
more advanced topics.
|
||||
|
||||
While creating your own Invocations, you might run into a scenario where the
|
||||
existing input types in InvokeAI do not meet your requirements. In such cases,
|
||||
you can create your own input types.
|
||||
|
||||
Let us create one as an example. Let us say we want to create a color input
|
||||
field that represents a color code. But before we start on that here are some
|
||||
general good practices to keep in mind.
|
||||
|
||||
**Good Practices**
|
||||
|
||||
- There is no naming convention for input fields but we highly recommend that
|
||||
you name it something appropriate like `ColorField`.
|
||||
- It is not mandatory but it is heavily recommended to add a relevant
|
||||
`docstring` to describe your input field.
|
||||
- Keep your field in the same file as the Invocation that it is made for or in
|
||||
another file where it is relevant.
|
||||
|
||||
All input types a class that derive from the `BaseModel` type from `pydantic`.
|
||||
So let's create one.
|
||||
|
||||
```python
|
||||
from pydantic import BaseModel
|
||||
|
||||
class ColorField(BaseModel):
|
||||
'''A field that holds the rgba values of a color'''
|
||||
pass
|
||||
```
|
||||
|
||||
Perfect. Now let us create our custom inputs for our field. This is exactly
|
||||
similar how you created input fields for your Invocation. All the same rules
|
||||
apply. Let us create four fields representing the _red(r)_, _blue(b)_,
|
||||
_green(g)_ and _alpha(a)_ channel of the color.
|
||||
|
||||
```python
|
||||
class ColorField(BaseModel):
|
||||
'''A field that holds the rgba values of a color'''
|
||||
r: int = Field(ge=0, le=255, description="The red channel")
|
||||
g: int = Field(ge=0, le=255, description="The green channel")
|
||||
b: int = Field(ge=0, le=255, description="The blue channel")
|
||||
a: int = Field(ge=0, le=255, description="The alpha channel")
|
||||
```
|
||||
|
||||
That's it. We now have a new input field type that we can use in our Invocations
|
||||
like this.
|
||||
|
||||
```python
|
||||
color: ColorField = Field(default=ColorField(r=0, g=0, b=0, a=0), description='Background color of an image')
|
||||
```
|
||||
|
||||
**Extra Config**
|
||||
|
||||
All input fields also take an additional `Config` class that you can use to do
|
||||
various advanced things like setting required parameters and etc.
|
||||
|
||||
Let us do that for our _ColorField_ and enforce all the values because we did
|
||||
not define any defaults for our fields.
|
||||
|
||||
```python
|
||||
class ColorField(BaseModel):
|
||||
'''A field that holds the rgba values of a color'''
|
||||
r: int = Field(ge=0, le=255, description="The red channel")
|
||||
g: int = Field(ge=0, le=255, description="The green channel")
|
||||
b: int = Field(ge=0, le=255, description="The blue channel")
|
||||
a: int = Field(ge=0, le=255, description="The alpha channel")
|
||||
|
||||
class Config:
|
||||
schema_extra = {"required": ["r", "g", "b", "a"]}
|
||||
```
|
||||
|
||||
Now it becomes mandatory for the user to supply all the values required by our
|
||||
input field.
|
||||
|
||||
We will discuss the `Config` class in extra detail later in this guide and how
|
||||
you can use it to make your Invocations more robust.
|
||||
|
||||
## Custom Output Types
|
||||
|
||||
Like with custom inputs, sometimes you might find yourself needing custom
|
||||
outputs that InvokeAI does not provide. We can easily set one up.
|
||||
|
||||
Now that you are familiar with Invocations and Inputs, let us use that knowledge
|
||||
to put together a custom output type for an Invocation that returns _width_,
|
||||
_height_ and _background_color_ that we need to create a blank image.
|
||||
|
||||
- A custom output type is a class that derives from the parent class of
|
||||
`BaseInvocationOutput`.
|
||||
- It is not mandatory but we recommend using names ending with `Output` for
|
||||
output types. So we'll call our class `BlankImageOutput`
|
||||
- It is not mandatory but we highly recommend adding a `docstring` to describe
|
||||
what your output type is for.
|
||||
- Like Invocations, each output type should have a `type` variable that is
|
||||
**unique**
|
||||
|
||||
Now that we know the basic rules for creating a new output type, let us go ahead
|
||||
and make it.
|
||||
|
||||
```python
|
||||
from typing import Literal
|
||||
from pydantic import Field
|
||||
|
||||
from .baseinvocation import BaseInvocationOutput
|
||||
|
||||
class BlankImageOutput(BaseInvocationOutput):
|
||||
'''Base output type for creating a blank image'''
|
||||
type: Literal['blank_image_output'] = 'blank_image_output'
|
||||
|
||||
# Inputs
|
||||
width: int = Field(description='Width of blank image')
|
||||
height: int = Field(description='Height of blank image')
|
||||
bg_color: ColorField = Field(description='Background color of blank image')
|
||||
|
||||
class Config:
|
||||
schema_extra = {"required": ["type", "width", "height", "bg_color"]}
|
||||
```
|
||||
|
||||
All set. We now have an output type that requires what we need to create a
|
||||
blank_image. And if you noticed it, we even used the `Config` class to ensure
|
||||
the fields are required.
|
||||
|
||||
## Custom Configuration
|
||||
|
||||
As you might have noticed when making inputs and outputs, we used a class called
|
||||
`Config` from _pydantic_ to further customize them. Because our inputs and
|
||||
outputs essentially inherit from _pydantic_'s `BaseModel` class, all
|
||||
[configuration options](https://docs.pydantic.dev/latest/usage/schema/#schema-customization)
|
||||
that are valid for _pydantic_ classes are also valid for our inputs and outputs.
|
||||
You can do the same for your Invocations too but InvokeAI makes our life a
|
||||
little bit easier on that end.
|
||||
|
||||
InvokeAI provides a custom configuration class called `InvocationConfig`
|
||||
particularly for configuring Invocations. This is exactly the same as the raw
|
||||
`Config` class from _pydantic_ with some extra stuff on top to help faciliate
|
||||
parsing of the scheme in the frontend UI.
|
||||
|
||||
At the current moment, tihs `InvocationConfig` class is further improved with
|
||||
the following features related the `ui`.
|
||||
|
||||
| Config Option | Field Type | Example |
|
||||
| ------------- | ------------------------------------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------------------------------------- |
|
||||
| type_hints | `Dict[str, Literal["integer", "float", "boolean", "string", "enum", "image", "latents", "model", "control"]]` | `type_hint: "model"` provides type hints related to the model like displaying a list of available models |
|
||||
| tags | `List[str]` | `tags: ['resize', 'image']` will classify your invocation under the tags of resize and image. |
|
||||
| title | `str` | `title: 'Resize Image` will rename your to this custom title rather than infer from the name of the Invocation class. |
|
||||
|
||||
So let us update your `ResizeInvocation` with some extra configuration and see
|
||||
how that works.
|
||||
|
||||
```python
|
||||
from typing import Literal, Union
|
||||
from pydantic import Field
|
||||
|
||||
from .baseinvocation import BaseInvocation, InvocationContext, InvocationConfig
|
||||
from ..models.image import ImageField, ResourceOrigin, ImageCategory
|
||||
from .image import ImageOutput
|
||||
|
||||
class ResizeInvocation(BaseInvocation):
|
||||
'''Resizes an image'''
|
||||
type: Literal['resize'] = 'resize'
|
||||
|
||||
# Inputs
|
||||
image: Union[ImageField, None] = Field(description="The input image", default=None)
|
||||
width: int = Field(default=512, ge=64, le=2048, description="Width of the new image")
|
||||
height: int = Field(default=512, ge=64, le=2048, description="Height of the new image")
|
||||
|
||||
class Config(InvocationConfig):
|
||||
schema_extra: {
|
||||
ui: {
|
||||
tags: ['resize', 'image'],
|
||||
title: ['My Custom Resize']
|
||||
}
|
||||
}
|
||||
|
||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||
# Load the image using InvokeAI's predefined Image Service.
|
||||
image = context.services.images.get_pil_image(self.image.image_origin, self.image.image_name)
|
||||
|
||||
# Resizing the image
|
||||
# Because we used the above service, we already have a PIL image. So we can simply resize.
|
||||
resized_image = image.resize((self.width, self.height))
|
||||
|
||||
# Preparing the image for output using InvokeAI's predefined Image Service.
|
||||
output_image = context.services.images.create(
|
||||
image=resized_image,
|
||||
image_origin=ResourceOrigin.INTERNAL,
|
||||
image_category=ImageCategory.GENERAL,
|
||||
node_id=self.id,
|
||||
session_id=context.graph_execution_state_id,
|
||||
is_intermediate=self.is_intermediate,
|
||||
)
|
||||
|
||||
# Returning the Image
|
||||
return ImageOutput(
|
||||
image=ImageField(
|
||||
image_name=output_image.image_name,
|
||||
image_origin=output_image.image_origin,
|
||||
),
|
||||
width=output_image.width,
|
||||
height=output_image.height,
|
||||
)
|
||||
```
|
||||
|
||||
We now customized our code to let the frontend know that our Invocation falls
|
||||
under `resize` and `image` categories. So when the user searches for these
|
||||
particular words, our Invocation will show up too.
|
||||
|
||||
We also set a custom title for our Invocation. So instead of being called
|
||||
`Resize`, it will be called `My Custom Resize`.
|
||||
|
||||
As simple as that.
|
||||
|
||||
As time goes by, InvokeAI will further improve and add more customizability for
|
||||
Invocation configuration. We will have more documentation regarding this at a
|
||||
later time.
|
||||
|
||||
# **[TODO]**
|
||||
|
||||
## Custom Components For Frontend
|
||||
|
||||
Every backend input type should have a corresponding frontend component so the
|
||||
UI knows what to render when you use a particular field type.
|
||||
|
||||
If you are using existing field types, we already have components for those. So
|
||||
you don't have to worry about creating anything new. But this might not always
|
||||
be the case. Sometimes you might want to create new field types and have the
|
||||
frontend UI deal with it in a different way.
|
||||
|
||||
This is where we venture into the world of React and Javascript and create our
|
||||
own new components for our Invocations. Do not fear the world of JS. It's
|
||||
actually pretty straightforward.
|
||||
|
||||
Let us create a new component for our custom color field we created above. When
|
||||
we use a color field, let us say we want the UI to display a color picker for
|
||||
the user to pick from rather than entering values. That is what we will build
|
||||
now.
|
||||
|
||||
---
|
||||
|
||||
# OLD -- TO BE DELETED OR MOVED LATER
|
||||
|
||||
---
|
||||
|
||||
## Creating a new invocation
|
||||
|
||||
|
@ -1,9 +1,12 @@
|
||||
---
|
||||
title: Concepts Library
|
||||
title: Concepts
|
||||
---
|
||||
|
||||
# :material-library-shelves: The Hugging Face Concepts Library and Importing Textual Inversion files
|
||||
|
||||
With the advances in research, many new capabilities are available to customize the knowledge and understanding of novel concepts not originally contained in the base model.
|
||||
|
||||
|
||||
## Using Textual Inversion Files
|
||||
|
||||
Textual inversion (TI) files are small models that customize the output of
|
||||
@ -12,18 +15,16 @@ and artistic styles. They are also known as "embeds" in the machine learning
|
||||
world.
|
||||
|
||||
Each TI file introduces one or more vocabulary terms to the SD model. These are
|
||||
known in InvokeAI as "triggers." Triggers are often, but not always, denoted
|
||||
using angle brackets as in "<trigger-phrase>". The two most common type of
|
||||
known in InvokeAI as "triggers." Triggers are denoted using angle brackets
|
||||
as in "<trigger-phrase>". The two most common type of
|
||||
TI files that you'll encounter are `.pt` and `.bin` files, which are produced by
|
||||
different TI training packages. InvokeAI supports both formats, but its
|
||||
[built-in TI training system](TEXTUAL_INVERSION.md) produces `.pt`.
|
||||
[built-in TI training system](TRAINING.md) produces `.pt`.
|
||||
|
||||
The [Hugging Face company](https://huggingface.co/sd-concepts-library) has
|
||||
amassed a large ligrary of >800 community-contributed TI files covering a
|
||||
broad range of subjects and styles. InvokeAI has built-in support for this
|
||||
library which downloads and merges TI files automatically upon request. You can
|
||||
also install your own or others' TI files by placing them in a designated
|
||||
directory.
|
||||
broad range of subjects and styles. You can also install your own or others' TI files
|
||||
by placing them in the designated directory for the compatible model type
|
||||
|
||||
### An Example
|
||||
|
||||
@ -41,66 +42,43 @@ You can also combine styles and concepts:
|
||||
| :--------------------------------------------------------: |
|
||||
| ![](../assets/concepts/image5.png) |
|
||||
</figure>
|
||||
## Using a Hugging Face Concept
|
||||
|
||||
!!! warning "Authenticating to HuggingFace"
|
||||
|
||||
Some concepts require valid authentication to HuggingFace. Without it, they will not be downloaded
|
||||
and will be silently ignored.
|
||||
|
||||
If you used an installer to install InvokeAI, you may have already set a HuggingFace token.
|
||||
If you skipped this step, you can:
|
||||
|
||||
- run the InvokeAI configuration script again (if you used a manual installer): `invokeai-configure`
|
||||
- set one of the `HUGGINGFACE_TOKEN` or `HUGGING_FACE_HUB_TOKEN` environment variables to contain your token
|
||||
|
||||
Finally, if you already used any HuggingFace library on your computer, you might already have a token
|
||||
in your local cache. Check for a hidden `.huggingface` directory in your home folder. If it
|
||||
contains a `token` file, then you are all set.
|
||||
|
||||
|
||||
Hugging Face TI concepts are downloaded and installed automatically as you
|
||||
require them. This requires your machine to be connected to the Internet. To
|
||||
find out what each concept is for, you can browse the
|
||||
[Hugging Face concepts library](https://huggingface.co/sd-concepts-library) and
|
||||
look at examples of what each concept produces.
|
||||
|
||||
To load concepts, you will need to open the Web UI's configuration
|
||||
dialogue and activate "Show Textual Inversions from HF Concepts
|
||||
Library". This will then add a list of HF Concepts to the dropdown
|
||||
"Add Textual Inversion" menu. Select the concept(s) of your choice and
|
||||
they will be incorporated into the positive prompt. A few concepts are
|
||||
designed for the negative prompt, in which case you can add them to
|
||||
the negative prompt box by select the down arrow icon next to the
|
||||
textual inversion menu.
|
||||
|
||||
There are nearly 1000 HF concepts, more than will fit into a menu. For
|
||||
this reason we only show the most popular concepts (those which have
|
||||
received 5 or more likes). If you wish to use a concept that is not on
|
||||
the list, you may simply type its name surrounded by brackets. For
|
||||
example, to load the concept named "xidiversity", add `<xidiversity>`
|
||||
to the positive or negative prompt text.
|
||||
|
||||
## Installing your Own TI Files
|
||||
|
||||
You may install any number of `.pt` and `.bin` files simply by copying them into
|
||||
the `embeddings` directory of the InvokeAI runtime directory (usually `invokeai`
|
||||
in your home directory). You may create subdirectories in order to organize the
|
||||
files in any way you wish. Be careful not to overwrite one file with another.
|
||||
the `embedding` directory of the corresponding InvokeAI models directory (usually `invokeai`
|
||||
in your home directory). For example, you can simply move a Stable Diffusion 1.5 embedding file to
|
||||
the `sd-1/embedding` folder. Be careful not to overwrite one file with another.
|
||||
For example, TI files generated by the Hugging Face toolkit share the named
|
||||
`learned_embedding.bin`. You can use subdirectories to keep them distinct.
|
||||
`learned_embedding.bin`. You can rename these, or use subdirectories to keep them distinct.
|
||||
|
||||
At startup time, InvokeAI will scan the `embeddings` directory and load any TI
|
||||
files it finds there. At startup you will see a message similar to this one:
|
||||
At startup time, InvokeAI will scan the various `embedding` directories and load any TI
|
||||
files it finds there for compatible models. At startup you will see a message similar to this one:
|
||||
|
||||
```bash
|
||||
>> Current embedding manager terms: <HOI4-Leader>, <princess-knight>
|
||||
```
|
||||
To use these when generating, simply type the `<` key in your prompt to open the Textual Inversion WebUI and
|
||||
select the embedding you'd like to use. This UI has type-ahead support, so you can easily find supported embeddings.
|
||||
|
||||
The terms you can use will appear in the "Add Textual Inversion"
|
||||
dropdown menu above the HF Concepts.
|
||||
## Using LoRAs
|
||||
|
||||
## Further Reading
|
||||
LoRA files are models that customize the output of Stable Diffusion image generation.
|
||||
Larger than embeddings, but much smaller than full models, they augment SD with improved
|
||||
understanding of subjects and artistic styles.
|
||||
|
||||
Unlike TI files, LoRAs do not introduce novel vocabulary into the model's known tokens. Instead,
|
||||
LoRAs augment the model's weights that are applied to generate imagery. LoRAs may be supplied
|
||||
with a "trigger" word that they have been explicitly trained on, or may simply apply their
|
||||
effect without being triggered.
|
||||
|
||||
LoRAs are typically stored in .safetensors files, which are the most secure way to store and transmit
|
||||
these types of weights. You may install any number of `.safetensors` LoRA files simply by copying them into
|
||||
the `lora` directory of the corresponding InvokeAI models directory (usually `invokeai`
|
||||
in your home directory). For example, you can simply move a Stable Diffusion 1.5 LoRA file to
|
||||
the `sd-1/lora` folder.
|
||||
|
||||
To use these when generating, open the LoRA menu item in the options panel, select the LoRAs you want to apply
|
||||
and ensure that they have the appropriate weight recommended by the model provider. Typically, most LoRAs perform best at a weight of .75-1.
|
||||
|
||||
Please see [the repository](https://github.com/rinongal/textual_inversion) and
|
||||
associated paper for details and limitations.
|
||||
|
@ -301,5 +301,48 @@ summoning up the concept of some sort of scifi creature? Let's find out.
|
||||
Indeed, removing the word "hybrid" produces an image that is more like what we'd
|
||||
expect.
|
||||
|
||||
In conclusion, prompt blending is great for exploring creative space,
|
||||
but takes some trial and error to achieve the desired effect.
|
||||
## Dynamic Prompts
|
||||
|
||||
Dynamic Prompts are a powerful feature designed to produce a variety of prompts based on user-defined options. Using a special syntax, you can construct a prompt with multiple possibilities, and the system will automatically generate a series of permutations based on your settings. This is extremely beneficial for ideation, exploring various scenarios, or testing different concepts swiftly and efficiently.
|
||||
|
||||
### Structure of a Dynamic Prompt
|
||||
|
||||
A Dynamic Prompt comprises of regular text, supplemented with alternatives enclosed within curly braces {} and separated by a vertical bar |. For example: {option1|option2|option3}. The system will then select one of the options to include in the final prompt. This flexible system allows for options to be placed throughout the text as needed.
|
||||
|
||||
Furthermore, Dynamic Prompts can designate multiple selections from a single group of options. This feature is triggered by prefixing the options with a numerical value followed by $$. For example, in {2$$option1|option2|option3}, the system will select two distinct options from the set.
|
||||
### Creating Dynamic Prompts
|
||||
|
||||
To create a Dynamic Prompt, follow these steps:
|
||||
|
||||
Draft your sentence or phrase, identifying words or phrases with multiple possible options.
|
||||
Encapsulate the different options within curly braces {}.
|
||||
Within the braces, separate each option using a vertical bar |.
|
||||
If you want to include multiple options from a single group, prefix with the desired number and $$.
|
||||
|
||||
For instance: A {house|apartment|lodge|cottage} in {summer|winter|autumn|spring} designed in {2$$style1|style2|style3}.
|
||||
### How Dynamic Prompts Work
|
||||
|
||||
Once a Dynamic Prompt is configured, the system generates an array of combinations using the options provided. Each group of options in curly braces is treated independently, with the system selecting one option from each group. For a prefixed set (e.g., 2$$), the system will select two distinct options.
|
||||
|
||||
For example, the following prompts could be generated from the above Dynamic Prompt:
|
||||
|
||||
A house in summer designed in style1, style2
|
||||
A lodge in autumn designed in style3, style1
|
||||
A cottage in winter designed in style2, style3
|
||||
And many more!
|
||||
|
||||
When the `Combinatorial` setting is on, Invoke will disable the "Images" selection, and generate every combination up until the setting for Max Prompts is reached.
|
||||
When the `Combinatorial` setting is off, Invoke will randomly generate combinations up until the setting for Images has been reached.
|
||||
|
||||
|
||||
|
||||
### Tips and Tricks for Using Dynamic Prompts
|
||||
|
||||
Below are some useful strategies for creating Dynamic Prompts:
|
||||
|
||||
Utilize Dynamic Prompts to generate a wide spectrum of prompts, perfect for brainstorming and exploring diverse ideas.
|
||||
Ensure that the options within a group are contextually relevant to the part of the sentence where they are used. For instance, group building types together, and seasons together.
|
||||
Apply the 2$$ prefix when you want to incorporate more than one option from a single group. This becomes quite handy when mixing and matching different elements.
|
||||
Experiment with different quantities for the prefix. For example, 3$$ will select three distinct options.
|
||||
Be aware of coherence in your prompts. Although the system can generate all possible combinations, not all may semantically make sense. Therefore, carefully choose the options for each group.
|
||||
Always review and fine-tune the generated prompts as needed. While Dynamic Prompts can help you generate a multitude of combinations, the final polishing and refining remain in your hands.
|
||||
|
@ -1,9 +1,10 @@
|
||||
---
|
||||
title: Textual-Inversion
|
||||
title: Training
|
||||
---
|
||||
|
||||
# :material-file-document: Textual Inversion
|
||||
# :material-file-document: Training
|
||||
|
||||
# Textual Inversion Training
|
||||
## **Personalizing Text-to-Image Generation**
|
||||
|
||||
You may personalize the generated images to provide your own styles or objects
|
||||
@ -258,16 +259,6 @@ invokeai-ti \
|
||||
--only_save_embeds
|
||||
```
|
||||
|
||||
## Using Embeddings
|
||||
|
||||
After training completes, the resultant embeddings will be saved into your `$INVOKEAI_ROOT/embeddings/<trigger word>/learned_embeds.bin`.
|
||||
|
||||
These will be automatically loaded when you start InvokeAI.
|
||||
|
||||
Add the trigger word, surrounded by angle brackets, to use that embedding. For example, if your trigger word was `terence`, use `<terence>` in prompts. This is the same syntax used by the HuggingFace concepts library.
|
||||
|
||||
**Note:** `.pt` embeddings do not require the angle brackets.
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
### `Cannot load embedding for <trigger>. It was trained on a model with token dimension 1024, but the current model has token dimension 768`
|
@ -248,6 +248,7 @@ class InvokeAiInstance:
|
||||
"install",
|
||||
"--require-virtualenv",
|
||||
"torch~=2.0.0",
|
||||
"torchmetrics==0.11.4",
|
||||
"torchvision>=0.14.1",
|
||||
"--force-reinstall",
|
||||
"--find-links" if find_links is not None else None,
|
||||
|
@ -20,7 +20,7 @@ echo 9. Update InvokeAI
|
||||
echo 10. Command-line help
|
||||
echo Q - Quit
|
||||
set /P choice="Please enter 1-10, Q: [2] "
|
||||
if not defined choice set choice=2
|
||||
if not defined choice set choice=1
|
||||
IF /I "%choice%" == "1" (
|
||||
echo Starting the InvokeAI browser-based UI..
|
||||
python .venv\Scripts\invokeai-web.exe %*
|
||||
@ -56,7 +56,7 @@ IF /I "%choice%" == "1" (
|
||||
call cmd /k
|
||||
) ELSE IF /I "%choice%" == "9" (
|
||||
echo Running invokeai-update...
|
||||
python .venv\Scripts\invokeai-update.exe %*
|
||||
python -m invokeai.frontend.install.invokeai_update
|
||||
) ELSE IF /I "%choice%" == "10" (
|
||||
echo Displaying command line help...
|
||||
python .venv\Scripts\invokeai.exe --help %*
|
||||
|
@ -93,7 +93,7 @@ do_choice() {
|
||||
9)
|
||||
clear
|
||||
printf "Update InvokeAI\n"
|
||||
invokeai-update
|
||||
python -m invokeai.frontend.install.invokeai_update
|
||||
;;
|
||||
10)
|
||||
clear
|
||||
|
@ -13,10 +13,10 @@ from invokeai.app.services.board_record_storage import SqliteBoardRecordStorage
|
||||
from invokeai.app.services.boards import BoardService, BoardServiceDependencies
|
||||
from invokeai.app.services.image_record_storage import SqliteImageRecordStorage
|
||||
from invokeai.app.services.images import ImageService, ImageServiceDependencies
|
||||
from invokeai.app.services.metadata import CoreMetadataService
|
||||
from invokeai.app.services.resource_name import SimpleNameService
|
||||
from invokeai.app.services.urls import LocalUrlService
|
||||
from invokeai.backend.util.logging import InvokeAILogger
|
||||
from invokeai.version.invokeai_version import __version__
|
||||
|
||||
from ..services.default_graphs import create_system_graphs
|
||||
from ..services.latent_storage import DiskLatentsStorage, ForwardCacheLatentsStorage
|
||||
@ -58,7 +58,8 @@ class ApiDependencies:
|
||||
|
||||
@staticmethod
|
||||
def initialize(config, event_handler_id: int, logger: Logger = logger):
|
||||
logger.info(f"Internet connectivity is {config.internet_available}")
|
||||
logger.debug(f'InvokeAI version {__version__}')
|
||||
logger.debug(f"Internet connectivity is {config.internet_available}")
|
||||
|
||||
events = FastAPIEventService(event_handler_id)
|
||||
|
||||
@ -73,7 +74,6 @@ class ApiDependencies:
|
||||
)
|
||||
|
||||
urls = LocalUrlService()
|
||||
metadata = CoreMetadataService()
|
||||
image_record_storage = SqliteImageRecordStorage(db_location)
|
||||
image_file_storage = DiskImageFileStorage(f"{output_folder}/images")
|
||||
names = SimpleNameService()
|
||||
@ -109,7 +109,6 @@ class ApiDependencies:
|
||||
board_image_record_storage=board_image_record_storage,
|
||||
image_record_storage=image_record_storage,
|
||||
image_file_storage=image_file_storage,
|
||||
metadata=metadata,
|
||||
url=urls,
|
||||
logger=logger,
|
||||
names=names,
|
||||
|
@ -1,18 +1,36 @@
|
||||
from fastapi.routing import APIRouter
|
||||
from pydantic import BaseModel
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from invokeai.backend.image_util.patchmatch import PatchMatch
|
||||
from invokeai.version import __version__
|
||||
|
||||
app_router = APIRouter(prefix="/v1/app", tags=['app'])
|
||||
app_router = APIRouter(prefix="/v1/app", tags=["app"])
|
||||
|
||||
|
||||
class AppVersion(BaseModel):
|
||||
"""App Version Response"""
|
||||
version: str
|
||||
|
||||
version: str = Field(description="App version")
|
||||
|
||||
|
||||
@app_router.get('/version', operation_id="app_version",
|
||||
status_code=200,
|
||||
response_model=AppVersion)
|
||||
class AppConfig(BaseModel):
|
||||
"""App Config Response"""
|
||||
|
||||
infill_methods: list[str] = Field(description="List of available infill methods")
|
||||
|
||||
|
||||
@app_router.get(
|
||||
"/version", operation_id="app_version", status_code=200, response_model=AppVersion
|
||||
)
|
||||
async def get_version() -> AppVersion:
|
||||
return AppVersion(version=__version__)
|
||||
|
||||
|
||||
@app_router.get(
|
||||
"/config", operation_id="get_config", status_code=200, response_model=AppConfig
|
||||
)
|
||||
async def get_config() -> AppConfig:
|
||||
infill_methods = ['tile']
|
||||
if PatchMatch.patchmatch_available():
|
||||
infill_methods.append('patchmatch')
|
||||
return AppConfig(infill_methods=infill_methods)
|
||||
|
@ -7,6 +7,7 @@ from fastapi.responses import FileResponse
|
||||
from fastapi.routing import APIRouter
|
||||
from PIL import Image
|
||||
|
||||
from invokeai.app.invocations.metadata import ImageMetadata
|
||||
from invokeai.app.models.image import ImageCategory, ResourceOrigin
|
||||
from invokeai.app.services.image_record_storage import OffsetPaginatedResults
|
||||
from invokeai.app.services.item_storage import PaginatedResults
|
||||
@ -104,23 +105,38 @@ async def update_image(
|
||||
|
||||
|
||||
@images_router.get(
|
||||
"/{image_name}/metadata",
|
||||
operation_id="get_image_metadata",
|
||||
"/{image_name}",
|
||||
operation_id="get_image_dto",
|
||||
response_model=ImageDTO,
|
||||
)
|
||||
async def get_image_metadata(
|
||||
async def get_image_dto(
|
||||
image_name: str = Path(description="The name of image to get"),
|
||||
) -> ImageDTO:
|
||||
"""Gets an image's metadata"""
|
||||
"""Gets an image's DTO"""
|
||||
|
||||
try:
|
||||
return ApiDependencies.invoker.services.images.get_dto(image_name)
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=404)
|
||||
|
||||
@images_router.get(
|
||||
"/{image_name}/metadata",
|
||||
operation_id="get_image_metadata",
|
||||
response_model=ImageMetadata,
|
||||
)
|
||||
async def get_image_metadata(
|
||||
image_name: str = Path(description="The name of image to get"),
|
||||
) -> ImageMetadata:
|
||||
"""Gets an image's metadata"""
|
||||
|
||||
try:
|
||||
return ApiDependencies.invoker.services.images.get_metadata(image_name)
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=404)
|
||||
|
||||
|
||||
@images_router.get(
|
||||
"/{image_name}",
|
||||
"/{image_name}/full",
|
||||
operation_id="get_image_full",
|
||||
response_class=Response,
|
||||
responses={
|
||||
@ -213,10 +229,10 @@ async def get_image_urls(
|
||||
|
||||
@images_router.get(
|
||||
"/",
|
||||
operation_id="list_images_with_metadata",
|
||||
operation_id="list_image_dtos",
|
||||
response_model=OffsetPaginatedResults[ImageDTO],
|
||||
)
|
||||
async def list_images_with_metadata(
|
||||
async def list_image_dtos(
|
||||
image_origin: Optional[ResourceOrigin] = Query(
|
||||
default=None, description="The origin of images to list"
|
||||
),
|
||||
@ -232,7 +248,7 @@ async def list_images_with_metadata(
|
||||
offset: int = Query(default=0, description="The page offset"),
|
||||
limit: int = Query(default=10, description="The number of images per page"),
|
||||
) -> OffsetPaginatedResults[ImageDTO]:
|
||||
"""Gets a list of images"""
|
||||
"""Gets a list of image DTOs"""
|
||||
|
||||
image_dtos = ApiDependencies.invoker.services.images.get_many(
|
||||
offset,
|
||||
|
@ -1,5 +1,6 @@
|
||||
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
|
||||
# Copyright (c) 2022-2023 Kyle Schouviller (https://github.com/kyle0654) and the InvokeAI Team
|
||||
import asyncio
|
||||
import sys
|
||||
from inspect import signature
|
||||
|
||||
import uvicorn
|
||||
@ -20,6 +21,13 @@ from ..backend.util.logging import InvokeAILogger
|
||||
app_config = InvokeAIAppConfig.get_config()
|
||||
app_config.parse_args()
|
||||
logger = InvokeAILogger.getLogger(config=app_config)
|
||||
from invokeai.version.invokeai_version import __version__
|
||||
|
||||
# we call this early so that the message appears before
|
||||
# other invokeai initialization messages
|
||||
if app_config.version:
|
||||
print(f'InvokeAI version {__version__}')
|
||||
sys.exit(0)
|
||||
|
||||
import invokeai.frontend.web as web_dir
|
||||
import mimetypes
|
||||
@ -29,6 +37,7 @@ from .api.routers import sessions, models, images, boards, board_images, app_inf
|
||||
from .api.sockets import SocketIO
|
||||
from .invocations.baseinvocation import BaseInvocation
|
||||
|
||||
|
||||
import torch
|
||||
if torch.backends.mps.is_available():
|
||||
import invokeai.backend.util.mps_fixes
|
||||
|
@ -16,6 +16,12 @@ from invokeai.backend.util.logging import InvokeAILogger
|
||||
config = InvokeAIAppConfig.get_config()
|
||||
config.parse_args()
|
||||
logger = InvokeAILogger().getLogger(config=config)
|
||||
from invokeai.version.invokeai_version import __version__
|
||||
|
||||
# we call this early so that the message appears before other invokeai initialization messages
|
||||
if config.version:
|
||||
print(f'InvokeAI version {__version__}')
|
||||
sys.exit(0)
|
||||
|
||||
from invokeai.app.services.board_image_record_storage import (
|
||||
SqliteBoardImageRecordStorage,
|
||||
@ -28,7 +34,6 @@ from invokeai.app.services.board_record_storage import SqliteBoardRecordStorage
|
||||
from invokeai.app.services.boards import BoardService, BoardServiceDependencies
|
||||
from invokeai.app.services.image_record_storage import SqliteImageRecordStorage
|
||||
from invokeai.app.services.images import ImageService, ImageServiceDependencies
|
||||
from invokeai.app.services.metadata import CoreMetadataService
|
||||
from invokeai.app.services.resource_name import SimpleNameService
|
||||
from invokeai.app.services.urls import LocalUrlService
|
||||
from .services.default_graphs import (default_text_to_image_graph_id,
|
||||
@ -208,6 +213,7 @@ def invoke_all(context: CliContext):
|
||||
raise SessionError()
|
||||
|
||||
def invoke_cli():
|
||||
logger.info(f'InvokeAI version {__version__}')
|
||||
# get the optional list of invocations to execute on the command line
|
||||
parser = config.get_parser()
|
||||
parser.add_argument('commands',nargs='*')
|
||||
@ -237,7 +243,6 @@ def invoke_cli():
|
||||
)
|
||||
|
||||
urls = LocalUrlService()
|
||||
metadata = CoreMetadataService()
|
||||
image_record_storage = SqliteImageRecordStorage(db_location)
|
||||
image_file_storage = DiskImageFileStorage(f"{output_folder}/images")
|
||||
names = SimpleNameService()
|
||||
@ -270,7 +275,6 @@ def invoke_cli():
|
||||
board_image_record_storage=board_image_record_storage,
|
||||
image_record_storage=image_record_storage,
|
||||
image_file_storage=image_file_storage,
|
||||
metadata=metadata,
|
||||
url=urls,
|
||||
logger=logger,
|
||||
names=names,
|
||||
|
@ -154,40 +154,42 @@ class InpaintInvocation(BaseInvocation):
|
||||
|
||||
@contextmanager
|
||||
def load_model_old_way(self, context, scheduler):
|
||||
def _lora_loader():
|
||||
for lora in self.unet.loras:
|
||||
lora_info = context.services.model_manager.get_model(
|
||||
**lora.dict(exclude={"weight"}))
|
||||
yield (lora_info.context.model, lora.weight)
|
||||
del lora_info
|
||||
return
|
||||
|
||||
unet_info = context.services.model_manager.get_model(**self.unet.unet.dict())
|
||||
vae_info = context.services.model_manager.get_model(**self.vae.vae.dict())
|
||||
|
||||
#unet = unet_info.context.model
|
||||
#vae = vae_info.context.model
|
||||
with vae_info as vae,\
|
||||
ModelPatcher.apply_lora_unet(unet_info.context.model, _lora_loader()),\
|
||||
unet_info as unet:
|
||||
|
||||
with ExitStack() as stack:
|
||||
loras = [(stack.enter_context(context.services.model_manager.get_model(**lora.dict(exclude={"weight"}))), lora.weight) for lora in self.unet.loras]
|
||||
device = context.services.model_manager.mgr.cache.execution_device
|
||||
dtype = context.services.model_manager.mgr.cache.precision
|
||||
|
||||
with vae_info as vae,\
|
||||
unet_info as unet,\
|
||||
ModelPatcher.apply_lora_unet(unet, loras):
|
||||
pipeline = StableDiffusionGeneratorPipeline(
|
||||
vae=vae,
|
||||
text_encoder=None,
|
||||
tokenizer=None,
|
||||
unet=unet,
|
||||
scheduler=scheduler,
|
||||
safety_checker=None,
|
||||
feature_extractor=None,
|
||||
requires_safety_checker=False,
|
||||
precision="float16" if dtype == torch.float16 else "float32",
|
||||
execution_device=device,
|
||||
)
|
||||
|
||||
device = context.services.model_manager.mgr.cache.execution_device
|
||||
dtype = context.services.model_manager.mgr.cache.precision
|
||||
|
||||
pipeline = StableDiffusionGeneratorPipeline(
|
||||
vae=vae,
|
||||
text_encoder=None,
|
||||
tokenizer=None,
|
||||
unet=unet,
|
||||
scheduler=scheduler,
|
||||
safety_checker=None,
|
||||
feature_extractor=None,
|
||||
requires_safety_checker=False,
|
||||
precision="float16" if dtype == torch.float16 else "float32",
|
||||
execution_device=device,
|
||||
)
|
||||
|
||||
yield OldModelInfo(
|
||||
name=self.unet.unet.model_name,
|
||||
hash="<NO-HASH>",
|
||||
model=pipeline,
|
||||
)
|
||||
yield OldModelInfo(
|
||||
name=self.unet.unet.model_name,
|
||||
hash="<NO-HASH>",
|
||||
model=pipeline,
|
||||
)
|
||||
|
||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||
image = (
|
||||
@ -226,21 +228,21 @@ class InpaintInvocation(BaseInvocation):
|
||||
), # Shorthand for passing all of the parameters above manually
|
||||
)
|
||||
|
||||
# Outputs is an infinite iterator that will return a new InvokeAIGeneratorOutput object
|
||||
# each time it is called. We only need the first one.
|
||||
generator_output = next(outputs)
|
||||
# Outputs is an infinite iterator that will return a new InvokeAIGeneratorOutput object
|
||||
# each time it is called. We only need the first one.
|
||||
generator_output = next(outputs)
|
||||
|
||||
image_dto = context.services.images.create(
|
||||
image=generator_output.image,
|
||||
image_origin=ResourceOrigin.INTERNAL,
|
||||
image_category=ImageCategory.GENERAL,
|
||||
session_id=context.graph_execution_state_id,
|
||||
node_id=self.id,
|
||||
is_intermediate=self.is_intermediate,
|
||||
)
|
||||
image_dto = context.services.images.create(
|
||||
image=generator_output.image,
|
||||
image_origin=ResourceOrigin.INTERNAL,
|
||||
image_category=ImageCategory.GENERAL,
|
||||
session_id=context.graph_execution_state_id,
|
||||
node_id=self.id,
|
||||
is_intermediate=self.is_intermediate,
|
||||
)
|
||||
|
||||
return ImageOutput(
|
||||
image=ImageField(image_name=image_dto.image_name),
|
||||
width=image_dto.width,
|
||||
height=image_dto.height,
|
||||
)
|
||||
return ImageOutput(
|
||||
image=ImageField(image_name=image_dto.image_name),
|
||||
width=image_dto.width,
|
||||
height=image_dto.height,
|
||||
)
|
||||
|
@ -9,9 +9,9 @@ from diffusers.image_processor import VaeImageProcessor
|
||||
from diffusers.schedulers import SchedulerMixin as Scheduler
|
||||
from pydantic import BaseModel, Field, validator
|
||||
|
||||
from invokeai.app.invocations.metadata import CoreMetadata
|
||||
from invokeai.app.util.step_callback import stable_diffusion_step_callback
|
||||
|
||||
from ..models.image import ImageCategory, ImageField, ResourceOrigin
|
||||
from ...backend.model_management.lora import ModelPatcher
|
||||
from ...backend.stable_diffusion import PipelineIntermediateState
|
||||
from ...backend.stable_diffusion.diffusers_pipeline import (
|
||||
@ -21,6 +21,7 @@ from ...backend.stable_diffusion.diffusion.shared_invokeai_diffusion import \
|
||||
PostprocessingSettings
|
||||
from ...backend.stable_diffusion.schedulers import SCHEDULER_MAP
|
||||
from ...backend.util.devices import torch_dtype
|
||||
from ..models.image import ImageCategory, ImageField, ResourceOrigin
|
||||
from .baseinvocation import (BaseInvocation, BaseInvocationOutput,
|
||||
InvocationConfig, InvocationContext)
|
||||
from .compel import ConditioningField
|
||||
@ -449,6 +450,8 @@ class LatentsToImageInvocation(BaseInvocation):
|
||||
tiled: bool = Field(
|
||||
default=False,
|
||||
description="Decode latents by overlaping tiles(less memory consumption)")
|
||||
metadata: Optional[CoreMetadata] = Field(default=None, description="Optional core metadata to be written to the image")
|
||||
|
||||
|
||||
# Schema customisation
|
||||
class Config(InvocationConfig):
|
||||
@ -493,7 +496,8 @@ class LatentsToImageInvocation(BaseInvocation):
|
||||
image_category=ImageCategory.GENERAL,
|
||||
node_id=self.id,
|
||||
session_id=context.graph_execution_state_id,
|
||||
is_intermediate=self.is_intermediate
|
||||
is_intermediate=self.is_intermediate,
|
||||
metadata=self.metadata.dict() if self.metadata else None,
|
||||
)
|
||||
|
||||
return ImageOutput(
|
||||
@ -515,9 +519,9 @@ class ResizeLatentsInvocation(BaseInvocation):
|
||||
# Inputs
|
||||
latents: Optional[LatentsField] = Field(
|
||||
description="The latents to resize")
|
||||
width: int = Field(
|
||||
width: Union[int, None] = Field(default=512,
|
||||
ge=64, multiple_of=8, description="The width to resize to (px)")
|
||||
height: int = Field(
|
||||
height: Union[int, None] = Field(default=512,
|
||||
ge=64, multiple_of=8, description="The height to resize to (px)")
|
||||
mode: LATENTS_INTERPOLATION_MODE = Field(
|
||||
default="bilinear", description="The interpolation mode")
|
||||
|
124
invokeai/app/invocations/metadata.py
Normal file
124
invokeai/app/invocations/metadata.py
Normal file
@ -0,0 +1,124 @@
|
||||
from typing import Literal, Optional, Union
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import (BaseInvocation,
|
||||
BaseInvocationOutput,
|
||||
InvocationContext)
|
||||
from invokeai.app.invocations.controlnet_image_processors import ControlField
|
||||
from invokeai.app.invocations.model import (LoRAModelField, MainModelField,
|
||||
VAEModelField)
|
||||
|
||||
|
||||
class LoRAMetadataField(BaseModel):
|
||||
"""LoRA metadata for an image generated in InvokeAI."""
|
||||
lora: LoRAModelField = Field(description="The LoRA model")
|
||||
weight: float = Field(description="The weight of the LoRA model")
|
||||
|
||||
|
||||
class CoreMetadata(BaseModel):
|
||||
"""Core generation metadata for an image generated in InvokeAI."""
|
||||
|
||||
generation_mode: str = Field(description="The generation mode that output this image",)
|
||||
positive_prompt: str = Field(description="The positive prompt parameter")
|
||||
negative_prompt: str = Field(description="The negative prompt parameter")
|
||||
width: int = Field(description="The width parameter")
|
||||
height: int = Field(description="The height parameter")
|
||||
seed: int = Field(description="The seed used for noise generation")
|
||||
rand_device: str = Field(description="The device used for random number generation")
|
||||
cfg_scale: float = Field(description="The classifier-free guidance scale parameter")
|
||||
steps: int = Field(description="The number of steps used for inference")
|
||||
scheduler: str = Field(description="The scheduler used for inference")
|
||||
clip_skip: int = Field(description="The number of skipped CLIP layers",)
|
||||
model: MainModelField = Field(description="The main model used for inference")
|
||||
controlnets: list[ControlField]= Field(description="The ControlNets used for inference")
|
||||
loras: list[LoRAMetadataField] = Field(description="The LoRAs used for inference")
|
||||
strength: Union[float, None] = Field(
|
||||
default=None,
|
||||
description="The strength used for latents-to-latents",
|
||||
)
|
||||
init_image: Union[str, None] = Field(
|
||||
default=None, description="The name of the initial image"
|
||||
)
|
||||
vae: Union[VAEModelField, None] = Field(
|
||||
default=None,
|
||||
description="The VAE used for decoding, if the main model's default was not used",
|
||||
)
|
||||
|
||||
|
||||
class ImageMetadata(BaseModel):
|
||||
"""An image's generation metadata"""
|
||||
|
||||
metadata: Optional[dict] = Field(
|
||||
default=None,
|
||||
description="The image's core metadata, if it was created in the Linear or Canvas UI",
|
||||
)
|
||||
graph: Optional[dict] = Field(
|
||||
default=None, description="The graph that created the image"
|
||||
)
|
||||
|
||||
|
||||
class MetadataAccumulatorOutput(BaseInvocationOutput):
|
||||
"""The output of the MetadataAccumulator node"""
|
||||
|
||||
type: Literal["metadata_accumulator_output"] = "metadata_accumulator_output"
|
||||
|
||||
metadata: CoreMetadata = Field(description="The core metadata for the image")
|
||||
|
||||
|
||||
class MetadataAccumulatorInvocation(BaseInvocation):
|
||||
"""Outputs a Core Metadata Object"""
|
||||
|
||||
type: Literal["metadata_accumulator"] = "metadata_accumulator"
|
||||
|
||||
generation_mode: str = Field(description="The generation mode that output this image",)
|
||||
positive_prompt: str = Field(description="The positive prompt parameter")
|
||||
negative_prompt: str = Field(description="The negative prompt parameter")
|
||||
width: int = Field(description="The width parameter")
|
||||
height: int = Field(description="The height parameter")
|
||||
seed: int = Field(description="The seed used for noise generation")
|
||||
rand_device: str = Field(description="The device used for random number generation")
|
||||
cfg_scale: float = Field(description="The classifier-free guidance scale parameter")
|
||||
steps: int = Field(description="The number of steps used for inference")
|
||||
scheduler: str = Field(description="The scheduler used for inference")
|
||||
clip_skip: int = Field(description="The number of skipped CLIP layers",)
|
||||
model: MainModelField = Field(description="The main model used for inference")
|
||||
controlnets: list[ControlField]= Field(description="The ControlNets used for inference")
|
||||
loras: list[LoRAMetadataField] = Field(description="The LoRAs used for inference")
|
||||
strength: Union[float, None] = Field(
|
||||
default=None,
|
||||
description="The strength used for latents-to-latents",
|
||||
)
|
||||
init_image: Union[str, None] = Field(
|
||||
default=None, description="The name of the initial image"
|
||||
)
|
||||
vae: Union[VAEModelField, None] = Field(
|
||||
default=None,
|
||||
description="The VAE used for decoding, if the main model's default was not used",
|
||||
)
|
||||
|
||||
|
||||
def invoke(self, context: InvocationContext) -> MetadataAccumulatorOutput:
|
||||
"""Collects and outputs a CoreMetadata object"""
|
||||
|
||||
return MetadataAccumulatorOutput(
|
||||
metadata=CoreMetadata(
|
||||
generation_mode=self.generation_mode,
|
||||
positive_prompt=self.positive_prompt,
|
||||
negative_prompt=self.negative_prompt,
|
||||
width=self.width,
|
||||
height=self.height,
|
||||
seed=self.seed,
|
||||
rand_device=self.rand_device,
|
||||
cfg_scale=self.cfg_scale,
|
||||
steps=self.steps,
|
||||
scheduler=self.scheduler,
|
||||
model=self.model,
|
||||
strength=self.strength,
|
||||
init_image=self.init_image,
|
||||
vae=self.vae,
|
||||
controlnets=self.controlnets,
|
||||
loras=self.loras,
|
||||
clip_skip=self.clip_skip,
|
||||
)
|
||||
)
|
@ -1,93 +0,0 @@
|
||||
from typing import Optional, Union, List
|
||||
from pydantic import BaseModel, Extra, Field, StrictFloat, StrictInt, StrictStr
|
||||
|
||||
|
||||
class ImageMetadata(BaseModel):
|
||||
"""
|
||||
Core generation metadata for an image/tensor generated in InvokeAI.
|
||||
|
||||
Also includes any metadata from the image's PNG tEXt chunks.
|
||||
|
||||
Generated by traversing the execution graph, collecting the parameters of the nearest ancestors
|
||||
of a given node.
|
||||
|
||||
Full metadata may be accessed by querying for the session in the `graph_executions` table.
|
||||
"""
|
||||
|
||||
class Config:
|
||||
extra = Extra.allow
|
||||
"""
|
||||
This lets the ImageMetadata class accept arbitrary additional fields. The CoreMetadataService
|
||||
won't add any fields that are not already defined, but other a different metadata service
|
||||
implementation might.
|
||||
"""
|
||||
|
||||
type: Optional[StrictStr] = Field(
|
||||
default=None,
|
||||
description="The type of the ancestor node of the image output node.",
|
||||
)
|
||||
"""The type of the ancestor node of the image output node."""
|
||||
positive_conditioning: Optional[StrictStr] = Field(
|
||||
default=None, description="The positive conditioning."
|
||||
)
|
||||
"""The positive conditioning"""
|
||||
negative_conditioning: Optional[StrictStr] = Field(
|
||||
default=None, description="The negative conditioning."
|
||||
)
|
||||
"""The negative conditioning"""
|
||||
width: Optional[StrictInt] = Field(
|
||||
default=None, description="Width of the image/latents in pixels."
|
||||
)
|
||||
"""Width of the image/latents in pixels"""
|
||||
height: Optional[StrictInt] = Field(
|
||||
default=None, description="Height of the image/latents in pixels."
|
||||
)
|
||||
"""Height of the image/latents in pixels"""
|
||||
seed: Optional[StrictInt] = Field(
|
||||
default=None, description="The seed used for noise generation."
|
||||
)
|
||||
"""The seed used for noise generation"""
|
||||
# cfg_scale: Optional[StrictFloat] = Field(
|
||||
# cfg_scale: Union[float, list[float]] = Field(
|
||||
cfg_scale: Union[StrictFloat, List[StrictFloat]] = Field(
|
||||
default=None, description="The classifier-free guidance scale."
|
||||
)
|
||||
"""The classifier-free guidance scale"""
|
||||
steps: Optional[StrictInt] = Field(
|
||||
default=None, description="The number of steps used for inference."
|
||||
)
|
||||
"""The number of steps used for inference"""
|
||||
scheduler: Optional[StrictStr] = Field(
|
||||
default=None, description="The scheduler used for inference."
|
||||
)
|
||||
"""The scheduler used for inference"""
|
||||
model: Optional[StrictStr] = Field(
|
||||
default=None, description="The model used for inference."
|
||||
)
|
||||
"""The model used for inference"""
|
||||
strength: Optional[StrictFloat] = Field(
|
||||
default=None,
|
||||
description="The strength used for image-to-image/latents-to-latents.",
|
||||
)
|
||||
"""The strength used for image-to-image/latents-to-latents."""
|
||||
latents: Optional[StrictStr] = Field(
|
||||
default=None, description="The ID of the initial latents."
|
||||
)
|
||||
"""The ID of the initial latents"""
|
||||
vae: Optional[StrictStr] = Field(
|
||||
default=None, description="The VAE used for decoding."
|
||||
)
|
||||
"""The VAE used for decoding"""
|
||||
unet: Optional[StrictStr] = Field(
|
||||
default=None, description="The UNet used dor inference."
|
||||
)
|
||||
"""The UNet used dor inference"""
|
||||
clip: Optional[StrictStr] = Field(
|
||||
default=None, description="The CLIP Encoder used for conditioning."
|
||||
)
|
||||
"""The CLIP Encoder used for conditioning"""
|
||||
extra: Optional[StrictStr] = Field(
|
||||
default=None,
|
||||
description="Uploaded image metadata, extracted from the PNG tEXt chunk.",
|
||||
)
|
||||
"""Uploaded image metadata, extracted from the PNG tEXt chunk."""
|
@ -23,7 +23,8 @@ InvokeAI:
|
||||
xformers_enabled: false
|
||||
sequential_guidance: false
|
||||
precision: float16
|
||||
max_loaded_models: 4
|
||||
max_cache_size: 6
|
||||
max_vram_cache_size: 2.7
|
||||
always_use_cpu: false
|
||||
free_gpu_mem: false
|
||||
Features:
|
||||
@ -168,7 +169,7 @@ from argparse import ArgumentParser
|
||||
from omegaconf import OmegaConf, DictConfig
|
||||
from pathlib import Path
|
||||
from pydantic import BaseSettings, Field, parse_obj_as
|
||||
from typing import ClassVar, Dict, List, Literal, Union, get_origin, get_type_hints, get_args
|
||||
from typing import ClassVar, Dict, List, Set, Literal, Union, get_origin, get_type_hints, get_args
|
||||
|
||||
INIT_FILE = Path('invokeai.yaml')
|
||||
MODEL_CORE = Path('models/core')
|
||||
@ -270,7 +271,8 @@ class InvokeAISettings(BaseSettings):
|
||||
|
||||
@classmethod
|
||||
def _excluded(self)->List[str]:
|
||||
return ['type','initconf']
|
||||
# combination of deprecated parameters and internal ones
|
||||
return ['type','initconf', 'gpu_mem_reserved', 'max_loaded_models', 'version']
|
||||
|
||||
class Config:
|
||||
env_file_encoding = 'utf-8'
|
||||
@ -363,8 +365,10 @@ setting environment variables INVOKEAI_<setting>.
|
||||
|
||||
always_use_cpu : bool = Field(default=False, description="If true, use the CPU for rendering even if a GPU is available.", category='Memory/Performance')
|
||||
free_gpu_mem : bool = Field(default=False, description="If true, purge model from GPU after each generation.", category='Memory/Performance')
|
||||
max_loaded_models : int = Field(default=3, gt=0, description="(DEPRECATED: use max_cache_size) Maximum number of models to keep in memory for rapid switching", category='Memory/Performance')
|
||||
max_loaded_models : int = Field(default=3, gt=0, description="(DEPRECATED: use max_cache_size) Maximum number of models to keep in memory for rapid switching", category='DEPRECATED')
|
||||
max_cache_size : float = Field(default=6.0, gt=0, description="Maximum memory amount used by model cache for rapid switching", category='Memory/Performance')
|
||||
max_vram_cache_size : float = Field(default=2.75, ge=0, description="Amount of VRAM reserved for model storage", category='Memory/Performance')
|
||||
gpu_mem_reserved : float = Field(default=2.75, ge=0, description="DEPRECATED: use max_vram_cache_size. Amount of VRAM reserved for model storage", category='DEPRECATED')
|
||||
precision : Literal[tuple(['auto','float16','float32','autocast'])] = Field(default='float16',description='Floating point precision', category='Memory/Performance')
|
||||
sequential_guidance : bool = Field(default=False, description="Whether to calculate guidance in serial instead of in parallel, lowering memory requirements", category='Memory/Performance')
|
||||
xformers_enabled : bool = Field(default=True, description="Enable/disable memory-efficient attention", category='Memory/Performance')
|
||||
@ -389,6 +393,8 @@ setting environment variables INVOKEAI_<setting>.
|
||||
# note - would be better to read the log_format values from logging.py, but this creates circular dependencies issues
|
||||
log_format : Literal[tuple(['plain','color','syslog','legacy'])] = Field(default="color", description='Log format. Use "plain" for text-only, "color" for colorized output, "legacy" for 2.3-style logging and "syslog" for syslog-style', category="Logging")
|
||||
log_level : Literal[tuple(["debug","info","warning","error","critical"])] = Field(default="debug", description="Emit logging messages at this level or higher", category="Logging")
|
||||
|
||||
version : bool = Field(default=False, description="Show InvokeAI version and exit", category="Other")
|
||||
#fmt: on
|
||||
|
||||
def parse_args(self, argv: List[str]=None, conf: DictConfig = None, clobber=False):
|
||||
|
@ -1,14 +1,14 @@
|
||||
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) and the InvokeAI Team
|
||||
import json
|
||||
from abc import ABC, abstractmethod
|
||||
from pathlib import Path
|
||||
from queue import Queue
|
||||
from typing import Dict, Optional, Union
|
||||
|
||||
from PIL.Image import Image as PILImageType
|
||||
from PIL import Image, PngImagePlugin
|
||||
from PIL.Image import Image as PILImageType
|
||||
from send2trash import send2trash
|
||||
|
||||
from invokeai.app.models.metadata import ImageMetadata
|
||||
from invokeai.app.util.thumbnails import get_thumbnail_name, make_thumbnail
|
||||
|
||||
|
||||
@ -59,7 +59,8 @@ class ImageFileStorageBase(ABC):
|
||||
self,
|
||||
image: PILImageType,
|
||||
image_name: str,
|
||||
metadata: Optional[ImageMetadata] = None,
|
||||
metadata: Optional[dict] = None,
|
||||
graph: Optional[dict] = None,
|
||||
thumbnail_size: int = 256,
|
||||
) -> None:
|
||||
"""Saves an image and a 256x256 WEBP thumbnail. Returns a tuple of the image name, thumbnail name, and created timestamp."""
|
||||
@ -110,20 +111,22 @@ class DiskImageFileStorage(ImageFileStorageBase):
|
||||
self,
|
||||
image: PILImageType,
|
||||
image_name: str,
|
||||
metadata: Optional[ImageMetadata] = None,
|
||||
metadata: Optional[dict] = None,
|
||||
graph: Optional[dict] = None,
|
||||
thumbnail_size: int = 256,
|
||||
) -> None:
|
||||
try:
|
||||
self.__validate_storage_folders()
|
||||
image_path = self.get_path(image_name)
|
||||
|
||||
if metadata is not None:
|
||||
pnginfo = PngImagePlugin.PngInfo()
|
||||
pnginfo.add_text("invokeai", metadata.json())
|
||||
image.save(image_path, "PNG", pnginfo=pnginfo)
|
||||
else:
|
||||
image.save(image_path, "PNG")
|
||||
pnginfo = PngImagePlugin.PngInfo()
|
||||
|
||||
if metadata is not None:
|
||||
pnginfo.add_text("invokeai_metadata", json.dumps(metadata))
|
||||
if graph is not None:
|
||||
pnginfo.add_text("invokeai_graph", json.dumps(graph))
|
||||
|
||||
image.save(image_path, "PNG", pnginfo=pnginfo)
|
||||
thumbnail_name = get_thumbnail_name(image_name)
|
||||
thumbnail_path = self.get_path(thumbnail_name, thumbnail=True)
|
||||
thumbnail_image = make_thumbnail(image, thumbnail_size)
|
||||
|
@ -1,22 +1,16 @@
|
||||
import json
|
||||
import sqlite3
|
||||
import threading
|
||||
from abc import ABC, abstractmethod
|
||||
from datetime import datetime
|
||||
from typing import Generic, Optional, TypeVar, cast
|
||||
import sqlite3
|
||||
import threading
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
from pydantic.generics import GenericModel
|
||||
|
||||
from invokeai.app.models.metadata import ImageMetadata
|
||||
from invokeai.app.models.image import (
|
||||
ImageCategory,
|
||||
ResourceOrigin,
|
||||
)
|
||||
from invokeai.app.models.image import ImageCategory, ResourceOrigin
|
||||
from invokeai.app.services.models.image_record import (
|
||||
ImageRecord,
|
||||
ImageRecordChanges,
|
||||
deserialize_image_record,
|
||||
)
|
||||
ImageRecord, ImageRecordChanges, deserialize_image_record)
|
||||
|
||||
T = TypeVar("T", bound=BaseModel)
|
||||
|
||||
@ -54,6 +48,28 @@ class ImageRecordDeleteException(Exception):
|
||||
super().__init__(message)
|
||||
|
||||
|
||||
IMAGE_DTO_COLS = ", ".join(
|
||||
list(
|
||||
map(
|
||||
lambda c: "images." + c,
|
||||
[
|
||||
"image_name",
|
||||
"image_origin",
|
||||
"image_category",
|
||||
"width",
|
||||
"height",
|
||||
"session_id",
|
||||
"node_id",
|
||||
"is_intermediate",
|
||||
"created_at",
|
||||
"updated_at",
|
||||
"deleted_at",
|
||||
],
|
||||
)
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
class ImageRecordStorageBase(ABC):
|
||||
"""Low-level service responsible for interfacing with the image record store."""
|
||||
|
||||
@ -64,6 +80,11 @@ class ImageRecordStorageBase(ABC):
|
||||
"""Gets an image record."""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_metadata(self, image_name: str) -> Optional[dict]:
|
||||
"""Gets an image's metadata'."""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def update(
|
||||
self,
|
||||
@ -108,7 +129,7 @@ class ImageRecordStorageBase(ABC):
|
||||
height: int,
|
||||
session_id: Optional[str],
|
||||
node_id: Optional[str],
|
||||
metadata: Optional[ImageMetadata],
|
||||
metadata: Optional[dict],
|
||||
is_intermediate: bool = False,
|
||||
) -> datetime:
|
||||
"""Saves an image record."""
|
||||
@ -162,7 +183,6 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
|
||||
node_id TEXT,
|
||||
metadata TEXT,
|
||||
is_intermediate BOOLEAN DEFAULT FALSE,
|
||||
board_id TEXT,
|
||||
created_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
|
||||
-- Updated via trigger
|
||||
updated_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
|
||||
@ -213,7 +233,7 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
|
||||
|
||||
self._cursor.execute(
|
||||
f"""--sql
|
||||
SELECT * FROM images
|
||||
SELECT {IMAGE_DTO_COLS} FROM images
|
||||
WHERE image_name = ?;
|
||||
""",
|
||||
(image_name,),
|
||||
@ -231,6 +251,28 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
|
||||
|
||||
return deserialize_image_record(dict(result))
|
||||
|
||||
def get_metadata(self, image_name: str) -> Optional[dict]:
|
||||
try:
|
||||
self._lock.acquire()
|
||||
|
||||
self._cursor.execute(
|
||||
f"""--sql
|
||||
SELECT images.metadata FROM images
|
||||
WHERE image_name = ?;
|
||||
""",
|
||||
(image_name,),
|
||||
)
|
||||
|
||||
result = cast(Optional[sqlite3.Row], self._cursor.fetchone())
|
||||
if not result or not result[0]:
|
||||
return None
|
||||
return json.loads(result[0])
|
||||
except sqlite3.Error as e:
|
||||
self._conn.rollback()
|
||||
raise ImageRecordNotFoundException from e
|
||||
finally:
|
||||
self._lock.release()
|
||||
|
||||
def update(
|
||||
self,
|
||||
image_name: str,
|
||||
@ -298,8 +340,8 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
|
||||
WHERE 1=1
|
||||
"""
|
||||
|
||||
images_query = """--sql
|
||||
SELECT images.*
|
||||
images_query = f"""--sql
|
||||
SELECT {IMAGE_DTO_COLS}
|
||||
FROM images
|
||||
LEFT JOIN board_images ON board_images.image_name = images.image_name
|
||||
WHERE 1=1
|
||||
@ -417,12 +459,12 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
|
||||
width: int,
|
||||
height: int,
|
||||
node_id: Optional[str],
|
||||
metadata: Optional[ImageMetadata],
|
||||
metadata: Optional[dict],
|
||||
is_intermediate: bool = False,
|
||||
) -> datetime:
|
||||
try:
|
||||
metadata_json = (
|
||||
None if metadata is None else metadata.json(exclude_none=True)
|
||||
None if metadata is None else json.dumps(metadata)
|
||||
)
|
||||
self._lock.acquire()
|
||||
self._cursor.execute(
|
||||
@ -472,9 +514,7 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
|
||||
finally:
|
||||
self._lock.release()
|
||||
|
||||
def get_most_recent_image_for_board(
|
||||
self, board_id: str
|
||||
) -> Optional[ImageRecord]:
|
||||
def get_most_recent_image_for_board(self, board_id: str) -> Optional[ImageRecord]:
|
||||
try:
|
||||
self._lock.acquire()
|
||||
self._cursor.execute(
|
||||
|
@ -1,39 +1,30 @@
|
||||
import json
|
||||
from abc import ABC, abstractmethod
|
||||
from logging import Logger
|
||||
from typing import Optional, TYPE_CHECKING, Union
|
||||
from typing import TYPE_CHECKING, Optional
|
||||
|
||||
from PIL.Image import Image as PILImageType
|
||||
|
||||
from invokeai.app.models.image import (
|
||||
ImageCategory,
|
||||
ResourceOrigin,
|
||||
InvalidImageCategoryException,
|
||||
InvalidOriginException,
|
||||
)
|
||||
from invokeai.app.models.metadata import ImageMetadata
|
||||
from invokeai.app.services.board_image_record_storage import BoardImageRecordStorageBase
|
||||
from invokeai.app.services.image_record_storage import (
|
||||
ImageRecordDeleteException,
|
||||
ImageRecordNotFoundException,
|
||||
ImageRecordSaveException,
|
||||
ImageRecordStorageBase,
|
||||
OffsetPaginatedResults,
|
||||
)
|
||||
from invokeai.app.services.models.image_record import (
|
||||
ImageRecord,
|
||||
ImageDTO,
|
||||
ImageRecordChanges,
|
||||
image_record_to_dto,
|
||||
)
|
||||
from invokeai.app.invocations.metadata import ImageMetadata
|
||||
from invokeai.app.models.image import (ImageCategory,
|
||||
InvalidImageCategoryException,
|
||||
InvalidOriginException, ResourceOrigin)
|
||||
from invokeai.app.services.board_image_record_storage import \
|
||||
BoardImageRecordStorageBase
|
||||
from invokeai.app.services.graph import Graph
|
||||
from invokeai.app.services.image_file_storage import (
|
||||
ImageFileDeleteException,
|
||||
ImageFileNotFoundException,
|
||||
ImageFileSaveException,
|
||||
ImageFileStorageBase,
|
||||
)
|
||||
from invokeai.app.services.item_storage import ItemStorageABC, PaginatedResults
|
||||
from invokeai.app.services.metadata import MetadataServiceBase
|
||||
ImageFileDeleteException, ImageFileNotFoundException,
|
||||
ImageFileSaveException, ImageFileStorageBase)
|
||||
from invokeai.app.services.image_record_storage import (
|
||||
ImageRecordDeleteException, ImageRecordNotFoundException,
|
||||
ImageRecordSaveException, ImageRecordStorageBase, OffsetPaginatedResults)
|
||||
from invokeai.app.services.item_storage import ItemStorageABC
|
||||
from invokeai.app.services.models.image_record import (ImageDTO, ImageRecord,
|
||||
ImageRecordChanges,
|
||||
image_record_to_dto)
|
||||
from invokeai.app.services.resource_name import NameServiceBase
|
||||
from invokeai.app.services.urls import UrlServiceBase
|
||||
from invokeai.app.util.metadata import get_metadata_graph_from_raw_session
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from invokeai.app.services.graph import GraphExecutionState
|
||||
@ -51,6 +42,7 @@ class ImageServiceABC(ABC):
|
||||
node_id: Optional[str] = None,
|
||||
session_id: Optional[str] = None,
|
||||
is_intermediate: bool = False,
|
||||
metadata: Optional[dict] = None,
|
||||
) -> ImageDTO:
|
||||
"""Creates an image, storing the file and its metadata."""
|
||||
pass
|
||||
@ -79,6 +71,11 @@ class ImageServiceABC(ABC):
|
||||
"""Gets an image DTO."""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_metadata(self, image_name: str) -> ImageMetadata:
|
||||
"""Gets an image's metadata."""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_path(self, image_name: str, thumbnail: bool = False) -> str:
|
||||
"""Gets an image's path."""
|
||||
@ -124,7 +121,6 @@ class ImageServiceDependencies:
|
||||
image_records: ImageRecordStorageBase
|
||||
image_files: ImageFileStorageBase
|
||||
board_image_records: BoardImageRecordStorageBase
|
||||
metadata: MetadataServiceBase
|
||||
urls: UrlServiceBase
|
||||
logger: Logger
|
||||
names: NameServiceBase
|
||||
@ -135,7 +131,6 @@ class ImageServiceDependencies:
|
||||
image_record_storage: ImageRecordStorageBase,
|
||||
image_file_storage: ImageFileStorageBase,
|
||||
board_image_record_storage: BoardImageRecordStorageBase,
|
||||
metadata: MetadataServiceBase,
|
||||
url: UrlServiceBase,
|
||||
logger: Logger,
|
||||
names: NameServiceBase,
|
||||
@ -144,7 +139,6 @@ class ImageServiceDependencies:
|
||||
self.image_records = image_record_storage
|
||||
self.image_files = image_file_storage
|
||||
self.board_image_records = board_image_record_storage
|
||||
self.metadata = metadata
|
||||
self.urls = url
|
||||
self.logger = logger
|
||||
self.names = names
|
||||
@ -165,6 +159,7 @@ class ImageService(ImageServiceABC):
|
||||
node_id: Optional[str] = None,
|
||||
session_id: Optional[str] = None,
|
||||
is_intermediate: bool = False,
|
||||
metadata: Optional[dict] = None,
|
||||
) -> ImageDTO:
|
||||
if image_origin not in ResourceOrigin:
|
||||
raise InvalidOriginException
|
||||
@ -174,7 +169,16 @@ class ImageService(ImageServiceABC):
|
||||
|
||||
image_name = self._services.names.create_image_name()
|
||||
|
||||
metadata = self._get_metadata(session_id, node_id)
|
||||
graph = None
|
||||
|
||||
if session_id is not None:
|
||||
session_raw = self._services.graph_execution_manager.get_raw(session_id)
|
||||
if session_raw is not None:
|
||||
try:
|
||||
graph = get_metadata_graph_from_raw_session(session_raw)
|
||||
except Exception as e:
|
||||
self._services.logger.warn(f"Failed to parse session graph: {e}")
|
||||
graph = None
|
||||
|
||||
(width, height) = image.size
|
||||
|
||||
@ -191,14 +195,12 @@ class ImageService(ImageServiceABC):
|
||||
is_intermediate=is_intermediate,
|
||||
# Nullable fields
|
||||
node_id=node_id,
|
||||
session_id=session_id,
|
||||
metadata=metadata,
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
self._services.image_files.save(
|
||||
image_name=image_name,
|
||||
image=image,
|
||||
metadata=metadata,
|
||||
image_name=image_name, image=image, metadata=metadata, graph=graph
|
||||
)
|
||||
|
||||
image_dto = self.get_dto(image_name)
|
||||
@ -268,6 +270,34 @@ class ImageService(ImageServiceABC):
|
||||
self._services.logger.error("Problem getting image DTO")
|
||||
raise e
|
||||
|
||||
def get_metadata(self, image_name: str) -> Optional[ImageMetadata]:
|
||||
try:
|
||||
image_record = self._services.image_records.get(image_name)
|
||||
|
||||
if not image_record.session_id:
|
||||
return ImageMetadata()
|
||||
|
||||
session_raw = self._services.graph_execution_manager.get_raw(
|
||||
image_record.session_id
|
||||
)
|
||||
graph = None
|
||||
|
||||
if session_raw:
|
||||
try:
|
||||
graph = get_metadata_graph_from_raw_session(session_raw)
|
||||
except Exception as e:
|
||||
self._services.logger.warn(f"Failed to parse session graph: {e}")
|
||||
graph = None
|
||||
|
||||
metadata = self._services.image_records.get_metadata(image_name)
|
||||
return ImageMetadata(graph=graph, metadata=metadata)
|
||||
except ImageRecordNotFoundException:
|
||||
self._services.logger.error("Image record not found")
|
||||
raise
|
||||
except Exception as e:
|
||||
self._services.logger.error("Problem getting image DTO")
|
||||
raise e
|
||||
|
||||
def get_path(self, image_name: str, thumbnail: bool = False) -> str:
|
||||
try:
|
||||
return self._services.image_files.get_path(image_name, thumbnail)
|
||||
@ -367,15 +397,3 @@ class ImageService(ImageServiceABC):
|
||||
except Exception as e:
|
||||
self._services.logger.error("Problem deleting image records and files")
|
||||
raise e
|
||||
|
||||
def _get_metadata(
|
||||
self, session_id: Optional[str] = None, node_id: Optional[str] = None
|
||||
) -> Optional[ImageMetadata]:
|
||||
"""Get the metadata for a node."""
|
||||
metadata = None
|
||||
|
||||
if node_id is not None and session_id is not None:
|
||||
session = self._services.graph_execution_manager.get(session_id)
|
||||
metadata = self._services.metadata.create_image_metadata(session, node_id)
|
||||
|
||||
return metadata
|
||||
|
@ -1,5 +1,5 @@
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Callable, Generic, TypeVar
|
||||
from typing import Callable, Generic, Optional, TypeVar
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
from pydantic.generics import GenericModel
|
||||
@ -29,14 +29,22 @@ class ItemStorageABC(ABC, Generic[T]):
|
||||
|
||||
@abstractmethod
|
||||
def get(self, item_id: str) -> T:
|
||||
"""Gets the item, parsing it into a Pydantic model"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_raw(self, item_id: str) -> Optional[str]:
|
||||
"""Gets the raw item as a string, skipping Pydantic parsing"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def set(self, item: T) -> None:
|
||||
"""Sets the item"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def list(self, page: int = 0, per_page: int = 10) -> PaginatedResults[T]:
|
||||
"""Gets a paginated list of items"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
|
@ -1,142 +0,0 @@
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Any, Optional
|
||||
import networkx as nx
|
||||
|
||||
from invokeai.app.models.metadata import ImageMetadata
|
||||
from invokeai.app.services.graph import Graph, GraphExecutionState
|
||||
|
||||
|
||||
class MetadataServiceBase(ABC):
|
||||
"""Handles building metadata for nodes, images, and outputs."""
|
||||
|
||||
@abstractmethod
|
||||
def create_image_metadata(
|
||||
self, session: GraphExecutionState, node_id: str
|
||||
) -> ImageMetadata:
|
||||
"""Builds an ImageMetadata object for a node."""
|
||||
pass
|
||||
|
||||
|
||||
class CoreMetadataService(MetadataServiceBase):
|
||||
_ANCESTOR_TYPES = ["t2l", "l2l"]
|
||||
"""The ancestor types that contain the core metadata"""
|
||||
|
||||
_ANCESTOR_PARAMS = ["type", "steps", "model", "cfg_scale", "scheduler", "strength"]
|
||||
"""The core metadata parameters in the ancestor types"""
|
||||
|
||||
_NOISE_FIELDS = ["seed", "width", "height"]
|
||||
"""The core metadata parameters in the noise node"""
|
||||
|
||||
def create_image_metadata(
|
||||
self, session: GraphExecutionState, node_id: str
|
||||
) -> ImageMetadata:
|
||||
metadata = self._build_metadata_from_graph(session, node_id)
|
||||
|
||||
return metadata
|
||||
|
||||
def _find_nearest_ancestor(self, G: nx.DiGraph, node_id: str) -> Optional[str]:
|
||||
"""
|
||||
Finds the id of the nearest ancestor (of a valid type) of a given node.
|
||||
|
||||
Parameters:
|
||||
G (nx.DiGraph): The execution graph, converted in to a networkx DiGraph. Its nodes must
|
||||
have the same data as the execution graph.
|
||||
node_id (str): The ID of the node.
|
||||
|
||||
Returns:
|
||||
str | None: The ID of the nearest ancestor, or None if there are no valid ancestors.
|
||||
"""
|
||||
|
||||
# Retrieve the node from the graph
|
||||
node = G.nodes[node_id]
|
||||
|
||||
# If the node type is one of the core metadata node types, return its id
|
||||
if node.get("type") in self._ANCESTOR_TYPES:
|
||||
return node.get("id")
|
||||
|
||||
# Else, look for the ancestor in the predecessor nodes
|
||||
for predecessor in G.predecessors(node_id):
|
||||
result = self._find_nearest_ancestor(G, predecessor)
|
||||
if result:
|
||||
return result
|
||||
|
||||
# If there are no valid ancestors, return None
|
||||
return None
|
||||
|
||||
def _get_additional_metadata(
|
||||
self, graph: Graph, node_id: str
|
||||
) -> Optional[dict[str, Any]]:
|
||||
"""
|
||||
Returns additional metadata for a given node.
|
||||
|
||||
Parameters:
|
||||
graph (Graph): The execution graph.
|
||||
node_id (str): The ID of the node.
|
||||
|
||||
Returns:
|
||||
dict[str, Any] | None: A dictionary of additional metadata.
|
||||
"""
|
||||
|
||||
metadata = {}
|
||||
|
||||
# Iterate over all edges in the graph
|
||||
for edge in graph.edges:
|
||||
dest_node_id = edge.destination.node_id
|
||||
dest_field = edge.destination.field
|
||||
source_node_dict = graph.nodes[edge.source.node_id].dict()
|
||||
|
||||
# If the destination node ID matches the given node ID, gather necessary metadata
|
||||
if dest_node_id == node_id:
|
||||
# Prompt
|
||||
if dest_field == "positive_conditioning":
|
||||
metadata["positive_conditioning"] = source_node_dict.get("prompt")
|
||||
# Negative prompt
|
||||
if dest_field == "negative_conditioning":
|
||||
metadata["negative_conditioning"] = source_node_dict.get("prompt")
|
||||
# Seed, width and height
|
||||
if dest_field == "noise":
|
||||
for field in self._NOISE_FIELDS:
|
||||
metadata[field] = source_node_dict.get(field)
|
||||
return metadata
|
||||
|
||||
def _build_metadata_from_graph(
|
||||
self, session: GraphExecutionState, node_id: str
|
||||
) -> ImageMetadata:
|
||||
"""
|
||||
Builds an ImageMetadata object for a node.
|
||||
|
||||
Parameters:
|
||||
session (GraphExecutionState): The session.
|
||||
node_id (str): The ID of the node.
|
||||
|
||||
Returns:
|
||||
ImageMetadata: The metadata for the node.
|
||||
"""
|
||||
|
||||
# We need to do all the traversal on the execution graph
|
||||
graph = session.execution_graph
|
||||
|
||||
# Find the nearest `t2l`/`l2l` ancestor of the given node
|
||||
ancestor_id = self._find_nearest_ancestor(graph.nx_graph_with_data(), node_id)
|
||||
|
||||
# If no ancestor was found, return an empty ImageMetadata object
|
||||
if ancestor_id is None:
|
||||
return ImageMetadata()
|
||||
|
||||
ancestor_node = graph.get_node(ancestor_id)
|
||||
|
||||
# Grab all the core metadata from the ancestor node
|
||||
ancestor_metadata = {
|
||||
param: val
|
||||
for param, val in ancestor_node.dict().items()
|
||||
if param in self._ANCESTOR_PARAMS
|
||||
}
|
||||
|
||||
# Get this image's prompts and noise parameters
|
||||
addl_metadata = self._get_additional_metadata(graph, ancestor_id)
|
||||
|
||||
# If additional metadata was found, add it to the main metadata
|
||||
if addl_metadata is not None:
|
||||
ancestor_metadata.update(addl_metadata)
|
||||
|
||||
return ImageMetadata(**ancestor_metadata)
|
@ -258,8 +258,6 @@ class ModelManagerService(ModelManagerServiceBase):
|
||||
config_file = config.model_conf_path
|
||||
else:
|
||||
config_file = config.root_dir / "configs/models.yaml"
|
||||
if not config_file.exists():
|
||||
raise IOError(f"The file {config_file} could not be found.")
|
||||
|
||||
logger.debug(f'config file={config_file}')
|
||||
|
||||
|
@ -1,13 +1,14 @@
|
||||
import datetime
|
||||
from typing import Optional, Union
|
||||
|
||||
from pydantic import BaseModel, Extra, Field, StrictBool, StrictStr
|
||||
|
||||
from invokeai.app.models.image import ImageCategory, ResourceOrigin
|
||||
from invokeai.app.models.metadata import ImageMetadata
|
||||
from invokeai.app.util.misc import get_iso_timestamp
|
||||
|
||||
|
||||
class ImageRecord(BaseModel):
|
||||
"""Deserialized image record."""
|
||||
"""Deserialized image record without metadata."""
|
||||
|
||||
image_name: str = Field(description="The unique name of the image.")
|
||||
"""The unique name of the image."""
|
||||
@ -43,11 +44,6 @@ class ImageRecord(BaseModel):
|
||||
description="The node ID that generated this image, if it is a generated image.",
|
||||
)
|
||||
"""The node ID that generated this image, if it is a generated image."""
|
||||
metadata: Optional[ImageMetadata] = Field(
|
||||
default=None,
|
||||
description="A limited subset of the image's generation metadata. Retrieve the image's session for full metadata.",
|
||||
)
|
||||
"""A limited subset of the image's generation metadata. Retrieve the image's session for full metadata."""
|
||||
|
||||
|
||||
class ImageRecordChanges(BaseModel, extra=Extra.forbid):
|
||||
@ -112,6 +108,7 @@ def deserialize_image_record(image_dict: dict) -> ImageRecord:
|
||||
|
||||
# Retrieve all the values, setting "reasonable" defaults if they are not present.
|
||||
|
||||
# TODO: do we really need to handle default values here? ideally the data is the correct shape...
|
||||
image_name = image_dict.get("image_name", "unknown")
|
||||
image_origin = ResourceOrigin(
|
||||
image_dict.get("image_origin", ResourceOrigin.INTERNAL.value)
|
||||
@ -128,13 +125,6 @@ def deserialize_image_record(image_dict: dict) -> ImageRecord:
|
||||
deleted_at = image_dict.get("deleted_at", get_iso_timestamp())
|
||||
is_intermediate = image_dict.get("is_intermediate", False)
|
||||
|
||||
raw_metadata = image_dict.get("metadata")
|
||||
|
||||
if raw_metadata is not None:
|
||||
metadata = ImageMetadata.parse_raw(raw_metadata)
|
||||
else:
|
||||
metadata = None
|
||||
|
||||
return ImageRecord(
|
||||
image_name=image_name,
|
||||
image_origin=image_origin,
|
||||
@ -143,7 +133,6 @@ def deserialize_image_record(image_dict: dict) -> ImageRecord:
|
||||
height=height,
|
||||
session_id=session_id,
|
||||
node_id=node_id,
|
||||
metadata=metadata,
|
||||
created_at=created_at,
|
||||
updated_at=updated_at,
|
||||
deleted_at=deleted_at,
|
||||
|
@ -104,6 +104,7 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
|
||||
|
||||
except Exception as e:
|
||||
error = traceback.format_exc()
|
||||
logger.error(error)
|
||||
|
||||
# Save error
|
||||
graph_execution_state.set_node_error(invocation.id, error)
|
||||
|
@ -1,6 +1,6 @@
|
||||
import sqlite3
|
||||
from threading import Lock
|
||||
from typing import Generic, TypeVar, Optional, Union, get_args
|
||||
from typing import Generic, Optional, TypeVar, get_args
|
||||
|
||||
from pydantic import BaseModel, parse_raw_as
|
||||
|
||||
@ -78,6 +78,21 @@ class SqliteItemStorage(ItemStorageABC, Generic[T]):
|
||||
|
||||
return self._parse_item(result[0])
|
||||
|
||||
def get_raw(self, id: str) -> Optional[str]:
|
||||
try:
|
||||
self._lock.acquire()
|
||||
self._cursor.execute(
|
||||
f"""SELECT item FROM {self._table_name} WHERE id = ?;""", (str(id),)
|
||||
)
|
||||
result = self._cursor.fetchone()
|
||||
finally:
|
||||
self._lock.release()
|
||||
|
||||
if not result:
|
||||
return None
|
||||
|
||||
return result[0]
|
||||
|
||||
def delete(self, id: str):
|
||||
try:
|
||||
self._lock.acquire()
|
||||
|
@ -22,4 +22,4 @@ class LocalUrlService(UrlServiceBase):
|
||||
if thumbnail:
|
||||
return f"{self._base_url}/images/{image_basename}/thumbnail"
|
||||
|
||||
return f"{self._base_url}/images/{image_basename}"
|
||||
return f"{self._base_url}/images/{image_basename}/full"
|
||||
|
55
invokeai/app/util/metadata.py
Normal file
55
invokeai/app/util/metadata.py
Normal file
@ -0,0 +1,55 @@
|
||||
import json
|
||||
from typing import Optional
|
||||
|
||||
from pydantic import ValidationError
|
||||
|
||||
from invokeai.app.services.graph import Edge
|
||||
|
||||
|
||||
def get_metadata_graph_from_raw_session(session_raw: str) -> Optional[dict]:
|
||||
"""
|
||||
Parses raw session string, returning a dict of the graph.
|
||||
|
||||
Only the general graph shape is validated; none of the fields are validated.
|
||||
|
||||
Any `metadata_accumulator` nodes and edges are removed.
|
||||
|
||||
Any validation failure will return None.
|
||||
"""
|
||||
|
||||
graph = json.loads(session_raw).get("graph", None)
|
||||
|
||||
# sanity check make sure the graph is at least reasonably shaped
|
||||
if (
|
||||
type(graph) is not dict
|
||||
or "nodes" not in graph
|
||||
or type(graph["nodes"]) is not dict
|
||||
or "edges" not in graph
|
||||
or type(graph["edges"]) is not list
|
||||
):
|
||||
# something has gone terribly awry, return an empty dict
|
||||
return None
|
||||
|
||||
try:
|
||||
# delete the `metadata_accumulator` node
|
||||
del graph["nodes"]["metadata_accumulator"]
|
||||
except KeyError:
|
||||
# no accumulator node, all good
|
||||
pass
|
||||
|
||||
# delete any edges to or from it
|
||||
for i, edge in enumerate(graph["edges"]):
|
||||
try:
|
||||
# try to parse the edge
|
||||
Edge(**edge)
|
||||
except ValidationError:
|
||||
# something has gone terribly awry, return an empty dict
|
||||
return None
|
||||
|
||||
if (
|
||||
edge["source"]["node_id"] == "metadata_accumulator"
|
||||
or edge["destination"]["node_id"] == "metadata_accumulator"
|
||||
):
|
||||
del graph["edges"][i]
|
||||
|
||||
return graph
|
@ -121,8 +121,8 @@ class ModelInstall(object):
|
||||
installed_models = self.mgr.list_models()
|
||||
for md in installed_models:
|
||||
base = md['base_model']
|
||||
model_type = md['type']
|
||||
name = md['name']
|
||||
model_type = md['model_type']
|
||||
name = md['model_name']
|
||||
key = ModelManager.create_key(name, base, model_type)
|
||||
if key in model_dict:
|
||||
model_dict[key].installed = True
|
||||
|
@ -36,6 +36,9 @@ from .models import BaseModelType, ModelType, SubModelType, ModelBase
|
||||
# Default is roughly enough to hold three fp16 diffusers models in RAM simultaneously
|
||||
DEFAULT_MAX_CACHE_SIZE = 6.0
|
||||
|
||||
# amount of GPU memory to hold in reserve for use by generations (GB)
|
||||
DEFAULT_MAX_VRAM_CACHE_SIZE= 2.75
|
||||
|
||||
# actual size of a gig
|
||||
GIG = 1073741824
|
||||
|
||||
@ -82,6 +85,7 @@ class ModelCache(object):
|
||||
def __init__(
|
||||
self,
|
||||
max_cache_size: float=DEFAULT_MAX_CACHE_SIZE,
|
||||
max_vram_cache_size: float=DEFAULT_MAX_VRAM_CACHE_SIZE,
|
||||
execution_device: torch.device=torch.device('cuda'),
|
||||
storage_device: torch.device=torch.device('cpu'),
|
||||
precision: torch.dtype=torch.float16,
|
||||
@ -99,12 +103,11 @@ class ModelCache(object):
|
||||
:param sequential_offload: Conserve VRAM by loading and unloading each stage of the pipeline sequentially
|
||||
:param sha_chunksize: Chunksize to use when calculating sha256 model hash
|
||||
'''
|
||||
#max_cache_size = 9999
|
||||
self.model_infos: Dict[str, ModelBase] = dict()
|
||||
self.lazy_offloading = lazy_offloading
|
||||
#self.sequential_offload: bool=sequential_offload
|
||||
self.precision: torch.dtype=precision
|
||||
self.max_cache_size: int=max_cache_size
|
||||
self.max_cache_size: float=max_cache_size
|
||||
self.max_vram_cache_size: float=max_vram_cache_size
|
||||
self.execution_device: torch.device=execution_device
|
||||
self.storage_device: torch.device=storage_device
|
||||
self.sha_chunksize=sha_chunksize
|
||||
@ -201,14 +204,22 @@ class ModelCache(object):
|
||||
self._cache_stack.remove(key)
|
||||
self._cache_stack.append(key)
|
||||
|
||||
return self.ModelLocker(self, key, cache_entry.model, gpu_load)
|
||||
return self.ModelLocker(self, key, cache_entry.model, gpu_load, cache_entry.size)
|
||||
|
||||
class ModelLocker(object):
|
||||
def __init__(self, cache, key, model, gpu_load):
|
||||
def __init__(self, cache, key, model, gpu_load, size_needed):
|
||||
'''
|
||||
:param cache: The model_cache object
|
||||
:param key: The key of the model to lock in GPU
|
||||
:param model: The model to lock
|
||||
:param gpu_load: True if load into gpu
|
||||
:param size_needed: Size of the model to load
|
||||
'''
|
||||
self.gpu_load = gpu_load
|
||||
self.cache = cache
|
||||
self.key = key
|
||||
self.model = model
|
||||
self.size_needed = size_needed
|
||||
self.cache_entry = self.cache._cached_models[self.key]
|
||||
|
||||
def __enter__(self) -> Any:
|
||||
@ -222,7 +233,7 @@ class ModelCache(object):
|
||||
|
||||
try:
|
||||
if self.cache.lazy_offloading:
|
||||
self.cache._offload_unlocked_models()
|
||||
self.cache._offload_unlocked_models(self.size_needed)
|
||||
|
||||
if self.model.device != self.cache.execution_device:
|
||||
self.cache.logger.debug(f'Moving {self.key} into {self.cache.execution_device}')
|
||||
@ -337,14 +348,20 @@ class ModelCache(object):
|
||||
|
||||
self.logger.debug(f"After unloading: cached_models={len(self._cached_models)}")
|
||||
|
||||
|
||||
def _offload_unlocked_models(self):
|
||||
for model_key, cache_entry in self._cached_models.items():
|
||||
def _offload_unlocked_models(self, size_needed: int=0):
|
||||
reserved = self.max_vram_cache_size * GIG
|
||||
vram_in_use = torch.cuda.memory_allocated()
|
||||
self.logger.debug(f'{(vram_in_use/GIG):.2f}GB VRAM used for models; max allowed={(reserved/GIG):.2f}GB')
|
||||
for model_key, cache_entry in sorted(self._cached_models.items(), key=lambda x:x[1].size):
|
||||
if vram_in_use <= reserved:
|
||||
break
|
||||
if not cache_entry.locked and cache_entry.loaded:
|
||||
self.logger.debug(f'Offloading {model_key} from {self.execution_device} into {self.storage_device}')
|
||||
with VRAMUsage() as mem:
|
||||
cache_entry.model.to(self.storage_device)
|
||||
self.logger.debug(f'GPU VRAM freed: {(mem.vram_used/GIG):.2f} GB')
|
||||
vram_in_use += mem.vram_used # note vram_used is negative
|
||||
self.logger.debug(f'{(vram_in_use/GIG):.2f}GB VRAM used for models; max allowed={(reserved/GIG):.2f}GB')
|
||||
|
||||
def _local_model_hash(self, model_path: Union[str, Path]) -> str:
|
||||
sha = hashlib.sha256()
|
||||
|
@ -231,6 +231,7 @@ from __future__ import annotations
|
||||
import os
|
||||
import hashlib
|
||||
import textwrap
|
||||
import yaml
|
||||
from dataclasses import dataclass
|
||||
from pathlib import Path
|
||||
from typing import Optional, List, Tuple, Union, Dict, Set, Callable, types
|
||||
@ -249,8 +250,8 @@ from .model_cache import ModelCache, ModelLocker
|
||||
from .models import (
|
||||
BaseModelType, ModelType, SubModelType,
|
||||
ModelError, SchedulerPredictionType, MODEL_CLASSES,
|
||||
ModelConfigBase, ModelNotFoundException,
|
||||
)
|
||||
ModelConfigBase, ModelNotFoundException, InvalidModelException,
|
||||
)
|
||||
|
||||
# We are only starting to number the config file with release 3.
|
||||
# The config file version doesn't have to start at release version, but it will help
|
||||
@ -274,10 +275,6 @@ class ModelInfo():
|
||||
def __exit__(self,*args, **kwargs):
|
||||
self.context.__exit__(*args, **kwargs)
|
||||
|
||||
class InvalidModelError(Exception):
|
||||
"Raised when an invalid model is requested"
|
||||
pass
|
||||
|
||||
class AddModelResult(BaseModel):
|
||||
name: str = Field(description="The name of the model after installation")
|
||||
model_type: ModelType = Field(description="The type of model")
|
||||
@ -314,6 +311,9 @@ class ModelManager(object):
|
||||
self.config_path = None
|
||||
if isinstance(config, (str, Path)):
|
||||
self.config_path = Path(config)
|
||||
if not self.config_path.exists():
|
||||
logger.warning(f'The file {self.config_path} was not found. Initializing a new file')
|
||||
self.initialize_model_config(self.config_path)
|
||||
config = OmegaConf.load(self.config_path)
|
||||
|
||||
elif not isinstance(config, DictConfig):
|
||||
@ -336,6 +336,7 @@ class ModelManager(object):
|
||||
self.logger = logger
|
||||
self.cache = ModelCache(
|
||||
max_cache_size=max_cache_size,
|
||||
max_vram_cache_size = self.app_config.max_vram_cache_size,
|
||||
execution_device = device_type,
|
||||
precision = precision,
|
||||
sequential_offload = sequential_offload,
|
||||
@ -386,6 +387,16 @@ class ModelManager(object):
|
||||
def _get_model_cache_path(self, model_path):
|
||||
return self.app_config.models_path / ".cache" / hashlib.md5(str(model_path).encode()).hexdigest()
|
||||
|
||||
@classmethod
|
||||
def initialize_model_config(cls, config_path: Path):
|
||||
"""Create empty config file"""
|
||||
with open(config_path,'w') as yaml_file:
|
||||
yaml_file.write(yaml.dump({'__metadata__':
|
||||
{'version':'3.0.0'}
|
||||
}
|
||||
)
|
||||
)
|
||||
|
||||
def get_model(
|
||||
self,
|
||||
model_name: str,
|
||||
@ -527,9 +538,9 @@ class ModelManager(object):
|
||||
model_dict = dict(
|
||||
**model_config.dict(exclude_defaults=True),
|
||||
# OpenAPIModelInfoBase
|
||||
name=cur_model_name,
|
||||
model_name=cur_model_name,
|
||||
base_model=cur_base_model,
|
||||
type=cur_model_type,
|
||||
model_type=cur_model_type,
|
||||
)
|
||||
|
||||
models.append(model_dict)
|
||||
@ -802,6 +813,8 @@ class ModelManager(object):
|
||||
model_config: ModelConfigBase = model_class.probe_config(str(model_path))
|
||||
self.models[model_key] = model_config
|
||||
new_models_found = True
|
||||
except InvalidModelException:
|
||||
self.logger.warning(f"Not a valid model: {model_path}")
|
||||
except NotImplementedError as e:
|
||||
self.logger.warning(e)
|
||||
|
||||
@ -853,16 +866,22 @@ class ModelManager(object):
|
||||
scanned_dirs.add(path)
|
||||
continue
|
||||
if any([(path/x).exists() for x in {'config.json','model_index.json','learned_embeds.bin','pytorch_lora_weights.bin'}]):
|
||||
new_models_found.update(installer.heuristic_import(path))
|
||||
scanned_dirs.add(path)
|
||||
try:
|
||||
new_models_found.update(installer.heuristic_import(path))
|
||||
scanned_dirs.add(path)
|
||||
except ValueError as e:
|
||||
self.logger.warning(str(e))
|
||||
|
||||
for f in files:
|
||||
path = Path(root) / f
|
||||
if path in known_paths or path.parent in scanned_dirs:
|
||||
continue
|
||||
if path.suffix in {'.ckpt','.bin','.pth','.safetensors','.pt'}:
|
||||
import_result = installer.heuristic_import(path)
|
||||
new_models_found.update(import_result)
|
||||
try:
|
||||
import_result = installer.heuristic_import(path)
|
||||
new_models_found.update(import_result)
|
||||
except ValueError as e:
|
||||
self.logger.warning(str(e))
|
||||
|
||||
self.logger.info(f'Scanned {items_scanned} files and directories, imported {len(new_models_found)} models')
|
||||
installed.update(new_models_found)
|
||||
|
@ -59,7 +59,7 @@ class ModelProbe(object):
|
||||
elif isinstance(model,(dict,ModelMixin,ConfigMixin)):
|
||||
return cls.probe(model_path=None, model=model, prediction_type_helper=prediction_type_helper)
|
||||
else:
|
||||
raise Exception("model parameter {model} is neither a Path, nor a model")
|
||||
raise ValueError("model parameter {model} is neither a Path, nor a model")
|
||||
|
||||
@classmethod
|
||||
def probe(cls,
|
||||
@ -237,7 +237,7 @@ class CheckpointProbeBase(ProbeBase):
|
||||
elif in_channels == 4:
|
||||
return ModelVariantType.Normal
|
||||
else:
|
||||
raise Exception("Cannot determine variant type")
|
||||
raise ValueError(f"Cannot determine variant type (in_channels={in_channels}) at {self.checkpoint_path}")
|
||||
|
||||
class PipelineCheckpointProbe(CheckpointProbeBase):
|
||||
def get_base_type(self)->BaseModelType:
|
||||
@ -248,7 +248,7 @@ class PipelineCheckpointProbe(CheckpointProbeBase):
|
||||
return BaseModelType.StableDiffusion1
|
||||
if key_name in state_dict and state_dict[key_name].shape[-1] == 1024:
|
||||
return BaseModelType.StableDiffusion2
|
||||
raise Exception("Cannot determine base type")
|
||||
raise ValueError("Cannot determine base type")
|
||||
|
||||
def get_scheduler_prediction_type(self)->SchedulerPredictionType:
|
||||
type = self.get_base_type()
|
||||
@ -329,7 +329,7 @@ class ControlNetCheckpointProbe(CheckpointProbeBase):
|
||||
return BaseModelType.StableDiffusion2
|
||||
elif self.checkpoint_path and self.helper:
|
||||
return self.helper(self.checkpoint_path)
|
||||
raise Exception("Unable to determine base type for {self.checkpoint_path}")
|
||||
raise ValueError("Unable to determine base type for {self.checkpoint_path}")
|
||||
|
||||
########################################################
|
||||
# classes for probing folders
|
||||
@ -418,7 +418,7 @@ class ControlNetFolderProbe(FolderProbeBase):
|
||||
def get_base_type(self)->BaseModelType:
|
||||
config_file = self.folder_path / 'config.json'
|
||||
if not config_file.exists():
|
||||
raise Exception(f"Cannot determine base type for {self.folder_path}")
|
||||
raise ValueError(f"Cannot determine base type for {self.folder_path}")
|
||||
with open(config_file,'r') as file:
|
||||
config = json.load(file)
|
||||
# no obvious way to distinguish between sd2-base and sd2-768
|
||||
@ -435,7 +435,7 @@ class LoRAFolderProbe(FolderProbeBase):
|
||||
model_file = base_file
|
||||
break
|
||||
if not model_file:
|
||||
raise Exception('Unknown LoRA format encountered')
|
||||
raise ValueError('Unknown LoRA format encountered')
|
||||
return LoRACheckpointProbe(model_file,None).get_base_type()
|
||||
|
||||
############## register probe classes ######
|
||||
|
@ -2,7 +2,7 @@ import inspect
|
||||
from enum import Enum
|
||||
from pydantic import BaseModel
|
||||
from typing import Literal, get_origin
|
||||
from .base import BaseModelType, ModelType, SubModelType, ModelBase, ModelConfigBase, ModelVariantType, SchedulerPredictionType, ModelError, SilenceWarnings, ModelNotFoundException
|
||||
from .base import BaseModelType, ModelType, SubModelType, ModelBase, ModelConfigBase, ModelVariantType, SchedulerPredictionType, ModelError, SilenceWarnings, ModelNotFoundException, InvalidModelException
|
||||
from .stable_diffusion import StableDiffusion1Model, StableDiffusion2Model
|
||||
from .vae import VaeModel
|
||||
from .lora import LoRAModel
|
||||
@ -37,9 +37,9 @@ MODEL_CONFIGS = list()
|
||||
OPENAPI_MODEL_CONFIGS = list()
|
||||
|
||||
class OpenAPIModelInfoBase(BaseModel):
|
||||
name: str
|
||||
model_name: str
|
||||
base_model: BaseModelType
|
||||
type: ModelType
|
||||
model_type: ModelType
|
||||
|
||||
|
||||
for base_model, models in MODEL_CLASSES.items():
|
||||
@ -56,7 +56,7 @@ for base_model, models in MODEL_CLASSES.items():
|
||||
|
||||
api_wrapper = type(openapi_cfg_name, (cfg, OpenAPIModelInfoBase), dict(
|
||||
__annotations__ = dict(
|
||||
type=Literal[model_type.value],
|
||||
model_type=Literal[model_type.value],
|
||||
),
|
||||
))
|
||||
|
||||
|
@ -15,6 +15,9 @@ from contextlib import suppress
|
||||
from pydantic import BaseModel, Field
|
||||
from typing import List, Dict, Optional, Type, Literal, TypeVar, Generic, Callable, Any, Union
|
||||
|
||||
class InvalidModelException(Exception):
|
||||
pass
|
||||
|
||||
class ModelNotFoundException(Exception):
|
||||
pass
|
||||
|
||||
|
@ -13,6 +13,7 @@ from .base import (
|
||||
calc_model_size_by_fs,
|
||||
calc_model_size_by_data,
|
||||
classproperty,
|
||||
InvalidModelException,
|
||||
)
|
||||
|
||||
class ControlNetModelFormat(str, Enum):
|
||||
@ -73,10 +74,18 @@ class ControlNetModel(ModelBase):
|
||||
|
||||
@classmethod
|
||||
def detect_format(cls, path: str):
|
||||
if not os.path.exists(path):
|
||||
raise ModelNotFoundException()
|
||||
|
||||
if os.path.isdir(path):
|
||||
return ControlNetModelFormat.Diffusers
|
||||
else:
|
||||
return ControlNetModelFormat.Checkpoint
|
||||
if os.path.exists(os.path.join(path, "config.json")):
|
||||
return ControlNetModelFormat.Diffusers
|
||||
|
||||
if os.path.isfile(path):
|
||||
if any([path.endswith(f".{ext}") for ext in ["safetensors", "ckpt", "pt", "pth"]]):
|
||||
return ControlNetModelFormat.Checkpoint
|
||||
|
||||
raise InvalidModelException(f"Not a valid model: {path}")
|
||||
|
||||
@classmethod
|
||||
def convert_if_required(
|
||||
|
@ -9,6 +9,7 @@ from .base import (
|
||||
ModelType,
|
||||
SubModelType,
|
||||
classproperty,
|
||||
InvalidModelException,
|
||||
)
|
||||
# TODO: naming
|
||||
from ..lora import LoRAModel as LoRAModelRaw
|
||||
@ -56,10 +57,18 @@ class LoRAModel(ModelBase):
|
||||
|
||||
@classmethod
|
||||
def detect_format(cls, path: str):
|
||||
if not os.path.exists(path):
|
||||
raise ModelNotFoundException()
|
||||
|
||||
if os.path.isdir(path):
|
||||
return LoRAModelFormat.Diffusers
|
||||
else:
|
||||
return LoRAModelFormat.LyCORIS
|
||||
if os.path.exists(os.path.join(path, "pytorch_lora_weights.bin")):
|
||||
return LoRAModelFormat.Diffusers
|
||||
|
||||
if os.path.isfile(path):
|
||||
if any([path.endswith(f".{ext}") for ext in ["safetensors", "ckpt", "pt"]]):
|
||||
return LoRAModelFormat.LyCORIS
|
||||
|
||||
raise InvalidModelException(f"Not a valid model: {path}")
|
||||
|
||||
@classmethod
|
||||
def convert_if_required(
|
||||
|
@ -16,6 +16,7 @@ from .base import (
|
||||
SilenceWarnings,
|
||||
read_checkpoint_meta,
|
||||
classproperty,
|
||||
InvalidModelException,
|
||||
)
|
||||
from invokeai.app.services.config import InvokeAIAppConfig
|
||||
from omegaconf import OmegaConf
|
||||
@ -98,10 +99,18 @@ class StableDiffusion1Model(DiffusersModel):
|
||||
|
||||
@classmethod
|
||||
def detect_format(cls, model_path: str):
|
||||
if not os.path.exists(model_path):
|
||||
raise ModelNotFoundException()
|
||||
|
||||
if os.path.isdir(model_path):
|
||||
return StableDiffusion1ModelFormat.Diffusers
|
||||
else:
|
||||
return StableDiffusion1ModelFormat.Checkpoint
|
||||
if os.path.exists(os.path.join(model_path, "model_index.json")):
|
||||
return StableDiffusion1ModelFormat.Diffusers
|
||||
|
||||
if os.path.isfile(model_path):
|
||||
if any([model_path.endswith(f".{ext}") for ext in ["safetensors", "ckpt", "pt"]]):
|
||||
return StableDiffusion1ModelFormat.Checkpoint
|
||||
|
||||
raise InvalidModelException(f"Not a valid model: {model_path}")
|
||||
|
||||
@classmethod
|
||||
def convert_if_required(
|
||||
@ -200,10 +209,18 @@ class StableDiffusion2Model(DiffusersModel):
|
||||
|
||||
@classmethod
|
||||
def detect_format(cls, model_path: str):
|
||||
if not os.path.exists(model_path):
|
||||
raise ModelNotFoundException()
|
||||
|
||||
if os.path.isdir(model_path):
|
||||
return StableDiffusion2ModelFormat.Diffusers
|
||||
else:
|
||||
return StableDiffusion2ModelFormat.Checkpoint
|
||||
if os.path.exists(os.path.join(model_path, "model_index.json")):
|
||||
return StableDiffusion2ModelFormat.Diffusers
|
||||
|
||||
if os.path.isfile(model_path):
|
||||
if any([model_path.endswith(f".{ext}") for ext in ["safetensors", "ckpt", "pt"]]):
|
||||
return StableDiffusion2ModelFormat.Checkpoint
|
||||
|
||||
raise InvalidModelException(f"Not a valid model: {model_path}")
|
||||
|
||||
@classmethod
|
||||
def convert_if_required(
|
||||
|
@ -9,6 +9,7 @@ from .base import (
|
||||
SubModelType,
|
||||
classproperty,
|
||||
ModelNotFoundException,
|
||||
InvalidModelException,
|
||||
)
|
||||
# TODO: naming
|
||||
from ..lora import TextualInversionModel as TextualInversionModelRaw
|
||||
@ -59,7 +60,18 @@ class TextualInversionModel(ModelBase):
|
||||
|
||||
@classmethod
|
||||
def detect_format(cls, path: str):
|
||||
return None
|
||||
if not os.path.exists(path):
|
||||
raise ModelNotFoundException()
|
||||
|
||||
if os.path.isdir(path):
|
||||
if os.path.exists(os.path.join(path, "learned_embeds.bin")):
|
||||
return None # diffusers-ti
|
||||
|
||||
if os.path.isfile(path):
|
||||
if any([path.endswith(f".{ext}") for ext in ["safetensors", "ckpt", "pt"]]):
|
||||
return None
|
||||
|
||||
raise InvalidModelException(f"Not a valid model: {path}")
|
||||
|
||||
@classmethod
|
||||
def convert_if_required(
|
||||
|
@ -15,6 +15,7 @@ from .base import (
|
||||
calc_model_size_by_fs,
|
||||
calc_model_size_by_data,
|
||||
classproperty,
|
||||
InvalidModelException,
|
||||
)
|
||||
from invokeai.app.services.config import InvokeAIAppConfig
|
||||
from diffusers.utils import is_safetensors_available
|
||||
@ -75,10 +76,18 @@ class VaeModel(ModelBase):
|
||||
|
||||
@classmethod
|
||||
def detect_format(cls, path: str):
|
||||
if not os.path.exists(path):
|
||||
raise ModelNotFoundException()
|
||||
|
||||
if os.path.isdir(path):
|
||||
return VaeModelFormat.Diffusers
|
||||
else:
|
||||
return VaeModelFormat.Checkpoint
|
||||
if os.path.exists(os.path.join(path, "config.json")):
|
||||
return VaeModelFormat.Diffusers
|
||||
|
||||
if os.path.isfile(path):
|
||||
if any([path.endswith(f".{ext}") for ext in ["safetensors", "ckpt", "pt"]]):
|
||||
return VaeModelFormat.Checkpoint
|
||||
|
||||
raise InvalidModelException(f"Not a valid model: {path}")
|
||||
|
||||
@classmethod
|
||||
def convert_if_required(
|
||||
|
@ -127,7 +127,7 @@ class AddsMaskGuidance:
|
||||
|
||||
def _t_for_field(self, field_name: str, t):
|
||||
if field_name == "pred_original_sample":
|
||||
return torch.zeros_like(t, dtype=t.dtype) # it represents t=0
|
||||
return self.scheduler.timesteps[-1]
|
||||
return t
|
||||
|
||||
def apply_mask(self, latents: torch.Tensor, t) -> torch.Tensor:
|
||||
@ -631,7 +631,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
control_latent_input = torch.cat([unet_latent_input] * 2)
|
||||
|
||||
if cfg_injection: # only applying ControlNet to conditional instead of in unconditioned
|
||||
encoder_hidden_states = torch.cat([conditioning_data.unconditioned_embeddings])
|
||||
encoder_hidden_states = conditioning_data.text_embeddings
|
||||
else:
|
||||
encoder_hidden_states = torch.cat([conditioning_data.unconditioned_embeddings,
|
||||
conditioning_data.text_embeddings])
|
||||
|
@ -773,7 +773,7 @@ def main():
|
||||
config.parse_args(invoke_args)
|
||||
logger = InvokeAILogger().getLogger(config=config)
|
||||
|
||||
if not (config.root_dir / config.conf_path.parent).exists():
|
||||
if not (config.conf_path / 'models.yaml').exists():
|
||||
logger.info(
|
||||
"Your InvokeAI root directory is not set up. Calling invokeai-configure."
|
||||
)
|
||||
|
@ -36,6 +36,7 @@ module.exports = {
|
||||
],
|
||||
'prettier/prettier': ['error', { endOfLine: 'auto' }],
|
||||
'@typescript-eslint/ban-ts-comment': 'warn',
|
||||
'@typescript-eslint/no-explicit-any': 'warn',
|
||||
'@typescript-eslint/no-empty-interface': [
|
||||
'error',
|
||||
{
|
||||
|
199
invokeai/frontend/web/dist/assets/App-9a48e001.js
vendored
199
invokeai/frontend/web/dist/assets/App-9a48e001.js
vendored
File diff suppressed because one or more lines are too long
199
invokeai/frontend/web/dist/assets/App-a44d46fe.js
vendored
Normal file
199
invokeai/frontend/web/dist/assets/App-a44d46fe.js
vendored
Normal file
File diff suppressed because one or more lines are too long
1
invokeai/frontend/web/dist/assets/MantineProvider-8988d217.js
vendored
Normal file
1
invokeai/frontend/web/dist/assets/MantineProvider-8988d217.js
vendored
Normal file
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
125
invokeai/frontend/web/dist/assets/index-078526aa.js
vendored
Normal file
125
invokeai/frontend/web/dist/assets/index-078526aa.js
vendored
Normal file
File diff suppressed because one or more lines are too long
125
invokeai/frontend/web/dist/assets/index-581af3d4.js
vendored
125
invokeai/frontend/web/dist/assets/index-581af3d4.js
vendored
File diff suppressed because one or more lines are too long
2
invokeai/frontend/web/dist/index.html
vendored
2
invokeai/frontend/web/dist/index.html
vendored
@ -12,7 +12,7 @@
|
||||
margin: 0;
|
||||
}
|
||||
</style>
|
||||
<script type="module" crossorigin src="./assets/index-581af3d4.js"></script>
|
||||
<script type="module" crossorigin src="./assets/index-078526aa.js"></script>
|
||||
</head>
|
||||
|
||||
<body dir="ltr">
|
||||
|
12
invokeai/frontend/web/dist/locales/en.json
vendored
12
invokeai/frontend/web/dist/locales/en.json
vendored
@ -53,7 +53,7 @@
|
||||
"linear": "Linear",
|
||||
"nodes": "Node Editor",
|
||||
"batch": "Batch Manager",
|
||||
"modelmanager": "Model Manager",
|
||||
"modelManager": "Model Manager",
|
||||
"postprocessing": "Post Processing",
|
||||
"nodesDesc": "A node based system for the generation of images is under development currently. Stay tuned for updates about this amazing feature.",
|
||||
"postProcessing": "Post Processing",
|
||||
@ -527,7 +527,9 @@
|
||||
"showOptionsPanel": "Show Options Panel",
|
||||
"hidePreview": "Hide Preview",
|
||||
"showPreview": "Show Preview",
|
||||
"controlNetControlMode": "Control Mode"
|
||||
"controlNetControlMode": "Control Mode",
|
||||
"clipSkip": "Clip Skip",
|
||||
"aspectRatio": "Ratio"
|
||||
},
|
||||
"settings": {
|
||||
"models": "Models",
|
||||
@ -551,7 +553,8 @@
|
||||
"generation": "Generation",
|
||||
"ui": "User Interface",
|
||||
"favoriteSchedulers": "Favorite Schedulers",
|
||||
"favoriteSchedulersPlaceholder": "No schedulers favorited"
|
||||
"favoriteSchedulersPlaceholder": "No schedulers favorited",
|
||||
"showAdvancedOptions": "Show Advanced Options"
|
||||
},
|
||||
"toast": {
|
||||
"serverError": "Server Error",
|
||||
@ -669,6 +672,7 @@
|
||||
},
|
||||
"ui": {
|
||||
"showProgressImages": "Show Progress Images",
|
||||
"hideProgressImages": "Hide Progress Images"
|
||||
"hideProgressImages": "Hide Progress Images",
|
||||
"swapSizes": "Swap Sizes"
|
||||
}
|
||||
}
|
||||
|
@ -108,6 +108,7 @@
|
||||
"roarr": "^7.15.0",
|
||||
"serialize-error": "^11.0.0",
|
||||
"socket.io-client": "^4.7.0",
|
||||
"use-debounce": "^9.0.4",
|
||||
"use-image": "^1.1.1",
|
||||
"uuid": "^9.0.0",
|
||||
"zod": "^3.21.4"
|
||||
|
@ -53,7 +53,7 @@
|
||||
"linear": "Linear",
|
||||
"nodes": "Node Editor",
|
||||
"batch": "Batch Manager",
|
||||
"modelmanager": "Model Manager",
|
||||
"modelManager": "Model Manager",
|
||||
"postprocessing": "Post Processing",
|
||||
"nodesDesc": "A node based system for the generation of images is under development currently. Stay tuned for updates about this amazing feature.",
|
||||
"postProcessing": "Post Processing",
|
||||
@ -102,7 +102,8 @@
|
||||
"openInNewTab": "Open in New Tab",
|
||||
"dontAskMeAgain": "Don't ask me again",
|
||||
"areYouSure": "Are you sure?",
|
||||
"imagePrompt": "Image Prompt"
|
||||
"imagePrompt": "Image Prompt",
|
||||
"clearNodes": "Are you sure you want to clear all nodes?"
|
||||
},
|
||||
"gallery": {
|
||||
"generations": "Generations",
|
||||
@ -118,7 +119,7 @@
|
||||
"pinGallery": "Pin Gallery",
|
||||
"allImagesLoaded": "All Images Loaded",
|
||||
"loadMore": "Load More",
|
||||
"noImagesInGallery": "No Images In Gallery",
|
||||
"noImagesInGallery": "No Images to Display",
|
||||
"deleteImage": "Delete Image",
|
||||
"deleteImageBin": "Deleted images will be sent to your operating system's Bin.",
|
||||
"deleteImagePermanent": "Deleted images cannot be restored.",
|
||||
@ -528,7 +529,8 @@
|
||||
"hidePreview": "Hide Preview",
|
||||
"showPreview": "Show Preview",
|
||||
"controlNetControlMode": "Control Mode",
|
||||
"clipSkip": "Clip Skip"
|
||||
"clipSkip": "CLIP Skip",
|
||||
"aspectRatio": "Ratio"
|
||||
},
|
||||
"settings": {
|
||||
"models": "Models",
|
||||
@ -592,7 +594,12 @@
|
||||
"metadataLoadFailed": "Failed to load metadata",
|
||||
"initialImageSet": "Initial Image Set",
|
||||
"initialImageNotSet": "Initial Image Not Set",
|
||||
"initialImageNotSetDesc": "Could not load initial image"
|
||||
"initialImageNotSetDesc": "Could not load initial image",
|
||||
"nodesSaved": "Nodes Saved",
|
||||
"nodesLoaded": "Nodes Loaded",
|
||||
"nodesLoadedFailed": "Failed To Load Nodes",
|
||||
"nodesCleared": "Nodes Cleared"
|
||||
|
||||
},
|
||||
"tooltip": {
|
||||
"feature": {
|
||||
@ -671,6 +678,13 @@
|
||||
},
|
||||
"ui": {
|
||||
"showProgressImages": "Show Progress Images",
|
||||
"hideProgressImages": "Hide Progress Images"
|
||||
"hideProgressImages": "Hide Progress Images",
|
||||
"swapSizes": "Swap Sizes"
|
||||
},
|
||||
"nodes": {
|
||||
"reloadSchema": "Reload Schema",
|
||||
"saveNodes": "Save Nodes",
|
||||
"loadNodes": "Load Nodes",
|
||||
"clearNodes": "Clear Nodes"
|
||||
}
|
||||
}
|
||||
|
@ -6,9 +6,7 @@ import { PartialAppConfig } from 'app/types/invokeai';
|
||||
import ImageUploader from 'common/components/ImageUploader';
|
||||
import GalleryDrawer from 'features/gallery/components/GalleryPanel';
|
||||
import DeleteImageModal from 'features/imageDeletion/components/DeleteImageModal';
|
||||
import Lightbox from 'features/lightbox/components/Lightbox';
|
||||
import SiteHeader from 'features/system/components/SiteHeader';
|
||||
import { useFeatureStatus } from 'features/system/hooks/useFeatureStatus';
|
||||
import { configChanged } from 'features/system/store/configSlice';
|
||||
import { languageSelector } from 'features/system/store/systemSelectors';
|
||||
import FloatingGalleryButton from 'features/ui/components/FloatingGalleryButton';
|
||||
@ -34,8 +32,6 @@ const App = ({ config = DEFAULT_CONFIG, headerComponent }: Props) => {
|
||||
|
||||
const log = useLogger();
|
||||
|
||||
const isLightboxEnabled = useFeatureStatus('lightbox').isFeatureEnabled;
|
||||
|
||||
const dispatch = useAppDispatch();
|
||||
|
||||
useEffect(() => {
|
||||
@ -54,7 +50,6 @@ const App = ({ config = DEFAULT_CONFIG, headerComponent }: Props) => {
|
||||
return (
|
||||
<>
|
||||
<Grid w="100vw" h="100vh" position="relative" overflow="hidden">
|
||||
{isLightboxEnabled && <Lightbox />}
|
||||
<ImageUploader>
|
||||
<Grid
|
||||
sx={{
|
||||
|
@ -1,8 +1,4 @@
|
||||
import { Box, ChakraProps, Flex, Heading, Image } from '@chakra-ui/react';
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { stateSelector } from 'app/store/store';
|
||||
import { useAppSelector } from 'app/store/storeHooks';
|
||||
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
|
||||
import { memo } from 'react';
|
||||
import { TypesafeDraggableData } from './typesafeDnd';
|
||||
|
||||
@ -32,24 +28,7 @@ const STYLES: ChakraProps['sx'] = {
|
||||
},
|
||||
};
|
||||
|
||||
const selector = createSelector(
|
||||
stateSelector,
|
||||
(state) => {
|
||||
const gallerySelectionCount = state.gallery.selection.length;
|
||||
const batchSelectionCount = state.batch.selection.length;
|
||||
|
||||
return {
|
||||
gallerySelectionCount,
|
||||
batchSelectionCount,
|
||||
};
|
||||
},
|
||||
defaultSelectorOptions
|
||||
);
|
||||
|
||||
const DragPreview = (props: OverlayDragImageProps) => {
|
||||
const { gallerySelectionCount, batchSelectionCount } =
|
||||
useAppSelector(selector);
|
||||
|
||||
if (!props.dragData) {
|
||||
return;
|
||||
}
|
||||
@ -82,7 +61,7 @@ const DragPreview = (props: OverlayDragImageProps) => {
|
||||
);
|
||||
}
|
||||
|
||||
if (props.dragData.payloadType === 'BATCH_SELECTION') {
|
||||
if (props.dragData.payloadType === 'IMAGE_NAMES') {
|
||||
return (
|
||||
<Flex
|
||||
sx={{
|
||||
@ -95,26 +74,7 @@ const DragPreview = (props: OverlayDragImageProps) => {
|
||||
...STYLES,
|
||||
}}
|
||||
>
|
||||
<Heading>{batchSelectionCount}</Heading>
|
||||
<Heading size="sm">Images</Heading>
|
||||
</Flex>
|
||||
);
|
||||
}
|
||||
|
||||
if (props.dragData.payloadType === 'GALLERY_SELECTION') {
|
||||
return (
|
||||
<Flex
|
||||
sx={{
|
||||
cursor: 'none',
|
||||
userSelect: 'none',
|
||||
position: 'relative',
|
||||
alignItems: 'center',
|
||||
justifyContent: 'center',
|
||||
flexDir: 'column',
|
||||
...STYLES,
|
||||
}}
|
||||
>
|
||||
<Heading>{gallerySelectionCount}</Heading>
|
||||
<Heading>{props.dragData.payload.image_names.length}</Heading>
|
||||
<Heading size="sm">Images</Heading>
|
||||
</Flex>
|
||||
);
|
||||
|
@ -6,18 +6,18 @@ import {
|
||||
useSensor,
|
||||
useSensors,
|
||||
} from '@dnd-kit/core';
|
||||
import { snapCenterToCursor } from '@dnd-kit/modifiers';
|
||||
import { dndDropped } from 'app/store/middleware/listenerMiddleware/listeners/imageDropped';
|
||||
import { useAppDispatch } from 'app/store/storeHooks';
|
||||
import { AnimatePresence, motion } from 'framer-motion';
|
||||
import { PropsWithChildren, memo, useCallback, useState } from 'react';
|
||||
import DragPreview from './DragPreview';
|
||||
import { snapCenterToCursor } from '@dnd-kit/modifiers';
|
||||
import { AnimatePresence, motion } from 'framer-motion';
|
||||
import {
|
||||
DndContext,
|
||||
DragEndEvent,
|
||||
DragStartEvent,
|
||||
TypesafeDraggableData,
|
||||
} from './typesafeDnd';
|
||||
import { useAppDispatch } from 'app/store/storeHooks';
|
||||
import { imageDropped } from 'app/store/middleware/listenerMiddleware/listeners/imageDropped';
|
||||
|
||||
type ImageDndContextProps = PropsWithChildren;
|
||||
|
||||
@ -42,18 +42,18 @@ const ImageDndContext = (props: ImageDndContextProps) => {
|
||||
if (!activeData || !overData) {
|
||||
return;
|
||||
}
|
||||
dispatch(imageDropped({ overData, activeData }));
|
||||
dispatch(dndDropped({ overData, activeData }));
|
||||
setActiveDragData(null);
|
||||
},
|
||||
[dispatch]
|
||||
);
|
||||
|
||||
const mouseSensor = useSensor(MouseSensor, {
|
||||
activationConstraint: { delay: 150, tolerance: 5 },
|
||||
activationConstraint: { distance: 10 },
|
||||
});
|
||||
|
||||
const touchSensor = useSensor(TouchSensor, {
|
||||
activationConstraint: { delay: 150, tolerance: 5 },
|
||||
activationConstraint: { distance: 10 },
|
||||
});
|
||||
|
||||
// TODO: Use KeyboardSensor - needs composition of multiple collisionDetection algos
|
||||
|
@ -77,18 +77,14 @@ export type ImageDraggableData = BaseDragData & {
|
||||
payload: { imageDTO: ImageDTO };
|
||||
};
|
||||
|
||||
export type GallerySelectionDraggableData = BaseDragData & {
|
||||
payloadType: 'GALLERY_SELECTION';
|
||||
};
|
||||
|
||||
export type BatchSelectionDraggableData = BaseDragData & {
|
||||
payloadType: 'BATCH_SELECTION';
|
||||
export type ImageNamesDraggableData = BaseDragData & {
|
||||
payloadType: 'IMAGE_NAMES';
|
||||
payload: { image_names: string[] };
|
||||
};
|
||||
|
||||
export type TypesafeDraggableData =
|
||||
| ImageDraggableData
|
||||
| GallerySelectionDraggableData
|
||||
| BatchSelectionDraggableData;
|
||||
| ImageNamesDraggableData;
|
||||
|
||||
interface UseDroppableTypesafeArguments
|
||||
extends Omit<UseDroppableArguments, 'data'> {
|
||||
@ -159,13 +155,11 @@ export const isValidDrop = (
|
||||
case 'SET_NODES_IMAGE':
|
||||
return payloadType === 'IMAGE_DTO';
|
||||
case 'SET_MULTI_NODES_IMAGE':
|
||||
return payloadType === 'IMAGE_DTO' || 'GALLERY_SELECTION';
|
||||
return payloadType === 'IMAGE_DTO' || 'IMAGE_NAMES';
|
||||
case 'ADD_TO_BATCH':
|
||||
return payloadType === 'IMAGE_DTO' || 'GALLERY_SELECTION';
|
||||
return payloadType === 'IMAGE_DTO' || 'IMAGE_NAMES';
|
||||
case 'MOVE_BOARD':
|
||||
return (
|
||||
payloadType === 'IMAGE_DTO' || 'GALLERY_SELECTION' || 'BATCH_SELECTION'
|
||||
);
|
||||
return payloadType === 'IMAGE_DTO' || 'IMAGE_NAMES';
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
|
@ -1,6 +1,7 @@
|
||||
import { SchedulerParam } from 'features/parameters/store/parameterZodSchemas';
|
||||
|
||||
// zod needs the array to be `as const` to infer the type correctly
|
||||
|
||||
import { SchedulerParam } from 'features/parameters/types/parameterSchemas';
|
||||
|
||||
// this is the source of the `SchedulerParam` type, which is generated by zod
|
||||
export const SCHEDULER_NAMES_AS_CONST = [
|
||||
'euler',
|
||||
|
@ -1,67 +0,0 @@
|
||||
// import { createAction } from '@reduxjs/toolkit';
|
||||
// import * as InvokeAI from 'app/types/invokeai';
|
||||
// import { GalleryCategory } from 'features/gallery/store/gallerySlice';
|
||||
// import { InvokeTabName } from 'features/ui/store/tabMap';
|
||||
|
||||
// /**
|
||||
// * We can't use redux-toolkit's createSlice() to make these actions,
|
||||
// * because they have no associated reducer. They only exist to dispatch
|
||||
// * requests to the server via socketio. These actions will be handled
|
||||
// * by the middleware.
|
||||
// */
|
||||
|
||||
// export const generateImage = createAction<InvokeTabName>(
|
||||
// 'socketio/generateImage'
|
||||
// );
|
||||
// export const runESRGAN = createAction<InvokeAI._Image>('socketio/runESRGAN');
|
||||
// export const runFacetool = createAction<InvokeAI._Image>(
|
||||
// 'socketio/runFacetool'
|
||||
// );
|
||||
// export const deleteImage = createAction<InvokeAI._Image>(
|
||||
// 'socketio/deleteImage'
|
||||
// );
|
||||
// export const requestImages = createAction<GalleryCategory>(
|
||||
// 'socketio/requestImages'
|
||||
// );
|
||||
// export const requestNewImages = createAction<GalleryCategory>(
|
||||
// 'socketio/requestNewImages'
|
||||
// );
|
||||
// export const cancelProcessing = createAction<undefined>(
|
||||
// 'socketio/cancelProcessing'
|
||||
// );
|
||||
|
||||
// export const requestSystemConfig = createAction<undefined>(
|
||||
// 'socketio/requestSystemConfig'
|
||||
// );
|
||||
|
||||
// export const searchForModels = createAction<string>('socketio/searchForModels');
|
||||
|
||||
// export const addNewModel = createAction<
|
||||
// InvokeAI.InvokeModelConfigProps | InvokeAI.InvokeDiffusersModelConfigProps
|
||||
// >('socketio/addNewModel');
|
||||
|
||||
// export const deleteModel = createAction<string>('socketio/deleteModel');
|
||||
|
||||
// export const convertToDiffusers =
|
||||
// createAction<InvokeAI.InvokeModelConversionProps>(
|
||||
// 'socketio/convertToDiffusers'
|
||||
// );
|
||||
|
||||
// export const mergeDiffusersModels =
|
||||
// createAction<InvokeAI.InvokeModelMergingProps>(
|
||||
// 'socketio/mergeDiffusersModels'
|
||||
// );
|
||||
|
||||
// export const requestModelChange = createAction<string>(
|
||||
// 'socketio/requestModelChange'
|
||||
// );
|
||||
|
||||
// export const saveStagingAreaImageToGallery = createAction<string>(
|
||||
// 'socketio/saveStagingAreaImageToGallery'
|
||||
// );
|
||||
|
||||
// export const emptyTempFolder = createAction<undefined>(
|
||||
// 'socketio/requestEmptyTempFolder'
|
||||
// );
|
||||
|
||||
export default {};
|
@ -1,209 +0,0 @@
|
||||
import { AnyAction, Dispatch, MiddlewareAPI } from '@reduxjs/toolkit';
|
||||
import * as InvokeAI from 'app/types/invokeai';
|
||||
import type { RootState } from 'app/store/store';
|
||||
import {
|
||||
frontendToBackendParameters,
|
||||
FrontendToBackendParametersConfig,
|
||||
} from 'common/util/parameterTranslation';
|
||||
import dateFormat from 'dateformat';
|
||||
import {
|
||||
GalleryCategory,
|
||||
GalleryState,
|
||||
removeImage,
|
||||
} from 'features/gallery/store/gallerySlice';
|
||||
import {
|
||||
generationRequested,
|
||||
modelChangeRequested,
|
||||
modelConvertRequested,
|
||||
modelMergingRequested,
|
||||
setIsProcessing,
|
||||
} from 'features/system/store/systemSlice';
|
||||
import { InvokeTabName } from 'features/ui/store/tabMap';
|
||||
import { Socket } from 'socket.io-client';
|
||||
|
||||
/**
|
||||
* Returns an object containing all functions which use `socketio.emit()`.
|
||||
* i.e. those which make server requests.
|
||||
*/
|
||||
const makeSocketIOEmitters = (
|
||||
store: MiddlewareAPI<Dispatch<AnyAction>, RootState>,
|
||||
socketio: Socket
|
||||
) => {
|
||||
// We need to dispatch actions to redux and get pieces of state from the store.
|
||||
const { dispatch, getState } = store;
|
||||
|
||||
return {
|
||||
emitGenerateImage: (generationMode: InvokeTabName) => {
|
||||
dispatch(setIsProcessing(true));
|
||||
|
||||
const state: RootState = getState();
|
||||
|
||||
const {
|
||||
generation: generationState,
|
||||
postprocessing: postprocessingState,
|
||||
system: systemState,
|
||||
canvas: canvasState,
|
||||
} = state;
|
||||
|
||||
const frontendToBackendParametersConfig: FrontendToBackendParametersConfig =
|
||||
{
|
||||
generationMode,
|
||||
generationState,
|
||||
postprocessingState,
|
||||
canvasState,
|
||||
systemState,
|
||||
};
|
||||
|
||||
dispatch(generationRequested());
|
||||
|
||||
const { generationParameters, esrganParameters, facetoolParameters } =
|
||||
frontendToBackendParameters(frontendToBackendParametersConfig);
|
||||
|
||||
socketio.emit(
|
||||
'generateImage',
|
||||
generationParameters,
|
||||
esrganParameters,
|
||||
facetoolParameters
|
||||
);
|
||||
|
||||
// we need to truncate the init_mask base64 else it takes up the whole log
|
||||
// TODO: handle maintaining masks for reproducibility in future
|
||||
if (generationParameters.init_mask) {
|
||||
generationParameters.init_mask = generationParameters.init_mask
|
||||
.substr(0, 64)
|
||||
.concat('...');
|
||||
}
|
||||
if (generationParameters.init_img) {
|
||||
generationParameters.init_img = generationParameters.init_img
|
||||
.substr(0, 64)
|
||||
.concat('...');
|
||||
}
|
||||
|
||||
dispatch(
|
||||
addLogEntry({
|
||||
timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
message: `Image generation requested: ${JSON.stringify({
|
||||
...generationParameters,
|
||||
...esrganParameters,
|
||||
...facetoolParameters,
|
||||
})}`,
|
||||
})
|
||||
);
|
||||
},
|
||||
emitRunESRGAN: (imageToProcess: InvokeAI._Image) => {
|
||||
dispatch(setIsProcessing(true));
|
||||
|
||||
const {
|
||||
postprocessing: {
|
||||
upscalingLevel,
|
||||
upscalingDenoising,
|
||||
upscalingStrength,
|
||||
},
|
||||
} = getState();
|
||||
|
||||
const esrganParameters = {
|
||||
upscale: [upscalingLevel, upscalingDenoising, upscalingStrength],
|
||||
};
|
||||
socketio.emit('runPostprocessing', imageToProcess, {
|
||||
type: 'esrgan',
|
||||
...esrganParameters,
|
||||
});
|
||||
dispatch(
|
||||
addLogEntry({
|
||||
timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
message: `ESRGAN upscale requested: ${JSON.stringify({
|
||||
file: imageToProcess.url,
|
||||
...esrganParameters,
|
||||
})}`,
|
||||
})
|
||||
);
|
||||
},
|
||||
emitRunFacetool: (imageToProcess: InvokeAI._Image) => {
|
||||
dispatch(setIsProcessing(true));
|
||||
|
||||
const {
|
||||
postprocessing: { facetoolType, facetoolStrength, codeformerFidelity },
|
||||
} = getState();
|
||||
|
||||
const facetoolParameters: Record<string, unknown> = {
|
||||
facetool_strength: facetoolStrength,
|
||||
};
|
||||
|
||||
if (facetoolType === 'codeformer') {
|
||||
facetoolParameters.codeformer_fidelity = codeformerFidelity;
|
||||
}
|
||||
|
||||
socketio.emit('runPostprocessing', imageToProcess, {
|
||||
type: facetoolType,
|
||||
...facetoolParameters,
|
||||
});
|
||||
dispatch(
|
||||
addLogEntry({
|
||||
timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
message: `Face restoration (${facetoolType}) requested: ${JSON.stringify(
|
||||
{
|
||||
file: imageToProcess.url,
|
||||
...facetoolParameters,
|
||||
}
|
||||
)}`,
|
||||
})
|
||||
);
|
||||
},
|
||||
emitDeleteImage: (imageToDelete: InvokeAI._Image) => {
|
||||
const { url, uuid, category, thumbnail } = imageToDelete;
|
||||
dispatch(removeImage(imageToDelete));
|
||||
socketio.emit('deleteImage', url, thumbnail, uuid, category);
|
||||
},
|
||||
emitRequestImages: (category: GalleryCategory) => {
|
||||
const gallery: GalleryState = getState().gallery;
|
||||
const { earliest_mtime } = gallery.categories[category];
|
||||
socketio.emit('requestImages', category, earliest_mtime);
|
||||
},
|
||||
emitRequestNewImages: (category: GalleryCategory) => {
|
||||
const gallery: GalleryState = getState().gallery;
|
||||
const { latest_mtime } = gallery.categories[category];
|
||||
socketio.emit('requestLatestImages', category, latest_mtime);
|
||||
},
|
||||
emitCancelProcessing: () => {
|
||||
socketio.emit('cancel');
|
||||
},
|
||||
emitRequestSystemConfig: () => {
|
||||
socketio.emit('requestSystemConfig');
|
||||
},
|
||||
emitSearchForModels: (modelFolder: string) => {
|
||||
socketio.emit('searchForModels', modelFolder);
|
||||
},
|
||||
emitAddNewModel: (modelConfig: InvokeAI.InvokeModelConfigProps) => {
|
||||
socketio.emit('addNewModel', modelConfig);
|
||||
},
|
||||
emitDeleteModel: (modelName: string) => {
|
||||
socketio.emit('deleteModel', modelName);
|
||||
},
|
||||
emitConvertToDiffusers: (
|
||||
modelToConvert: InvokeAI.InvokeModelConversionProps
|
||||
) => {
|
||||
dispatch(modelConvertRequested());
|
||||
socketio.emit('convertToDiffusers', modelToConvert);
|
||||
},
|
||||
emitMergeDiffusersModels: (
|
||||
modelMergeInfo: InvokeAI.InvokeModelMergingProps
|
||||
) => {
|
||||
dispatch(modelMergingRequested());
|
||||
socketio.emit('mergeDiffusersModels', modelMergeInfo);
|
||||
},
|
||||
emitRequestModelChange: (modelName: string) => {
|
||||
dispatch(modelChangeRequested());
|
||||
socketio.emit('requestModelChange', modelName);
|
||||
},
|
||||
emitSaveStagingAreaImageToGallery: (url: string) => {
|
||||
socketio.emit('requestSaveStagingAreaImageToGallery', url);
|
||||
},
|
||||
emitRequestEmptyTempFolder: () => {
|
||||
socketio.emit('requestEmptyTempFolder');
|
||||
},
|
||||
};
|
||||
};
|
||||
|
||||
export default makeSocketIOEmitters;
|
||||
|
||||
export default {};
|
@ -1,502 +0,0 @@
|
||||
// import { AnyAction, Dispatch, MiddlewareAPI } from '@reduxjs/toolkit';
|
||||
// import dateFormat from 'dateformat';
|
||||
// import i18n from 'i18n';
|
||||
// import { v4 as uuidv4 } from 'uuid';
|
||||
|
||||
// import * as InvokeAI from 'app/types/invokeai';
|
||||
|
||||
// import {
|
||||
// addToast,
|
||||
// errorOccurred,
|
||||
// processingCanceled,
|
||||
// setCurrentStatus,
|
||||
// setFoundModels,
|
||||
// setIsCancelable,
|
||||
// setIsConnected,
|
||||
// setIsProcessing,
|
||||
// setModelList,
|
||||
// setSearchFolder,
|
||||
// setSystemConfig,
|
||||
// setSystemStatus,
|
||||
// } from 'features/system/store/systemSlice';
|
||||
|
||||
// import {
|
||||
// addGalleryImages,
|
||||
// addImage,
|
||||
// clearIntermediateImage,
|
||||
// GalleryState,
|
||||
// removeImage,
|
||||
// setIntermediateImage,
|
||||
// } from 'features/gallery/store/gallerySlice';
|
||||
|
||||
// import type { RootState } from 'app/store/store';
|
||||
// import { addImageToStagingArea } from 'features/canvas/store/canvasSlice';
|
||||
// import {
|
||||
// clearInitialImage,
|
||||
// initialImageSelected,
|
||||
// setInfillMethod,
|
||||
// // setInitialImage,
|
||||
// setMaskPath,
|
||||
// } from 'features/parameters/store/generationSlice';
|
||||
// import { tabMap } from 'features/ui/store/tabMap';
|
||||
// import {
|
||||
// requestImages,
|
||||
// requestNewImages,
|
||||
// requestSystemConfig,
|
||||
// } from './actions';
|
||||
|
||||
// /**
|
||||
// * Returns an object containing listener callbacks for socketio events.
|
||||
// * TODO: This file is large, but simple. Should it be split up further?
|
||||
// */
|
||||
// const makeSocketIOListeners = (
|
||||
// store: MiddlewareAPI<Dispatch<AnyAction>, RootState>
|
||||
// ) => {
|
||||
// const { dispatch, getState } = store;
|
||||
|
||||
// return {
|
||||
// /**
|
||||
// * Callback to run when we receive a 'connect' event.
|
||||
// */
|
||||
// onConnect: () => {
|
||||
// try {
|
||||
// dispatch(setIsConnected(true));
|
||||
// dispatch(setCurrentStatus(i18n.t('common.statusConnected')));
|
||||
// dispatch(requestSystemConfig());
|
||||
// const gallery: GalleryState = getState().gallery;
|
||||
|
||||
// if (gallery.categories.result.latest_mtime) {
|
||||
// dispatch(requestNewImages('result'));
|
||||
// } else {
|
||||
// dispatch(requestImages('result'));
|
||||
// }
|
||||
|
||||
// if (gallery.categories.user.latest_mtime) {
|
||||
// dispatch(requestNewImages('user'));
|
||||
// } else {
|
||||
// dispatch(requestImages('user'));
|
||||
// }
|
||||
// } catch (e) {
|
||||
// console.error(e);
|
||||
// }
|
||||
// },
|
||||
// /**
|
||||
// * Callback to run when we receive a 'disconnect' event.
|
||||
// */
|
||||
// onDisconnect: () => {
|
||||
// try {
|
||||
// dispatch(setIsConnected(false));
|
||||
// dispatch(setCurrentStatus(i18n.t('common.statusDisconnected')));
|
||||
|
||||
// dispatch(
|
||||
// addLogEntry({
|
||||
// timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
// message: `Disconnected from server`,
|
||||
// level: 'warning',
|
||||
// })
|
||||
// );
|
||||
// } catch (e) {
|
||||
// console.error(e);
|
||||
// }
|
||||
// },
|
||||
// /**
|
||||
// * Callback to run when we receive a 'generationResult' event.
|
||||
// */
|
||||
// onGenerationResult: (data: InvokeAI.ImageResultResponse) => {
|
||||
// try {
|
||||
// const state = getState();
|
||||
// const { activeTab } = state.ui;
|
||||
// const { shouldLoopback } = state.postprocessing;
|
||||
// const { boundingBox: _, generationMode, ...rest } = data;
|
||||
|
||||
// const newImage = {
|
||||
// uuid: uuidv4(),
|
||||
// ...rest,
|
||||
// };
|
||||
|
||||
// if (['txt2img', 'img2img'].includes(generationMode)) {
|
||||
// dispatch(
|
||||
// addImage({
|
||||
// category: 'result',
|
||||
// image: { ...newImage, category: 'result' },
|
||||
// })
|
||||
// );
|
||||
// }
|
||||
|
||||
// if (generationMode === 'unifiedCanvas' && data.boundingBox) {
|
||||
// const { boundingBox } = data;
|
||||
// dispatch(
|
||||
// addImageToStagingArea({
|
||||
// image: { ...newImage, category: 'temp' },
|
||||
// boundingBox,
|
||||
// })
|
||||
// );
|
||||
|
||||
// if (state.canvas.shouldAutoSave) {
|
||||
// dispatch(
|
||||
// addImage({
|
||||
// image: { ...newImage, category: 'result' },
|
||||
// category: 'result',
|
||||
// })
|
||||
// );
|
||||
// }
|
||||
// }
|
||||
|
||||
// // TODO: fix
|
||||
// // if (shouldLoopback) {
|
||||
// // const activeTabName = tabMap[activeTab];
|
||||
// // switch (activeTabName) {
|
||||
// // case 'img2img': {
|
||||
// // dispatch(initialImageSelected(newImage.uuid));
|
||||
// // // dispatch(setInitialImage(newImage));
|
||||
// // break;
|
||||
// // }
|
||||
// // }
|
||||
// // }
|
||||
|
||||
// dispatch(clearIntermediateImage());
|
||||
|
||||
// dispatch(
|
||||
// addLogEntry({
|
||||
// timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
// message: `Image generated: ${data.url}`,
|
||||
// })
|
||||
// );
|
||||
// } catch (e) {
|
||||
// console.error(e);
|
||||
// }
|
||||
// },
|
||||
// /**
|
||||
// * Callback to run when we receive a 'intermediateResult' event.
|
||||
// */
|
||||
// onIntermediateResult: (data: InvokeAI.ImageResultResponse) => {
|
||||
// try {
|
||||
// dispatch(
|
||||
// setIntermediateImage({
|
||||
// uuid: uuidv4(),
|
||||
// ...data,
|
||||
// category: 'result',
|
||||
// })
|
||||
// );
|
||||
// if (!data.isBase64) {
|
||||
// dispatch(
|
||||
// addLogEntry({
|
||||
// timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
// message: `Intermediate image generated: ${data.url}`,
|
||||
// })
|
||||
// );
|
||||
// }
|
||||
// } catch (e) {
|
||||
// console.error(e);
|
||||
// }
|
||||
// },
|
||||
// /**
|
||||
// * Callback to run when we receive an 'esrganResult' event.
|
||||
// */
|
||||
// onPostprocessingResult: (data: InvokeAI.ImageResultResponse) => {
|
||||
// try {
|
||||
// dispatch(
|
||||
// addImage({
|
||||
// category: 'result',
|
||||
// image: {
|
||||
// uuid: uuidv4(),
|
||||
// ...data,
|
||||
// category: 'result',
|
||||
// },
|
||||
// })
|
||||
// );
|
||||
|
||||
// dispatch(
|
||||
// addLogEntry({
|
||||
// timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
// message: `Postprocessed: ${data.url}`,
|
||||
// })
|
||||
// );
|
||||
// } catch (e) {
|
||||
// console.error(e);
|
||||
// }
|
||||
// },
|
||||
// /**
|
||||
// * Callback to run when we receive a 'progressUpdate' event.
|
||||
// * TODO: Add additional progress phases
|
||||
// */
|
||||
// onProgressUpdate: (data: InvokeAI.SystemStatus) => {
|
||||
// try {
|
||||
// dispatch(setIsProcessing(true));
|
||||
// dispatch(setSystemStatus(data));
|
||||
// } catch (e) {
|
||||
// console.error(e);
|
||||
// }
|
||||
// },
|
||||
// /**
|
||||
// * Callback to run when we receive a 'progressUpdate' event.
|
||||
// */
|
||||
// onError: (data: InvokeAI.ErrorResponse) => {
|
||||
// const { message, additionalData } = data;
|
||||
|
||||
// if (additionalData) {
|
||||
// // TODO: handle more data than short message
|
||||
// }
|
||||
|
||||
// try {
|
||||
// dispatch(
|
||||
// addLogEntry({
|
||||
// timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
// message: `Server error: ${message}`,
|
||||
// level: 'error',
|
||||
// })
|
||||
// );
|
||||
// dispatch(errorOccurred());
|
||||
// dispatch(clearIntermediateImage());
|
||||
// } catch (e) {
|
||||
// console.error(e);
|
||||
// }
|
||||
// },
|
||||
// /**
|
||||
// * Callback to run when we receive a 'galleryImages' event.
|
||||
// */
|
||||
// onGalleryImages: (data: InvokeAI.GalleryImagesResponse) => {
|
||||
// const { images, areMoreImagesAvailable, category } = data;
|
||||
|
||||
// /**
|
||||
// * the logic here ideally would be in the reducer but we have a side effect:
|
||||
// * generating a uuid. so the logic needs to be here, outside redux.
|
||||
// */
|
||||
|
||||
// // Generate a UUID for each image
|
||||
// const preparedImages = images.map((image): InvokeAI._Image => {
|
||||
// return {
|
||||
// uuid: uuidv4(),
|
||||
// ...image,
|
||||
// };
|
||||
// });
|
||||
|
||||
// dispatch(
|
||||
// addGalleryImages({
|
||||
// images: preparedImages,
|
||||
// areMoreImagesAvailable,
|
||||
// category,
|
||||
// })
|
||||
// );
|
||||
|
||||
// dispatch(
|
||||
// addLogEntry({
|
||||
// timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
// message: `Loaded ${images.length} images`,
|
||||
// })
|
||||
// );
|
||||
// },
|
||||
// /**
|
||||
// * Callback to run when we receive a 'processingCanceled' event.
|
||||
// */
|
||||
// onProcessingCanceled: () => {
|
||||
// dispatch(processingCanceled());
|
||||
|
||||
// const { intermediateImage } = getState().gallery;
|
||||
|
||||
// if (intermediateImage) {
|
||||
// if (!intermediateImage.isBase64) {
|
||||
// dispatch(
|
||||
// addImage({
|
||||
// category: 'result',
|
||||
// image: intermediateImage,
|
||||
// })
|
||||
// );
|
||||
// dispatch(
|
||||
// addLogEntry({
|
||||
// timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
// message: `Intermediate image saved: ${intermediateImage.url}`,
|
||||
// })
|
||||
// );
|
||||
// }
|
||||
// dispatch(clearIntermediateImage());
|
||||
// }
|
||||
|
||||
// dispatch(
|
||||
// addLogEntry({
|
||||
// timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
// message: `Processing canceled`,
|
||||
// level: 'warning',
|
||||
// })
|
||||
// );
|
||||
// },
|
||||
// /**
|
||||
// * Callback to run when we receive a 'imageDeleted' event.
|
||||
// */
|
||||
// onImageDeleted: (data: InvokeAI.ImageDeletedResponse) => {
|
||||
// const { url } = data;
|
||||
|
||||
// // remove image from gallery
|
||||
// dispatch(removeImage(data));
|
||||
|
||||
// // remove references to image in options
|
||||
// const {
|
||||
// generation: { initialImage, maskPath },
|
||||
// } = getState();
|
||||
|
||||
// if (
|
||||
// initialImage === url ||
|
||||
// (initialImage as InvokeAI._Image)?.url === url
|
||||
// ) {
|
||||
// dispatch(clearInitialImage());
|
||||
// }
|
||||
|
||||
// if (maskPath === url) {
|
||||
// dispatch(setMaskPath(''));
|
||||
// }
|
||||
|
||||
// dispatch(
|
||||
// addLogEntry({
|
||||
// timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
// message: `Image deleted: ${url}`,
|
||||
// })
|
||||
// );
|
||||
// },
|
||||
// onSystemConfig: (data: InvokeAI.SystemConfig) => {
|
||||
// dispatch(setSystemConfig(data));
|
||||
// if (!data.infill_methods.includes('patchmatch')) {
|
||||
// dispatch(setInfillMethod(data.infill_methods[0]));
|
||||
// }
|
||||
// },
|
||||
// onFoundModels: (data: InvokeAI.FoundModelResponse) => {
|
||||
// const { search_folder, found_models } = data;
|
||||
// dispatch(setSearchFolder(search_folder));
|
||||
// dispatch(setFoundModels(found_models));
|
||||
// },
|
||||
// onNewModelAdded: (data: InvokeAI.ModelAddedResponse) => {
|
||||
// const { new_model_name, model_list, update } = data;
|
||||
// dispatch(setModelList(model_list));
|
||||
// dispatch(setIsProcessing(false));
|
||||
// dispatch(setCurrentStatus(i18n.t('modelManager.modelAdded')));
|
||||
// dispatch(
|
||||
// addLogEntry({
|
||||
// timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
// message: `Model Added: ${new_model_name}`,
|
||||
// level: 'info',
|
||||
// })
|
||||
// );
|
||||
// dispatch(
|
||||
// addToast({
|
||||
// title: !update
|
||||
// ? `${i18n.t('modelManager.modelAdded')}: ${new_model_name}`
|
||||
// : `${i18n.t('modelManager.modelUpdated')}: ${new_model_name}`,
|
||||
// status: 'success',
|
||||
// duration: 2500,
|
||||
// isClosable: true,
|
||||
// })
|
||||
// );
|
||||
// },
|
||||
// onModelDeleted: (data: InvokeAI.ModelDeletedResponse) => {
|
||||
// const { deleted_model_name, model_list } = data;
|
||||
// dispatch(setModelList(model_list));
|
||||
// dispatch(setIsProcessing(false));
|
||||
// dispatch(
|
||||
// addLogEntry({
|
||||
// timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
// message: `${i18n.t(
|
||||
// 'modelManager.modelAdded'
|
||||
// )}: ${deleted_model_name}`,
|
||||
// level: 'info',
|
||||
// })
|
||||
// );
|
||||
// dispatch(
|
||||
// addToast({
|
||||
// title: `${i18n.t(
|
||||
// 'modelManager.modelEntryDeleted'
|
||||
// )}: ${deleted_model_name}`,
|
||||
// status: 'success',
|
||||
// duration: 2500,
|
||||
// isClosable: true,
|
||||
// })
|
||||
// );
|
||||
// },
|
||||
// onModelConverted: (data: InvokeAI.ModelConvertedResponse) => {
|
||||
// const { converted_model_name, model_list } = data;
|
||||
// dispatch(setModelList(model_list));
|
||||
// dispatch(setCurrentStatus(i18n.t('common.statusModelConverted')));
|
||||
// dispatch(setIsProcessing(false));
|
||||
// dispatch(setIsCancelable(true));
|
||||
// dispatch(
|
||||
// addLogEntry({
|
||||
// timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
// message: `Model converted: ${converted_model_name}`,
|
||||
// level: 'info',
|
||||
// })
|
||||
// );
|
||||
// dispatch(
|
||||
// addToast({
|
||||
// title: `${i18n.t(
|
||||
// 'modelManager.modelConverted'
|
||||
// )}: ${converted_model_name}`,
|
||||
// status: 'success',
|
||||
// duration: 2500,
|
||||
// isClosable: true,
|
||||
// })
|
||||
// );
|
||||
// },
|
||||
// onModelsMerged: (data: InvokeAI.ModelsMergedResponse) => {
|
||||
// const { merged_models, merged_model_name, model_list } = data;
|
||||
// dispatch(setModelList(model_list));
|
||||
// dispatch(setCurrentStatus(i18n.t('common.statusMergedModels')));
|
||||
// dispatch(setIsProcessing(false));
|
||||
// dispatch(setIsCancelable(true));
|
||||
// dispatch(
|
||||
// addLogEntry({
|
||||
// timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
// message: `Models merged: ${merged_models}`,
|
||||
// level: 'info',
|
||||
// })
|
||||
// );
|
||||
// dispatch(
|
||||
// addToast({
|
||||
// title: `${i18n.t('modelManager.modelsMerged')}: ${merged_model_name}`,
|
||||
// status: 'success',
|
||||
// duration: 2500,
|
||||
// isClosable: true,
|
||||
// })
|
||||
// );
|
||||
// },
|
||||
// onModelChanged: (data: InvokeAI.ModelChangeResponse) => {
|
||||
// const { model_name, model_list } = data;
|
||||
// dispatch(setModelList(model_list));
|
||||
// dispatch(setCurrentStatus(i18n.t('common.statusModelChanged')));
|
||||
// dispatch(setIsProcessing(false));
|
||||
// dispatch(setIsCancelable(true));
|
||||
// dispatch(
|
||||
// addLogEntry({
|
||||
// timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
// message: `Model changed: ${model_name}`,
|
||||
// level: 'info',
|
||||
// })
|
||||
// );
|
||||
// },
|
||||
// onModelChangeFailed: (data: InvokeAI.ModelChangeResponse) => {
|
||||
// const { model_name, model_list } = data;
|
||||
// dispatch(setModelList(model_list));
|
||||
// dispatch(setIsProcessing(false));
|
||||
// dispatch(setIsCancelable(true));
|
||||
// dispatch(errorOccurred());
|
||||
// dispatch(
|
||||
// addLogEntry({
|
||||
// timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
// message: `Model change failed: ${model_name}`,
|
||||
// level: 'error',
|
||||
// })
|
||||
// );
|
||||
// },
|
||||
// onTempFolderEmptied: () => {
|
||||
// dispatch(
|
||||
// addToast({
|
||||
// title: i18n.t('toast.tempFoldersEmptied'),
|
||||
// status: 'success',
|
||||
// duration: 2500,
|
||||
// isClosable: true,
|
||||
// })
|
||||
// );
|
||||
// },
|
||||
// };
|
||||
// };
|
||||
|
||||
// export default makeSocketIOListeners;
|
||||
|
||||
export default {};
|
@ -1,248 +0,0 @@
|
||||
// import { Middleware } from '@reduxjs/toolkit';
|
||||
// import { io } from 'socket.io-client';
|
||||
|
||||
// import makeSocketIOEmitters from './emitters';
|
||||
// import makeSocketIOListeners from './listeners';
|
||||
|
||||
// import * as InvokeAI from 'app/types/invokeai';
|
||||
|
||||
// /**
|
||||
// * Creates a socketio middleware to handle communication with server.
|
||||
// *
|
||||
// * Special `socketio/actionName` actions are created in actions.ts and
|
||||
// * exported for use by the application, which treats them like any old
|
||||
// * action, using `dispatch` to dispatch them.
|
||||
// *
|
||||
// * These actions are intercepted here, where `socketio.emit()` calls are
|
||||
// * made on their behalf - see `emitters.ts`. The emitter functions
|
||||
// * are the outbound communication to the server.
|
||||
// *
|
||||
// * Listeners are also established here - see `listeners.ts`. The listener
|
||||
// * functions receive communication from the server and usually dispatch
|
||||
// * some new action to handle whatever data was sent from the server.
|
||||
// */
|
||||
// export const socketioMiddleware = () => {
|
||||
// const { origin } = new URL(window.location.href);
|
||||
|
||||
// const socketio = io(origin, {
|
||||
// timeout: 60000,
|
||||
// path: `${window.location.pathname}socket.io`,
|
||||
// });
|
||||
|
||||
// socketio.disconnect();
|
||||
|
||||
// let areListenersSet = false;
|
||||
|
||||
// const middleware: Middleware = (store) => (next) => (action) => {
|
||||
// const {
|
||||
// onConnect,
|
||||
// onDisconnect,
|
||||
// onError,
|
||||
// onPostprocessingResult,
|
||||
// onGenerationResult,
|
||||
// onIntermediateResult,
|
||||
// onProgressUpdate,
|
||||
// onGalleryImages,
|
||||
// onProcessingCanceled,
|
||||
// onImageDeleted,
|
||||
// onSystemConfig,
|
||||
// onModelChanged,
|
||||
// onFoundModels,
|
||||
// onNewModelAdded,
|
||||
// onModelDeleted,
|
||||
// onModelConverted,
|
||||
// onModelsMerged,
|
||||
// onModelChangeFailed,
|
||||
// onTempFolderEmptied,
|
||||
// } = makeSocketIOListeners(store);
|
||||
|
||||
// const {
|
||||
// emitGenerateImage,
|
||||
// emitRunESRGAN,
|
||||
// emitRunFacetool,
|
||||
// emitDeleteImage,
|
||||
// emitRequestImages,
|
||||
// emitRequestNewImages,
|
||||
// emitCancelProcessing,
|
||||
// emitRequestSystemConfig,
|
||||
// emitSearchForModels,
|
||||
// emitAddNewModel,
|
||||
// emitDeleteModel,
|
||||
// emitConvertToDiffusers,
|
||||
// emitMergeDiffusersModels,
|
||||
// emitRequestModelChange,
|
||||
// emitSaveStagingAreaImageToGallery,
|
||||
// emitRequestEmptyTempFolder,
|
||||
// } = makeSocketIOEmitters(store, socketio);
|
||||
|
||||
// /**
|
||||
// * If this is the first time the middleware has been called (e.g. during store setup),
|
||||
// * initialize all our socket.io listeners.
|
||||
// */
|
||||
// if (!areListenersSet) {
|
||||
// socketio.on('connect', () => onConnect());
|
||||
|
||||
// socketio.on('disconnect', () => onDisconnect());
|
||||
|
||||
// socketio.on('error', (data: InvokeAI.ErrorResponse) => onError(data));
|
||||
|
||||
// socketio.on('generationResult', (data: InvokeAI.ImageResultResponse) =>
|
||||
// onGenerationResult(data)
|
||||
// );
|
||||
|
||||
// socketio.on(
|
||||
// 'postprocessingResult',
|
||||
// (data: InvokeAI.ImageResultResponse) => onPostprocessingResult(data)
|
||||
// );
|
||||
|
||||
// socketio.on('intermediateResult', (data: InvokeAI.ImageResultResponse) =>
|
||||
// onIntermediateResult(data)
|
||||
// );
|
||||
|
||||
// socketio.on('progressUpdate', (data: InvokeAI.SystemStatus) =>
|
||||
// onProgressUpdate(data)
|
||||
// );
|
||||
|
||||
// socketio.on('galleryImages', (data: InvokeAI.GalleryImagesResponse) =>
|
||||
// onGalleryImages(data)
|
||||
// );
|
||||
|
||||
// socketio.on('processingCanceled', () => {
|
||||
// onProcessingCanceled();
|
||||
// });
|
||||
|
||||
// socketio.on('imageDeleted', (data: InvokeAI.ImageDeletedResponse) => {
|
||||
// onImageDeleted(data);
|
||||
// });
|
||||
|
||||
// socketio.on('systemConfig', (data: InvokeAI.SystemConfig) => {
|
||||
// onSystemConfig(data);
|
||||
// });
|
||||
|
||||
// socketio.on('foundModels', (data: InvokeAI.FoundModelResponse) => {
|
||||
// onFoundModels(data);
|
||||
// });
|
||||
|
||||
// socketio.on('newModelAdded', (data: InvokeAI.ModelAddedResponse) => {
|
||||
// onNewModelAdded(data);
|
||||
// });
|
||||
|
||||
// socketio.on('modelDeleted', (data: InvokeAI.ModelDeletedResponse) => {
|
||||
// onModelDeleted(data);
|
||||
// });
|
||||
|
||||
// socketio.on('modelConverted', (data: InvokeAI.ModelConvertedResponse) => {
|
||||
// onModelConverted(data);
|
||||
// });
|
||||
|
||||
// socketio.on('modelsMerged', (data: InvokeAI.ModelsMergedResponse) => {
|
||||
// onModelsMerged(data);
|
||||
// });
|
||||
|
||||
// socketio.on('modelChanged', (data: InvokeAI.ModelChangeResponse) => {
|
||||
// onModelChanged(data);
|
||||
// });
|
||||
|
||||
// socketio.on('modelChangeFailed', (data: InvokeAI.ModelChangeResponse) => {
|
||||
// onModelChangeFailed(data);
|
||||
// });
|
||||
|
||||
// socketio.on('tempFolderEmptied', () => {
|
||||
// onTempFolderEmptied();
|
||||
// });
|
||||
|
||||
// areListenersSet = true;
|
||||
// }
|
||||
|
||||
// /**
|
||||
// * Handle redux actions caught by middleware.
|
||||
// */
|
||||
// switch (action.type) {
|
||||
// case 'socketio/generateImage': {
|
||||
// emitGenerateImage(action.payload);
|
||||
// break;
|
||||
// }
|
||||
|
||||
// case 'socketio/runESRGAN': {
|
||||
// emitRunESRGAN(action.payload);
|
||||
// break;
|
||||
// }
|
||||
|
||||
// case 'socketio/runFacetool': {
|
||||
// emitRunFacetool(action.payload);
|
||||
// break;
|
||||
// }
|
||||
|
||||
// case 'socketio/deleteImage': {
|
||||
// emitDeleteImage(action.payload);
|
||||
// break;
|
||||
// }
|
||||
|
||||
// case 'socketio/requestImages': {
|
||||
// emitRequestImages(action.payload);
|
||||
// break;
|
||||
// }
|
||||
|
||||
// case 'socketio/requestNewImages': {
|
||||
// emitRequestNewImages(action.payload);
|
||||
// break;
|
||||
// }
|
||||
|
||||
// case 'socketio/cancelProcessing': {
|
||||
// emitCancelProcessing();
|
||||
// break;
|
||||
// }
|
||||
|
||||
// case 'socketio/requestSystemConfig': {
|
||||
// emitRequestSystemConfig();
|
||||
// break;
|
||||
// }
|
||||
|
||||
// case 'socketio/searchForModels': {
|
||||
// emitSearchForModels(action.payload);
|
||||
// break;
|
||||
// }
|
||||
|
||||
// case 'socketio/addNewModel': {
|
||||
// emitAddNewModel(action.payload);
|
||||
// break;
|
||||
// }
|
||||
|
||||
// case 'socketio/deleteModel': {
|
||||
// emitDeleteModel(action.payload);
|
||||
// break;
|
||||
// }
|
||||
|
||||
// case 'socketio/convertToDiffusers': {
|
||||
// emitConvertToDiffusers(action.payload);
|
||||
// break;
|
||||
// }
|
||||
|
||||
// case 'socketio/mergeDiffusersModels': {
|
||||
// emitMergeDiffusersModels(action.payload);
|
||||
// break;
|
||||
// }
|
||||
|
||||
// case 'socketio/requestModelChange': {
|
||||
// emitRequestModelChange(action.payload);
|
||||
// break;
|
||||
// }
|
||||
|
||||
// case 'socketio/saveStagingAreaImageToGallery': {
|
||||
// emitSaveStagingAreaImageToGallery(action.payload);
|
||||
// break;
|
||||
// }
|
||||
|
||||
// case 'socketio/requestEmptyTempFolder': {
|
||||
// emitRequestEmptyTempFolder();
|
||||
// break;
|
||||
// }
|
||||
// }
|
||||
|
||||
// next(action);
|
||||
// };
|
||||
|
||||
// return middleware;
|
||||
// };
|
||||
|
||||
export default {};
|
@ -1,7 +1,6 @@
|
||||
import { canvasPersistDenylist } from 'features/canvas/store/canvasPersistDenylist';
|
||||
import { controlNetDenylist } from 'features/controlNet/store/controlNetDenylist';
|
||||
import { galleryPersistDenylist } from 'features/gallery/store/galleryPersistDenylist';
|
||||
import { lightboxPersistDenylist } from 'features/lightbox/store/lightboxPersistDenylist';
|
||||
import { nodesPersistDenylist } from 'features/nodes/store/nodesPersistDenylist';
|
||||
import { generationPersistDenylist } from 'features/parameters/store/generationPersistDenylist';
|
||||
import { postprocessingPersistDenylist } from 'features/parameters/store/postprocessingPersistDenylist';
|
||||
@ -16,7 +15,6 @@ const serializationDenylist: {
|
||||
canvas: canvasPersistDenylist,
|
||||
gallery: galleryPersistDenylist,
|
||||
generation: generationPersistDenylist,
|
||||
lightbox: lightboxPersistDenylist,
|
||||
nodes: nodesPersistDenylist,
|
||||
postprocessing: postprocessingPersistDenylist,
|
||||
system: systemPersistDenylist,
|
||||
|
@ -1,7 +1,6 @@
|
||||
import { initialCanvasState } from 'features/canvas/store/canvasSlice';
|
||||
import { initialControlNetState } from 'features/controlNet/store/controlNetSlice';
|
||||
import { initialGalleryState } from 'features/gallery/store/gallerySlice';
|
||||
import { initialLightboxState } from 'features/lightbox/store/lightboxSlice';
|
||||
import { initialNodesState } from 'features/nodes/store/nodesSlice';
|
||||
import { initialGenerationState } from 'features/parameters/store/generationSlice';
|
||||
import { initialPostprocessingState } from 'features/parameters/store/postprocessingSlice';
|
||||
@ -18,7 +17,6 @@ const initialStates: {
|
||||
canvas: initialCanvasState,
|
||||
gallery: initialGalleryState,
|
||||
generation: initialGenerationState,
|
||||
lightbox: initialLightboxState,
|
||||
nodes: initialNodesState,
|
||||
postprocessing: initialPostprocessingState,
|
||||
system: initialSystemState,
|
||||
|
@ -1,4 +1,8 @@
|
||||
/**
|
||||
* This is a list of actions that should be excluded in the Redux DevTools.
|
||||
*/
|
||||
export const actionsDenylist = [
|
||||
// very spammy canvas actions
|
||||
'canvas/setCursorPosition',
|
||||
'canvas/setStageCoordinates',
|
||||
'canvas/setStageScale',
|
||||
@ -7,7 +11,11 @@ export const actionsDenylist = [
|
||||
'canvas/setBoundingBoxDimensions',
|
||||
'canvas/setIsDrawing',
|
||||
'canvas/addPointToCurrentLine',
|
||||
// bazillions during generation
|
||||
'socket/socketGeneratorProgress',
|
||||
'socket/appSocketGeneratorProgress',
|
||||
// every time user presses shift
|
||||
'hotkeys/shiftKeyPressed',
|
||||
// this happens after every state change
|
||||
'@@REMEMBER_PERSISTED',
|
||||
];
|
||||
|
@ -8,6 +8,7 @@ import {
|
||||
|
||||
import type { AppDispatch, RootState } from '../../store';
|
||||
import { addCommitStagingAreaImageListener } from './listeners/addCommitStagingAreaImageListener';
|
||||
import { addAppConfigReceivedListener } from './listeners/appConfigReceived';
|
||||
import { addAppStartedListener } from './listeners/appStarted';
|
||||
import { addBoardIdSelectedListener } from './listeners/boardIdSelected';
|
||||
import { addRequestedBoardImageDeletionListener } from './listeners/boardImagesDeleted';
|
||||
@ -51,12 +52,12 @@ import {
|
||||
} from './listeners/imageUrlsReceived';
|
||||
import { addInitialImageSelectedListener } from './listeners/initialImageSelected';
|
||||
import { addModelSelectedListener } from './listeners/modelSelected';
|
||||
import { addModelsLoadedListener } from './listeners/modelsLoaded';
|
||||
import { addReceivedOpenAPISchemaListener } from './listeners/receivedOpenAPISchema';
|
||||
import {
|
||||
addReceivedPageOfImagesFulfilledListener,
|
||||
addReceivedPageOfImagesRejectedListener,
|
||||
} from './listeners/receivedPageOfImages';
|
||||
import { addSelectionAddedToBatchListener } from './listeners/selectionAddedToBatch';
|
||||
import {
|
||||
addSessionCanceledFulfilledListener,
|
||||
addSessionCanceledPendingListener,
|
||||
@ -213,9 +214,6 @@ addBoardIdSelectedListener();
|
||||
// Node schemas
|
||||
addReceivedOpenAPISchemaListener();
|
||||
|
||||
// Batches
|
||||
addSelectionAddedToBatchListener();
|
||||
|
||||
// DND
|
||||
addImageDroppedListener();
|
||||
|
||||
@ -224,3 +222,5 @@ addModelSelectedListener();
|
||||
|
||||
// app startup
|
||||
addAppStartedListener();
|
||||
addModelsLoadedListener();
|
||||
addAppConfigReceivedListener();
|
||||
|
@ -0,0 +1,17 @@
|
||||
import { setInfillMethod } from 'features/parameters/store/generationSlice';
|
||||
import { appInfoApi } from 'services/api/endpoints/appInfo';
|
||||
import { startAppListening } from '..';
|
||||
|
||||
export const addAppConfigReceivedListener = () => {
|
||||
startAppListening({
|
||||
matcher: appInfoApi.endpoints.getAppConfig.matchFulfilled,
|
||||
effect: async (action, { getState, dispatch }) => {
|
||||
const { infill_methods } = action.payload;
|
||||
const infillMethod = getState().generation.infillMethod;
|
||||
|
||||
if (!infill_methods.includes(infillMethod)) {
|
||||
dispatch(setInfillMethod(infill_methods[0]));
|
||||
}
|
||||
},
|
||||
});
|
||||
};
|
@ -1,5 +1,7 @@
|
||||
import { createAction } from '@reduxjs/toolkit';
|
||||
import {
|
||||
ASSETS_CATEGORIES,
|
||||
IMAGE_CATEGORIES,
|
||||
INITIAL_IMAGE_LIMIT,
|
||||
isLoadingChanged,
|
||||
} from 'features/gallery/store/gallerySlice';
|
||||
@ -20,7 +22,7 @@ export const addAppStartedListener = () => {
|
||||
// fill up the gallery tab with images
|
||||
await dispatch(
|
||||
receivedPageOfImages({
|
||||
categories: ['general'],
|
||||
categories: IMAGE_CATEGORIES,
|
||||
is_intermediate: false,
|
||||
offset: 0,
|
||||
limit: INITIAL_IMAGE_LIMIT,
|
||||
@ -30,7 +32,7 @@ export const addAppStartedListener = () => {
|
||||
// fill up the assets tab with images
|
||||
await dispatch(
|
||||
receivedPageOfImages({
|
||||
categories: ['control', 'mask', 'user', 'other'],
|
||||
categories: ASSETS_CATEGORIES,
|
||||
is_intermediate: false,
|
||||
offset: 0,
|
||||
limit: INITIAL_IMAGE_LIMIT,
|
||||
|
@ -1,15 +1,18 @@
|
||||
import { log } from 'app/logging/useLogger';
|
||||
import { startAppListening } from '..';
|
||||
import { selectFilteredImages } from 'features/gallery/store/gallerySelectors';
|
||||
import {
|
||||
ASSETS_CATEGORIES,
|
||||
IMAGE_CATEGORIES,
|
||||
boardIdSelected,
|
||||
imageSelected,
|
||||
selectImagesAll,
|
||||
boardIdSelected,
|
||||
} from 'features/gallery/store/gallerySlice';
|
||||
import { boardsApi } from 'services/api/endpoints/boards';
|
||||
import {
|
||||
IMAGES_PER_PAGE,
|
||||
receivedPageOfImages,
|
||||
} from 'services/api/thunks/image';
|
||||
import { boardsApi } from 'services/api/endpoints/boards';
|
||||
import { startAppListening } from '..';
|
||||
|
||||
const moduleLog = log.child({ namespace: 'boards' });
|
||||
|
||||
@ -24,19 +27,24 @@ export const addBoardIdSelectedListener = () => {
|
||||
const state = getState();
|
||||
const allImages = selectImagesAll(state);
|
||||
|
||||
if (!board_id) {
|
||||
// a board was unselected
|
||||
dispatch(imageSelected(allImages[0]?.image_name));
|
||||
if (board_id === 'all') {
|
||||
// Selected all images
|
||||
dispatch(imageSelected(allImages[0]?.image_name ?? null));
|
||||
return;
|
||||
}
|
||||
|
||||
const { categories } = state.gallery;
|
||||
if (board_id === 'batch') {
|
||||
// Selected the batch
|
||||
dispatch(imageSelected(state.gallery.batchImageNames[0] ?? null));
|
||||
return;
|
||||
}
|
||||
|
||||
const filteredImages = allImages.filter((i) => {
|
||||
const isInCategory = categories.includes(i.image_category);
|
||||
const isInSelectedBoard = board_id ? i.board_id === board_id : true;
|
||||
return isInCategory && isInSelectedBoard;
|
||||
});
|
||||
const filteredImages = selectFilteredImages(state);
|
||||
|
||||
const categories =
|
||||
state.gallery.galleryView === 'images'
|
||||
? IMAGE_CATEGORIES
|
||||
: ASSETS_CATEGORIES;
|
||||
|
||||
// get the board from the cache
|
||||
const { data: boards } =
|
||||
@ -45,7 +53,7 @@ export const addBoardIdSelectedListener = () => {
|
||||
|
||||
if (!board) {
|
||||
// can't find the board in cache...
|
||||
dispatch(imageSelected(allImages[0]?.image_name));
|
||||
dispatch(boardIdSelected('all'));
|
||||
return;
|
||||
}
|
||||
|
||||
@ -63,48 +71,3 @@ export const addBoardIdSelectedListener = () => {
|
||||
},
|
||||
});
|
||||
};
|
||||
|
||||
export const addBoardIdSelected_changeSelectedImage_listener = () => {
|
||||
startAppListening({
|
||||
actionCreator: boardIdSelected,
|
||||
effect: (action, { getState, dispatch }) => {
|
||||
const board_id = action.payload;
|
||||
|
||||
const state = getState();
|
||||
|
||||
// we need to check if we need to fetch more images
|
||||
|
||||
if (!board_id) {
|
||||
// a board was unselected - we don't need to do anything
|
||||
return;
|
||||
}
|
||||
|
||||
const { categories } = state.gallery;
|
||||
|
||||
const filteredImages = selectImagesAll(state).filter((i) => {
|
||||
const isInCategory = categories.includes(i.image_category);
|
||||
const isInSelectedBoard = board_id ? i.board_id === board_id : true;
|
||||
return isInCategory && isInSelectedBoard;
|
||||
});
|
||||
|
||||
// get the board from the cache
|
||||
const { data: boards } =
|
||||
boardsApi.endpoints.listAllBoards.select()(state);
|
||||
const board = boards?.find((b) => b.board_id === board_id);
|
||||
if (!board) {
|
||||
// can't find the board in cache...
|
||||
return;
|
||||
}
|
||||
|
||||
// if we haven't loaded one full page of images from this board, load more
|
||||
if (
|
||||
filteredImages.length < board.image_count &&
|
||||
filteredImages.length < IMAGES_PER_PAGE
|
||||
) {
|
||||
dispatch(
|
||||
receivedPageOfImages({ categories, board_id, is_intermediate: false })
|
||||
);
|
||||
}
|
||||
},
|
||||
});
|
||||
};
|
||||
|
@ -1,13 +1,13 @@
|
||||
import { startAppListening } from '..';
|
||||
import { imageMetadataReceived } from 'services/api/thunks/image';
|
||||
import { log } from 'app/logging/useLogger';
|
||||
import { controlNetImageProcessed } from 'features/controlNet/store/actions';
|
||||
import { Graph } from 'services/api/types';
|
||||
import { sessionCreated } from 'services/api/thunks/session';
|
||||
import { sessionReadyToInvoke } from 'features/system/store/actions';
|
||||
import { socketInvocationComplete } from 'services/events/actions';
|
||||
import { isImageOutput } from 'services/api/guards';
|
||||
import { controlNetProcessedImageChanged } from 'features/controlNet/store/controlNetSlice';
|
||||
import { sessionReadyToInvoke } from 'features/system/store/actions';
|
||||
import { isImageOutput } from 'services/api/guards';
|
||||
import { imageDTOReceived } from 'services/api/thunks/image';
|
||||
import { sessionCreated } from 'services/api/thunks/session';
|
||||
import { Graph } from 'services/api/types';
|
||||
import { socketInvocationComplete } from 'services/events/actions';
|
||||
import { startAppListening } from '..';
|
||||
|
||||
const moduleLog = log.child({ namespace: 'controlNet' });
|
||||
|
||||
@ -63,10 +63,8 @@ export const addControlNetImageProcessedListener = () => {
|
||||
|
||||
// Wait for the ImageDTO to be received
|
||||
const [imageMetadataReceivedAction] = await take(
|
||||
(
|
||||
action
|
||||
): action is ReturnType<typeof imageMetadataReceived.fulfilled> =>
|
||||
imageMetadataReceived.fulfilled.match(action) &&
|
||||
(action): action is ReturnType<typeof imageDTOReceived.fulfilled> =>
|
||||
imageDTOReceived.fulfilled.match(action) &&
|
||||
action.payload.image_name === image_name
|
||||
);
|
||||
const processedControlImage = imageMetadataReceivedAction.payload;
|
||||
|
@ -1,7 +1,6 @@
|
||||
import { log } from 'app/logging/useLogger';
|
||||
import { startAppListening } from '..';
|
||||
import { imageMetadataReceived } from 'services/api/thunks/image';
|
||||
import { boardImagesApi } from 'services/api/endpoints/boardImages';
|
||||
import { startAppListening } from '..';
|
||||
|
||||
const moduleLog = log.child({ namespace: 'boards' });
|
||||
|
||||
@ -15,12 +14,6 @@ export const addImageAddedToBoardFulfilledListener = () => {
|
||||
{ data: { board_id, image_name } },
|
||||
'Image added to board'
|
||||
);
|
||||
|
||||
dispatch(
|
||||
imageMetadataReceived({
|
||||
image_name,
|
||||
})
|
||||
);
|
||||
},
|
||||
});
|
||||
};
|
||||
|
@ -1,10 +1,10 @@
|
||||
import { log } from 'app/logging/useLogger';
|
||||
import { resetCanvas } from 'features/canvas/store/canvasSlice';
|
||||
import { controlNetReset } from 'features/controlNet/store/controlNetSlice';
|
||||
import { selectNextImageToSelect } from 'features/gallery/store/gallerySelectors';
|
||||
import {
|
||||
imageRemoved,
|
||||
imageSelected,
|
||||
selectFilteredImages,
|
||||
} from 'features/gallery/store/gallerySlice';
|
||||
import {
|
||||
imageDeletionConfirmed,
|
||||
@ -12,7 +12,6 @@ import {
|
||||
} from 'features/imageDeletion/store/imageDeletionSlice';
|
||||
import { nodeEditorReset } from 'features/nodes/store/nodesSlice';
|
||||
import { clearInitialImage } from 'features/parameters/store/generationSlice';
|
||||
import { clamp } from 'lodash-es';
|
||||
import { api } from 'services/api';
|
||||
import { imageDeleted } from 'services/api/thunks/image';
|
||||
import { startAppListening } from '..';
|
||||
@ -37,26 +36,10 @@ export const addRequestedImageDeletionListener = () => {
|
||||
state.gallery.selection[state.gallery.selection.length - 1];
|
||||
|
||||
if (lastSelectedImage === image_name) {
|
||||
const filteredImages = selectFilteredImages(state);
|
||||
|
||||
const ids = filteredImages.map((i) => i.image_name);
|
||||
|
||||
const deletedImageIndex = ids.findIndex(
|
||||
(result) => result.toString() === image_name
|
||||
);
|
||||
|
||||
const filteredIds = ids.filter((id) => id.toString() !== image_name);
|
||||
|
||||
const newSelectedImageIndex = clamp(
|
||||
deletedImageIndex,
|
||||
0,
|
||||
filteredIds.length - 1
|
||||
);
|
||||
|
||||
const newSelectedImageId = filteredIds[newSelectedImageIndex];
|
||||
const newSelectedImageId = selectNextImageToSelect(state, image_name);
|
||||
|
||||
if (newSelectedImageId) {
|
||||
dispatch(imageSelected(newSelectedImageId as string));
|
||||
dispatch(imageSelected(newSelectedImageId));
|
||||
} else {
|
||||
dispatch(imageSelected(null));
|
||||
}
|
||||
|
@ -4,13 +4,12 @@ import {
|
||||
TypesafeDroppableData,
|
||||
} from 'app/components/ImageDnd/typesafeDnd';
|
||||
import { log } from 'app/logging/useLogger';
|
||||
import {
|
||||
imageAddedToBatch,
|
||||
imagesAddedToBatch,
|
||||
} from 'features/batch/store/batchSlice';
|
||||
import { setInitialCanvasImage } from 'features/canvas/store/canvasSlice';
|
||||
import { controlNetImageChanged } from 'features/controlNet/store/controlNetSlice';
|
||||
import { imageSelected } from 'features/gallery/store/gallerySlice';
|
||||
import {
|
||||
imageSelected,
|
||||
imagesAddedToBatch,
|
||||
} from 'features/gallery/store/gallerySlice';
|
||||
import {
|
||||
fieldValueChanged,
|
||||
imageCollectionFieldValueChanged,
|
||||
@ -21,57 +20,66 @@ import { startAppListening } from '../';
|
||||
|
||||
const moduleLog = log.child({ namespace: 'dnd' });
|
||||
|
||||
export const imageDropped = createAction<{
|
||||
export const dndDropped = createAction<{
|
||||
overData: TypesafeDroppableData;
|
||||
activeData: TypesafeDraggableData;
|
||||
}>('dnd/imageDropped');
|
||||
}>('dnd/dndDropped');
|
||||
|
||||
export const addImageDroppedListener = () => {
|
||||
startAppListening({
|
||||
actionCreator: imageDropped,
|
||||
effect: (action, { dispatch, getState }) => {
|
||||
actionCreator: dndDropped,
|
||||
effect: async (action, { dispatch, getState, take }) => {
|
||||
const { activeData, overData } = action.payload;
|
||||
const { actionType } = overData;
|
||||
const state = getState();
|
||||
|
||||
moduleLog.debug(
|
||||
{ data: { activeData, overData } },
|
||||
'Image or selection dropped'
|
||||
);
|
||||
|
||||
// set current image
|
||||
if (
|
||||
actionType === 'SET_CURRENT_IMAGE' &&
|
||||
overData.actionType === 'SET_CURRENT_IMAGE' &&
|
||||
activeData.payloadType === 'IMAGE_DTO' &&
|
||||
activeData.payload.imageDTO
|
||||
) {
|
||||
dispatch(imageSelected(activeData.payload.imageDTO.image_name));
|
||||
return;
|
||||
}
|
||||
|
||||
// set initial image
|
||||
if (
|
||||
actionType === 'SET_INITIAL_IMAGE' &&
|
||||
overData.actionType === 'SET_INITIAL_IMAGE' &&
|
||||
activeData.payloadType === 'IMAGE_DTO' &&
|
||||
activeData.payload.imageDTO
|
||||
) {
|
||||
dispatch(initialImageChanged(activeData.payload.imageDTO));
|
||||
return;
|
||||
}
|
||||
|
||||
// add image to batch
|
||||
if (
|
||||
actionType === 'ADD_TO_BATCH' &&
|
||||
overData.actionType === 'ADD_TO_BATCH' &&
|
||||
activeData.payloadType === 'IMAGE_DTO' &&
|
||||
activeData.payload.imageDTO
|
||||
) {
|
||||
dispatch(imageAddedToBatch(activeData.payload.imageDTO.image_name));
|
||||
dispatch(imagesAddedToBatch([activeData.payload.imageDTO.image_name]));
|
||||
return;
|
||||
}
|
||||
|
||||
// add multiple images to batch
|
||||
if (
|
||||
actionType === 'ADD_TO_BATCH' &&
|
||||
activeData.payloadType === 'GALLERY_SELECTION'
|
||||
overData.actionType === 'ADD_TO_BATCH' &&
|
||||
activeData.payloadType === 'IMAGE_NAMES'
|
||||
) {
|
||||
dispatch(imagesAddedToBatch(state.gallery.selection));
|
||||
dispatch(imagesAddedToBatch(activeData.payload.image_names));
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
// set control image
|
||||
if (
|
||||
actionType === 'SET_CONTROLNET_IMAGE' &&
|
||||
overData.actionType === 'SET_CONTROLNET_IMAGE' &&
|
||||
activeData.payloadType === 'IMAGE_DTO' &&
|
||||
activeData.payload.imageDTO
|
||||
) {
|
||||
@ -82,20 +90,22 @@ export const addImageDroppedListener = () => {
|
||||
controlNetId,
|
||||
})
|
||||
);
|
||||
return;
|
||||
}
|
||||
|
||||
// set canvas image
|
||||
if (
|
||||
actionType === 'SET_CANVAS_INITIAL_IMAGE' &&
|
||||
overData.actionType === 'SET_CANVAS_INITIAL_IMAGE' &&
|
||||
activeData.payloadType === 'IMAGE_DTO' &&
|
||||
activeData.payload.imageDTO
|
||||
) {
|
||||
dispatch(setInitialCanvasImage(activeData.payload.imageDTO));
|
||||
return;
|
||||
}
|
||||
|
||||
// set nodes image
|
||||
if (
|
||||
actionType === 'SET_NODES_IMAGE' &&
|
||||
overData.actionType === 'SET_NODES_IMAGE' &&
|
||||
activeData.payloadType === 'IMAGE_DTO' &&
|
||||
activeData.payload.imageDTO
|
||||
) {
|
||||
@ -107,11 +117,12 @@ export const addImageDroppedListener = () => {
|
||||
value: activeData.payload.imageDTO,
|
||||
})
|
||||
);
|
||||
return;
|
||||
}
|
||||
|
||||
// set multiple nodes images (single image handler)
|
||||
if (
|
||||
actionType === 'SET_MULTI_NODES_IMAGE' &&
|
||||
overData.actionType === 'SET_MULTI_NODES_IMAGE' &&
|
||||
activeData.payloadType === 'IMAGE_DTO' &&
|
||||
activeData.payload.imageDTO
|
||||
) {
|
||||
@ -123,43 +134,30 @@ export const addImageDroppedListener = () => {
|
||||
value: [activeData.payload.imageDTO],
|
||||
})
|
||||
);
|
||||
return;
|
||||
}
|
||||
|
||||
// set multiple nodes images (multiple images handler)
|
||||
if (
|
||||
actionType === 'SET_MULTI_NODES_IMAGE' &&
|
||||
activeData.payloadType === 'GALLERY_SELECTION'
|
||||
overData.actionType === 'SET_MULTI_NODES_IMAGE' &&
|
||||
activeData.payloadType === 'IMAGE_NAMES'
|
||||
) {
|
||||
const { fieldName, nodeId } = overData.context;
|
||||
dispatch(
|
||||
imageCollectionFieldValueChanged({
|
||||
nodeId,
|
||||
fieldName,
|
||||
value: state.gallery.selection.map((image_name) => ({
|
||||
value: activeData.payload.image_names.map((image_name) => ({
|
||||
image_name,
|
||||
})),
|
||||
})
|
||||
);
|
||||
return;
|
||||
}
|
||||
|
||||
// remove image from board
|
||||
// TODO: remove board_id from `removeImageFromBoard()` endpoint
|
||||
// TODO: handle multiple images
|
||||
// if (
|
||||
// actionType === 'MOVE_BOARD' &&
|
||||
// activeData.payloadType === 'IMAGE_DTO' &&
|
||||
// activeData.payload.imageDTO &&
|
||||
// overData.boardId !== null
|
||||
// ) {
|
||||
// const { image_name } = activeData.payload.imageDTO;
|
||||
// dispatch(
|
||||
// boardImagesApi.endpoints.removeImageFromBoard.initiate({ image_name })
|
||||
// );
|
||||
// }
|
||||
|
||||
// add image to board
|
||||
if (
|
||||
actionType === 'MOVE_BOARD' &&
|
||||
overData.actionType === 'MOVE_BOARD' &&
|
||||
activeData.payloadType === 'IMAGE_DTO' &&
|
||||
activeData.payload.imageDTO &&
|
||||
overData.context.boardId
|
||||
@ -172,17 +170,89 @@ export const addImageDroppedListener = () => {
|
||||
board_id: boardId,
|
||||
})
|
||||
);
|
||||
return;
|
||||
}
|
||||
|
||||
// add multiple images to board
|
||||
// TODO: add endpoint
|
||||
// if (
|
||||
// actionType === 'ADD_TO_BATCH' &&
|
||||
// activeData.payloadType === 'IMAGE_NAMES' &&
|
||||
// activeData.payload.imageDTONames
|
||||
// ) {
|
||||
// dispatch(boardImagesApi.endpoints.addImagesToBoard.intiate({}));
|
||||
// }
|
||||
// remove image from board
|
||||
if (
|
||||
overData.actionType === 'MOVE_BOARD' &&
|
||||
activeData.payloadType === 'IMAGE_DTO' &&
|
||||
activeData.payload.imageDTO &&
|
||||
overData.context.boardId === null
|
||||
) {
|
||||
const { image_name, board_id } = activeData.payload.imageDTO;
|
||||
if (board_id) {
|
||||
dispatch(
|
||||
boardImagesApi.endpoints.removeImageFromBoard.initiate({
|
||||
image_name,
|
||||
board_id,
|
||||
})
|
||||
);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
// add gallery selection to board
|
||||
if (
|
||||
overData.actionType === 'MOVE_BOARD' &&
|
||||
activeData.payloadType === 'IMAGE_NAMES' &&
|
||||
overData.context.boardId
|
||||
) {
|
||||
console.log('adding gallery selection to board');
|
||||
const board_id = overData.context.boardId;
|
||||
dispatch(
|
||||
boardImagesApi.endpoints.addManyBoardImages.initiate({
|
||||
board_id,
|
||||
image_names: activeData.payload.image_names,
|
||||
})
|
||||
);
|
||||
return;
|
||||
}
|
||||
|
||||
// remove gallery selection from board
|
||||
if (
|
||||
overData.actionType === 'MOVE_BOARD' &&
|
||||
activeData.payloadType === 'IMAGE_NAMES' &&
|
||||
overData.context.boardId === null
|
||||
) {
|
||||
console.log('removing gallery selection to board');
|
||||
dispatch(
|
||||
boardImagesApi.endpoints.deleteManyBoardImages.initiate({
|
||||
image_names: activeData.payload.image_names,
|
||||
})
|
||||
);
|
||||
return;
|
||||
}
|
||||
|
||||
// add batch selection to board
|
||||
if (
|
||||
overData.actionType === 'MOVE_BOARD' &&
|
||||
activeData.payloadType === 'IMAGE_NAMES' &&
|
||||
overData.context.boardId
|
||||
) {
|
||||
const board_id = overData.context.boardId;
|
||||
dispatch(
|
||||
boardImagesApi.endpoints.addManyBoardImages.initiate({
|
||||
board_id,
|
||||
image_names: activeData.payload.image_names,
|
||||
})
|
||||
);
|
||||
return;
|
||||
}
|
||||
|
||||
// remove batch selection from board
|
||||
if (
|
||||
overData.actionType === 'MOVE_BOARD' &&
|
||||
activeData.payloadType === 'IMAGE_NAMES' &&
|
||||
overData.context.boardId === null
|
||||
) {
|
||||
dispatch(
|
||||
boardImagesApi.endpoints.deleteManyBoardImages.initiate({
|
||||
image_names: activeData.payload.image_names,
|
||||
})
|
||||
);
|
||||
return;
|
||||
}
|
||||
},
|
||||
});
|
||||
};
|
||||
|
@ -1,13 +1,13 @@
|
||||
import { log } from 'app/logging/useLogger';
|
||||
import { startAppListening } from '..';
|
||||
import { imageMetadataReceived, imageUpdated } from 'services/api/thunks/image';
|
||||
import { imageUpserted } from 'features/gallery/store/gallerySlice';
|
||||
import { imageDTOReceived, imageUpdated } from 'services/api/thunks/image';
|
||||
import { startAppListening } from '..';
|
||||
|
||||
const moduleLog = log.child({ namespace: 'image' });
|
||||
|
||||
export const addImageMetadataReceivedFulfilledListener = () => {
|
||||
startAppListening({
|
||||
actionCreator: imageMetadataReceived.fulfilled,
|
||||
actionCreator: imageDTOReceived.fulfilled,
|
||||
effect: (action, { getState, dispatch }) => {
|
||||
const image = action.payload;
|
||||
|
||||
@ -40,7 +40,7 @@ export const addImageMetadataReceivedFulfilledListener = () => {
|
||||
|
||||
export const addImageMetadataReceivedRejectedListener = () => {
|
||||
startAppListening({
|
||||
actionCreator: imageMetadataReceived.rejected,
|
||||
actionCreator: imageDTOReceived.rejected,
|
||||
effect: (action, { getState, dispatch }) => {
|
||||
moduleLog.debug(
|
||||
{ data: { image: action.meta.arg } },
|
||||
|
@ -1,7 +1,6 @@
|
||||
import { log } from 'app/logging/useLogger';
|
||||
import { startAppListening } from '..';
|
||||
import { imageMetadataReceived } from 'services/api/thunks/image';
|
||||
import { boardImagesApi } from 'services/api/endpoints/boardImages';
|
||||
import { startAppListening } from '..';
|
||||
|
||||
const moduleLog = log.child({ namespace: 'boards' });
|
||||
|
||||
@ -15,12 +14,6 @@ export const addImageRemovedFromBoardFulfilledListener = () => {
|
||||
{ data: { board_id, image_name } },
|
||||
'Image added to board'
|
||||
);
|
||||
|
||||
dispatch(
|
||||
imageMetadataReceived({
|
||||
image_name,
|
||||
})
|
||||
);
|
||||
},
|
||||
});
|
||||
};
|
||||
|
@ -1,13 +1,15 @@
|
||||
import { startAppListening } from '..';
|
||||
import { imageUploaded } from 'services/api/thunks/image';
|
||||
import { addToast } from 'features/system/store/systemSlice';
|
||||
import { log } from 'app/logging/useLogger';
|
||||
import { imageUpserted } from 'features/gallery/store/gallerySlice';
|
||||
import { setInitialCanvasImage } from 'features/canvas/store/canvasSlice';
|
||||
import { controlNetImageChanged } from 'features/controlNet/store/controlNetSlice';
|
||||
import { initialImageChanged } from 'features/parameters/store/generationSlice';
|
||||
import {
|
||||
imageUpserted,
|
||||
imagesAddedToBatch,
|
||||
} from 'features/gallery/store/gallerySlice';
|
||||
import { fieldValueChanged } from 'features/nodes/store/nodesSlice';
|
||||
import { imageAddedToBatch } from 'features/batch/store/batchSlice';
|
||||
import { initialImageChanged } from 'features/parameters/store/generationSlice';
|
||||
import { addToast } from 'features/system/store/systemSlice';
|
||||
import { imageUploaded } from 'services/api/thunks/image';
|
||||
import { startAppListening } from '..';
|
||||
|
||||
const moduleLog = log.child({ namespace: 'image' });
|
||||
|
||||
@ -73,7 +75,7 @@ export const addImageUploadedFulfilledListener = () => {
|
||||
}
|
||||
|
||||
if (postUploadAction?.type === 'ADD_TO_BATCH') {
|
||||
dispatch(imageAddedToBatch(image.image_name));
|
||||
dispatch(imagesAddedToBatch([image.image_name]));
|
||||
return;
|
||||
}
|
||||
},
|
||||
|
@ -1,40 +1,70 @@
|
||||
import { makeToast } from 'app/components/Toaster';
|
||||
import { log } from 'app/logging/useLogger';
|
||||
import { loraRemoved } from 'features/lora/store/loraSlice';
|
||||
import { modelSelected } from 'features/parameters/store/actions';
|
||||
import {
|
||||
modelChanged,
|
||||
vaeSelected,
|
||||
} from 'features/parameters/store/generationSlice';
|
||||
import { zMainModel } from 'features/parameters/store/parameterZodSchemas';
|
||||
import { zMainModel } from 'features/parameters/types/parameterSchemas';
|
||||
import { addToast } from 'features/system/store/systemSlice';
|
||||
import { forEach } from 'lodash-es';
|
||||
import { startAppListening } from '..';
|
||||
import { lorasCleared } from '../../../../../features/lora/store/loraSlice';
|
||||
|
||||
const moduleLog = log.child({ module: 'models' });
|
||||
|
||||
export const addModelSelectedListener = () => {
|
||||
startAppListening({
|
||||
actionCreator: modelSelected,
|
||||
effect: (action, { getState, dispatch }) => {
|
||||
const state = getState();
|
||||
const [base_model, type, name] = action.payload.split('/');
|
||||
const result = zMainModel.safeParse(action.payload);
|
||||
|
||||
if (state.generation.model?.base_model !== base_model) {
|
||||
dispatch(
|
||||
addToast(
|
||||
makeToast({
|
||||
title: 'Base model changed, clearing submodels',
|
||||
status: 'warning',
|
||||
})
|
||||
)
|
||||
if (!result.success) {
|
||||
moduleLog.error(
|
||||
{ error: result.error.format() },
|
||||
'Failed to parse main model'
|
||||
);
|
||||
dispatch(vaeSelected(null));
|
||||
dispatch(lorasCleared());
|
||||
// TODO: controlnet cleared
|
||||
return;
|
||||
}
|
||||
|
||||
const newModel = zMainModel.parse({
|
||||
id: action.payload,
|
||||
base_model,
|
||||
name,
|
||||
});
|
||||
const newModel = result.data;
|
||||
|
||||
const { base_model } = newModel;
|
||||
|
||||
if (state.generation.model?.base_model !== base_model) {
|
||||
// we may need to reset some incompatible submodels
|
||||
let modelsCleared = 0;
|
||||
|
||||
// handle incompatible loras
|
||||
forEach(state.lora.loras, (lora, id) => {
|
||||
if (lora.base_model !== base_model) {
|
||||
dispatch(loraRemoved(id));
|
||||
modelsCleared += 1;
|
||||
}
|
||||
});
|
||||
|
||||
// handle incompatible vae
|
||||
const { vae } = state.generation;
|
||||
if (vae && vae.base_model !== base_model) {
|
||||
dispatch(vaeSelected(null));
|
||||
modelsCleared += 1;
|
||||
}
|
||||
|
||||
// TODO: handle incompatible controlnet; pending model manager support
|
||||
if (modelsCleared > 0) {
|
||||
dispatch(
|
||||
addToast(
|
||||
makeToast({
|
||||
title: `Base model changed, cleared ${modelsCleared} incompatible submodel${
|
||||
modelsCleared === 1 ? '' : 's'
|
||||
}`,
|
||||
status: 'warning',
|
||||
})
|
||||
)
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
dispatch(modelChanged(newModel));
|
||||
},
|
||||
|
@ -0,0 +1,133 @@
|
||||
import { log } from 'app/logging/useLogger';
|
||||
import { loraRemoved } from 'features/lora/store/loraSlice';
|
||||
import {
|
||||
modelChanged,
|
||||
vaeSelected,
|
||||
} from 'features/parameters/store/generationSlice';
|
||||
import {
|
||||
zMainModel,
|
||||
zVaeModel,
|
||||
} from 'features/parameters/types/parameterSchemas';
|
||||
import { forEach, some } from 'lodash-es';
|
||||
import { modelsApi } from 'services/api/endpoints/models';
|
||||
import { startAppListening } from '..';
|
||||
|
||||
const moduleLog = log.child({ module: 'models' });
|
||||
|
||||
export const addModelsLoadedListener = () => {
|
||||
startAppListening({
|
||||
matcher: modelsApi.endpoints.getMainModels.matchFulfilled,
|
||||
effect: async (action, { getState, dispatch }) => {
|
||||
// models loaded, we need to ensure the selected model is available and if not, select the first one
|
||||
|
||||
const currentModel = getState().generation.model;
|
||||
|
||||
const isCurrentModelAvailable = some(
|
||||
action.payload.entities,
|
||||
(m) =>
|
||||
m?.model_name === currentModel?.model_name &&
|
||||
m?.base_model === currentModel?.base_model
|
||||
);
|
||||
|
||||
if (isCurrentModelAvailable) {
|
||||
return;
|
||||
}
|
||||
|
||||
const firstModelId = action.payload.ids[0];
|
||||
const firstModel = action.payload.entities[firstModelId];
|
||||
|
||||
if (!firstModel) {
|
||||
// No models loaded at all
|
||||
dispatch(modelChanged(null));
|
||||
return;
|
||||
}
|
||||
|
||||
const result = zMainModel.safeParse(firstModel);
|
||||
|
||||
if (!result.success) {
|
||||
moduleLog.error(
|
||||
{ error: result.error.format() },
|
||||
'Failed to parse main model'
|
||||
);
|
||||
return;
|
||||
}
|
||||
|
||||
dispatch(modelChanged(result.data));
|
||||
},
|
||||
});
|
||||
startAppListening({
|
||||
matcher: modelsApi.endpoints.getVaeModels.matchFulfilled,
|
||||
effect: async (action, { getState, dispatch }) => {
|
||||
// VAEs loaded, need to reset the VAE is it's no longer available
|
||||
|
||||
const currentVae = getState().generation.vae;
|
||||
|
||||
if (currentVae === null) {
|
||||
// null is a valid VAE! it means "use the default with the main model"
|
||||
return;
|
||||
}
|
||||
|
||||
const isCurrentVAEAvailable = some(
|
||||
action.payload.entities,
|
||||
(m) =>
|
||||
m?.model_name === currentVae?.model_name &&
|
||||
m?.base_model === currentVae?.base_model
|
||||
);
|
||||
|
||||
if (isCurrentVAEAvailable) {
|
||||
return;
|
||||
}
|
||||
|
||||
const firstModelId = action.payload.ids[0];
|
||||
const firstModel = action.payload.entities[firstModelId];
|
||||
|
||||
if (!firstModel) {
|
||||
// No custom VAEs loaded at all; use the default
|
||||
dispatch(modelChanged(null));
|
||||
return;
|
||||
}
|
||||
|
||||
const result = zVaeModel.safeParse(firstModel);
|
||||
|
||||
if (!result.success) {
|
||||
moduleLog.error(
|
||||
{ error: result.error.format() },
|
||||
'Failed to parse VAE model'
|
||||
);
|
||||
return;
|
||||
}
|
||||
|
||||
dispatch(vaeSelected(result.data));
|
||||
},
|
||||
});
|
||||
startAppListening({
|
||||
matcher: modelsApi.endpoints.getLoRAModels.matchFulfilled,
|
||||
effect: async (action, { getState, dispatch }) => {
|
||||
// LoRA models loaded - need to remove missing LoRAs from state
|
||||
|
||||
const loras = getState().lora.loras;
|
||||
|
||||
forEach(loras, (lora, id) => {
|
||||
const isLoRAAvailable = some(
|
||||
action.payload.entities,
|
||||
(m) =>
|
||||
m?.model_name === lora?.model_name &&
|
||||
m?.base_model === lora?.base_model
|
||||
);
|
||||
|
||||
if (isLoRAAvailable) {
|
||||
return;
|
||||
}
|
||||
|
||||
dispatch(loraRemoved(id));
|
||||
});
|
||||
},
|
||||
});
|
||||
startAppListening({
|
||||
matcher: modelsApi.endpoints.getControlNetModels.matchFulfilled,
|
||||
effect: async (action, { getState, dispatch }) => {
|
||||
// ControlNet models loaded - need to remove missing ControlNets from state
|
||||
// TODO: pending model manager controlnet support
|
||||
},
|
||||
});
|
||||
};
|
@ -1,19 +0,0 @@
|
||||
import { startAppListening } from '..';
|
||||
import { log } from 'app/logging/useLogger';
|
||||
import {
|
||||
imagesAddedToBatch,
|
||||
selectionAddedToBatch,
|
||||
} from 'features/batch/store/batchSlice';
|
||||
|
||||
const moduleLog = log.child({ namespace: 'batch' });
|
||||
|
||||
export const addSelectionAddedToBatchListener = () => {
|
||||
startAppListening({
|
||||
actionCreator: selectionAddedToBatch,
|
||||
effect: (action, { dispatch, getState }) => {
|
||||
const { selection } = getState().gallery;
|
||||
|
||||
dispatch(imagesAddedToBatch(selection));
|
||||
},
|
||||
});
|
||||
};
|
@ -30,6 +30,7 @@ export const addSessionCreatedRejectedListener = () => {
|
||||
effect: (action, { getState, dispatch }) => {
|
||||
if (action.payload) {
|
||||
const { arg, error } = action.payload;
|
||||
const stringifiedError = JSON.stringify(error);
|
||||
moduleLog.error(
|
||||
{
|
||||
data: {
|
||||
@ -37,7 +38,7 @@ export const addSessionCreatedRejectedListener = () => {
|
||||
error: serializeError(error),
|
||||
},
|
||||
},
|
||||
`Problem creating session`
|
||||
`Problem creating session: ${stringifiedError}`
|
||||
);
|
||||
}
|
||||
},
|
||||
|
@ -33,6 +33,7 @@ export const addSessionInvokedRejectedListener = () => {
|
||||
effect: (action, { getState, dispatch }) => {
|
||||
if (action.payload) {
|
||||
const { arg, error } = action.payload;
|
||||
const stringifiedError = JSON.stringify(error);
|
||||
moduleLog.error(
|
||||
{
|
||||
data: {
|
||||
@ -40,7 +41,7 @@ export const addSessionInvokedRejectedListener = () => {
|
||||
error: serializeError(error),
|
||||
},
|
||||
},
|
||||
`Problem invoking session`
|
||||
`Problem invoking session: ${stringifiedError}`
|
||||
);
|
||||
}
|
||||
},
|
||||
|
@ -1,15 +1,15 @@
|
||||
import { addImageToStagingArea } from 'features/canvas/store/canvasSlice';
|
||||
import { startAppListening } from '../..';
|
||||
import { log } from 'app/logging/useLogger';
|
||||
import { addImageToStagingArea } from 'features/canvas/store/canvasSlice';
|
||||
import { progressImageSet } from 'features/system/store/systemSlice';
|
||||
import { boardImagesApi } from 'services/api/endpoints/boardImages';
|
||||
import { isImageOutput } from 'services/api/guards';
|
||||
import { imageDTOReceived } from 'services/api/thunks/image';
|
||||
import { sessionCanceled } from 'services/api/thunks/session';
|
||||
import {
|
||||
appSocketInvocationComplete,
|
||||
socketInvocationComplete,
|
||||
} from 'services/events/actions';
|
||||
import { imageMetadataReceived } from 'services/api/thunks/image';
|
||||
import { sessionCanceled } from 'services/api/thunks/session';
|
||||
import { isImageOutput } from 'services/api/guards';
|
||||
import { progressImageSet } from 'features/system/store/systemSlice';
|
||||
import { boardImagesApi } from 'services/api/endpoints/boardImages';
|
||||
import { startAppListening } from '../..';
|
||||
|
||||
const moduleLog = log.child({ namespace: 'socketio' });
|
||||
const nodeDenylist = ['dataURL_image'];
|
||||
@ -42,13 +42,13 @@ export const addInvocationCompleteEventListener = () => {
|
||||
|
||||
// Get its metadata
|
||||
dispatch(
|
||||
imageMetadataReceived({
|
||||
imageDTOReceived({
|
||||
image_name,
|
||||
})
|
||||
);
|
||||
|
||||
const [{ payload: imageDTO }] = await take(
|
||||
imageMetadataReceived.fulfilled.match
|
||||
imageDTOReceived.fulfilled.match
|
||||
);
|
||||
|
||||
// Handle canvas image
|
||||
|
@ -13,7 +13,7 @@ export const addInvocationErrorEventListener = () => {
|
||||
effect: (action, { dispatch, getState }) => {
|
||||
moduleLog.error(
|
||||
action.payload,
|
||||
`Invocation error (${action.payload.data.node.type})`
|
||||
`Invocation error (${action.payload.data.node.type}): ${action.payload.data.error}`
|
||||
);
|
||||
dispatch(appSocketInvocationError(action.payload));
|
||||
},
|
||||
|
@ -1,6 +1,7 @@
|
||||
import {
|
||||
AnyAction,
|
||||
ThunkDispatch,
|
||||
autoBatchEnhancer,
|
||||
combineReducers,
|
||||
configureStore,
|
||||
} from '@reduxjs/toolkit';
|
||||
@ -8,14 +9,12 @@ import {
|
||||
import dynamicMiddlewares from 'redux-dynamic-middlewares';
|
||||
import { rememberEnhancer, rememberReducer } from 'redux-remember';
|
||||
|
||||
import batchReducer from 'features/batch/store/batchSlice';
|
||||
import canvasReducer from 'features/canvas/store/canvasSlice';
|
||||
import controlNetReducer from 'features/controlNet/store/controlNetSlice';
|
||||
import dynamicPromptsReducer from 'features/dynamicPrompts/store/slice';
|
||||
import boardsReducer from 'features/gallery/store/boardSlice';
|
||||
import galleryReducer from 'features/gallery/store/gallerySlice';
|
||||
import imageDeletionReducer from 'features/imageDeletion/store/imageDeletionSlice';
|
||||
import lightboxReducer from 'features/lightbox/store/lightboxSlice';
|
||||
import loraReducer from 'features/lora/store/loraSlice';
|
||||
import nodesReducer from 'features/nodes/store/nodesSlice';
|
||||
import generationReducer from 'features/parameters/store/generationSlice';
|
||||
@ -39,7 +38,6 @@ const allReducers = {
|
||||
canvas: canvasReducer,
|
||||
gallery: galleryReducer,
|
||||
generation: generationReducer,
|
||||
lightbox: lightboxReducer,
|
||||
nodes: nodesReducer,
|
||||
postprocessing: postprocessingReducer,
|
||||
system: systemReducer,
|
||||
@ -49,7 +47,6 @@ const allReducers = {
|
||||
controlNet: controlNetReducer,
|
||||
boards: boardsReducer,
|
||||
dynamicPrompts: dynamicPromptsReducer,
|
||||
batch: batchReducer,
|
||||
imageDeletion: imageDeletionReducer,
|
||||
lora: loraReducer,
|
||||
[api.reducerPath]: api.reducer,
|
||||
@ -63,30 +60,29 @@ const rememberedKeys: (keyof typeof allReducers)[] = [
|
||||
'canvas',
|
||||
'gallery',
|
||||
'generation',
|
||||
'lightbox',
|
||||
'nodes',
|
||||
'postprocessing',
|
||||
'system',
|
||||
'ui',
|
||||
'controlNet',
|
||||
'dynamicPrompts',
|
||||
'batch',
|
||||
'lora',
|
||||
// 'boards',
|
||||
// 'hotkeys',
|
||||
// 'config',
|
||||
];
|
||||
|
||||
export const store = configureStore({
|
||||
reducer: rememberedRootReducer,
|
||||
enhancers: [
|
||||
rememberEnhancer(window.localStorage, rememberedKeys, {
|
||||
persistDebounce: 300,
|
||||
serialize,
|
||||
unserialize,
|
||||
prefix: LOCALSTORAGE_PREFIX,
|
||||
}),
|
||||
],
|
||||
enhancers: (existingEnhancers) => {
|
||||
return existingEnhancers
|
||||
.concat(
|
||||
rememberEnhancer(window.localStorage, rememberedKeys, {
|
||||
persistDebounce: 300,
|
||||
serialize,
|
||||
unserialize,
|
||||
prefix: LOCALSTORAGE_PREFIX,
|
||||
})
|
||||
)
|
||||
.concat(autoBatchEnhancer());
|
||||
},
|
||||
middleware: (getDefaultMiddleware) =>
|
||||
getDefaultMiddleware({
|
||||
immutableCheck: false,
|
||||
@ -96,10 +92,26 @@ export const store = configureStore({
|
||||
.concat(dynamicMiddlewares)
|
||||
.prepend(listenerMiddleware.middleware),
|
||||
devTools: {
|
||||
actionsDenylist,
|
||||
actionSanitizer,
|
||||
stateSanitizer,
|
||||
trace: true,
|
||||
predicate: (state, action) => {
|
||||
// TODO: hook up to the log level param in system slice
|
||||
// manually type state, cannot type the arg
|
||||
// const typedState = state as ReturnType<typeof rootReducer>;
|
||||
|
||||
if (action.type.startsWith('api/')) {
|
||||
// don't log api actions, with manual cache updates they are extremely noisy
|
||||
return false;
|
||||
}
|
||||
|
||||
if (actionsDenylist.includes(action.type)) {
|
||||
// don't log other noisy actions
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
},
|
||||
},
|
||||
});
|
||||
|
||||
|
@ -94,7 +94,8 @@ export type AppFeature =
|
||||
| 'bugLink'
|
||||
| 'localization'
|
||||
| 'consoleLogging'
|
||||
| 'dynamicPrompting';
|
||||
| 'dynamicPrompting'
|
||||
| 'batches';
|
||||
|
||||
/**
|
||||
* A disable-able Stable Diffusion feature
|
||||
@ -102,6 +103,8 @@ export type AppFeature =
|
||||
export type SDFeature =
|
||||
| 'controlNet'
|
||||
| 'noise'
|
||||
| 'perlinNoise'
|
||||
| 'noiseThreshold'
|
||||
| 'variation'
|
||||
| 'symmetry'
|
||||
| 'seamless'
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user