mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
fix(nodes,ui): optional metadata
- Make all metadata items optional. This will reduce errors related to metadata not being provided when we update the backend but old queue items still exist - Fix a bug in t2i adapter metadata handling where it checked for ip adapter metadata instaed of t2i adapter metadata - Fix some metadata fields that were not using `InputField`
This commit is contained in:
parent
a76e58017c
commit
54cbadeffa
@ -44,28 +44,31 @@ class CoreMetadata(BaseModelExcludeNull):
|
|||||||
"""Core generation metadata for an image generated in InvokeAI."""
|
"""Core generation metadata for an image generated in InvokeAI."""
|
||||||
|
|
||||||
app_version: str = Field(default=__version__, description="The version of InvokeAI used to generate this image")
|
app_version: str = Field(default=__version__, description="The version of InvokeAI used to generate this image")
|
||||||
generation_mode: str = Field(
|
generation_mode: Optional[str] = Field(
|
||||||
|
default=None,
|
||||||
description="The generation mode that output this image",
|
description="The generation mode that output this image",
|
||||||
)
|
)
|
||||||
created_by: Optional[str] = Field(description="The name of the creator of the image")
|
created_by: Optional[str] = Field(description="The name of the creator of the image")
|
||||||
positive_prompt: str = Field(description="The positive prompt parameter")
|
positive_prompt: Optional[str] = Field(default=None, description="The positive prompt parameter")
|
||||||
negative_prompt: str = Field(description="The negative prompt parameter")
|
negative_prompt: Optional[str] = Field(default=None, description="The negative prompt parameter")
|
||||||
width: int = Field(description="The width parameter")
|
width: Optional[int] = Field(default=None, description="The width parameter")
|
||||||
height: int = Field(description="The height parameter")
|
height: Optional[int] = Field(default=None, description="The height parameter")
|
||||||
seed: int = Field(description="The seed used for noise generation")
|
seed: Optional[int] = Field(default=None, description="The seed used for noise generation")
|
||||||
rand_device: str = Field(description="The device used for random number generation")
|
rand_device: Optional[str] = Field(default=None, description="The device used for random number generation")
|
||||||
cfg_scale: float = Field(description="The classifier-free guidance scale parameter")
|
cfg_scale: Optional[float] = Field(default=None, description="The classifier-free guidance scale parameter")
|
||||||
steps: int = Field(description="The number of steps used for inference")
|
steps: Optional[int] = Field(default=None, description="The number of steps used for inference")
|
||||||
scheduler: str = Field(description="The scheduler used for inference")
|
scheduler: Optional[str] = Field(default=None, description="The scheduler used for inference")
|
||||||
clip_skip: Optional[int] = Field(
|
clip_skip: Optional[int] = Field(
|
||||||
default=None,
|
default=None,
|
||||||
description="The number of skipped CLIP layers",
|
description="The number of skipped CLIP layers",
|
||||||
)
|
)
|
||||||
model: MainModelField = Field(description="The main model used for inference")
|
model: Optional[MainModelField] = Field(default=None, description="The main model used for inference")
|
||||||
controlnets: list[ControlField] = Field(description="The ControlNets used for inference")
|
controlnets: Optional[list[ControlField]] = Field(default=None, description="The ControlNets used for inference")
|
||||||
ipAdapters: list[IPAdapterMetadataField] = Field(description="The IP Adapters used for inference")
|
ipAdapters: Optional[list[IPAdapterMetadataField]] = Field(
|
||||||
t2iAdapters: list[T2IAdapterField] = Field(description="The IP Adapters used for inference")
|
default=None, description="The IP Adapters used for inference"
|
||||||
loras: list[LoRAMetadataField] = Field(description="The LoRAs used for inference")
|
)
|
||||||
|
t2iAdapters: Optional[list[T2IAdapterField]] = Field(default=None, description="The IP Adapters used for inference")
|
||||||
|
loras: Optional[list[LoRAMetadataField]] = Field(default=None, description="The LoRAs used for inference")
|
||||||
vae: Optional[VAEModelField] = Field(
|
vae: Optional[VAEModelField] = Field(
|
||||||
default=None,
|
default=None,
|
||||||
description="The VAE used for decoding, if the main model's default was not used",
|
description="The VAE used for decoding, if the main model's default was not used",
|
||||||
@ -122,27 +125,34 @@ class MetadataAccumulatorOutput(BaseInvocationOutput):
|
|||||||
class MetadataAccumulatorInvocation(BaseInvocation):
|
class MetadataAccumulatorInvocation(BaseInvocation):
|
||||||
"""Outputs a Core Metadata Object"""
|
"""Outputs a Core Metadata Object"""
|
||||||
|
|
||||||
generation_mode: str = InputField(
|
generation_mode: Optional[str] = InputField(
|
||||||
|
default=None,
|
||||||
description="The generation mode that output this image",
|
description="The generation mode that output this image",
|
||||||
)
|
)
|
||||||
positive_prompt: str = InputField(description="The positive prompt parameter")
|
positive_prompt: Optional[str] = InputField(default=None, description="The positive prompt parameter")
|
||||||
negative_prompt: str = InputField(description="The negative prompt parameter")
|
negative_prompt: Optional[str] = InputField(default=None, description="The negative prompt parameter")
|
||||||
width: int = InputField(description="The width parameter")
|
width: Optional[int] = InputField(default=None, description="The width parameter")
|
||||||
height: int = InputField(description="The height parameter")
|
height: Optional[int] = InputField(default=None, description="The height parameter")
|
||||||
seed: int = InputField(description="The seed used for noise generation")
|
seed: Optional[int] = InputField(default=None, description="The seed used for noise generation")
|
||||||
rand_device: str = InputField(description="The device used for random number generation")
|
rand_device: Optional[str] = InputField(default=None, description="The device used for random number generation")
|
||||||
cfg_scale: float = InputField(description="The classifier-free guidance scale parameter")
|
cfg_scale: Optional[float] = InputField(default=None, description="The classifier-free guidance scale parameter")
|
||||||
steps: int = InputField(description="The number of steps used for inference")
|
steps: Optional[int] = InputField(default=None, description="The number of steps used for inference")
|
||||||
scheduler: str = InputField(description="The scheduler used for inference")
|
scheduler: Optional[str] = InputField(default=None, description="The scheduler used for inference")
|
||||||
clip_skip: Optional[int] = Field(
|
clip_skip: Optional[int] = InputField(
|
||||||
default=None,
|
default=None,
|
||||||
description="The number of skipped CLIP layers",
|
description="The number of skipped CLIP layers",
|
||||||
)
|
)
|
||||||
model: MainModelField = InputField(description="The main model used for inference")
|
model: Optional[MainModelField] = InputField(default=None, description="The main model used for inference")
|
||||||
controlnets: list[ControlField] = InputField(description="The ControlNets used for inference")
|
controlnets: Optional[list[ControlField]] = InputField(
|
||||||
ipAdapters: list[IPAdapterMetadataField] = InputField(description="The IP Adapters used for inference")
|
default=None, description="The ControlNets used for inference"
|
||||||
t2iAdapters: list[T2IAdapterField] = Field(description="The IP Adapters used for inference")
|
)
|
||||||
loras: list[LoRAMetadataField] = InputField(description="The LoRAs used for inference")
|
ipAdapters: Optional[list[IPAdapterMetadataField]] = InputField(
|
||||||
|
default=None, description="The IP Adapters used for inference"
|
||||||
|
)
|
||||||
|
t2iAdapters: Optional[list[T2IAdapterField]] = InputField(
|
||||||
|
default=None, description="The IP Adapters used for inference"
|
||||||
|
)
|
||||||
|
loras: Optional[list[LoRAMetadataField]] = InputField(default=None, description="The LoRAs used for inference")
|
||||||
strength: Optional[float] = InputField(
|
strength: Optional[float] = InputField(
|
||||||
default=None,
|
default=None,
|
||||||
description="The strength used for latents-to-latents",
|
description="The strength used for latents-to-latents",
|
||||||
@ -158,9 +168,11 @@ class MetadataAccumulatorInvocation(BaseInvocation):
|
|||||||
|
|
||||||
# High resolution fix metadata.
|
# High resolution fix metadata.
|
||||||
hrf_width: Optional[int] = InputField(
|
hrf_width: Optional[int] = InputField(
|
||||||
|
default=None,
|
||||||
description="The high resolution fix height and width multipler.",
|
description="The high resolution fix height and width multipler.",
|
||||||
)
|
)
|
||||||
hrf_height: Optional[int] = InputField(
|
hrf_height: Optional[int] = InputField(
|
||||||
|
default=None,
|
||||||
description="The high resolution fix height and width multipler.",
|
description="The high resolution fix height and width multipler.",
|
||||||
)
|
)
|
||||||
hrf_strength: Optional[float] = InputField(
|
hrf_strength: Optional[float] = InputField(
|
||||||
|
@ -86,7 +86,7 @@ export const addT2IAdaptersToLinearGraph = (
|
|||||||
|
|
||||||
graph.nodes[t2iAdapterNode.id] = t2iAdapterNode as T2IAdapterInvocation;
|
graph.nodes[t2iAdapterNode.id] = t2iAdapterNode as T2IAdapterInvocation;
|
||||||
|
|
||||||
if (metadataAccumulator?.ipAdapters) {
|
if (metadataAccumulator?.t2iAdapters) {
|
||||||
// metadata accumulator only needs a control field - not the whole node
|
// metadata accumulator only needs a control field - not the whole node
|
||||||
// extract what we need and add to the accumulator
|
// extract what we need and add to the accumulator
|
||||||
const t2iAdapterField = omit(t2iAdapterNode, [
|
const t2iAdapterField = omit(t2iAdapterNode, [
|
||||||
|
2575
invokeai/frontend/web/src/services/api/schema.d.ts
vendored
2575
invokeai/frontend/web/src/services/api/schema.d.ts
vendored
File diff suppressed because one or more lines are too long
Loading…
Reference in New Issue
Block a user