fix(nodes,ui): optional metadata

- Make all metadata items optional. This will reduce errors related to metadata not being provided when we update the backend but old queue items still exist
- Fix a bug in t2i adapter metadata handling where it checked for ip adapter metadata instaed of t2i adapter metadata
- Fix some metadata fields that were not using `InputField`
This commit is contained in:
psychedelicious 2023-10-15 10:44:16 +11:00
parent a76e58017c
commit 54cbadeffa
3 changed files with 1760 additions and 891 deletions

View File

@ -44,28 +44,31 @@ class CoreMetadata(BaseModelExcludeNull):
"""Core generation metadata for an image generated in InvokeAI.""" """Core generation metadata for an image generated in InvokeAI."""
app_version: str = Field(default=__version__, description="The version of InvokeAI used to generate this image") app_version: str = Field(default=__version__, description="The version of InvokeAI used to generate this image")
generation_mode: str = Field( generation_mode: Optional[str] = Field(
default=None,
description="The generation mode that output this image", description="The generation mode that output this image",
) )
created_by: Optional[str] = Field(description="The name of the creator of the image") created_by: Optional[str] = Field(description="The name of the creator of the image")
positive_prompt: str = Field(description="The positive prompt parameter") positive_prompt: Optional[str] = Field(default=None, description="The positive prompt parameter")
negative_prompt: str = Field(description="The negative prompt parameter") negative_prompt: Optional[str] = Field(default=None, description="The negative prompt parameter")
width: int = Field(description="The width parameter") width: Optional[int] = Field(default=None, description="The width parameter")
height: int = Field(description="The height parameter") height: Optional[int] = Field(default=None, description="The height parameter")
seed: int = Field(description="The seed used for noise generation") seed: Optional[int] = Field(default=None, description="The seed used for noise generation")
rand_device: str = Field(description="The device used for random number generation") rand_device: Optional[str] = Field(default=None, description="The device used for random number generation")
cfg_scale: float = Field(description="The classifier-free guidance scale parameter") cfg_scale: Optional[float] = Field(default=None, description="The classifier-free guidance scale parameter")
steps: int = Field(description="The number of steps used for inference") steps: Optional[int] = Field(default=None, description="The number of steps used for inference")
scheduler: str = Field(description="The scheduler used for inference") scheduler: Optional[str] = Field(default=None, description="The scheduler used for inference")
clip_skip: Optional[int] = Field( clip_skip: Optional[int] = Field(
default=None, default=None,
description="The number of skipped CLIP layers", description="The number of skipped CLIP layers",
) )
model: MainModelField = Field(description="The main model used for inference") model: Optional[MainModelField] = Field(default=None, description="The main model used for inference")
controlnets: list[ControlField] = Field(description="The ControlNets used for inference") controlnets: Optional[list[ControlField]] = Field(default=None, description="The ControlNets used for inference")
ipAdapters: list[IPAdapterMetadataField] = Field(description="The IP Adapters used for inference") ipAdapters: Optional[list[IPAdapterMetadataField]] = Field(
t2iAdapters: list[T2IAdapterField] = Field(description="The IP Adapters used for inference") default=None, description="The IP Adapters used for inference"
loras: list[LoRAMetadataField] = Field(description="The LoRAs used for inference") )
t2iAdapters: Optional[list[T2IAdapterField]] = Field(default=None, description="The IP Adapters used for inference")
loras: Optional[list[LoRAMetadataField]] = Field(default=None, description="The LoRAs used for inference")
vae: Optional[VAEModelField] = Field( vae: Optional[VAEModelField] = Field(
default=None, default=None,
description="The VAE used for decoding, if the main model's default was not used", description="The VAE used for decoding, if the main model's default was not used",
@ -122,27 +125,34 @@ class MetadataAccumulatorOutput(BaseInvocationOutput):
class MetadataAccumulatorInvocation(BaseInvocation): class MetadataAccumulatorInvocation(BaseInvocation):
"""Outputs a Core Metadata Object""" """Outputs a Core Metadata Object"""
generation_mode: str = InputField( generation_mode: Optional[str] = InputField(
default=None,
description="The generation mode that output this image", description="The generation mode that output this image",
) )
positive_prompt: str = InputField(description="The positive prompt parameter") positive_prompt: Optional[str] = InputField(default=None, description="The positive prompt parameter")
negative_prompt: str = InputField(description="The negative prompt parameter") negative_prompt: Optional[str] = InputField(default=None, description="The negative prompt parameter")
width: int = InputField(description="The width parameter") width: Optional[int] = InputField(default=None, description="The width parameter")
height: int = InputField(description="The height parameter") height: Optional[int] = InputField(default=None, description="The height parameter")
seed: int = InputField(description="The seed used for noise generation") seed: Optional[int] = InputField(default=None, description="The seed used for noise generation")
rand_device: str = InputField(description="The device used for random number generation") rand_device: Optional[str] = InputField(default=None, description="The device used for random number generation")
cfg_scale: float = InputField(description="The classifier-free guidance scale parameter") cfg_scale: Optional[float] = InputField(default=None, description="The classifier-free guidance scale parameter")
steps: int = InputField(description="The number of steps used for inference") steps: Optional[int] = InputField(default=None, description="The number of steps used for inference")
scheduler: str = InputField(description="The scheduler used for inference") scheduler: Optional[str] = InputField(default=None, description="The scheduler used for inference")
clip_skip: Optional[int] = Field( clip_skip: Optional[int] = InputField(
default=None, default=None,
description="The number of skipped CLIP layers", description="The number of skipped CLIP layers",
) )
model: MainModelField = InputField(description="The main model used for inference") model: Optional[MainModelField] = InputField(default=None, description="The main model used for inference")
controlnets: list[ControlField] = InputField(description="The ControlNets used for inference") controlnets: Optional[list[ControlField]] = InputField(
ipAdapters: list[IPAdapterMetadataField] = InputField(description="The IP Adapters used for inference") default=None, description="The ControlNets used for inference"
t2iAdapters: list[T2IAdapterField] = Field(description="The IP Adapters used for inference") )
loras: list[LoRAMetadataField] = InputField(description="The LoRAs used for inference") ipAdapters: Optional[list[IPAdapterMetadataField]] = InputField(
default=None, description="The IP Adapters used for inference"
)
t2iAdapters: Optional[list[T2IAdapterField]] = InputField(
default=None, description="The IP Adapters used for inference"
)
loras: Optional[list[LoRAMetadataField]] = InputField(default=None, description="The LoRAs used for inference")
strength: Optional[float] = InputField( strength: Optional[float] = InputField(
default=None, default=None,
description="The strength used for latents-to-latents", description="The strength used for latents-to-latents",
@ -158,9 +168,11 @@ class MetadataAccumulatorInvocation(BaseInvocation):
# High resolution fix metadata. # High resolution fix metadata.
hrf_width: Optional[int] = InputField( hrf_width: Optional[int] = InputField(
default=None,
description="The high resolution fix height and width multipler.", description="The high resolution fix height and width multipler.",
) )
hrf_height: Optional[int] = InputField( hrf_height: Optional[int] = InputField(
default=None,
description="The high resolution fix height and width multipler.", description="The high resolution fix height and width multipler.",
) )
hrf_strength: Optional[float] = InputField( hrf_strength: Optional[float] = InputField(

View File

@ -86,7 +86,7 @@ export const addT2IAdaptersToLinearGraph = (
graph.nodes[t2iAdapterNode.id] = t2iAdapterNode as T2IAdapterInvocation; graph.nodes[t2iAdapterNode.id] = t2iAdapterNode as T2IAdapterInvocation;
if (metadataAccumulator?.ipAdapters) { if (metadataAccumulator?.t2iAdapters) {
// metadata accumulator only needs a control field - not the whole node // metadata accumulator only needs a control field - not the whole node
// extract what we need and add to the accumulator // extract what we need and add to the accumulator
const t2iAdapterField = omit(t2iAdapterNode, [ const t2iAdapterField = omit(t2iAdapterNode, [

File diff suppressed because one or more lines are too long