mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Merge branch 'main' into feat/compel_node
This commit is contained in:
commit
56d3cbead0
@ -1,14 +1,12 @@
|
||||
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
|
||||
|
||||
import os
|
||||
from argparse import Namespace
|
||||
|
||||
from invokeai.app.services.metadata import PngMetadataService, MetadataServiceBase
|
||||
import invokeai.backend.util.logging as logger
|
||||
from typing import types
|
||||
|
||||
from ..services.default_graphs import create_system_graphs
|
||||
|
||||
from ..services.latent_storage import DiskLatentsStorage, ForwardCacheLatentsStorage
|
||||
|
||||
from ...backend import Globals
|
||||
from ..services.model_manager_initializer import get_model_manager
|
||||
from ..services.restoration_services import RestorationServices
|
||||
@ -19,6 +17,7 @@ from ..services.invocation_services import InvocationServices
|
||||
from ..services.invoker import Invoker
|
||||
from ..services.processor import DefaultInvocationProcessor
|
||||
from ..services.sqlite import SqliteItemStorage
|
||||
from ..services.metadata import PngMetadataService
|
||||
from .events import FastAPIEventService
|
||||
|
||||
|
||||
@ -44,15 +43,16 @@ class ApiDependencies:
|
||||
invoker: Invoker = None
|
||||
|
||||
@staticmethod
|
||||
def initialize(config, event_handler_id: int):
|
||||
def initialize(config, event_handler_id: int, logger: types.ModuleType=logger):
|
||||
Globals.try_patchmatch = config.patchmatch
|
||||
Globals.always_use_cpu = config.always_use_cpu
|
||||
Globals.internet_available = config.internet_available and check_internet()
|
||||
Globals.disable_xformers = not config.xformers
|
||||
Globals.ckpt_convert = config.ckpt_convert
|
||||
|
||||
# TODO: Use a logger
|
||||
print(f">> Internet connectivity is {Globals.internet_available}")
|
||||
# TO DO: Use the config to select the logger rather than use the default
|
||||
# invokeai logging module
|
||||
logger.info(f"Internet connectivity is {Globals.internet_available}")
|
||||
|
||||
events = FastAPIEventService(event_handler_id)
|
||||
|
||||
@ -70,8 +70,9 @@ class ApiDependencies:
|
||||
db_location = os.path.join(output_folder, "invokeai.db")
|
||||
|
||||
services = InvocationServices(
|
||||
model_manager=get_model_manager(config),
|
||||
model_manager=get_model_manager(config,logger),
|
||||
events=events,
|
||||
logger=logger,
|
||||
latents=latents,
|
||||
images=images,
|
||||
metadata=metadata,
|
||||
@ -83,7 +84,7 @@ class ApiDependencies:
|
||||
filename=db_location, table_name="graph_executions"
|
||||
),
|
||||
processor=DefaultInvocationProcessor(),
|
||||
restoration=RestorationServices(config),
|
||||
restoration=RestorationServices(config,logger),
|
||||
)
|
||||
|
||||
create_system_graphs(services.graph_library)
|
||||
|
@ -8,10 +8,6 @@ from fastapi.routing import APIRouter, HTTPException
|
||||
from pydantic import BaseModel, Field, parse_obj_as
|
||||
from pathlib import Path
|
||||
from ..dependencies import ApiDependencies
|
||||
from invokeai.backend.globals import Globals, global_converted_ckpts_dir
|
||||
from invokeai.backend.args import Args
|
||||
|
||||
|
||||
|
||||
models_router = APIRouter(prefix="/v1/models", tags=["models"])
|
||||
|
||||
@ -112,19 +108,20 @@ async def update_model(
|
||||
async def delete_model(model_name: str) -> None:
|
||||
"""Delete Model"""
|
||||
model_names = ApiDependencies.invoker.services.model_manager.model_names()
|
||||
logger = ApiDependencies.invoker.services.logger
|
||||
model_exists = model_name in model_names
|
||||
|
||||
# check if model exists
|
||||
print(f">> Checking for model {model_name}...")
|
||||
logger.info(f"Checking for model {model_name}...")
|
||||
|
||||
if model_exists:
|
||||
print(f">> Deleting Model: {model_name}")
|
||||
logger.info(f"Deleting Model: {model_name}")
|
||||
ApiDependencies.invoker.services.model_manager.del_model(model_name, delete_files=True)
|
||||
print(f">> Model Deleted: {model_name}")
|
||||
logger.info(f"Model Deleted: {model_name}")
|
||||
raise HTTPException(status_code=204, detail=f"Model '{model_name}' deleted successfully")
|
||||
|
||||
else:
|
||||
print(f">> Model not found")
|
||||
logger.error(f"Model not found")
|
||||
raise HTTPException(status_code=404, detail=f"Model '{model_name}' not found")
|
||||
|
||||
|
||||
@ -248,4 +245,4 @@ async def delete_model(model_name: str) -> None:
|
||||
# )
|
||||
# print(f">> Models Merged: {models_to_merge}")
|
||||
# print(f">> New Model Added: {model_merge_info['merged_model_name']}")
|
||||
# except Exception as e:
|
||||
# except Exception as e:
|
||||
|
@ -3,6 +3,7 @@ import asyncio
|
||||
from inspect import signature
|
||||
|
||||
import uvicorn
|
||||
import invokeai.backend.util.logging as logger
|
||||
from fastapi import FastAPI
|
||||
from fastapi.middleware.cors import CORSMiddleware
|
||||
from fastapi.openapi.docs import get_redoc_html, get_swagger_ui_html
|
||||
@ -16,7 +17,6 @@ from ..backend import Args
|
||||
from .api.dependencies import ApiDependencies
|
||||
from .api.routers import images, sessions, models
|
||||
from .api.sockets import SocketIO
|
||||
from .invocations import *
|
||||
from .invocations.baseinvocation import BaseInvocation
|
||||
|
||||
# Create the app
|
||||
@ -56,7 +56,7 @@ async def startup_event():
|
||||
config.parse_args()
|
||||
|
||||
ApiDependencies.initialize(
|
||||
config=config, event_handler_id=event_handler_id
|
||||
config=config, event_handler_id=event_handler_id, logger=logger
|
||||
)
|
||||
|
||||
|
||||
|
@ -2,14 +2,15 @@
|
||||
|
||||
from abc import ABC, abstractmethod
|
||||
import argparse
|
||||
from typing import Any, Callable, Iterable, Literal, get_args, get_origin, get_type_hints
|
||||
from typing import Any, Callable, Iterable, Literal, Union, get_args, get_origin, get_type_hints
|
||||
from pydantic import BaseModel, Field
|
||||
import networkx as nx
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from ..invocations.baseinvocation import BaseInvocation
|
||||
from ..invocations.image import ImageField
|
||||
from ..services.graph import GraphExecutionState, LibraryGraph, GraphInvocation, Edge
|
||||
from ..services.graph import GraphExecutionState, LibraryGraph, Edge
|
||||
from ..services.invoker import Invoker
|
||||
|
||||
|
||||
@ -229,7 +230,7 @@ class HistoryCommand(BaseCommand):
|
||||
for i in range(min(self.count, len(history))):
|
||||
entry_id = history[-1 - i]
|
||||
entry = context.get_session().graph.get_node(entry_id)
|
||||
print(f"{entry_id}: {get_invocation_command(entry)}")
|
||||
logger.info(f"{entry_id}: {get_invocation_command(entry)}")
|
||||
|
||||
|
||||
class SetDefaultCommand(BaseCommand):
|
||||
|
@ -10,6 +10,7 @@ import shlex
|
||||
from pathlib import Path
|
||||
from typing import List, Dict, Literal, get_args, get_type_hints, get_origin
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from ...backend import ModelManager, Globals
|
||||
from ..invocations.baseinvocation import BaseInvocation
|
||||
from .commands import BaseCommand
|
||||
@ -160,8 +161,8 @@ def set_autocompleter(model_manager: ModelManager) -> Completer:
|
||||
pass
|
||||
except OSError: # file likely corrupted
|
||||
newname = f"{histfile}.old"
|
||||
print(
|
||||
f"## Your history file {histfile} couldn't be loaded and may be corrupted. Renaming it to {newname}"
|
||||
logger.error(
|
||||
f"Your history file {histfile} couldn't be loaded and may be corrupted. Renaming it to {newname}"
|
||||
)
|
||||
histfile.replace(Path(newname))
|
||||
atexit.register(readline.write_history_file, histfile)
|
||||
|
@ -13,21 +13,20 @@ from typing import (
|
||||
from pydantic import BaseModel
|
||||
from pydantic.fields import Field
|
||||
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from invokeai.app.services.metadata import PngMetadataService
|
||||
|
||||
from .services.default_graphs import create_system_graphs
|
||||
|
||||
from .services.latent_storage import DiskLatentsStorage, ForwardCacheLatentsStorage
|
||||
|
||||
from ..backend import Args
|
||||
from .cli.commands import BaseCommand, CliContext, ExitCli, add_graph_parsers, add_parsers, get_graph_execution_history
|
||||
from .cli.commands import BaseCommand, CliContext, ExitCli, add_graph_parsers, add_parsers
|
||||
from .cli.completer import set_autocompleter
|
||||
from .invocations import *
|
||||
from .invocations.baseinvocation import BaseInvocation
|
||||
from .services.events import EventServiceBase
|
||||
from .services.model_manager_initializer import get_model_manager
|
||||
from .services.restoration_services import RestorationServices
|
||||
from .services.graph import Edge, EdgeConnection, ExposedNodeInput, GraphExecutionState, GraphInvocation, LibraryGraph, are_connection_types_compatible
|
||||
from .services.graph import Edge, EdgeConnection, GraphExecutionState, GraphInvocation, LibraryGraph, are_connection_types_compatible
|
||||
from .services.default_graphs import default_text_to_image_graph_id
|
||||
from .services.image_storage import DiskImageStorage
|
||||
from .services.invocation_queue import MemoryInvocationQueue
|
||||
@ -182,7 +181,7 @@ def invoke_all(context: CliContext):
|
||||
# Print any errors
|
||||
if context.session.has_error():
|
||||
for n in context.session.errors:
|
||||
print(
|
||||
context.invoker.services.logger.error(
|
||||
f"Error in node {n} (source node {context.session.prepared_source_mapping[n]}): {context.session.errors[n]}"
|
||||
)
|
||||
|
||||
@ -192,13 +191,13 @@ def invoke_all(context: CliContext):
|
||||
def invoke_cli():
|
||||
config = Args()
|
||||
config.parse_args()
|
||||
model_manager = get_model_manager(config)
|
||||
model_manager = get_model_manager(config,logger=logger)
|
||||
|
||||
# This initializes the autocompleter and returns it.
|
||||
# Currently nothing is done with the returned Completer
|
||||
# object, but the object can be used to change autocompletion
|
||||
# behavior on the fly, if desired.
|
||||
completer = set_autocompleter(model_manager)
|
||||
set_autocompleter(model_manager)
|
||||
|
||||
events = EventServiceBase()
|
||||
|
||||
@ -225,7 +224,8 @@ def invoke_cli():
|
||||
filename=db_location, table_name="graph_executions"
|
||||
),
|
||||
processor=DefaultInvocationProcessor(),
|
||||
restoration=RestorationServices(config),
|
||||
restoration=RestorationServices(config,logger=logger),
|
||||
logger=logger,
|
||||
)
|
||||
|
||||
system_graphs = create_system_graphs(services.graph_library)
|
||||
@ -365,12 +365,12 @@ def invoke_cli():
|
||||
invoke_all(context)
|
||||
|
||||
except InvalidArgs:
|
||||
print('Invalid command, use "help" to list commands')
|
||||
invoker.services.logger.warning('Invalid command, use "help" to list commands')
|
||||
continue
|
||||
|
||||
except SessionError:
|
||||
# Start a new session
|
||||
print("Session error: creating a new session")
|
||||
invoker.services.logger.warning("Session error: creating a new session")
|
||||
context.reset()
|
||||
|
||||
except ExitCli:
|
||||
|
@ -46,8 +46,8 @@ class TextToImageInvocation(BaseInvocation, SDImageInvocation):
|
||||
prompt: Optional[str] = Field(description="The prompt to generate an image from")
|
||||
seed: int = Field(default=-1,ge=-1, le=np.iinfo(np.uint32).max, description="The seed to use (-1 for a random seed)", )
|
||||
steps: int = Field(default=10, gt=0, description="The number of steps to use to generate the image")
|
||||
width: int = Field(default=512, multiple_of=64, gt=0, description="The width of the resulting image", )
|
||||
height: int = Field(default=512, multiple_of=64, gt=0, description="The height of the resulting image", )
|
||||
width: int = Field(default=512, multiple_of=8, gt=0, description="The width of the resulting image", )
|
||||
height: int = Field(default=512, multiple_of=8, gt=0, description="The height of the resulting image", )
|
||||
cfg_scale: float = Field(default=7.5, gt=0, description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt", )
|
||||
scheduler: SAMPLER_NAME_VALUES = Field(default="k_lms", description="The scheduler to use" )
|
||||
seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", )
|
||||
@ -150,6 +150,9 @@ class ImageToImageInvocation(TextToImageInvocation):
|
||||
)
|
||||
mask = None
|
||||
|
||||
if self.fit:
|
||||
image = image.resize((self.width, self.height))
|
||||
|
||||
# Handle invalid model parameter
|
||||
model = choose_model(context.services.model_manager, self.model)
|
||||
|
||||
|
@ -113,8 +113,8 @@ class NoiseInvocation(BaseInvocation):
|
||||
|
||||
# Inputs
|
||||
seed: int = Field(ge=0, le=np.iinfo(np.uint32).max, description="The seed to use", default_factory=random_seed)
|
||||
width: int = Field(default=512, multiple_of=64, gt=0, description="The width of the resulting noise", )
|
||||
height: int = Field(default=512, multiple_of=64, gt=0, description="The height of the resulting noise", )
|
||||
width: int = Field(default=512, multiple_of=8, gt=0, description="The width of the resulting noise", )
|
||||
height: int = Field(default=512, multiple_of=8, gt=0, description="The height of the resulting noise", )
|
||||
|
||||
|
||||
# Schema customisation
|
||||
@ -149,8 +149,6 @@ class TextToLatentsInvocation(BaseInvocation):
|
||||
seed: int = Field(default=-1,ge=-1, le=np.iinfo(np.uint32).max, description="The seed to use (-1 for a random seed)", )
|
||||
noise: Optional[LatentsField] = Field(description="The noise to use")
|
||||
steps: int = Field(default=10, gt=0, description="The number of steps to use to generate the image")
|
||||
width: int = Field(default=512, multiple_of=64, gt=0, description="The width of the resulting image", )
|
||||
height: int = Field(default=512, multiple_of=64, gt=0, description="The height of the resulting image", )
|
||||
cfg_scale: float = Field(default=7.5, gt=0, description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt", )
|
||||
scheduler: SAMPLER_NAME_VALUES = Field(default="k_lms", description="The scheduler to use" )
|
||||
seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", )
|
||||
@ -365,9 +363,74 @@ class LatentsToImageInvocation(BaseInvocation):
|
||||
session_id=context.graph_execution_state_id, node=self
|
||||
)
|
||||
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
context.services.images.save(image_type, image_name, image, metadata)
|
||||
return build_image_output(
|
||||
image_type=image_type,
|
||||
image_name=image_name,
|
||||
image=image
|
||||
image_type=image_type, image_name=image_name, image=image
|
||||
)
|
||||
|
||||
|
||||
LATENTS_INTERPOLATION_MODE = Literal[
|
||||
"nearest", "linear", "bilinear", "bicubic", "trilinear", "area", "nearest-exact"
|
||||
]
|
||||
|
||||
|
||||
class ResizeLatentsInvocation(BaseInvocation):
|
||||
"""Resizes latents to explicit width/height (in pixels). Provided dimensions are floor-divided by 8."""
|
||||
|
||||
type: Literal["lresize"] = "lresize"
|
||||
|
||||
# Inputs
|
||||
latents: Optional[LatentsField] = Field(description="The latents to resize")
|
||||
width: int = Field(ge=64, multiple_of=8, description="The width to resize to (px)")
|
||||
height: int = Field(ge=64, multiple_of=8, description="The height to resize to (px)")
|
||||
mode: Optional[LATENTS_INTERPOLATION_MODE] = Field(default="bilinear", description="The interpolation mode")
|
||||
antialias: Optional[bool] = Field(default=False, description="Whether or not to antialias (applied in bilinear and bicubic modes only)")
|
||||
|
||||
def invoke(self, context: InvocationContext) -> LatentsOutput:
|
||||
latents = context.services.latents.get(self.latents.latents_name)
|
||||
|
||||
resized_latents = torch.nn.functional.interpolate(
|
||||
latents,
|
||||
size=(self.height // 8, self.width // 8),
|
||||
mode=self.mode,
|
||||
antialias=self.antialias if self.mode in ["bilinear", "bicubic"] else False,
|
||||
)
|
||||
|
||||
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
name = f"{context.graph_execution_state_id}__{self.id}"
|
||||
context.services.latents.set(name, resized_latents)
|
||||
return LatentsOutput(latents=LatentsField(latents_name=name))
|
||||
|
||||
|
||||
class ScaleLatentsInvocation(BaseInvocation):
|
||||
"""Scales latents by a given factor."""
|
||||
|
||||
type: Literal["lscale"] = "lscale"
|
||||
|
||||
# Inputs
|
||||
latents: Optional[LatentsField] = Field(description="The latents to scale")
|
||||
scale_factor: float = Field(gt=0, description="The factor by which to scale the latents")
|
||||
mode: Optional[LATENTS_INTERPOLATION_MODE] = Field(default="bilinear", description="The interpolation mode")
|
||||
antialias: Optional[bool] = Field(default=False, description="Whether or not to antialias (applied in bilinear and bicubic modes only)")
|
||||
|
||||
def invoke(self, context: InvocationContext) -> LatentsOutput:
|
||||
latents = context.services.latents.get(self.latents.latents_name)
|
||||
|
||||
# resizing
|
||||
resized_latents = torch.nn.functional.interpolate(
|
||||
latents,
|
||||
scale_factor=self.scale_factor,
|
||||
mode=self.mode,
|
||||
antialias=self.antialias if self.mode in ["bilinear", "bicubic"] else False,
|
||||
)
|
||||
|
||||
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
name = f"{context.graph_execution_state_id}__{self.id}"
|
||||
context.services.latents.set(name, resized_latents)
|
||||
return LatentsOutput(latents=LatentsField(latents_name=name))
|
||||
|
@ -3,12 +3,11 @@ from invokeai.backend.model_management.model_manager import ModelManager
|
||||
|
||||
def choose_model(model_manager: ModelManager, model_name: str):
|
||||
"""Returns the default model if the `model_name` not a valid model, else returns the selected model."""
|
||||
logger = model_manager.logger
|
||||
if model_manager.valid_model(model_name):
|
||||
model = model_manager.get_model(model_name)
|
||||
else:
|
||||
model = model_manager.get_model()
|
||||
print(
|
||||
f"* Warning: '{model_name}' is not a valid model name. Using default model \'{model['model_name']}\' instead."
|
||||
)
|
||||
logger.warning(f"{model_name}' is not a valid model name. Using default model \'{model['model_name']}\' instead.")
|
||||
|
||||
return model
|
||||
|
@ -27,10 +27,6 @@ def create_text_to_image() -> LibraryGraph:
|
||||
Edge(source=EdgeConnection(node_id='width', field='a'), destination=EdgeConnection(node_id='3', field='width')),
|
||||
Edge(source=EdgeConnection(node_id='height', field='a'), destination=EdgeConnection(node_id='3', field='height')),
|
||||
Edge(source=EdgeConnection(node_id='seed', field='a'), destination=EdgeConnection(node_id='3', field='seed')),
|
||||
# TODO: remove, when updated TextToLatents merged
|
||||
Edge(source=EdgeConnection(node_id='width', field='a'), destination=EdgeConnection(node_id='5', field='width')),
|
||||
Edge(source=EdgeConnection(node_id='height', field='a'), destination=EdgeConnection(node_id='5', field='height')),
|
||||
Edge(source=EdgeConnection(node_id='seed', field='a'), destination=EdgeConnection(node_id='5', field='seed')),
|
||||
Edge(source=EdgeConnection(node_id='3', field='noise'), destination=EdgeConnection(node_id='5', field='noise')),
|
||||
Edge(source=EdgeConnection(node_id='5', field='latents'), destination=EdgeConnection(node_id='6', field='latents')),
|
||||
Edge(source=EdgeConnection(node_id='4', field='positive'), destination=EdgeConnection(node_id='5', field='positive')),
|
||||
|
@ -1,4 +1,6 @@
|
||||
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
|
||||
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) and the InvokeAI Team
|
||||
|
||||
from typing import types
|
||||
from invokeai.app.services.metadata import MetadataServiceBase
|
||||
from invokeai.backend import ModelManager
|
||||
|
||||
@ -29,6 +31,7 @@ class InvocationServices:
|
||||
self,
|
||||
model_manager: ModelManager,
|
||||
events: EventServiceBase,
|
||||
logger: types.ModuleType,
|
||||
latents: LatentsStorageBase,
|
||||
images: ImageStorageBase,
|
||||
metadata: MetadataServiceBase,
|
||||
@ -40,6 +43,7 @@ class InvocationServices:
|
||||
):
|
||||
self.model_manager = model_manager
|
||||
self.events = events
|
||||
self.logger = logger
|
||||
self.latents = latents
|
||||
self.images = images
|
||||
self.metadata = metadata
|
||||
|
@ -49,7 +49,7 @@ class Invoker:
|
||||
new_state = GraphExecutionState(graph=Graph() if graph is None else graph)
|
||||
self.services.graph_execution_manager.set(new_state)
|
||||
return new_state
|
||||
|
||||
|
||||
def cancel(self, graph_execution_state_id: str) -> None:
|
||||
"""Cancels the given execution state"""
|
||||
self.services.queue.cancel(graph_execution_state_id)
|
||||
@ -71,18 +71,12 @@ class Invoker:
|
||||
for service in vars(self.services):
|
||||
self.__start_service(getattr(self.services, service))
|
||||
|
||||
for service in vars(self.services):
|
||||
self.__start_service(getattr(self.services, service))
|
||||
|
||||
def stop(self) -> None:
|
||||
"""Stops the invoker. A new invoker will have to be created to execute further."""
|
||||
# First stop all services
|
||||
for service in vars(self.services):
|
||||
self.__stop_service(getattr(self.services, service))
|
||||
|
||||
for service in vars(self.services):
|
||||
self.__stop_service(getattr(self.services, service))
|
||||
|
||||
self.services.queue.put(None)
|
||||
|
||||
|
||||
|
@ -5,6 +5,7 @@ from argparse import Namespace
|
||||
from invokeai.backend import Args
|
||||
from omegaconf import OmegaConf
|
||||
from pathlib import Path
|
||||
from typing import types
|
||||
|
||||
import invokeai.version
|
||||
from ...backend import ModelManager
|
||||
@ -12,16 +13,16 @@ from ...backend.util import choose_precision, choose_torch_device
|
||||
from ...backend import Globals
|
||||
|
||||
# TODO: Replace with an abstract class base ModelManagerBase
|
||||
def get_model_manager(config: Args) -> ModelManager:
|
||||
def get_model_manager(config: Args, logger: types.ModuleType) -> ModelManager:
|
||||
if not config.conf:
|
||||
config_file = os.path.join(Globals.root, "configs", "models.yaml")
|
||||
if not os.path.exists(config_file):
|
||||
report_model_error(
|
||||
config, FileNotFoundError(f"The file {config_file} could not be found.")
|
||||
config, FileNotFoundError(f"The file {config_file} could not be found."), logger
|
||||
)
|
||||
|
||||
print(f">> {invokeai.version.__app_name__}, version {invokeai.version.__version__}")
|
||||
print(f'>> InvokeAI runtime directory is "{Globals.root}"')
|
||||
logger.info(f"{invokeai.version.__app_name__}, version {invokeai.version.__version__}")
|
||||
logger.info(f'InvokeAI runtime directory is "{Globals.root}"')
|
||||
|
||||
# these two lines prevent a horrible warning message from appearing
|
||||
# when the frozen CLIP tokenizer is imported
|
||||
@ -62,11 +63,12 @@ def get_model_manager(config: Args) -> ModelManager:
|
||||
device_type=device,
|
||||
max_loaded_models=config.max_loaded_models,
|
||||
embedding_path = Path(embedding_path),
|
||||
logger = logger,
|
||||
)
|
||||
except (FileNotFoundError, TypeError, AssertionError) as e:
|
||||
report_model_error(config, e)
|
||||
report_model_error(config, e, logger)
|
||||
except (IOError, KeyError) as e:
|
||||
print(f"{e}. Aborting.")
|
||||
logger.error(f"{e}. Aborting.")
|
||||
sys.exit(-1)
|
||||
|
||||
# try to autoconvert new models
|
||||
@ -76,18 +78,18 @@ def get_model_manager(config: Args) -> ModelManager:
|
||||
conf_path=config.conf,
|
||||
weights_directory=path,
|
||||
)
|
||||
|
||||
logger.info('Model manager initialized')
|
||||
return model_manager
|
||||
|
||||
def report_model_error(opt: Namespace, e: Exception):
|
||||
print(f'** An error occurred while attempting to initialize the model: "{str(e)}"')
|
||||
print(
|
||||
"** This can be caused by a missing or corrupted models file, and can sometimes be fixed by (re)installing the models."
|
||||
def report_model_error(opt: Namespace, e: Exception, logger: types.ModuleType):
|
||||
logger.error(f'An error occurred while attempting to initialize the model: "{str(e)}"')
|
||||
logger.error(
|
||||
"This can be caused by a missing or corrupted models file, and can sometimes be fixed by (re)installing the models."
|
||||
)
|
||||
yes_to_all = os.environ.get("INVOKE_MODEL_RECONFIGURE")
|
||||
if yes_to_all:
|
||||
print(
|
||||
"** Reconfiguration is being forced by environment variable INVOKE_MODEL_RECONFIGURE"
|
||||
logger.warning(
|
||||
"Reconfiguration is being forced by environment variable INVOKE_MODEL_RECONFIGURE"
|
||||
)
|
||||
else:
|
||||
response = input(
|
||||
@ -96,13 +98,12 @@ def report_model_error(opt: Namespace, e: Exception):
|
||||
if response.startswith(("n", "N")):
|
||||
return
|
||||
|
||||
print("invokeai-configure is launching....\n")
|
||||
logger.info("invokeai-configure is launching....\n")
|
||||
|
||||
# Match arguments that were set on the CLI
|
||||
# only the arguments accepted by the configuration script are parsed
|
||||
root_dir = ["--root", opt.root_dir] if opt.root_dir is not None else []
|
||||
config = ["--config", opt.conf] if opt.conf is not None else []
|
||||
previous_config = sys.argv
|
||||
sys.argv = ["invokeai-configure"]
|
||||
sys.argv.extend(root_dir)
|
||||
sys.argv.extend(config.to_dict())
|
||||
|
@ -1,5 +1,5 @@
|
||||
import traceback
|
||||
from threading import Event, Thread
|
||||
from threading import Event, Thread, BoundedSemaphore
|
||||
|
||||
from ..invocations.baseinvocation import InvocationContext
|
||||
from .invocation_queue import InvocationQueueItem
|
||||
@ -10,8 +10,11 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
|
||||
__invoker_thread: Thread
|
||||
__stop_event: Event
|
||||
__invoker: Invoker
|
||||
__threadLimit: BoundedSemaphore
|
||||
|
||||
def start(self, invoker) -> None:
|
||||
# if we do want multithreading at some point, we could make this configurable
|
||||
self.__threadLimit = BoundedSemaphore(1)
|
||||
self.__invoker = invoker
|
||||
self.__stop_event = Event()
|
||||
self.__invoker_thread = Thread(
|
||||
@ -20,7 +23,7 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
|
||||
kwargs=dict(stop_event=self.__stop_event),
|
||||
)
|
||||
self.__invoker_thread.daemon = (
|
||||
True # TODO: probably better to just not use threads?
|
||||
True # TODO: make async and do not use threads
|
||||
)
|
||||
self.__invoker_thread.start()
|
||||
|
||||
@ -29,6 +32,7 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
|
||||
|
||||
def __process(self, stop_event: Event):
|
||||
try:
|
||||
self.__threadLimit.acquire()
|
||||
while not stop_event.is_set():
|
||||
queue_item: InvocationQueueItem = self.__invoker.services.queue.get()
|
||||
if not queue_item: # Probably stopping
|
||||
@ -110,7 +114,7 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
|
||||
)
|
||||
|
||||
pass
|
||||
|
||||
|
||||
# Check queue to see if this is canceled, and skip if so
|
||||
if self.__invoker.services.queue.is_canceled(
|
||||
graph_execution_state.id
|
||||
@ -127,4 +131,6 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
|
||||
)
|
||||
|
||||
except KeyboardInterrupt:
|
||||
... # Log something?
|
||||
pass # Log something? KeyboardInterrupt is probably not going to be seen by the processor
|
||||
finally:
|
||||
self.__threadLimit.release()
|
||||
|
@ -1,6 +1,7 @@
|
||||
import sys
|
||||
import traceback
|
||||
import torch
|
||||
from typing import types
|
||||
from ...backend.restoration import Restoration
|
||||
from ...backend.util import choose_torch_device, CPU_DEVICE, MPS_DEVICE
|
||||
|
||||
@ -10,7 +11,7 @@ from ...backend.util import choose_torch_device, CPU_DEVICE, MPS_DEVICE
|
||||
class RestorationServices:
|
||||
'''Face restoration and upscaling'''
|
||||
|
||||
def __init__(self,args):
|
||||
def __init__(self,args,logger:types.ModuleType):
|
||||
try:
|
||||
gfpgan, codeformer, esrgan = None, None, None
|
||||
if args.restore or args.esrgan:
|
||||
@ -20,20 +21,22 @@ class RestorationServices:
|
||||
args.gfpgan_model_path
|
||||
)
|
||||
else:
|
||||
print(">> Face restoration disabled")
|
||||
logger.info("Face restoration disabled")
|
||||
if args.esrgan:
|
||||
esrgan = restoration.load_esrgan(args.esrgan_bg_tile)
|
||||
else:
|
||||
print(">> Upscaling disabled")
|
||||
logger.info("Upscaling disabled")
|
||||
else:
|
||||
print(">> Face restoration and upscaling disabled")
|
||||
logger.info("Face restoration and upscaling disabled")
|
||||
except (ModuleNotFoundError, ImportError):
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
print(">> You may need to install the ESRGAN and/or GFPGAN modules")
|
||||
logger.info("You may need to install the ESRGAN and/or GFPGAN modules")
|
||||
self.device = torch.device(choose_torch_device())
|
||||
self.gfpgan = gfpgan
|
||||
self.codeformer = codeformer
|
||||
self.esrgan = esrgan
|
||||
self.logger = logger
|
||||
self.logger.info('Face restoration initialized')
|
||||
|
||||
# note that this one method does gfpgan and codepath reconstruction, as well as
|
||||
# esrgan upscaling
|
||||
@ -58,15 +61,15 @@ class RestorationServices:
|
||||
if self.gfpgan is not None or self.codeformer is not None:
|
||||
if facetool == "gfpgan":
|
||||
if self.gfpgan is None:
|
||||
print(
|
||||
">> GFPGAN not found. Face restoration is disabled."
|
||||
self.logger.info(
|
||||
"GFPGAN not found. Face restoration is disabled."
|
||||
)
|
||||
else:
|
||||
image = self.gfpgan.process(image, strength, seed)
|
||||
if facetool == "codeformer":
|
||||
if self.codeformer is None:
|
||||
print(
|
||||
">> CodeFormer not found. Face restoration is disabled."
|
||||
self.logger.info(
|
||||
"CodeFormer not found. Face restoration is disabled."
|
||||
)
|
||||
else:
|
||||
cf_device = (
|
||||
@ -80,7 +83,7 @@ class RestorationServices:
|
||||
fidelity=codeformer_fidelity,
|
||||
)
|
||||
else:
|
||||
print(">> Face Restoration is disabled.")
|
||||
self.logger.info("Face Restoration is disabled.")
|
||||
if upscale is not None:
|
||||
if self.esrgan is not None:
|
||||
if len(upscale) < 2:
|
||||
@ -93,10 +96,10 @@ class RestorationServices:
|
||||
denoise_str=upscale_denoise_str,
|
||||
)
|
||||
else:
|
||||
print(">> ESRGAN is disabled. Image not upscaled.")
|
||||
self.logger.info("ESRGAN is disabled. Image not upscaled.")
|
||||
except Exception as e:
|
||||
print(
|
||||
f">> Error running RealESRGAN or GFPGAN. Your image was not upscaled.\n{e}"
|
||||
self.logger.info(
|
||||
f"Error running RealESRGAN or GFPGAN. Your image was not upscaled.\n{e}"
|
||||
)
|
||||
|
||||
if image_callback is not None:
|
||||
|
@ -96,6 +96,7 @@ from pathlib import Path
|
||||
from typing import List
|
||||
|
||||
import invokeai.version
|
||||
import invokeai.backend.util.logging as logger
|
||||
from invokeai.backend.image_util import retrieve_metadata
|
||||
|
||||
from .globals import Globals
|
||||
@ -189,7 +190,7 @@ class Args(object):
|
||||
print(f"{APP_NAME} {APP_VERSION}")
|
||||
sys.exit(0)
|
||||
|
||||
print("* Initializing, be patient...")
|
||||
logger.info("Initializing, be patient...")
|
||||
Globals.root = Path(os.path.abspath(switches.root_dir or Globals.root))
|
||||
Globals.try_patchmatch = switches.patchmatch
|
||||
|
||||
@ -197,14 +198,13 @@ class Args(object):
|
||||
initfile = os.path.expanduser(os.path.join(Globals.root, Globals.initfile))
|
||||
legacyinit = os.path.expanduser("~/.invokeai")
|
||||
if os.path.exists(initfile):
|
||||
print(
|
||||
f">> Initialization file {initfile} found. Loading...",
|
||||
file=sys.stderr,
|
||||
logger.info(
|
||||
f"Initialization file {initfile} found. Loading...",
|
||||
)
|
||||
sysargs.insert(0, f"@{initfile}")
|
||||
elif os.path.exists(legacyinit):
|
||||
print(
|
||||
f">> WARNING: Old initialization file found at {legacyinit}. This location is deprecated. Please move it to {Globals.root}/invokeai.init."
|
||||
logger.warning(
|
||||
f"Old initialization file found at {legacyinit}. This location is deprecated. Please move it to {Globals.root}/invokeai.init."
|
||||
)
|
||||
sysargs.insert(0, f"@{legacyinit}")
|
||||
Globals.log_tokenization = self._arg_parser.parse_args(
|
||||
@ -214,7 +214,7 @@ class Args(object):
|
||||
self._arg_switches = self._arg_parser.parse_args(sysargs)
|
||||
return self._arg_switches
|
||||
except Exception as e:
|
||||
print(f"An exception has occurred: {e}")
|
||||
logger.error(f"An exception has occurred: {e}")
|
||||
return None
|
||||
|
||||
def parse_cmd(self, cmd_string):
|
||||
@ -1154,7 +1154,7 @@ class Args(object):
|
||||
|
||||
|
||||
def format_metadata(**kwargs):
|
||||
print("format_metadata() is deprecated. Please use metadata_dumps()")
|
||||
logger.warning("format_metadata() is deprecated. Please use metadata_dumps()")
|
||||
return metadata_dumps(kwargs)
|
||||
|
||||
|
||||
@ -1326,7 +1326,7 @@ def metadata_loads(metadata) -> list:
|
||||
import sys
|
||||
import traceback
|
||||
|
||||
print(">> could not read metadata", file=sys.stderr)
|
||||
logger.error("Could not read metadata")
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
return results
|
||||
|
||||
|
@ -27,6 +27,7 @@ from diffusers.utils.import_utils import is_xformers_available
|
||||
from omegaconf import OmegaConf
|
||||
from pathlib import Path
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from .args import metadata_from_png
|
||||
from .generator import infill_methods
|
||||
from .globals import Globals, global_cache_dir
|
||||
@ -195,12 +196,12 @@ class Generate:
|
||||
# device to Generate(). However the device was then ignored, so
|
||||
# it wasn't actually doing anything. This logic could be reinstated.
|
||||
self.device = torch.device(choose_torch_device())
|
||||
print(f">> Using device_type {self.device.type}")
|
||||
logger.info(f"Using device_type {self.device.type}")
|
||||
if full_precision:
|
||||
if self.precision != "auto":
|
||||
raise ValueError("Remove --full_precision / -F if using --precision")
|
||||
print("Please remove deprecated --full_precision / -F")
|
||||
print("If auto config does not work you can use --precision=float32")
|
||||
logger.warning("Please remove deprecated --full_precision / -F")
|
||||
logger.warning("If auto config does not work you can use --precision=float32")
|
||||
self.precision = "float32"
|
||||
if self.precision == "auto":
|
||||
self.precision = choose_precision(self.device)
|
||||
@ -208,13 +209,13 @@ class Generate:
|
||||
|
||||
if is_xformers_available():
|
||||
if torch.cuda.is_available() and not Globals.disable_xformers:
|
||||
print(">> xformers memory-efficient attention is available and enabled")
|
||||
logger.info("xformers memory-efficient attention is available and enabled")
|
||||
else:
|
||||
print(
|
||||
">> xformers memory-efficient attention is available but disabled"
|
||||
logger.info(
|
||||
"xformers memory-efficient attention is available but disabled"
|
||||
)
|
||||
else:
|
||||
print(">> xformers not installed")
|
||||
logger.info("xformers not installed")
|
||||
|
||||
# model caching system for fast switching
|
||||
self.model_manager = ModelManager(
|
||||
@ -229,8 +230,8 @@ class Generate:
|
||||
fallback = self.model_manager.default_model() or FALLBACK_MODEL_NAME
|
||||
model = model or fallback
|
||||
if not self.model_manager.valid_model(model):
|
||||
print(
|
||||
f'** "{model}" is not a known model name; falling back to {fallback}.'
|
||||
logger.warning(
|
||||
f'"{model}" is not a known model name; falling back to {fallback}.'
|
||||
)
|
||||
model = None
|
||||
self.model_name = model or fallback
|
||||
@ -246,10 +247,10 @@ class Generate:
|
||||
|
||||
# load safety checker if requested
|
||||
if safety_checker:
|
||||
print(">> Initializing NSFW checker")
|
||||
logger.info("Initializing NSFW checker")
|
||||
self.safety_checker = SafetyChecker(self.device)
|
||||
else:
|
||||
print(">> NSFW checker is disabled")
|
||||
logger.info("NSFW checker is disabled")
|
||||
|
||||
def prompt2png(self, prompt, outdir, **kwargs):
|
||||
"""
|
||||
@ -567,7 +568,7 @@ class Generate:
|
||||
self.clear_cuda_cache()
|
||||
|
||||
if catch_interrupts:
|
||||
print("**Interrupted** Partial results will be returned.")
|
||||
logger.warning("Interrupted** Partial results will be returned.")
|
||||
else:
|
||||
raise KeyboardInterrupt
|
||||
except RuntimeError:
|
||||
@ -575,11 +576,11 @@ class Generate:
|
||||
self.clear_cuda_cache()
|
||||
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
print(">> Could not generate image.")
|
||||
logger.info("Could not generate image.")
|
||||
|
||||
toc = time.time()
|
||||
print("\n>> Usage stats:")
|
||||
print(f">> {len(results)} image(s) generated in", "%4.2fs" % (toc - tic))
|
||||
logger.info("Usage stats:")
|
||||
logger.info(f"{len(results)} image(s) generated in "+"%4.2fs" % (toc - tic))
|
||||
self.print_cuda_stats()
|
||||
return results
|
||||
|
||||
@ -609,16 +610,16 @@ class Generate:
|
||||
def print_cuda_stats(self):
|
||||
if self._has_cuda():
|
||||
self.gather_cuda_stats()
|
||||
print(
|
||||
">> Max VRAM used for this generation:",
|
||||
"%4.2fG." % (self.max_memory_allocated / 1e9),
|
||||
"Current VRAM utilization:",
|
||||
"%4.2fG" % (self.memory_allocated / 1e9),
|
||||
logger.info(
|
||||
"Max VRAM used for this generation: "+
|
||||
"%4.2fG. " % (self.max_memory_allocated / 1e9)+
|
||||
"Current VRAM utilization: "+
|
||||
"%4.2fG" % (self.memory_allocated / 1e9)
|
||||
)
|
||||
|
||||
print(
|
||||
">> Max VRAM used since script start: ",
|
||||
"%4.2fG" % (self.session_peakmem / 1e9),
|
||||
logger.info(
|
||||
"Max VRAM used since script start: " +
|
||||
"%4.2fG" % (self.session_peakmem / 1e9)
|
||||
)
|
||||
|
||||
# this needs to be generalized to all sorts of postprocessors, which should be wrapped
|
||||
@ -647,7 +648,7 @@ class Generate:
|
||||
seed = random.randrange(0, np.iinfo(np.uint32).max)
|
||||
|
||||
prompt = opt.prompt or args.prompt or ""
|
||||
print(f'>> using seed {seed} and prompt "{prompt}" for {image_path}')
|
||||
logger.info(f'using seed {seed} and prompt "{prompt}" for {image_path}')
|
||||
|
||||
# try to reuse the same filename prefix as the original file.
|
||||
# we take everything up to the first period
|
||||
@ -696,8 +697,8 @@ class Generate:
|
||||
try:
|
||||
extend_instructions[direction] = int(pixels)
|
||||
except ValueError:
|
||||
print(
|
||||
'** invalid extension instruction. Use <directions> <pixels>..., as in "top 64 left 128 right 64 bottom 64"'
|
||||
logger.warning(
|
||||
'invalid extension instruction. Use <directions> <pixels>..., as in "top 64 left 128 right 64 bottom 64"'
|
||||
)
|
||||
|
||||
opt.seed = seed
|
||||
@ -720,8 +721,8 @@ class Generate:
|
||||
# fetch the metadata from the image
|
||||
generator = self.select_generator(embiggen=True)
|
||||
opt.strength = opt.embiggen_strength or 0.40
|
||||
print(
|
||||
f">> Setting img2img strength to {opt.strength} for happy embiggening"
|
||||
logger.info(
|
||||
f"Setting img2img strength to {opt.strength} for happy embiggening"
|
||||
)
|
||||
generator.generate(
|
||||
prompt,
|
||||
@ -748,12 +749,12 @@ class Generate:
|
||||
return restorer.process(opt, args, image_callback=callback, prefix=prefix)
|
||||
|
||||
elif tool is None:
|
||||
print(
|
||||
"* please provide at least one postprocessing option, such as -G or -U"
|
||||
logger.warning(
|
||||
"please provide at least one postprocessing option, such as -G or -U"
|
||||
)
|
||||
return None
|
||||
else:
|
||||
print(f"* postprocessing tool {tool} is not yet supported")
|
||||
logger.warning(f"postprocessing tool {tool} is not yet supported")
|
||||
return None
|
||||
|
||||
def select_generator(
|
||||
@ -797,8 +798,8 @@ class Generate:
|
||||
image = self._load_img(img)
|
||||
|
||||
if image.width < self.width and image.height < self.height:
|
||||
print(
|
||||
f">> WARNING: img2img and inpainting may produce unexpected results with initial images smaller than {self.width}x{self.height} in both dimensions"
|
||||
logger.warning(
|
||||
f"img2img and inpainting may produce unexpected results with initial images smaller than {self.width}x{self.height} in both dimensions"
|
||||
)
|
||||
|
||||
# if image has a transparent area and no mask was provided, then try to generate mask
|
||||
@ -809,8 +810,8 @@ class Generate:
|
||||
if (image.width * image.height) > (
|
||||
self.width * self.height
|
||||
) and self.size_matters:
|
||||
print(
|
||||
">> This input is larger than your defaults. If you run out of memory, please use a smaller image."
|
||||
logger.info(
|
||||
"This input is larger than your defaults. If you run out of memory, please use a smaller image."
|
||||
)
|
||||
self.size_matters = False
|
||||
|
||||
@ -891,11 +892,11 @@ class Generate:
|
||||
try:
|
||||
model_data = cache.get_model(model_name)
|
||||
except Exception as e:
|
||||
print(f"** model {model_name} could not be loaded: {str(e)}")
|
||||
logger.warning(f"model {model_name} could not be loaded: {str(e)}")
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
if previous_model_name is None:
|
||||
raise e
|
||||
print("** trying to reload previous model")
|
||||
logger.warning("trying to reload previous model")
|
||||
model_data = cache.get_model(previous_model_name) # load previous
|
||||
if model_data is None:
|
||||
raise e
|
||||
@ -962,15 +963,15 @@ class Generate:
|
||||
if self.gfpgan is not None or self.codeformer is not None:
|
||||
if facetool == "gfpgan":
|
||||
if self.gfpgan is None:
|
||||
print(
|
||||
">> GFPGAN not found. Face restoration is disabled."
|
||||
logger.info(
|
||||
"GFPGAN not found. Face restoration is disabled."
|
||||
)
|
||||
else:
|
||||
image = self.gfpgan.process(image, strength, seed)
|
||||
if facetool == "codeformer":
|
||||
if self.codeformer is None:
|
||||
print(
|
||||
">> CodeFormer not found. Face restoration is disabled."
|
||||
logger.info(
|
||||
"CodeFormer not found. Face restoration is disabled."
|
||||
)
|
||||
else:
|
||||
cf_device = (
|
||||
@ -984,7 +985,7 @@ class Generate:
|
||||
fidelity=codeformer_fidelity,
|
||||
)
|
||||
else:
|
||||
print(">> Face Restoration is disabled.")
|
||||
logger.info("Face Restoration is disabled.")
|
||||
if upscale is not None:
|
||||
if self.esrgan is not None:
|
||||
if len(upscale) < 2:
|
||||
@ -997,10 +998,10 @@ class Generate:
|
||||
denoise_str=upscale_denoise_str,
|
||||
)
|
||||
else:
|
||||
print(">> ESRGAN is disabled. Image not upscaled.")
|
||||
logger.info("ESRGAN is disabled. Image not upscaled.")
|
||||
except Exception as e:
|
||||
print(
|
||||
f">> Error running RealESRGAN or GFPGAN. Your image was not upscaled.\n{e}"
|
||||
logger.info(
|
||||
f"Error running RealESRGAN or GFPGAN. Your image was not upscaled.\n{e}"
|
||||
)
|
||||
|
||||
if image_callback is not None:
|
||||
@ -1066,17 +1067,17 @@ class Generate:
|
||||
if self.sampler_name in scheduler_map:
|
||||
sampler_class = scheduler_map[self.sampler_name]
|
||||
msg = (
|
||||
f">> Setting Sampler to {self.sampler_name} ({sampler_class.__name__})"
|
||||
f"Setting Sampler to {self.sampler_name} ({sampler_class.__name__})"
|
||||
)
|
||||
self.sampler = sampler_class.from_config(self.model.scheduler.config)
|
||||
else:
|
||||
msg = (
|
||||
f">> Unsupported Sampler: {self.sampler_name} "
|
||||
f" Unsupported Sampler: {self.sampler_name} "+
|
||||
f"Defaulting to {default}"
|
||||
)
|
||||
self.sampler = default
|
||||
|
||||
print(msg)
|
||||
logger.info(msg)
|
||||
|
||||
if not hasattr(self.sampler, "uses_inpainting_model"):
|
||||
# FIXME: terrible kludge!
|
||||
@ -1085,17 +1086,17 @@ class Generate:
|
||||
def _load_img(self, img) -> Image:
|
||||
if isinstance(img, Image.Image):
|
||||
image = img
|
||||
print(f">> using provided input image of size {image.width}x{image.height}")
|
||||
logger.info(f"using provided input image of size {image.width}x{image.height}")
|
||||
elif isinstance(img, str):
|
||||
assert os.path.exists(img), f">> {img}: File not found"
|
||||
assert os.path.exists(img), f"{img}: File not found"
|
||||
|
||||
image = Image.open(img)
|
||||
print(
|
||||
f">> loaded input image of size {image.width}x{image.height} from {img}"
|
||||
logger.info(
|
||||
f"loaded input image of size {image.width}x{image.height} from {img}"
|
||||
)
|
||||
else:
|
||||
image = Image.open(img)
|
||||
print(f">> loaded input image of size {image.width}x{image.height}")
|
||||
logger.info(f"loaded input image of size {image.width}x{image.height}")
|
||||
image = ImageOps.exif_transpose(image)
|
||||
return image
|
||||
|
||||
@ -1183,14 +1184,14 @@ class Generate:
|
||||
|
||||
def _transparency_check_and_warning(self, image, mask, force_outpaint=False):
|
||||
if not mask:
|
||||
print(
|
||||
">> Initial image has transparent areas. Will inpaint in these regions."
|
||||
logger.info(
|
||||
"Initial image has transparent areas. Will inpaint in these regions."
|
||||
)
|
||||
if (not force_outpaint) and self._check_for_erasure(image):
|
||||
print(
|
||||
">> WARNING: Colors underneath the transparent region seem to have been erased.\n",
|
||||
">> Inpainting will be suboptimal. Please preserve the colors when making\n",
|
||||
">> a transparency mask, or provide mask explicitly using --init_mask (-M).",
|
||||
if (not force_outpaint) and self._check_for_erasure(image):
|
||||
logger.info(
|
||||
"Colors underneath the transparent region seem to have been erased.\n" +
|
||||
"Inpainting will be suboptimal. Please preserve the colors when making\n" +
|
||||
"a transparency mask, or provide mask explicitly using --init_mask (-M)."
|
||||
)
|
||||
|
||||
def _squeeze_image(self, image):
|
||||
@ -1201,11 +1202,11 @@ class Generate:
|
||||
|
||||
def _fit_image(self, image, max_dimensions):
|
||||
w, h = max_dimensions
|
||||
print(f">> image will be resized to fit inside a box {w}x{h} in size.")
|
||||
logger.info(f"image will be resized to fit inside a box {w}x{h} in size.")
|
||||
# note that InitImageResizer does the multiple of 64 truncation internally
|
||||
image = InitImageResizer(image).resize(width=w, height=h)
|
||||
print(
|
||||
f">> after adjusting image dimensions to be multiples of 64, init image is {image.width}x{image.height}"
|
||||
logger.info(
|
||||
f"after adjusting image dimensions to be multiples of 64, init image is {image.width}x{image.height}"
|
||||
)
|
||||
return image
|
||||
|
||||
@ -1216,8 +1217,8 @@ class Generate:
|
||||
) # resize to integer multiple of 64
|
||||
if h != height or w != width:
|
||||
if log:
|
||||
print(
|
||||
f">> Provided width and height must be multiples of 64. Auto-resizing to {w}x{h}"
|
||||
logger.info(
|
||||
f"Provided width and height must be multiples of 64. Auto-resizing to {w}x{h}"
|
||||
)
|
||||
height = h
|
||||
width = w
|
||||
|
@ -25,6 +25,7 @@ from typing import Callable, List, Iterator, Optional, Type
|
||||
from dataclasses import dataclass, field
|
||||
from diffusers.schedulers import SchedulerMixin as Scheduler
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from ..image_util import configure_model_padding
|
||||
from ..util.util import rand_perlin_2d
|
||||
from ..safety_checker import SafetyChecker
|
||||
@ -372,7 +373,7 @@ class Generator:
|
||||
try:
|
||||
x_T = self.get_noise(width, height)
|
||||
except:
|
||||
print("** An error occurred while getting initial noise **")
|
||||
logger.error("An error occurred while getting initial noise")
|
||||
print(traceback.format_exc())
|
||||
|
||||
# Pass on the seed in case a layer beneath us needs to generate noise on its own.
|
||||
@ -607,7 +608,7 @@ class Generator:
|
||||
image = self.sample_to_image(sample)
|
||||
dirname = os.path.dirname(filepath) or "."
|
||||
if not os.path.exists(dirname):
|
||||
print(f"** creating directory {dirname}")
|
||||
logger.info(f"creating directory {dirname}")
|
||||
os.makedirs(dirname, exist_ok=True)
|
||||
image.save(filepath, "PNG")
|
||||
|
||||
|
@ -8,10 +8,11 @@ import torch
|
||||
from PIL import Image
|
||||
from tqdm import trange
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
|
||||
from .base import Generator
|
||||
from .img2img import Img2Img
|
||||
|
||||
|
||||
class Embiggen(Generator):
|
||||
def __init__(self, model, precision):
|
||||
super().__init__(model, precision)
|
||||
@ -72,22 +73,22 @@ class Embiggen(Generator):
|
||||
embiggen = [1.0] # If not specified, assume no scaling
|
||||
elif embiggen[0] < 0:
|
||||
embiggen[0] = 1.0
|
||||
print(
|
||||
">> Embiggen scaling factor cannot be negative, fell back to the default of 1.0 !"
|
||||
logger.warning(
|
||||
"Embiggen scaling factor cannot be negative, fell back to the default of 1.0 !"
|
||||
)
|
||||
if len(embiggen) < 2:
|
||||
embiggen.append(0.75)
|
||||
elif embiggen[1] > 1.0 or embiggen[1] < 0:
|
||||
embiggen[1] = 0.75
|
||||
print(
|
||||
">> Embiggen upscaling strength for ESRGAN must be between 0 and 1, fell back to the default of 0.75 !"
|
||||
logger.warning(
|
||||
"Embiggen upscaling strength for ESRGAN must be between 0 and 1, fell back to the default of 0.75 !"
|
||||
)
|
||||
if len(embiggen) < 3:
|
||||
embiggen.append(0.25)
|
||||
elif embiggen[2] < 0:
|
||||
embiggen[2] = 0.25
|
||||
print(
|
||||
">> Overlap size for Embiggen must be a positive ratio between 0 and 1 OR a number of pixels, fell back to the default of 0.25 !"
|
||||
logger.warning(
|
||||
"Overlap size for Embiggen must be a positive ratio between 0 and 1 OR a number of pixels, fell back to the default of 0.25 !"
|
||||
)
|
||||
|
||||
# Convert tiles from their user-freindly count-from-one to count-from-zero, because we need to do modulo math
|
||||
@ -97,8 +98,8 @@ class Embiggen(Generator):
|
||||
embiggen_tiles.sort()
|
||||
|
||||
if strength >= 0.5:
|
||||
print(
|
||||
f"* WARNING: Embiggen may produce mirror motifs if the strength (-f) is too high (currently {strength}). Try values between 0.35-0.45."
|
||||
logger.warning(
|
||||
f"Embiggen may produce mirror motifs if the strength (-f) is too high (currently {strength}). Try values between 0.35-0.45."
|
||||
)
|
||||
|
||||
# Prep img2img generator, since we wrap over it
|
||||
@ -121,8 +122,8 @@ class Embiggen(Generator):
|
||||
from ..restoration.realesrgan import ESRGAN
|
||||
|
||||
esrgan = ESRGAN()
|
||||
print(
|
||||
f">> ESRGAN upscaling init image prior to cutting with Embiggen with strength {embiggen[1]}"
|
||||
logger.info(
|
||||
f"ESRGAN upscaling init image prior to cutting with Embiggen with strength {embiggen[1]}"
|
||||
)
|
||||
if embiggen[0] > 2:
|
||||
initsuperimage = esrgan.process(
|
||||
@ -312,10 +313,10 @@ class Embiggen(Generator):
|
||||
def make_image():
|
||||
# Make main tiles -------------------------------------------------
|
||||
if embiggen_tiles:
|
||||
print(f">> Making {len(embiggen_tiles)} Embiggen tiles...")
|
||||
logger.info(f"Making {len(embiggen_tiles)} Embiggen tiles...")
|
||||
else:
|
||||
print(
|
||||
f">> Making {(emb_tiles_x * emb_tiles_y)} Embiggen tiles ({emb_tiles_x}x{emb_tiles_y})..."
|
||||
logger.info(
|
||||
f"Making {(emb_tiles_x * emb_tiles_y)} Embiggen tiles ({emb_tiles_x}x{emb_tiles_y})..."
|
||||
)
|
||||
|
||||
emb_tile_store = []
|
||||
@ -361,11 +362,11 @@ class Embiggen(Generator):
|
||||
# newinitimage.save(newinitimagepath)
|
||||
|
||||
if embiggen_tiles:
|
||||
print(
|
||||
logger.debug(
|
||||
f"Making tile #{tile + 1} ({embiggen_tiles.index(tile) + 1} of {len(embiggen_tiles)} requested)"
|
||||
)
|
||||
else:
|
||||
print(f"Starting {tile + 1} of {(emb_tiles_x * emb_tiles_y)} tiles")
|
||||
logger.debug(f"Starting {tile + 1} of {(emb_tiles_x * emb_tiles_y)} tiles")
|
||||
|
||||
# create a torch tensor from an Image
|
||||
newinitimage = np.array(newinitimage).astype(np.float32) / 255.0
|
||||
@ -547,8 +548,8 @@ class Embiggen(Generator):
|
||||
# Layer tile onto final image
|
||||
outputsuperimage.alpha_composite(intileimage, (left, top))
|
||||
else:
|
||||
print(
|
||||
"Error: could not find all Embiggen output tiles in memory? Something must have gone wrong with img2img generation."
|
||||
logger.error(
|
||||
"Could not find all Embiggen output tiles in memory? Something must have gone wrong with img2img generation."
|
||||
)
|
||||
|
||||
# after internal loops and patching up return Embiggen image
|
||||
|
@ -14,6 +14,8 @@ from ..stable_diffusion.diffusers_pipeline import StableDiffusionGeneratorPipeli
|
||||
from ..stable_diffusion.diffusers_pipeline import ConditioningData
|
||||
from ..stable_diffusion.diffusers_pipeline import trim_to_multiple_of
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
|
||||
class Txt2Img2Img(Generator):
|
||||
def __init__(self, model, precision):
|
||||
super().__init__(model, precision)
|
||||
@ -77,8 +79,8 @@ class Txt2Img2Img(Generator):
|
||||
# the message below is accurate.
|
||||
init_width = first_pass_latent_output.size()[3] * self.downsampling_factor
|
||||
init_height = first_pass_latent_output.size()[2] * self.downsampling_factor
|
||||
print(
|
||||
f"\n>> Interpolating from {init_width}x{init_height} to {width}x{height} using DDIM sampling"
|
||||
logger.info(
|
||||
f"Interpolating from {init_width}x{init_height} to {width}x{height} using DDIM sampling"
|
||||
)
|
||||
|
||||
# resizing
|
||||
|
@ -5,10 +5,9 @@ wraps the actual patchmatch object. It respects the global
|
||||
be suppressed or deferred
|
||||
"""
|
||||
import numpy as np
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from invokeai.backend.globals import Globals
|
||||
|
||||
|
||||
class PatchMatch:
|
||||
"""
|
||||
Thin class wrapper around the patchmatch function.
|
||||
@ -28,12 +27,12 @@ class PatchMatch:
|
||||
from patchmatch import patch_match as pm
|
||||
|
||||
if pm.patchmatch_available:
|
||||
print(">> Patchmatch initialized")
|
||||
logger.info("Patchmatch initialized")
|
||||
else:
|
||||
print(">> Patchmatch not loaded (nonfatal)")
|
||||
logger.info("Patchmatch not loaded (nonfatal)")
|
||||
self.patch_match = pm
|
||||
else:
|
||||
print(">> Patchmatch loading disabled")
|
||||
logger.info("Patchmatch loading disabled")
|
||||
self.tried_load = True
|
||||
|
||||
@classmethod
|
||||
|
@ -30,9 +30,9 @@ work fine.
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image, ImageOps
|
||||
from torchvision import transforms
|
||||
from transformers import AutoProcessor, CLIPSegForImageSegmentation
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from invokeai.backend.globals import global_cache_dir
|
||||
|
||||
CLIPSEG_MODEL = "CIDAS/clipseg-rd64-refined"
|
||||
@ -83,7 +83,7 @@ class Txt2Mask(object):
|
||||
"""
|
||||
|
||||
def __init__(self, device="cpu", refined=False):
|
||||
print(">> Initializing clipseg model for text to mask inference")
|
||||
logger.info("Initializing clipseg model for text to mask inference")
|
||||
|
||||
# BUG: we are not doing anything with the device option at this time
|
||||
self.device = device
|
||||
@ -101,18 +101,6 @@ class Txt2Mask(object):
|
||||
provided image and returns a SegmentedGrayscale object in which the brighter
|
||||
pixels indicate where the object is inferred to be.
|
||||
"""
|
||||
transform = transforms.Compose(
|
||||
[
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize(
|
||||
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
|
||||
),
|
||||
transforms.Resize(
|
||||
(CLIPSEG_SIZE, CLIPSEG_SIZE)
|
||||
), # must be multiple of 64...
|
||||
]
|
||||
)
|
||||
|
||||
if type(image) is str:
|
||||
image = Image.open(image).convert("RGB")
|
||||
|
||||
|
@ -25,6 +25,7 @@ from typing import Union
|
||||
import torch
|
||||
from safetensors.torch import load_file
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from invokeai.backend.globals import global_cache_dir, global_config_dir
|
||||
|
||||
from .model_manager import ModelManager, SDLegacyType
|
||||
@ -372,9 +373,9 @@ def convert_ldm_unet_checkpoint(checkpoint, config, path=None, extract_ema=False
|
||||
unet_key = "model.diffusion_model."
|
||||
# at least a 100 parameters have to start with `model_ema` in order for the checkpoint to be EMA
|
||||
if sum(k.startswith("model_ema") for k in keys) > 100:
|
||||
print(f" | Checkpoint {path} has both EMA and non-EMA weights.")
|
||||
logger.debug(f"Checkpoint {path} has both EMA and non-EMA weights.")
|
||||
if extract_ema:
|
||||
print(" | Extracting EMA weights (usually better for inference)")
|
||||
logger.debug("Extracting EMA weights (usually better for inference)")
|
||||
for key in keys:
|
||||
if key.startswith("model.diffusion_model"):
|
||||
flat_ema_key = "model_ema." + "".join(key.split(".")[1:])
|
||||
@ -392,8 +393,8 @@ def convert_ldm_unet_checkpoint(checkpoint, config, path=None, extract_ema=False
|
||||
key
|
||||
)
|
||||
else:
|
||||
print(
|
||||
" | Extracting only the non-EMA weights (usually better for fine-tuning)"
|
||||
logger.debug(
|
||||
"Extracting only the non-EMA weights (usually better for fine-tuning)"
|
||||
)
|
||||
|
||||
for key in keys:
|
||||
@ -1115,7 +1116,7 @@ def load_pipeline_from_original_stable_diffusion_ckpt(
|
||||
if "global_step" in checkpoint:
|
||||
global_step = checkpoint["global_step"]
|
||||
else:
|
||||
print(" | global_step key not found in model")
|
||||
logger.debug("global_step key not found in model")
|
||||
global_step = None
|
||||
|
||||
# sometimes there is a state_dict key and sometimes not
|
||||
@ -1229,15 +1230,15 @@ def load_pipeline_from_original_stable_diffusion_ckpt(
|
||||
# If a replacement VAE path was specified, we'll incorporate that into
|
||||
# the checkpoint model and then convert it
|
||||
if vae_path:
|
||||
print(f" | Converting VAE {vae_path}")
|
||||
logger.debug(f"Converting VAE {vae_path}")
|
||||
replace_checkpoint_vae(checkpoint,vae_path)
|
||||
# otherwise we use the original VAE, provided that
|
||||
# an externally loaded diffusers VAE was not passed
|
||||
elif not vae:
|
||||
print(" | Using checkpoint model's original VAE")
|
||||
logger.debug("Using checkpoint model's original VAE")
|
||||
|
||||
if vae:
|
||||
print(" | Using replacement diffusers VAE")
|
||||
logger.debug("Using replacement diffusers VAE")
|
||||
else: # convert the original or replacement VAE
|
||||
vae_config = create_vae_diffusers_config(
|
||||
original_config, image_size=image_size
|
||||
|
@ -18,12 +18,13 @@ import warnings
|
||||
from enum import Enum, auto
|
||||
from pathlib import Path
|
||||
from shutil import move, rmtree
|
||||
from typing import Any, Optional, Union, Callable
|
||||
from typing import Any, Optional, Union, Callable, types
|
||||
|
||||
import safetensors
|
||||
import safetensors.torch
|
||||
import torch
|
||||
import transformers
|
||||
import invokeai.backend.util.logging as logger
|
||||
from diffusers import (
|
||||
AutoencoderKL,
|
||||
UNet2DConditionModel,
|
||||
@ -75,6 +76,8 @@ class ModelManager(object):
|
||||
Model manager handles loading, caching, importing, deleting, converting, and editing models.
|
||||
"""
|
||||
|
||||
logger: types.ModuleType = logger
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: OmegaConf | Path,
|
||||
@ -83,6 +86,7 @@ class ModelManager(object):
|
||||
max_loaded_models=DEFAULT_MAX_MODELS,
|
||||
sequential_offload=False,
|
||||
embedding_path: Path = None,
|
||||
logger: types.ModuleType = logger,
|
||||
):
|
||||
"""
|
||||
Initialize with the path to the models.yaml config file or
|
||||
@ -104,6 +108,7 @@ class ModelManager(object):
|
||||
self.current_model = None
|
||||
self.sequential_offload = sequential_offload
|
||||
self.embedding_path = embedding_path
|
||||
self.logger = logger
|
||||
|
||||
def valid_model(self, model_name: str) -> bool:
|
||||
"""
|
||||
@ -132,8 +137,8 @@ class ModelManager(object):
|
||||
)
|
||||
|
||||
if not self.valid_model(model_name):
|
||||
print(
|
||||
f'** "{model_name}" is not a known model name. Please check your models.yaml file'
|
||||
self.logger.error(
|
||||
f'"{model_name}" is not a known model name. Please check your models.yaml file'
|
||||
)
|
||||
return self.current_model
|
||||
|
||||
@ -144,7 +149,7 @@ class ModelManager(object):
|
||||
|
||||
if model_name in self.models:
|
||||
requested_model = self.models[model_name]["model"]
|
||||
print(f">> Retrieving model {model_name} from system RAM cache")
|
||||
self.logger.info(f"Retrieving model {model_name} from system RAM cache")
|
||||
requested_model.ready()
|
||||
width = self.models[model_name]["width"]
|
||||
height = self.models[model_name]["height"]
|
||||
@ -379,7 +384,7 @@ class ModelManager(object):
|
||||
"""
|
||||
omega = self.config
|
||||
if model_name not in omega:
|
||||
print(f"** Unknown model {model_name}")
|
||||
self.logger.error(f"Unknown model {model_name}")
|
||||
return
|
||||
# save these for use in deletion later
|
||||
conf = omega[model_name]
|
||||
@ -392,13 +397,13 @@ class ModelManager(object):
|
||||
self.stack.remove(model_name)
|
||||
if delete_files:
|
||||
if weights:
|
||||
print(f"** Deleting file {weights}")
|
||||
self.logger.info(f"Deleting file {weights}")
|
||||
Path(weights).unlink(missing_ok=True)
|
||||
elif path:
|
||||
print(f"** Deleting directory {path}")
|
||||
self.logger.info(f"Deleting directory {path}")
|
||||
rmtree(path, ignore_errors=True)
|
||||
elif repo_id:
|
||||
print(f"** Deleting the cached model directory for {repo_id}")
|
||||
self.logger.info(f"Deleting the cached model directory for {repo_id}")
|
||||
self._delete_model_from_cache(repo_id)
|
||||
|
||||
def add_model(
|
||||
@ -439,7 +444,7 @@ class ModelManager(object):
|
||||
def _load_model(self, model_name: str):
|
||||
"""Load and initialize the model from configuration variables passed at object creation time"""
|
||||
if model_name not in self.config:
|
||||
print(
|
||||
self.logger.error(
|
||||
f'"{model_name}" is not a known model name. Please check your models.yaml file'
|
||||
)
|
||||
return
|
||||
@ -457,7 +462,7 @@ class ModelManager(object):
|
||||
model_format = mconfig.get("format", "ckpt")
|
||||
if model_format == "ckpt":
|
||||
weights = mconfig.weights
|
||||
print(f">> Loading {model_name} from {weights}")
|
||||
self.logger.info(f"Loading {model_name} from {weights}")
|
||||
model, width, height, model_hash = self._load_ckpt_model(
|
||||
model_name, mconfig
|
||||
)
|
||||
@ -473,13 +478,15 @@ class ModelManager(object):
|
||||
|
||||
# usage statistics
|
||||
toc = time.time()
|
||||
print(">> Model loaded in", "%4.2fs" % (toc - tic))
|
||||
self.logger.info("Model loaded in " + "%4.2fs" % (toc - tic))
|
||||
if self._has_cuda():
|
||||
print(
|
||||
">> Max VRAM used to load the model:",
|
||||
"%4.2fG" % (torch.cuda.max_memory_allocated() / 1e9),
|
||||
"\n>> Current VRAM usage:"
|
||||
"%4.2fG" % (torch.cuda.memory_allocated() / 1e9),
|
||||
self.logger.info(
|
||||
"Max VRAM used to load the model: "+
|
||||
"%4.2fG" % (torch.cuda.max_memory_allocated() / 1e9)
|
||||
)
|
||||
self.logger.info(
|
||||
"Current VRAM usage: "+
|
||||
"%4.2fG" % (torch.cuda.memory_allocated() / 1e9)
|
||||
)
|
||||
return model, width, height, model_hash
|
||||
|
||||
@ -487,11 +494,11 @@ class ModelManager(object):
|
||||
name_or_path = self.model_name_or_path(mconfig)
|
||||
using_fp16 = self.precision == "float16"
|
||||
|
||||
print(f">> Loading diffusers model from {name_or_path}")
|
||||
self.logger.info(f"Loading diffusers model from {name_or_path}")
|
||||
if using_fp16:
|
||||
print(" | Using faster float16 precision")
|
||||
self.logger.debug("Using faster float16 precision")
|
||||
else:
|
||||
print(" | Using more accurate float32 precision")
|
||||
self.logger.debug("Using more accurate float32 precision")
|
||||
|
||||
# TODO: scan weights maybe?
|
||||
pipeline_args: dict[str, Any] = dict(
|
||||
@ -523,8 +530,8 @@ class ModelManager(object):
|
||||
if str(e).startswith("fp16 is not a valid"):
|
||||
pass
|
||||
else:
|
||||
print(
|
||||
f"** An unexpected error occurred while downloading the model: {e})"
|
||||
self.logger.error(
|
||||
f"An unexpected error occurred while downloading the model: {e})"
|
||||
)
|
||||
if pipeline:
|
||||
break
|
||||
@ -542,7 +549,7 @@ class ModelManager(object):
|
||||
# square images???
|
||||
width = pipeline.unet.config.sample_size * pipeline.vae_scale_factor
|
||||
height = width
|
||||
print(f" | Default image dimensions = {width} x {height}")
|
||||
self.logger.debug(f"Default image dimensions = {width} x {height}")
|
||||
|
||||
return pipeline, width, height, model_hash
|
||||
|
||||
@ -559,14 +566,14 @@ class ModelManager(object):
|
||||
weights = os.path.normpath(os.path.join(Globals.root, weights))
|
||||
|
||||
# Convert to diffusers and return a diffusers pipeline
|
||||
print(f">> Converting legacy checkpoint {model_name} into a diffusers model...")
|
||||
self.logger.info(f"Converting legacy checkpoint {model_name} into a diffusers model...")
|
||||
|
||||
from . import load_pipeline_from_original_stable_diffusion_ckpt
|
||||
|
||||
try:
|
||||
if self.list_models()[self.current_model]["status"] == "active":
|
||||
self.offload_model(self.current_model)
|
||||
except Exception as e:
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
vae_path = None
|
||||
@ -624,7 +631,7 @@ class ModelManager(object):
|
||||
if model_name not in self.models:
|
||||
return
|
||||
|
||||
print(f">> Offloading {model_name} to CPU")
|
||||
self.logger.info(f"Offloading {model_name} to CPU")
|
||||
model = self.models[model_name]["model"]
|
||||
model.offload_all()
|
||||
self.current_model = None
|
||||
@ -640,30 +647,26 @@ class ModelManager(object):
|
||||
and option to exit if an infected file is identified.
|
||||
"""
|
||||
# scan model
|
||||
print(f" | Scanning Model: {model_name}")
|
||||
self.logger.debug(f"Scanning Model: {model_name}")
|
||||
scan_result = scan_file_path(checkpoint)
|
||||
if scan_result.infected_files != 0:
|
||||
if scan_result.infected_files == 1:
|
||||
print(f"\n### Issues Found In Model: {scan_result.issues_count}")
|
||||
print(
|
||||
"### WARNING: The model you are trying to load seems to be infected."
|
||||
)
|
||||
print("### For your safety, InvokeAI will not load this model.")
|
||||
print("### Please use checkpoints from trusted sources.")
|
||||
print("### Exiting InvokeAI")
|
||||
self.logger.critical(f"Issues Found In Model: {scan_result.issues_count}")
|
||||
self.logger.critical("The model you are trying to load seems to be infected.")
|
||||
self.logger.critical("For your safety, InvokeAI will not load this model.")
|
||||
self.logger.critical("Please use checkpoints from trusted sources.")
|
||||
self.logger.critical("Exiting InvokeAI")
|
||||
sys.exit()
|
||||
else:
|
||||
print(
|
||||
"\n### WARNING: InvokeAI was unable to scan the model you are using."
|
||||
)
|
||||
self.logger.warning("InvokeAI was unable to scan the model you are using.")
|
||||
model_safe_check_fail = ask_user(
|
||||
"Do you want to to continue loading the model?", ["y", "n"]
|
||||
)
|
||||
if model_safe_check_fail.lower() != "y":
|
||||
print("### Exiting InvokeAI")
|
||||
self.logger.critical("Exiting InvokeAI")
|
||||
sys.exit()
|
||||
else:
|
||||
print(" | Model scanned ok")
|
||||
self.logger.debug("Model scanned ok")
|
||||
|
||||
def import_diffuser_model(
|
||||
self,
|
||||
@ -780,26 +783,24 @@ class ModelManager(object):
|
||||
model_path: Path = None
|
||||
thing = path_url_or_repo # to save typing
|
||||
|
||||
print(f">> Probing {thing} for import")
|
||||
self.logger.info(f"Probing {thing} for import")
|
||||
|
||||
if thing.startswith(("http:", "https:", "ftp:")):
|
||||
print(f" | {thing} appears to be a URL")
|
||||
self.logger.info(f"{thing} appears to be a URL")
|
||||
model_path = self._resolve_path(
|
||||
thing, "models/ldm/stable-diffusion-v1"
|
||||
) # _resolve_path does a download if needed
|
||||
|
||||
elif Path(thing).is_file() and thing.endswith((".ckpt", ".safetensors")):
|
||||
if Path(thing).stem in ["model", "diffusion_pytorch_model"]:
|
||||
print(
|
||||
f" | {Path(thing).name} appears to be part of a diffusers model. Skipping import"
|
||||
)
|
||||
self.logger.debug(f"{Path(thing).name} appears to be part of a diffusers model. Skipping import")
|
||||
return
|
||||
else:
|
||||
print(f" | {thing} appears to be a checkpoint file on disk")
|
||||
self.logger.debug(f"{thing} appears to be a checkpoint file on disk")
|
||||
model_path = self._resolve_path(thing, "models/ldm/stable-diffusion-v1")
|
||||
|
||||
elif Path(thing).is_dir() and Path(thing, "model_index.json").exists():
|
||||
print(f" | {thing} appears to be a diffusers file on disk")
|
||||
self.logger.debug(f"{thing} appears to be a diffusers file on disk")
|
||||
model_name = self.import_diffuser_model(
|
||||
thing,
|
||||
vae=dict(repo_id="stabilityai/sd-vae-ft-mse"),
|
||||
@ -810,34 +811,30 @@ class ModelManager(object):
|
||||
|
||||
elif Path(thing).is_dir():
|
||||
if (Path(thing) / "model_index.json").exists():
|
||||
print(f" | {thing} appears to be a diffusers model.")
|
||||
self.logger.debug(f"{thing} appears to be a diffusers model.")
|
||||
model_name = self.import_diffuser_model(
|
||||
thing, commit_to_conf=commit_to_conf
|
||||
)
|
||||
else:
|
||||
print(
|
||||
f" |{thing} appears to be a directory. Will scan for models to import"
|
||||
)
|
||||
self.logger.debug(f"{thing} appears to be a directory. Will scan for models to import")
|
||||
for m in list(Path(thing).rglob("*.ckpt")) + list(
|
||||
Path(thing).rglob("*.safetensors")
|
||||
):
|
||||
if model_name := self.heuristic_import(
|
||||
str(m), commit_to_conf=commit_to_conf
|
||||
):
|
||||
print(f" >> {model_name} successfully imported")
|
||||
self.logger.info(f"{model_name} successfully imported")
|
||||
return model_name
|
||||
|
||||
elif re.match(r"^[\w.+-]+/[\w.+-]+$", thing):
|
||||
print(f" | {thing} appears to be a HuggingFace diffusers repo_id")
|
||||
self.logger.debug(f"{thing} appears to be a HuggingFace diffusers repo_id")
|
||||
model_name = self.import_diffuser_model(
|
||||
thing, commit_to_conf=commit_to_conf
|
||||
)
|
||||
pipeline, _, _, _ = self._load_diffusers_model(self.config[model_name])
|
||||
return model_name
|
||||
else:
|
||||
print(
|
||||
f"** {thing}: Unknown thing. Please provide a URL, file path, directory or HuggingFace repo_id"
|
||||
)
|
||||
self.logger.warning(f"{thing}: Unknown thing. Please provide a URL, file path, directory or HuggingFace repo_id")
|
||||
|
||||
# Model_path is set in the event of a legacy checkpoint file.
|
||||
# If not set, we're all done
|
||||
@ -845,7 +842,7 @@ class ModelManager(object):
|
||||
return
|
||||
|
||||
if model_path.stem in self.config: # already imported
|
||||
print(" | Already imported. Skipping")
|
||||
self.logger.debug("Already imported. Skipping")
|
||||
return model_path.stem
|
||||
|
||||
# another round of heuristics to guess the correct config file.
|
||||
@ -861,39 +858,39 @@ class ModelManager(object):
|
||||
# look for a like-named .yaml file in same directory
|
||||
if model_path.with_suffix(".yaml").exists():
|
||||
model_config_file = model_path.with_suffix(".yaml")
|
||||
print(f" | Using config file {model_config_file.name}")
|
||||
self.logger.debug(f"Using config file {model_config_file.name}")
|
||||
|
||||
else:
|
||||
model_type = self.probe_model_type(checkpoint)
|
||||
if model_type == SDLegacyType.V1:
|
||||
print(" | SD-v1 model detected")
|
||||
self.logger.debug("SD-v1 model detected")
|
||||
model_config_file = Path(
|
||||
Globals.root, "configs/stable-diffusion/v1-inference.yaml"
|
||||
)
|
||||
elif model_type == SDLegacyType.V1_INPAINT:
|
||||
print(" | SD-v1 inpainting model detected")
|
||||
self.logger.debug("SD-v1 inpainting model detected")
|
||||
model_config_file = Path(
|
||||
Globals.root,
|
||||
"configs/stable-diffusion/v1-inpainting-inference.yaml",
|
||||
)
|
||||
elif model_type == SDLegacyType.V2_v:
|
||||
print(" | SD-v2-v model detected")
|
||||
self.logger.debug("SD-v2-v model detected")
|
||||
model_config_file = Path(
|
||||
Globals.root, "configs/stable-diffusion/v2-inference-v.yaml"
|
||||
)
|
||||
elif model_type == SDLegacyType.V2_e:
|
||||
print(" | SD-v2-e model detected")
|
||||
self.logger.debug("SD-v2-e model detected")
|
||||
model_config_file = Path(
|
||||
Globals.root, "configs/stable-diffusion/v2-inference.yaml"
|
||||
)
|
||||
elif model_type == SDLegacyType.V2:
|
||||
print(
|
||||
f"** {thing} is a V2 checkpoint file, but its parameterization cannot be determined. Please provide configuration file path."
|
||||
self.logger.warning(
|
||||
f"{thing} is a V2 checkpoint file, but its parameterization cannot be determined. Please provide configuration file path."
|
||||
)
|
||||
return
|
||||
else:
|
||||
print(
|
||||
f"** {thing} is a legacy checkpoint file but not a known Stable Diffusion model. Please provide configuration file path."
|
||||
self.logger.warning(
|
||||
f"{thing} is a legacy checkpoint file but not a known Stable Diffusion model. Please provide configuration file path."
|
||||
)
|
||||
return
|
||||
|
||||
@ -909,7 +906,7 @@ class ModelManager(object):
|
||||
for suffix in ["pt", "ckpt", "safetensors"]:
|
||||
if (model_path.with_suffix(f".vae.{suffix}")).exists():
|
||||
vae_path = model_path.with_suffix(f".vae.{suffix}")
|
||||
print(f" | Using VAE file {vae_path.name}")
|
||||
self.logger.debug(f"Using VAE file {vae_path.name}")
|
||||
vae = None if vae_path else dict(repo_id="stabilityai/sd-vae-ft-mse")
|
||||
|
||||
diffuser_path = Path(
|
||||
@ -955,14 +952,14 @@ class ModelManager(object):
|
||||
from . import convert_ckpt_to_diffusers
|
||||
|
||||
if diffusers_path.exists():
|
||||
print(
|
||||
f"ERROR: The path {str(diffusers_path)} already exists. Please move or remove it and try again."
|
||||
self.logger.error(
|
||||
f"The path {str(diffusers_path)} already exists. Please move or remove it and try again."
|
||||
)
|
||||
return
|
||||
|
||||
model_name = model_name or diffusers_path.name
|
||||
model_description = model_description or f"Converted version of {model_name}"
|
||||
print(f" | Converting {model_name} to diffusers (30-60s)")
|
||||
self.logger.debug(f"Converting {model_name} to diffusers (30-60s)")
|
||||
try:
|
||||
# By passing the specified VAE to the conversion function, the autoencoder
|
||||
# will be built into the model rather than tacked on afterward via the config file
|
||||
@ -979,10 +976,10 @@ class ModelManager(object):
|
||||
vae_path=vae_path,
|
||||
scan_needed=scan_needed,
|
||||
)
|
||||
print(
|
||||
f" | Success. Converted model is now located at {str(diffusers_path)}"
|
||||
self.logger.debug(
|
||||
f"Success. Converted model is now located at {str(diffusers_path)}"
|
||||
)
|
||||
print(f" | Writing new config file entry for {model_name}")
|
||||
self.logger.debug(f"Writing new config file entry for {model_name}")
|
||||
new_config = dict(
|
||||
path=str(diffusers_path),
|
||||
description=model_description,
|
||||
@ -993,17 +990,17 @@ class ModelManager(object):
|
||||
self.add_model(model_name, new_config, True)
|
||||
if commit_to_conf:
|
||||
self.commit(commit_to_conf)
|
||||
print(" | Conversion succeeded")
|
||||
self.logger.debug("Conversion succeeded")
|
||||
except Exception as e:
|
||||
print(f"** Conversion failed: {str(e)}")
|
||||
print(
|
||||
"** If you are trying to convert an inpainting or 2.X model, please indicate the correct config file (e.g. v1-inpainting-inference.yaml)"
|
||||
self.logger.warning(f"Conversion failed: {str(e)}")
|
||||
self.logger.warning(
|
||||
"If you are trying to convert an inpainting or 2.X model, please indicate the correct config file (e.g. v1-inpainting-inference.yaml)"
|
||||
)
|
||||
|
||||
return model_name
|
||||
|
||||
def search_models(self, search_folder):
|
||||
print(f">> Finding Models In: {search_folder}")
|
||||
self.logger.info(f"Finding Models In: {search_folder}")
|
||||
models_folder_ckpt = Path(search_folder).glob("**/*.ckpt")
|
||||
models_folder_safetensors = Path(search_folder).glob("**/*.safetensors")
|
||||
|
||||
@ -1027,8 +1024,8 @@ class ModelManager(object):
|
||||
num_loaded_models = len(self.models)
|
||||
if num_loaded_models >= self.max_loaded_models:
|
||||
least_recent_model = self._pop_oldest_model()
|
||||
print(
|
||||
f">> Cache limit (max={self.max_loaded_models}) reached. Purging {least_recent_model}"
|
||||
self.logger.info(
|
||||
f"Cache limit (max={self.max_loaded_models}) reached. Purging {least_recent_model}"
|
||||
)
|
||||
if least_recent_model is not None:
|
||||
del self.models[least_recent_model]
|
||||
@ -1036,8 +1033,8 @@ class ModelManager(object):
|
||||
|
||||
def print_vram_usage(self) -> None:
|
||||
if self._has_cuda:
|
||||
print(
|
||||
">> Current VRAM usage: ",
|
||||
self.logger.info(
|
||||
"Current VRAM usage:"+
|
||||
"%4.2fG" % (torch.cuda.memory_allocated() / 1e9),
|
||||
)
|
||||
|
||||
@ -1126,10 +1123,10 @@ class ModelManager(object):
|
||||
dest = hub / model.stem
|
||||
if dest.exists() and not source.exists():
|
||||
continue
|
||||
print(f"** {source} => {dest}")
|
||||
cls.logger.info(f"{source} => {dest}")
|
||||
if source.exists():
|
||||
if dest.is_symlink():
|
||||
print(f"** Found symlink at {dest.name}. Not migrating.")
|
||||
logger.warning(f"Found symlink at {dest.name}. Not migrating.")
|
||||
elif dest.exists():
|
||||
if source.is_dir():
|
||||
rmtree(source)
|
||||
@ -1146,7 +1143,7 @@ class ModelManager(object):
|
||||
]
|
||||
for d in empty:
|
||||
os.rmdir(d)
|
||||
print("** Migration is done. Continuing...")
|
||||
cls.logger.info("Migration is done. Continuing...")
|
||||
|
||||
def _resolve_path(
|
||||
self, source: Union[str, Path], dest_directory: str
|
||||
@ -1189,15 +1186,15 @@ class ModelManager(object):
|
||||
|
||||
def _add_embeddings_to_model(self, model: StableDiffusionGeneratorPipeline):
|
||||
if self.embedding_path is not None:
|
||||
print(f">> Loading embeddings from {self.embedding_path}")
|
||||
self.logger.info(f"Loading embeddings from {self.embedding_path}")
|
||||
for root, _, files in os.walk(self.embedding_path):
|
||||
for name in files:
|
||||
ti_path = os.path.join(root, name)
|
||||
model.textual_inversion_manager.load_textual_inversion(
|
||||
ti_path, defer_injecting_tokens=True
|
||||
)
|
||||
print(
|
||||
f'>> Textual inversion triggers: {", ".join(sorted(model.textual_inversion_manager.get_all_trigger_strings()))}'
|
||||
self.logger.info(
|
||||
f'Textual inversion triggers: {", ".join(sorted(model.textual_inversion_manager.get_all_trigger_strings()))}'
|
||||
)
|
||||
|
||||
def _has_cuda(self) -> bool:
|
||||
@ -1219,7 +1216,7 @@ class ModelManager(object):
|
||||
with open(hashpath) as f:
|
||||
hash = f.read()
|
||||
return hash
|
||||
print(" | Calculating sha256 hash of model files")
|
||||
self.logger.debug("Calculating sha256 hash of model files")
|
||||
tic = time.time()
|
||||
sha = hashlib.sha256()
|
||||
count = 0
|
||||
@ -1231,7 +1228,7 @@ class ModelManager(object):
|
||||
sha.update(chunk)
|
||||
hash = sha.hexdigest()
|
||||
toc = time.time()
|
||||
print(f" | sha256 = {hash} ({count} files hashed in", "%4.2fs)" % (toc - tic))
|
||||
self.logger.debug(f"sha256 = {hash} ({count} files hashed in", "%4.2fs)" % (toc - tic))
|
||||
with open(hashpath, "w") as f:
|
||||
f.write(hash)
|
||||
return hash
|
||||
@ -1249,13 +1246,13 @@ class ModelManager(object):
|
||||
hash = f.read()
|
||||
return hash
|
||||
|
||||
print(" | Calculating sha256 hash of weights file")
|
||||
self.logger.debug("Calculating sha256 hash of weights file")
|
||||
tic = time.time()
|
||||
sha = hashlib.sha256()
|
||||
sha.update(data)
|
||||
hash = sha.hexdigest()
|
||||
toc = time.time()
|
||||
print(f">> sha256 = {hash}", "(%4.2fs)" % (toc - tic))
|
||||
self.logger.debug(f"sha256 = {hash} "+"(%4.2fs)" % (toc - tic))
|
||||
|
||||
with open(hashpath, "w") as f:
|
||||
f.write(hash)
|
||||
@ -1276,12 +1273,12 @@ class ModelManager(object):
|
||||
local_files_only=not Globals.internet_available,
|
||||
)
|
||||
|
||||
print(f" | Loading diffusers VAE from {name_or_path}")
|
||||
self.logger.debug(f"Loading diffusers VAE from {name_or_path}")
|
||||
if using_fp16:
|
||||
vae_args.update(torch_dtype=torch.float16)
|
||||
fp_args_list = [{"revision": "fp16"}, {}]
|
||||
else:
|
||||
print(" | Using more accurate float32 precision")
|
||||
self.logger.debug("Using more accurate float32 precision")
|
||||
fp_args_list = [{}]
|
||||
|
||||
vae = None
|
||||
@ -1305,12 +1302,12 @@ class ModelManager(object):
|
||||
break
|
||||
|
||||
if not vae and deferred_error:
|
||||
print(f"** Could not load VAE {name_or_path}: {str(deferred_error)}")
|
||||
self.logger.warning(f"Could not load VAE {name_or_path}: {str(deferred_error)}")
|
||||
|
||||
return vae
|
||||
|
||||
@staticmethod
|
||||
def _delete_model_from_cache(repo_id):
|
||||
@classmethod
|
||||
def _delete_model_from_cache(cls,repo_id):
|
||||
cache_info = scan_cache_dir(global_cache_dir("hub"))
|
||||
|
||||
# I'm sure there is a way to do this with comprehensions
|
||||
@ -1321,8 +1318,8 @@ class ModelManager(object):
|
||||
for revision in repo.revisions:
|
||||
hashes_to_delete.add(revision.commit_hash)
|
||||
strategy = cache_info.delete_revisions(*hashes_to_delete)
|
||||
print(
|
||||
f"** Deletion of this model is expected to free {strategy.expected_freed_size_str}"
|
||||
cls.logger.warning(
|
||||
f"Deletion of this model is expected to free {strategy.expected_freed_size_str}"
|
||||
)
|
||||
strategy.execute()
|
||||
|
||||
|
@ -18,6 +18,7 @@ from compel.prompt_parser import (
|
||||
PromptParser,
|
||||
)
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from invokeai.backend.globals import Globals
|
||||
|
||||
from ..stable_diffusion import InvokeAIDiffuserComponent
|
||||
@ -162,8 +163,8 @@ def log_tokenization(
|
||||
negative_prompt: Union[Blend, FlattenedPrompt],
|
||||
tokenizer,
|
||||
):
|
||||
print(f"\n>> [TOKENLOG] Parsed Prompt: {positive_prompt}")
|
||||
print(f"\n>> [TOKENLOG] Parsed Negative Prompt: {negative_prompt}")
|
||||
logger.info(f"[TOKENLOG] Parsed Prompt: {positive_prompt}")
|
||||
logger.info(f"[TOKENLOG] Parsed Negative Prompt: {negative_prompt}")
|
||||
|
||||
log_tokenization_for_prompt_object(positive_prompt, tokenizer)
|
||||
log_tokenization_for_prompt_object(
|
||||
@ -237,12 +238,12 @@ def log_tokenization_for_text(text, tokenizer, display_label=None, truncate_if_t
|
||||
usedTokens += 1
|
||||
|
||||
if usedTokens > 0:
|
||||
print(f'\n>> [TOKENLOG] Tokens {display_label or ""} ({usedTokens}):')
|
||||
print(f"{tokenized}\x1b[0m")
|
||||
logger.info(f'[TOKENLOG] Tokens {display_label or ""} ({usedTokens}):')
|
||||
logger.debug(f"{tokenized}\x1b[0m")
|
||||
|
||||
if discarded != "":
|
||||
print(f"\n>> [TOKENLOG] Tokens Discarded ({totalTokens - usedTokens}):")
|
||||
print(f"{discarded}\x1b[0m")
|
||||
logger.info(f"[TOKENLOG] Tokens Discarded ({totalTokens - usedTokens}):")
|
||||
logger.debug(f"{discarded}\x1b[0m")
|
||||
|
||||
|
||||
def try_parse_legacy_blend(text: str, skip_normalize: bool = False) -> Optional[Blend]:
|
||||
@ -295,8 +296,8 @@ def split_weighted_subprompts(text, skip_normalize=False) -> list:
|
||||
return parsed_prompts
|
||||
weight_sum = sum(map(lambda x: x[1], parsed_prompts))
|
||||
if weight_sum == 0:
|
||||
print(
|
||||
"* Warning: Subprompt weights add up to zero. Discarding and using even weights instead."
|
||||
logger.warning(
|
||||
"Subprompt weights add up to zero. Discarding and using even weights instead."
|
||||
)
|
||||
equal_weight = 1 / max(len(parsed_prompts), 1)
|
||||
return [(x[0], equal_weight) for x in parsed_prompts]
|
||||
|
@ -1,3 +1,5 @@
|
||||
import invokeai.backend.util.logging as logger
|
||||
|
||||
class Restoration:
|
||||
def __init__(self) -> None:
|
||||
pass
|
||||
@ -8,17 +10,17 @@ class Restoration:
|
||||
# Load GFPGAN
|
||||
gfpgan = self.load_gfpgan(gfpgan_model_path)
|
||||
if gfpgan.gfpgan_model_exists:
|
||||
print(">> GFPGAN Initialized")
|
||||
logger.info("GFPGAN Initialized")
|
||||
else:
|
||||
print(">> GFPGAN Disabled")
|
||||
logger.info("GFPGAN Disabled")
|
||||
gfpgan = None
|
||||
|
||||
# Load CodeFormer
|
||||
codeformer = self.load_codeformer()
|
||||
if codeformer.codeformer_model_exists:
|
||||
print(">> CodeFormer Initialized")
|
||||
logger.info("CodeFormer Initialized")
|
||||
else:
|
||||
print(">> CodeFormer Disabled")
|
||||
logger.info("CodeFormer Disabled")
|
||||
codeformer = None
|
||||
|
||||
return gfpgan, codeformer
|
||||
@ -39,5 +41,5 @@ class Restoration:
|
||||
from .realesrgan import ESRGAN
|
||||
|
||||
esrgan = ESRGAN(esrgan_bg_tile)
|
||||
print(">> ESRGAN Initialized")
|
||||
logger.info("ESRGAN Initialized")
|
||||
return esrgan
|
||||
|
@ -5,6 +5,7 @@ import warnings
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from ..globals import Globals
|
||||
|
||||
pretrained_model_url = (
|
||||
@ -23,12 +24,12 @@ class CodeFormerRestoration:
|
||||
self.codeformer_model_exists = os.path.isfile(self.model_path)
|
||||
|
||||
if not self.codeformer_model_exists:
|
||||
print("## NOT FOUND: CodeFormer model not found at " + self.model_path)
|
||||
logger.error("NOT FOUND: CodeFormer model not found at " + self.model_path)
|
||||
sys.path.append(os.path.abspath(codeformer_dir))
|
||||
|
||||
def process(self, image, strength, device, seed=None, fidelity=0.75):
|
||||
if seed is not None:
|
||||
print(f">> CodeFormer - Restoring Faces for image seed:{seed}")
|
||||
logger.info(f"CodeFormer - Restoring Faces for image seed:{seed}")
|
||||
with warnings.catch_warnings():
|
||||
warnings.filterwarnings("ignore", category=DeprecationWarning)
|
||||
warnings.filterwarnings("ignore", category=UserWarning)
|
||||
@ -97,7 +98,7 @@ class CodeFormerRestoration:
|
||||
del output
|
||||
torch.cuda.empty_cache()
|
||||
except RuntimeError as error:
|
||||
print(f"\tFailed inference for CodeFormer: {error}.")
|
||||
logger.error(f"Failed inference for CodeFormer: {error}.")
|
||||
restored_face = cropped_face
|
||||
|
||||
restored_face = restored_face.astype("uint8")
|
||||
|
@ -6,9 +6,9 @@ import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from invokeai.backend.globals import Globals
|
||||
|
||||
|
||||
class GFPGAN:
|
||||
def __init__(self, gfpgan_model_path="models/gfpgan/GFPGANv1.4.pth") -> None:
|
||||
if not os.path.isabs(gfpgan_model_path):
|
||||
@ -19,7 +19,7 @@ class GFPGAN:
|
||||
self.gfpgan_model_exists = os.path.isfile(self.model_path)
|
||||
|
||||
if not self.gfpgan_model_exists:
|
||||
print("## NOT FOUND: GFPGAN model not found at " + self.model_path)
|
||||
logger.error("NOT FOUND: GFPGAN model not found at " + self.model_path)
|
||||
return None
|
||||
|
||||
def model_exists(self):
|
||||
@ -27,7 +27,7 @@ class GFPGAN:
|
||||
|
||||
def process(self, image, strength: float, seed: str = None):
|
||||
if seed is not None:
|
||||
print(f">> GFPGAN - Restoring Faces for image seed:{seed}")
|
||||
logger.info(f"GFPGAN - Restoring Faces for image seed:{seed}")
|
||||
|
||||
with warnings.catch_warnings():
|
||||
warnings.filterwarnings("ignore", category=DeprecationWarning)
|
||||
@ -47,14 +47,14 @@ class GFPGAN:
|
||||
except Exception:
|
||||
import traceback
|
||||
|
||||
print(">> Error loading GFPGAN:", file=sys.stderr)
|
||||
logger.error("Error loading GFPGAN:", file=sys.stderr)
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
os.chdir(cwd)
|
||||
|
||||
if self.gfpgan is None:
|
||||
print(f">> WARNING: GFPGAN not initialized.")
|
||||
print(
|
||||
f">> Download https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth to {self.model_path}"
|
||||
logger.warning("WARNING: GFPGAN not initialized.")
|
||||
logger.warning(
|
||||
f"Download https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth to {self.model_path}"
|
||||
)
|
||||
|
||||
image = image.convert("RGB")
|
||||
|
@ -1,7 +1,7 @@
|
||||
import math
|
||||
|
||||
from PIL import Image
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
|
||||
class Outcrop(object):
|
||||
def __init__(
|
||||
@ -82,7 +82,7 @@ class Outcrop(object):
|
||||
pixels = extents[direction]
|
||||
# round pixels up to the nearest 64
|
||||
pixels = math.ceil(pixels / 64) * 64
|
||||
print(f">> extending image {direction}ward by {pixels} pixels")
|
||||
logger.info(f"extending image {direction}ward by {pixels} pixels")
|
||||
image = self._rotate(image, direction)
|
||||
image = self._extend(image, pixels)
|
||||
image = self._rotate(image, direction, reverse=True)
|
||||
|
@ -6,18 +6,13 @@ import torch
|
||||
from PIL import Image
|
||||
from PIL.Image import Image as ImageType
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from invokeai.backend.globals import Globals
|
||||
|
||||
|
||||
class ESRGAN:
|
||||
def __init__(self, bg_tile_size=400) -> None:
|
||||
self.bg_tile_size = bg_tile_size
|
||||
|
||||
if not torch.cuda.is_available(): # CPU or MPS on M1
|
||||
use_half_precision = False
|
||||
else:
|
||||
use_half_precision = True
|
||||
|
||||
def load_esrgan_bg_upsampler(self, denoise_str):
|
||||
if not torch.cuda.is_available(): # CPU or MPS on M1
|
||||
use_half_precision = False
|
||||
@ -74,16 +69,16 @@ class ESRGAN:
|
||||
import sys
|
||||
import traceback
|
||||
|
||||
print(">> Error loading Real-ESRGAN:", file=sys.stderr)
|
||||
logger.error("Error loading Real-ESRGAN:")
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
|
||||
if upsampler_scale == 0:
|
||||
print(">> Real-ESRGAN: Invalid scaling option. Image not upscaled.")
|
||||
logger.warning("Real-ESRGAN: Invalid scaling option. Image not upscaled.")
|
||||
return image
|
||||
|
||||
if seed is not None:
|
||||
print(
|
||||
f">> Real-ESRGAN Upscaling seed:{seed}, scale:{upsampler_scale}x, tile:{self.bg_tile_size}, denoise:{denoise_str}"
|
||||
logger.info(
|
||||
f"Real-ESRGAN Upscaling seed:{seed}, scale:{upsampler_scale}x, tile:{self.bg_tile_size}, denoise:{denoise_str}"
|
||||
)
|
||||
# ESRGAN outputs images with partial transparency if given RGBA images; convert to RGB
|
||||
image = image.convert("RGB")
|
||||
|
@ -14,6 +14,7 @@ from PIL import Image, ImageFilter
|
||||
from transformers import AutoFeatureExtractor
|
||||
|
||||
import invokeai.assets.web as web_assets
|
||||
import invokeai.backend.util.logging as logger
|
||||
from .globals import global_cache_dir
|
||||
from .util import CPU_DEVICE
|
||||
|
||||
@ -40,8 +41,8 @@ class SafetyChecker(object):
|
||||
cache_dir=safety_model_path,
|
||||
)
|
||||
except Exception:
|
||||
print(
|
||||
"** An error was encountered while installing the safety checker:"
|
||||
logger.error(
|
||||
"An error was encountered while installing the safety checker:"
|
||||
)
|
||||
print(traceback.format_exc())
|
||||
|
||||
@ -65,8 +66,8 @@ class SafetyChecker(object):
|
||||
)
|
||||
self.safety_checker.to(CPU_DEVICE) # offload
|
||||
if has_nsfw_concept[0]:
|
||||
print(
|
||||
"** An image with potential non-safe content has been detected. A blurred image will be returned. **"
|
||||
logger.warning(
|
||||
"An image with potential non-safe content has been detected. A blurred image will be returned."
|
||||
)
|
||||
return self.blur(image)
|
||||
else:
|
||||
|
@ -17,6 +17,7 @@ from huggingface_hub import (
|
||||
hf_hub_url,
|
||||
)
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from invokeai.backend.globals import Globals
|
||||
|
||||
|
||||
@ -66,11 +67,11 @@ class HuggingFaceConceptsLibrary(object):
|
||||
# when init, add all in dir. when not init, add only concepts added between init and now
|
||||
self.concept_list.extend(list(local_concepts_to_add))
|
||||
except Exception as e:
|
||||
print(
|
||||
f" ** WARNING: Hugging Face textual inversion concepts libraries could not be loaded. The error was {str(e)}."
|
||||
logger.warning(
|
||||
f"Hugging Face textual inversion concepts libraries could not be loaded. The error was {str(e)}."
|
||||
)
|
||||
print(
|
||||
" ** You may load .bin and .pt file(s) manually using the --embedding_directory argument."
|
||||
logger.warning(
|
||||
"You may load .bin and .pt file(s) manually using the --embedding_directory argument."
|
||||
)
|
||||
return self.concept_list
|
||||
else:
|
||||
@ -83,7 +84,7 @@ class HuggingFaceConceptsLibrary(object):
|
||||
be downloaded.
|
||||
"""
|
||||
if not concept_name in self.list_concepts():
|
||||
print(
|
||||
logger.warning(
|
||||
f"{concept_name} is not a local embedding trigger, nor is it a HuggingFace concept. Generation will continue without the concept."
|
||||
)
|
||||
return None
|
||||
@ -221,7 +222,7 @@ class HuggingFaceConceptsLibrary(object):
|
||||
if chunk == 0:
|
||||
bytes += total
|
||||
|
||||
print(f">> Downloading {repo_id}...", end="")
|
||||
logger.info(f"Downloading {repo_id}...", end="")
|
||||
try:
|
||||
for file in (
|
||||
"README.md",
|
||||
@ -235,22 +236,22 @@ class HuggingFaceConceptsLibrary(object):
|
||||
)
|
||||
except ul_error.HTTPError as e:
|
||||
if e.code == 404:
|
||||
print(
|
||||
logger.warning(
|
||||
f"Concept {concept_name} is not known to the Hugging Face library. Generation will continue without the concept."
|
||||
)
|
||||
else:
|
||||
print(
|
||||
logger.warning(
|
||||
f"Failed to download {concept_name}/{file} ({str(e)}. Generation will continue without the concept.)"
|
||||
)
|
||||
os.rmdir(dest)
|
||||
return False
|
||||
except ul_error.URLError as e:
|
||||
print(
|
||||
f"ERROR while downloading {concept_name}: {str(e)}. This may reflect a network issue. Generation will continue without the concept."
|
||||
logger.error(
|
||||
f"an error occurred while downloading {concept_name}: {str(e)}. This may reflect a network issue. Generation will continue without the concept."
|
||||
)
|
||||
os.rmdir(dest)
|
||||
return False
|
||||
print("...{:.2f}Kb".format(bytes / 1024))
|
||||
logger.info("...{:.2f}Kb".format(bytes / 1024))
|
||||
return succeeded
|
||||
|
||||
def _concept_id(self, concept_name: str) -> str:
|
||||
|
@ -13,9 +13,9 @@ from compel.cross_attention_control import Arguments
|
||||
from diffusers.models.attention_processor import AttentionProcessor
|
||||
from torch import nn
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from ...util import torch_dtype
|
||||
|
||||
|
||||
class CrossAttentionType(enum.Enum):
|
||||
SELF = 1
|
||||
TOKENS = 2
|
||||
@ -421,7 +421,7 @@ def get_cross_attention_modules(
|
||||
expected_count = 16
|
||||
if cross_attention_modules_in_model_count != expected_count:
|
||||
# non-fatal error but .swap() won't work.
|
||||
print(
|
||||
logger.error(
|
||||
f"Error! CrossAttentionControl found an unexpected number of {cross_attention_class} modules in the model "
|
||||
+ f"(expected {expected_count}, found {cross_attention_modules_in_model_count}). Either monkey-patching failed "
|
||||
+ "or some assumption has changed about the structure of the model itself. Please fix the monkey-patching, "
|
||||
|
@ -8,6 +8,7 @@ import torch
|
||||
from diffusers.models.attention_processor import AttentionProcessor
|
||||
from typing_extensions import TypeAlias
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from invokeai.backend.globals import Globals
|
||||
|
||||
from .cross_attention_control import (
|
||||
@ -466,10 +467,14 @@ class InvokeAIDiffuserComponent:
|
||||
outside = torch.count_nonzero(
|
||||
(latents < -current_threshold) | (latents > current_threshold)
|
||||
)
|
||||
print(
|
||||
f"\nThreshold: %={percent_through} threshold={current_threshold:.3f} (of {threshold:.3f})\n"
|
||||
f" | min, mean, max = {minval:.3f}, {mean:.3f}, {maxval:.3f}\tstd={std}\n"
|
||||
f" | {outside / latents.numel() * 100:.2f}% values outside threshold"
|
||||
logger.info(
|
||||
f"Threshold: %={percent_through} threshold={current_threshold:.3f} (of {threshold:.3f})"
|
||||
)
|
||||
logger.debug(
|
||||
f"min, mean, max = {minval:.3f}, {mean:.3f}, {maxval:.3f}\tstd={std}"
|
||||
)
|
||||
logger.debug(
|
||||
f"{outside / latents.numel() * 100:.2f}% values outside threshold"
|
||||
)
|
||||
|
||||
if maxval < current_threshold and minval > -current_threshold:
|
||||
@ -496,9 +501,11 @@ class InvokeAIDiffuserComponent:
|
||||
)
|
||||
|
||||
if self.debug_thresholding:
|
||||
print(
|
||||
f" | min, , max = {minval:.3f}, , {maxval:.3f}\t(scaled by {scale})\n"
|
||||
f" | {num_altered / latents.numel() * 100:.2f}% values altered"
|
||||
logger.debug(
|
||||
f"min, , max = {minval:.3f}, , {maxval:.3f}\t(scaled by {scale})"
|
||||
)
|
||||
logger.debug(
|
||||
f"{num_altered / latents.numel() * 100:.2f}% values altered"
|
||||
)
|
||||
|
||||
return latents
|
||||
|
@ -10,7 +10,7 @@ from torchvision.utils import make_grid
|
||||
|
||||
# import matplotlib.pyplot as plt # TODO: check with Dominik, also bsrgan.py vs bsrgan_light.py
|
||||
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
|
||||
|
||||
|
||||
@ -191,7 +191,7 @@ def mkdirs(paths):
|
||||
def mkdir_and_rename(path):
|
||||
if os.path.exists(path):
|
||||
new_name = path + "_archived_" + get_timestamp()
|
||||
print("Path already exists. Rename it to [{:s}]".format(new_name))
|
||||
logger.error("Path already exists. Rename it to [{:s}]".format(new_name))
|
||||
os.replace(path, new_name)
|
||||
os.makedirs(path)
|
||||
|
||||
|
@ -10,6 +10,7 @@ from compel.embeddings_provider import BaseTextualInversionManager
|
||||
from picklescan.scanner import scan_file_path
|
||||
from transformers import CLIPTextModel, CLIPTokenizer
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from .concepts_lib import HuggingFaceConceptsLibrary
|
||||
|
||||
@dataclass
|
||||
@ -59,12 +60,12 @@ class TextualInversionManager(BaseTextualInversionManager):
|
||||
or self.has_textual_inversion_for_trigger_string(concept_name)
|
||||
or self.has_textual_inversion_for_trigger_string(f"<{concept_name}>")
|
||||
): # in case a token with literal angle brackets encountered
|
||||
print(f">> Loaded local embedding for trigger {concept_name}")
|
||||
logger.info(f"Loaded local embedding for trigger {concept_name}")
|
||||
continue
|
||||
bin_file = self.hf_concepts_library.get_concept_model_path(concept_name)
|
||||
if not bin_file:
|
||||
continue
|
||||
print(f">> Loaded remote embedding for trigger {concept_name}")
|
||||
logger.info(f"Loaded remote embedding for trigger {concept_name}")
|
||||
self.load_textual_inversion(bin_file)
|
||||
self.hf_concepts_library.concepts_loaded[concept_name] = True
|
||||
|
||||
@ -85,8 +86,8 @@ class TextualInversionManager(BaseTextualInversionManager):
|
||||
embedding_list = self._parse_embedding(str(ckpt_path))
|
||||
for embedding_info in embedding_list:
|
||||
if (self.text_encoder.get_input_embeddings().weight.data[0].shape[0] != embedding_info.token_dim):
|
||||
print(
|
||||
f" ** Notice: {ckpt_path.parents[0].name}/{ckpt_path.name} was trained on a model with an incompatible token dimension: {self.text_encoder.get_input_embeddings().weight.data[0].shape[0]} vs {embedding_info.token_dim}."
|
||||
logger.warning(
|
||||
f"Notice: {ckpt_path.parents[0].name}/{ckpt_path.name} was trained on a model with an incompatible token dimension: {self.text_encoder.get_input_embeddings().weight.data[0].shape[0]} vs {embedding_info.token_dim}."
|
||||
)
|
||||
continue
|
||||
|
||||
@ -105,8 +106,8 @@ class TextualInversionManager(BaseTextualInversionManager):
|
||||
if ckpt_path.name == "learned_embeds.bin"
|
||||
else f"<{ckpt_path.stem}>"
|
||||
)
|
||||
print(
|
||||
f">> {sourcefile}: Trigger token '{trigger_str}' is already claimed by '{self.trigger_to_sourcefile[trigger_str]}'. Trigger this concept with {replacement_trigger_str}"
|
||||
logger.info(
|
||||
f"{sourcefile}: Trigger token '{trigger_str}' is already claimed by '{self.trigger_to_sourcefile[trigger_str]}'. Trigger this concept with {replacement_trigger_str}"
|
||||
)
|
||||
trigger_str = replacement_trigger_str
|
||||
|
||||
@ -120,8 +121,8 @@ class TextualInversionManager(BaseTextualInversionManager):
|
||||
self.trigger_to_sourcefile[trigger_str] = sourcefile
|
||||
|
||||
except ValueError as e:
|
||||
print(f' | Ignoring incompatible embedding {embedding_info["name"]}')
|
||||
print(f" | The error was {str(e)}")
|
||||
logger.debug(f'Ignoring incompatible embedding {embedding_info["name"]}')
|
||||
logger.debug(f"The error was {str(e)}")
|
||||
|
||||
def _add_textual_inversion(
|
||||
self, trigger_str, embedding, defer_injecting_tokens=False
|
||||
@ -133,8 +134,8 @@ class TextualInversionManager(BaseTextualInversionManager):
|
||||
:return: The token id for the added embedding, either existing or newly-added.
|
||||
"""
|
||||
if trigger_str in [ti.trigger_string for ti in self.textual_inversions]:
|
||||
print(
|
||||
f"** TextualInversionManager refusing to overwrite already-loaded token '{trigger_str}'"
|
||||
logger.warning(
|
||||
f"TextualInversionManager refusing to overwrite already-loaded token '{trigger_str}'"
|
||||
)
|
||||
return
|
||||
if not self.full_precision:
|
||||
@ -155,11 +156,11 @@ class TextualInversionManager(BaseTextualInversionManager):
|
||||
|
||||
except ValueError as e:
|
||||
if str(e).startswith("Warning"):
|
||||
print(f">> {str(e)}")
|
||||
logger.warning(f"{str(e)}")
|
||||
else:
|
||||
traceback.print_exc()
|
||||
print(
|
||||
f"** TextualInversionManager was unable to add a textual inversion with trigger string {trigger_str}."
|
||||
logger.error(
|
||||
f"TextualInversionManager was unable to add a textual inversion with trigger string {trigger_str}."
|
||||
)
|
||||
raise
|
||||
|
||||
@ -219,16 +220,16 @@ class TextualInversionManager(BaseTextualInversionManager):
|
||||
for ti in self.textual_inversions:
|
||||
if ti.trigger_token_id is None and ti.trigger_string in prompt_string:
|
||||
if ti.embedding_vector_length > 1:
|
||||
print(
|
||||
f">> Preparing tokens for textual inversion {ti.trigger_string}..."
|
||||
logger.info(
|
||||
f"Preparing tokens for textual inversion {ti.trigger_string}..."
|
||||
)
|
||||
try:
|
||||
self._inject_tokens_and_assign_embeddings(ti)
|
||||
except ValueError as e:
|
||||
print(
|
||||
f" | Ignoring incompatible embedding trigger {ti.trigger_string}"
|
||||
logger.debug(
|
||||
f"Ignoring incompatible embedding trigger {ti.trigger_string}"
|
||||
)
|
||||
print(f" | The error was {str(e)}")
|
||||
logger.debug(f"The error was {str(e)}")
|
||||
continue
|
||||
injected_token_ids.append(ti.trigger_token_id)
|
||||
injected_token_ids.extend(ti.pad_token_ids)
|
||||
@ -306,16 +307,16 @@ class TextualInversionManager(BaseTextualInversionManager):
|
||||
if suffix in [".pt",".ckpt",".bin"]:
|
||||
scan_result = scan_file_path(embedding_file)
|
||||
if scan_result.infected_files > 0:
|
||||
print(
|
||||
f" ** Security Issues Found in Model: {scan_result.issues_count}"
|
||||
logger.critical(
|
||||
f"Security Issues Found in Model: {scan_result.issues_count}"
|
||||
)
|
||||
print(" ** For your safety, InvokeAI will not load this embed.")
|
||||
logger.critical("For your safety, InvokeAI will not load this embed.")
|
||||
return list()
|
||||
ckpt = torch.load(embedding_file,map_location="cpu")
|
||||
else:
|
||||
ckpt = safetensors.torch.load_file(embedding_file)
|
||||
except Exception as e:
|
||||
print(f" ** Notice: unrecognized embedding file format: {embedding_file}: {e}")
|
||||
logger.warning(f"Notice: unrecognized embedding file format: {embedding_file}: {e}")
|
||||
return list()
|
||||
|
||||
# try to figure out what kind of embedding file it is and parse accordingly
|
||||
@ -334,7 +335,7 @@ class TextualInversionManager(BaseTextualInversionManager):
|
||||
|
||||
def _parse_embedding_v1(self, embedding_ckpt: dict, file_path: str)->List[EmbeddingInfo]:
|
||||
basename = Path(file_path).stem
|
||||
print(f' | Loading v1 embedding file: {basename}')
|
||||
logger.debug(f'Loading v1 embedding file: {basename}')
|
||||
|
||||
embeddings = list()
|
||||
token_counter = -1
|
||||
@ -342,7 +343,7 @@ class TextualInversionManager(BaseTextualInversionManager):
|
||||
if token_counter < 0:
|
||||
trigger = embedding_ckpt["name"]
|
||||
elif token_counter == 0:
|
||||
trigger = f'<basename>'
|
||||
trigger = '<basename>'
|
||||
else:
|
||||
trigger = f'<{basename}-{int(token_counter:=token_counter)}>'
|
||||
token_counter += 1
|
||||
@ -365,7 +366,7 @@ class TextualInversionManager(BaseTextualInversionManager):
|
||||
This handles embedding .pt file variant #2.
|
||||
"""
|
||||
basename = Path(file_path).stem
|
||||
print(f' | Loading v2 embedding file: {basename}')
|
||||
logger.debug(f'Loading v2 embedding file: {basename}')
|
||||
embeddings = list()
|
||||
|
||||
if isinstance(
|
||||
@ -384,7 +385,7 @@ class TextualInversionManager(BaseTextualInversionManager):
|
||||
)
|
||||
embeddings.append(embedding_info)
|
||||
else:
|
||||
print(f" ** {basename}: Unrecognized embedding format")
|
||||
logger.warning(f"{basename}: Unrecognized embedding format")
|
||||
|
||||
return embeddings
|
||||
|
||||
@ -393,7 +394,7 @@ class TextualInversionManager(BaseTextualInversionManager):
|
||||
Parse 'version 3' of the .pt textual inversion embedding files.
|
||||
"""
|
||||
basename = Path(file_path).stem
|
||||
print(f' | Loading v3 embedding file: {basename}')
|
||||
logger.debug(f'Loading v3 embedding file: {basename}')
|
||||
embedding = embedding_ckpt['emb_params']
|
||||
embedding_info = EmbeddingInfo(
|
||||
name = f'<{basename}>',
|
||||
@ -411,11 +412,11 @@ class TextualInversionManager(BaseTextualInversionManager):
|
||||
basename = Path(filepath).stem
|
||||
short_path = Path(filepath).parents[0].name+'/'+Path(filepath).name
|
||||
|
||||
print(f' | Loading v4 embedding file: {short_path}')
|
||||
logger.debug(f'Loading v4 embedding file: {short_path}')
|
||||
|
||||
embeddings = list()
|
||||
if list(embedding_ckpt.keys()) == 0:
|
||||
print(f" ** Invalid embeddings file: {short_path}")
|
||||
logger.warning(f"Invalid embeddings file: {short_path}")
|
||||
else:
|
||||
for token,embedding in embedding_ckpt.items():
|
||||
embedding_info = EmbeddingInfo(
|
||||
|
109
invokeai/backend/util/logging.py
Normal file
109
invokeai/backend/util/logging.py
Normal file
@ -0,0 +1,109 @@
|
||||
# Copyright (c) 2023 Lincoln D. Stein and The InvokeAI Development Team
|
||||
|
||||
"""invokeai.util.logging
|
||||
|
||||
Logging class for InvokeAI that produces console messages that follow
|
||||
the conventions established in InvokeAI 1.X through 2.X.
|
||||
|
||||
|
||||
One way to use it:
|
||||
|
||||
from invokeai.backend.util.logging import InvokeAILogger
|
||||
|
||||
logger = InvokeAILogger.getLogger(__name__)
|
||||
logger.critical('this is critical')
|
||||
logger.error('this is an error')
|
||||
logger.warning('this is a warning')
|
||||
logger.info('this is info')
|
||||
logger.debug('this is debugging')
|
||||
|
||||
Console messages:
|
||||
### this is critical
|
||||
*** this is an error ***
|
||||
** this is a warning
|
||||
>> this is info
|
||||
| this is debugging
|
||||
|
||||
Another way:
|
||||
import invokeai.backend.util.logging as ialog
|
||||
ialogger.debug('this is a debugging message')
|
||||
"""
|
||||
import logging
|
||||
|
||||
# module level functions
|
||||
def debug(msg, *args, **kwargs):
|
||||
InvokeAILogger.getLogger().debug(msg, *args, **kwargs)
|
||||
|
||||
def info(msg, *args, **kwargs):
|
||||
InvokeAILogger.getLogger().info(msg, *args, **kwargs)
|
||||
|
||||
def warning(msg, *args, **kwargs):
|
||||
InvokeAILogger.getLogger().warning(msg, *args, **kwargs)
|
||||
|
||||
def error(msg, *args, **kwargs):
|
||||
InvokeAILogger.getLogger().error(msg, *args, **kwargs)
|
||||
|
||||
def critical(msg, *args, **kwargs):
|
||||
InvokeAILogger.getLogger().critical(msg, *args, **kwargs)
|
||||
|
||||
def log(level, msg, *args, **kwargs):
|
||||
InvokeAILogger.getLogger().log(level, msg, *args, **kwargs)
|
||||
|
||||
def disable(level=logging.CRITICAL):
|
||||
InvokeAILogger.getLogger().disable(level)
|
||||
|
||||
def basicConfig(**kwargs):
|
||||
InvokeAILogger.getLogger().basicConfig(**kwargs)
|
||||
|
||||
def getLogger(name: str=None)->logging.Logger:
|
||||
return InvokeAILogger.getLogger(name)
|
||||
|
||||
class InvokeAILogFormatter(logging.Formatter):
|
||||
'''
|
||||
Repurposed from:
|
||||
https://stackoverflow.com/questions/14844970/modifying-logging-message-format-based-on-message-logging-level-in-python3
|
||||
'''
|
||||
crit_fmt = "### %(msg)s"
|
||||
err_fmt = "*** %(msg)s"
|
||||
warn_fmt = "** %(msg)s"
|
||||
info_fmt = ">> %(msg)s"
|
||||
dbg_fmt = " | %(msg)s"
|
||||
|
||||
def __init__(self):
|
||||
super().__init__(fmt="%(levelno)d: %(msg)s", datefmt=None, style='%')
|
||||
|
||||
def format(self, record):
|
||||
# Remember the format used when the logging module
|
||||
# was installed (in the event that this formatter is
|
||||
# used with the vanilla logging module.
|
||||
format_orig = self._style._fmt
|
||||
if record.levelno == logging.DEBUG:
|
||||
self._style._fmt = InvokeAILogFormatter.dbg_fmt
|
||||
if record.levelno == logging.INFO:
|
||||
self._style._fmt = InvokeAILogFormatter.info_fmt
|
||||
if record.levelno == logging.WARNING:
|
||||
self._style._fmt = InvokeAILogFormatter.warn_fmt
|
||||
if record.levelno == logging.ERROR:
|
||||
self._style._fmt = InvokeAILogFormatter.err_fmt
|
||||
if record.levelno == logging.CRITICAL:
|
||||
self._style._fmt = InvokeAILogFormatter.crit_fmt
|
||||
|
||||
# parent class does the work
|
||||
result = super().format(record)
|
||||
self._style._fmt = format_orig
|
||||
return result
|
||||
|
||||
class InvokeAILogger(object):
|
||||
loggers = dict()
|
||||
|
||||
@classmethod
|
||||
def getLogger(self, name:str='invokeai')->logging.Logger:
|
||||
if name not in self.loggers:
|
||||
logger = logging.getLogger(name)
|
||||
logger.setLevel(logging.DEBUG)
|
||||
ch = logging.StreamHandler()
|
||||
fmt = InvokeAILogFormatter()
|
||||
ch.setFormatter(fmt)
|
||||
logger.addHandler(ch)
|
||||
self.loggers[name] = logger
|
||||
return self.loggers[name]
|
@ -18,6 +18,7 @@ import torch
|
||||
from PIL import Image, ImageDraw, ImageFont
|
||||
from tqdm import tqdm
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from .devices import torch_dtype
|
||||
|
||||
|
||||
@ -38,7 +39,7 @@ def log_txt_as_img(wh, xc, size=10):
|
||||
try:
|
||||
draw.text((0, 0), lines, fill="black", font=font)
|
||||
except UnicodeEncodeError:
|
||||
print("Cant encode string for logging. Skipping.")
|
||||
logger.warning("Cant encode string for logging. Skipping.")
|
||||
|
||||
txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0
|
||||
txts.append(txt)
|
||||
@ -80,8 +81,8 @@ def mean_flat(tensor):
|
||||
def count_params(model, verbose=False):
|
||||
total_params = sum(p.numel() for p in model.parameters())
|
||||
if verbose:
|
||||
print(
|
||||
f" | {model.__class__.__name__} has {total_params * 1.e-6:.2f} M params."
|
||||
logger.debug(
|
||||
f"{model.__class__.__name__} has {total_params * 1.e-6:.2f} M params."
|
||||
)
|
||||
return total_params
|
||||
|
||||
@ -132,8 +133,8 @@ def parallel_data_prefetch(
|
||||
raise ValueError("list expected but function got ndarray.")
|
||||
elif isinstance(data, abc.Iterable):
|
||||
if isinstance(data, dict):
|
||||
print(
|
||||
'WARNING:"data" argument passed to parallel_data_prefetch is a dict: Using only its values and disregarding keys.'
|
||||
logger.warning(
|
||||
'"data" argument passed to parallel_data_prefetch is a dict: Using only its values and disregarding keys.'
|
||||
)
|
||||
data = list(data.values())
|
||||
if target_data_type == "ndarray":
|
||||
@ -175,7 +176,7 @@ def parallel_data_prefetch(
|
||||
processes += [p]
|
||||
|
||||
# start processes
|
||||
print("Start prefetching...")
|
||||
logger.info("Start prefetching...")
|
||||
import time
|
||||
|
||||
start = time.time()
|
||||
@ -194,7 +195,7 @@ def parallel_data_prefetch(
|
||||
gather_res[res[0]] = res[1]
|
||||
|
||||
except Exception as e:
|
||||
print("Exception: ", e)
|
||||
logger.error("Exception: ", e)
|
||||
for p in processes:
|
||||
p.terminate()
|
||||
|
||||
@ -202,7 +203,7 @@ def parallel_data_prefetch(
|
||||
finally:
|
||||
for p in processes:
|
||||
p.join()
|
||||
print(f"Prefetching complete. [{time.time() - start} sec.]")
|
||||
logger.info(f"Prefetching complete. [{time.time() - start} sec.]")
|
||||
|
||||
if target_data_type == "ndarray":
|
||||
if not isinstance(gather_res[0], np.ndarray):
|
||||
@ -318,23 +319,23 @@ def download_with_resume(url: str, dest: Path, access_token: str = None) -> Path
|
||||
resp = requests.get(url, headers=header, stream=True) # new request with range
|
||||
|
||||
if exist_size > content_length:
|
||||
print("* corrupt existing file found. re-downloading")
|
||||
logger.warning("corrupt existing file found. re-downloading")
|
||||
os.remove(dest)
|
||||
exist_size = 0
|
||||
|
||||
if resp.status_code == 416 or exist_size == content_length:
|
||||
print(f"* {dest}: complete file found. Skipping.")
|
||||
logger.warning(f"{dest}: complete file found. Skipping.")
|
||||
return dest
|
||||
elif resp.status_code == 206 or exist_size > 0:
|
||||
print(f"* {dest}: partial file found. Resuming...")
|
||||
logger.warning(f"{dest}: partial file found. Resuming...")
|
||||
elif resp.status_code != 200:
|
||||
print(f"** An error occurred during downloading {dest}: {resp.reason}")
|
||||
logger.error(f"An error occurred during downloading {dest}: {resp.reason}")
|
||||
else:
|
||||
print(f"* {dest}: Downloading...")
|
||||
logger.error(f"{dest}: Downloading...")
|
||||
|
||||
try:
|
||||
if content_length < 2000:
|
||||
print(f"*** ERROR DOWNLOADING {url}: {resp.text}")
|
||||
logger.error(f"ERROR DOWNLOADING {url}: {resp.text}")
|
||||
return None
|
||||
|
||||
with open(dest, open_mode) as file, tqdm(
|
||||
@ -349,7 +350,7 @@ def download_with_resume(url: str, dest: Path, access_token: str = None) -> Path
|
||||
size = file.write(data)
|
||||
bar.update(size)
|
||||
except Exception as e:
|
||||
print(f"An error occurred while downloading {dest}: {str(e)}")
|
||||
logger.error(f"An error occurred while downloading {dest}: {str(e)}")
|
||||
return None
|
||||
|
||||
return dest
|
||||
|
@ -19,6 +19,7 @@ from PIL import Image
|
||||
from PIL.Image import Image as ImageType
|
||||
from werkzeug.utils import secure_filename
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
import invokeai.frontend.web.dist as frontend
|
||||
|
||||
from .. import Generate
|
||||
@ -213,7 +214,7 @@ class InvokeAIWebServer:
|
||||
self.load_socketio_listeners(self.socketio)
|
||||
|
||||
if args.gui:
|
||||
print(">> Launching Invoke AI GUI")
|
||||
logger.info("Launching Invoke AI GUI")
|
||||
try:
|
||||
from flaskwebgui import FlaskUI
|
||||
|
||||
@ -231,17 +232,17 @@ class InvokeAIWebServer:
|
||||
sys.exit(0)
|
||||
else:
|
||||
useSSL = args.certfile or args.keyfile
|
||||
print(">> Started Invoke AI Web Server")
|
||||
logger.info("Started Invoke AI Web Server")
|
||||
if self.host == "0.0.0.0":
|
||||
print(
|
||||
logger.info(
|
||||
f"Point your browser at http{'s' if useSSL else ''}://localhost:{self.port} or use the host's DNS name or IP address."
|
||||
)
|
||||
else:
|
||||
print(
|
||||
">> Default host address now 127.0.0.1 (localhost). Use --host 0.0.0.0 to bind any address."
|
||||
logger.info(
|
||||
"Default host address now 127.0.0.1 (localhost). Use --host 0.0.0.0 to bind any address."
|
||||
)
|
||||
print(
|
||||
f">> Point your browser at http{'s' if useSSL else ''}://{self.host}:{self.port}"
|
||||
logger.info(
|
||||
f"Point your browser at http{'s' if useSSL else ''}://{self.host}:{self.port}"
|
||||
)
|
||||
if not useSSL:
|
||||
self.socketio.run(app=self.app, host=self.host, port=self.port)
|
||||
@ -273,7 +274,7 @@ class InvokeAIWebServer:
|
||||
# path for thumbnail images
|
||||
self.thumbnail_image_path = os.path.join(self.result_path, "thumbnails/")
|
||||
# txt log
|
||||
self.log_path = os.path.join(self.result_path, "invoke_log.txt")
|
||||
self.log_path = os.path.join(self.result_path, "invoke_logger.txt")
|
||||
# make all output paths
|
||||
[
|
||||
os.makedirs(path, exist_ok=True)
|
||||
@ -290,7 +291,7 @@ class InvokeAIWebServer:
|
||||
def load_socketio_listeners(self, socketio):
|
||||
@socketio.on("requestSystemConfig")
|
||||
def handle_request_capabilities():
|
||||
print(">> System config requested")
|
||||
logger.info("System config requested")
|
||||
config = self.get_system_config()
|
||||
config["model_list"] = self.generate.model_manager.list_models()
|
||||
config["infill_methods"] = infill_methods()
|
||||
@ -330,7 +331,7 @@ class InvokeAIWebServer:
|
||||
if model_name in current_model_list:
|
||||
update = True
|
||||
|
||||
print(f">> Adding New Model: {model_name}")
|
||||
logger.info(f"Adding New Model: {model_name}")
|
||||
|
||||
self.generate.model_manager.add_model(
|
||||
model_name=model_name,
|
||||
@ -348,14 +349,14 @@ class InvokeAIWebServer:
|
||||
"update": update,
|
||||
},
|
||||
)
|
||||
print(f">> New Model Added: {model_name}")
|
||||
logger.info(f"New Model Added: {model_name}")
|
||||
except Exception as e:
|
||||
self.handle_exceptions(e)
|
||||
|
||||
@socketio.on("deleteModel")
|
||||
def handle_delete_model(model_name: str):
|
||||
try:
|
||||
print(f">> Deleting Model: {model_name}")
|
||||
logger.info(f"Deleting Model: {model_name}")
|
||||
self.generate.model_manager.del_model(model_name)
|
||||
self.generate.model_manager.commit(opt.conf)
|
||||
updated_model_list = self.generate.model_manager.list_models()
|
||||
@ -366,14 +367,14 @@ class InvokeAIWebServer:
|
||||
"model_list": updated_model_list,
|
||||
},
|
||||
)
|
||||
print(f">> Model Deleted: {model_name}")
|
||||
logger.info(f"Model Deleted: {model_name}")
|
||||
except Exception as e:
|
||||
self.handle_exceptions(e)
|
||||
|
||||
@socketio.on("requestModelChange")
|
||||
def handle_set_model(model_name: str):
|
||||
try:
|
||||
print(f">> Model change requested: {model_name}")
|
||||
logger.info(f"Model change requested: {model_name}")
|
||||
model = self.generate.set_model(model_name)
|
||||
model_list = self.generate.model_manager.list_models()
|
||||
if model is None:
|
||||
@ -454,7 +455,7 @@ class InvokeAIWebServer:
|
||||
"update": True,
|
||||
},
|
||||
)
|
||||
print(f">> Model Converted: {model_name}")
|
||||
logger.info(f"Model Converted: {model_name}")
|
||||
except Exception as e:
|
||||
self.handle_exceptions(e)
|
||||
|
||||
@ -490,7 +491,7 @@ class InvokeAIWebServer:
|
||||
if vae := self.generate.model_manager.config[models_to_merge[0]].get(
|
||||
"vae", None
|
||||
):
|
||||
print(f">> Using configured VAE assigned to {models_to_merge[0]}")
|
||||
logger.info(f"Using configured VAE assigned to {models_to_merge[0]}")
|
||||
merged_model_config.update(vae=vae)
|
||||
|
||||
self.generate.model_manager.import_diffuser_model(
|
||||
@ -507,8 +508,8 @@ class InvokeAIWebServer:
|
||||
"update": True,
|
||||
},
|
||||
)
|
||||
print(f">> Models Merged: {models_to_merge}")
|
||||
print(f">> New Model Added: {model_merge_info['merged_model_name']}")
|
||||
logger.info(f"Models Merged: {models_to_merge}")
|
||||
logger.info(f"New Model Added: {model_merge_info['merged_model_name']}")
|
||||
except Exception as e:
|
||||
self.handle_exceptions(e)
|
||||
|
||||
@ -698,7 +699,7 @@ class InvokeAIWebServer:
|
||||
}
|
||||
)
|
||||
except Exception as e:
|
||||
print(f">> Unable to load {path}")
|
||||
logger.info(f"Unable to load {path}")
|
||||
socketio.emit(
|
||||
"error", {"message": f"Unable to load {path}: {str(e)}"}
|
||||
)
|
||||
@ -735,9 +736,9 @@ class InvokeAIWebServer:
|
||||
printable_parameters["init_mask"][:64] + "..."
|
||||
)
|
||||
|
||||
print(f"\n>> Image Generation Parameters:\n\n{printable_parameters}\n")
|
||||
print(f">> ESRGAN Parameters: {esrgan_parameters}")
|
||||
print(f">> Facetool Parameters: {facetool_parameters}")
|
||||
logger.info(f"Image Generation Parameters:\n\n{printable_parameters}\n")
|
||||
logger.info(f"ESRGAN Parameters: {esrgan_parameters}")
|
||||
logger.info(f"Facetool Parameters: {facetool_parameters}")
|
||||
|
||||
self.generate_images(
|
||||
generation_parameters,
|
||||
@ -750,8 +751,8 @@ class InvokeAIWebServer:
|
||||
@socketio.on("runPostprocessing")
|
||||
def handle_run_postprocessing(original_image, postprocessing_parameters):
|
||||
try:
|
||||
print(
|
||||
f'>> Postprocessing requested for "{original_image["url"]}": {postprocessing_parameters}'
|
||||
logger.info(
|
||||
f'Postprocessing requested for "{original_image["url"]}": {postprocessing_parameters}'
|
||||
)
|
||||
|
||||
progress = Progress()
|
||||
@ -861,14 +862,14 @@ class InvokeAIWebServer:
|
||||
|
||||
@socketio.on("cancel")
|
||||
def handle_cancel():
|
||||
print(">> Cancel processing requested")
|
||||
logger.info("Cancel processing requested")
|
||||
self.canceled.set()
|
||||
|
||||
# TODO: I think this needs a safety mechanism.
|
||||
@socketio.on("deleteImage")
|
||||
def handle_delete_image(url, thumbnail, uuid, category):
|
||||
try:
|
||||
print(f'>> Delete requested "{url}"')
|
||||
logger.info(f'Delete requested "{url}"')
|
||||
from send2trash import send2trash
|
||||
|
||||
path = self.get_image_path_from_url(url)
|
||||
@ -1263,7 +1264,7 @@ class InvokeAIWebServer:
|
||||
image, os.path.basename(path), self.thumbnail_image_path
|
||||
)
|
||||
|
||||
print(f'\n\n>> Image generated: "{path}"\n')
|
||||
logger.info(f'Image generated: "{path}"\n')
|
||||
self.write_log_message(f'[Generated] "{path}": {command}')
|
||||
|
||||
if progress.total_iterations > progress.current_iteration:
|
||||
@ -1329,7 +1330,7 @@ class InvokeAIWebServer:
|
||||
except Exception as e:
|
||||
# Clear the CUDA cache on an exception
|
||||
self.empty_cuda_cache()
|
||||
print(e)
|
||||
logger.error(e)
|
||||
self.handle_exceptions(e)
|
||||
|
||||
def empty_cuda_cache(self):
|
||||
|
@ -16,6 +16,7 @@ if sys.platform == "darwin":
|
||||
import pyparsing # type: ignore
|
||||
|
||||
import invokeai.version as invokeai
|
||||
import invokeai.backend.util.logging as logger
|
||||
|
||||
from ...backend import Generate, ModelManager
|
||||
from ...backend.args import Args, dream_cmd_from_png, metadata_dumps, metadata_from_png
|
||||
@ -69,7 +70,7 @@ def main():
|
||||
# run any post-install patches needed
|
||||
run_patches()
|
||||
|
||||
print(f">> Internet connectivity is {Globals.internet_available}")
|
||||
logger.info(f"Internet connectivity is {Globals.internet_available}")
|
||||
|
||||
if not args.conf:
|
||||
config_file = os.path.join(Globals.root, "configs", "models.yaml")
|
||||
@ -78,8 +79,8 @@ def main():
|
||||
opt, FileNotFoundError(f"The file {config_file} could not be found.")
|
||||
)
|
||||
|
||||
print(f">> {invokeai.__app_name__}, version {invokeai.__version__}")
|
||||
print(f'>> InvokeAI runtime directory is "{Globals.root}"')
|
||||
logger.info(f"{invokeai.__app_name__}, version {invokeai.__version__}")
|
||||
logger.info(f'InvokeAI runtime directory is "{Globals.root}"')
|
||||
|
||||
# loading here to avoid long delays on startup
|
||||
# these two lines prevent a horrible warning message from appearing
|
||||
@ -121,7 +122,7 @@ def main():
|
||||
else:
|
||||
raise FileNotFoundError(f"{opt.infile} not found.")
|
||||
except (FileNotFoundError, IOError) as e:
|
||||
print(f"{e}. Aborting.")
|
||||
logger.critical('Aborted',exc_info=True)
|
||||
sys.exit(-1)
|
||||
|
||||
# creating a Generate object:
|
||||
@ -142,12 +143,12 @@ def main():
|
||||
)
|
||||
except (FileNotFoundError, TypeError, AssertionError) as e:
|
||||
report_model_error(opt, e)
|
||||
except (IOError, KeyError) as e:
|
||||
print(f"{e}. Aborting.")
|
||||
except (IOError, KeyError):
|
||||
logger.critical("Aborted",exc_info=True)
|
||||
sys.exit(-1)
|
||||
|
||||
if opt.seamless:
|
||||
print(">> changed to seamless tiling mode")
|
||||
logger.info("Changed to seamless tiling mode")
|
||||
|
||||
# preload the model
|
||||
try:
|
||||
@ -180,9 +181,7 @@ def main():
|
||||
f'\nGoodbye!\nYou can start InvokeAI again by running the "invoke.bat" (or "invoke.sh") script from {Globals.root}'
|
||||
)
|
||||
except Exception:
|
||||
print(">> An error occurred:")
|
||||
traceback.print_exc()
|
||||
|
||||
logger.error("An error occurred",exc_info=True)
|
||||
|
||||
# TODO: main_loop() has gotten busy. Needs to be refactored.
|
||||
def main_loop(gen, opt):
|
||||
@ -248,7 +247,7 @@ def main_loop(gen, opt):
|
||||
if not opt.prompt:
|
||||
oldargs = metadata_from_png(opt.init_img)
|
||||
opt.prompt = oldargs.prompt
|
||||
print(f'>> Retrieved old prompt "{opt.prompt}" from {opt.init_img}')
|
||||
logger.info(f'Retrieved old prompt "{opt.prompt}" from {opt.init_img}')
|
||||
except (OSError, AttributeError, KeyError):
|
||||
pass
|
||||
|
||||
@ -265,9 +264,9 @@ def main_loop(gen, opt):
|
||||
if opt.init_img is not None and re.match("^-\\d+$", opt.init_img):
|
||||
try:
|
||||
opt.init_img = last_results[int(opt.init_img)][0]
|
||||
print(f">> Reusing previous image {opt.init_img}")
|
||||
logger.info(f"Reusing previous image {opt.init_img}")
|
||||
except IndexError:
|
||||
print(f">> No previous initial image at position {opt.init_img} found")
|
||||
logger.info(f"No previous initial image at position {opt.init_img} found")
|
||||
opt.init_img = None
|
||||
continue
|
||||
|
||||
@ -288,9 +287,9 @@ def main_loop(gen, opt):
|
||||
if opt.seed is not None and opt.seed < 0 and operation != "postprocess":
|
||||
try:
|
||||
opt.seed = last_results[opt.seed][1]
|
||||
print(f">> Reusing previous seed {opt.seed}")
|
||||
logger.info(f"Reusing previous seed {opt.seed}")
|
||||
except IndexError:
|
||||
print(f">> No previous seed at position {opt.seed} found")
|
||||
logger.info(f"No previous seed at position {opt.seed} found")
|
||||
opt.seed = None
|
||||
continue
|
||||
|
||||
@ -309,7 +308,7 @@ def main_loop(gen, opt):
|
||||
subdir = subdir[: (path_max - 39 - len(os.path.abspath(opt.outdir)))]
|
||||
current_outdir = os.path.join(opt.outdir, subdir)
|
||||
|
||||
print('Writing files to directory: "' + current_outdir + '"')
|
||||
logger.info('Writing files to directory: "' + current_outdir + '"')
|
||||
|
||||
# make sure the output directory exists
|
||||
if not os.path.exists(current_outdir):
|
||||
@ -438,15 +437,14 @@ def main_loop(gen, opt):
|
||||
catch_interrupts=catch_ctrl_c,
|
||||
**vars(opt),
|
||||
)
|
||||
except (PromptParser.ParsingException, pyparsing.ParseException) as e:
|
||||
print("** An error occurred while processing your prompt **")
|
||||
print(f"** {str(e)} **")
|
||||
except (PromptParser.ParsingException, pyparsing.ParseException):
|
||||
logger.error("An error occurred while processing your prompt",exc_info=True)
|
||||
elif operation == "postprocess":
|
||||
print(f">> fixing {opt.prompt}")
|
||||
logger.info(f"fixing {opt.prompt}")
|
||||
opt.last_operation = do_postprocess(gen, opt, image_writer)
|
||||
|
||||
elif operation == "mask":
|
||||
print(f">> generating masks from {opt.prompt}")
|
||||
logger.info(f"generating masks from {opt.prompt}")
|
||||
do_textmask(gen, opt, image_writer)
|
||||
|
||||
if opt.grid and len(grid_images) > 0:
|
||||
@ -469,12 +467,12 @@ def main_loop(gen, opt):
|
||||
)
|
||||
results = [[path, formatted_dream_prompt]]
|
||||
|
||||
except AssertionError as e:
|
||||
print(e)
|
||||
except AssertionError:
|
||||
logger.error(e)
|
||||
continue
|
||||
|
||||
except OSError as e:
|
||||
print(e)
|
||||
logger.error(e)
|
||||
continue
|
||||
|
||||
print("Outputs:")
|
||||
@ -513,7 +511,7 @@ def do_command(command: str, gen, opt: Args, completer) -> tuple:
|
||||
gen.set_model(model_name)
|
||||
add_embedding_terms(gen, completer)
|
||||
except KeyError as e:
|
||||
print(str(e))
|
||||
logger.error(e)
|
||||
except Exception as e:
|
||||
report_model_error(opt, e)
|
||||
completer.add_history(command)
|
||||
@ -527,8 +525,8 @@ def do_command(command: str, gen, opt: Args, completer) -> tuple:
|
||||
elif command.startswith("!import"):
|
||||
path = shlex.split(command)
|
||||
if len(path) < 2:
|
||||
print(
|
||||
"** please provide (1) a URL to a .ckpt file to import; (2) a local path to a .ckpt file; or (3) a diffusers repository id in the form stabilityai/stable-diffusion-2-1"
|
||||
logger.warning(
|
||||
"please provide (1) a URL to a .ckpt file to import; (2) a local path to a .ckpt file; or (3) a diffusers repository id in the form stabilityai/stable-diffusion-2-1"
|
||||
)
|
||||
else:
|
||||
try:
|
||||
@ -541,7 +539,7 @@ def do_command(command: str, gen, opt: Args, completer) -> tuple:
|
||||
elif command.startswith(("!convert", "!optimize")):
|
||||
path = shlex.split(command)
|
||||
if len(path) < 2:
|
||||
print("** please provide the path to a .ckpt or .safetensors model")
|
||||
logger.warning("please provide the path to a .ckpt or .safetensors model")
|
||||
else:
|
||||
try:
|
||||
convert_model(path[1], gen, opt, completer)
|
||||
@ -553,7 +551,7 @@ def do_command(command: str, gen, opt: Args, completer) -> tuple:
|
||||
elif command.startswith("!edit"):
|
||||
path = shlex.split(command)
|
||||
if len(path) < 2:
|
||||
print("** please provide the name of a model")
|
||||
logger.warning("please provide the name of a model")
|
||||
else:
|
||||
edit_model(path[1], gen, opt, completer)
|
||||
completer.add_history(command)
|
||||
@ -562,7 +560,7 @@ def do_command(command: str, gen, opt: Args, completer) -> tuple:
|
||||
elif command.startswith("!del"):
|
||||
path = shlex.split(command)
|
||||
if len(path) < 2:
|
||||
print("** please provide the name of a model")
|
||||
logger.warning("please provide the name of a model")
|
||||
else:
|
||||
del_config(path[1], gen, opt, completer)
|
||||
completer.add_history(command)
|
||||
@ -642,8 +640,8 @@ def import_model(model_path: str, gen, opt, completer):
|
||||
try:
|
||||
default_name = url_attachment_name(model_path)
|
||||
default_name = Path(default_name).stem
|
||||
except Exception as e:
|
||||
print(f"** URL: {str(e)}")
|
||||
except Exception:
|
||||
logger.warning(f"A problem occurred while assigning the name of the downloaded model",exc_info=True)
|
||||
model_name, model_desc = _get_model_name_and_desc(
|
||||
gen.model_manager,
|
||||
completer,
|
||||
@ -664,11 +662,11 @@ def import_model(model_path: str, gen, opt, completer):
|
||||
model_config_file=config_file,
|
||||
)
|
||||
if not imported_name:
|
||||
print("** Aborting import.")
|
||||
logger.error("Aborting import.")
|
||||
return
|
||||
|
||||
if not _verify_load(imported_name, gen):
|
||||
print("** model failed to load. Discarding configuration entry")
|
||||
logger.error("model failed to load. Discarding configuration entry")
|
||||
gen.model_manager.del_model(imported_name)
|
||||
return
|
||||
if click.confirm("Make this the default model?", default=False):
|
||||
@ -676,7 +674,7 @@ def import_model(model_path: str, gen, opt, completer):
|
||||
|
||||
gen.model_manager.commit(opt.conf)
|
||||
completer.update_models(gen.model_manager.list_models())
|
||||
print(f">> {imported_name} successfully installed")
|
||||
logger.info(f"{imported_name} successfully installed")
|
||||
|
||||
def _pick_configuration_file(completer)->Path:
|
||||
print(
|
||||
@ -720,21 +718,21 @@ Please select the type of this model:
|
||||
return choice
|
||||
|
||||
def _verify_load(model_name: str, gen) -> bool:
|
||||
print(">> Verifying that new model loads...")
|
||||
logger.info("Verifying that new model loads...")
|
||||
current_model = gen.model_name
|
||||
try:
|
||||
if not gen.set_model(model_name):
|
||||
return
|
||||
except Exception as e:
|
||||
print(f"** model failed to load: {str(e)}")
|
||||
print(
|
||||
logger.warning(f"model failed to load: {str(e)}")
|
||||
logger.warning(
|
||||
"** note that importing 2.X checkpoints is not supported. Please use !convert_model instead."
|
||||
)
|
||||
return False
|
||||
if click.confirm("Keep model loaded?", default=True):
|
||||
gen.set_model(model_name)
|
||||
else:
|
||||
print(">> Restoring previous model")
|
||||
logger.info("Restoring previous model")
|
||||
gen.set_model(current_model)
|
||||
return True
|
||||
|
||||
@ -757,7 +755,7 @@ def convert_model(model_name_or_path: Union[Path, str], gen, opt, completer):
|
||||
ckpt_path = None
|
||||
original_config_file = None
|
||||
if model_name_or_path == gen.model_name:
|
||||
print("** Can't convert the active model. !switch to another model first. **")
|
||||
logger.warning("Can't convert the active model. !switch to another model first. **")
|
||||
return
|
||||
elif model_info := manager.model_info(model_name_or_path):
|
||||
if "weights" in model_info:
|
||||
@ -767,7 +765,7 @@ def convert_model(model_name_or_path: Union[Path, str], gen, opt, completer):
|
||||
model_description = model_info["description"]
|
||||
vae_path = model_info.get("vae")
|
||||
else:
|
||||
print(f"** {model_name_or_path} is not a legacy .ckpt weights file")
|
||||
logger.warning(f"{model_name_or_path} is not a legacy .ckpt weights file")
|
||||
return
|
||||
model_name = manager.convert_and_import(
|
||||
ckpt_path,
|
||||
@ -788,16 +786,16 @@ def convert_model(model_name_or_path: Union[Path, str], gen, opt, completer):
|
||||
manager.commit(opt.conf)
|
||||
if click.confirm(f"Delete the original .ckpt file at {ckpt_path}?", default=False):
|
||||
ckpt_path.unlink(missing_ok=True)
|
||||
print(f"{ckpt_path} deleted")
|
||||
logger.warning(f"{ckpt_path} deleted")
|
||||
|
||||
|
||||
def del_config(model_name: str, gen, opt, completer):
|
||||
current_model = gen.model_name
|
||||
if model_name == current_model:
|
||||
print("** Can't delete active model. !switch to another model first. **")
|
||||
logger.warning("Can't delete active model. !switch to another model first. **")
|
||||
return
|
||||
if model_name not in gen.model_manager.config:
|
||||
print(f"** Unknown model {model_name}")
|
||||
logger.warning(f"Unknown model {model_name}")
|
||||
return
|
||||
|
||||
if not click.confirm(
|
||||
@ -810,17 +808,17 @@ def del_config(model_name: str, gen, opt, completer):
|
||||
)
|
||||
gen.model_manager.del_model(model_name, delete_files=delete_completely)
|
||||
gen.model_manager.commit(opt.conf)
|
||||
print(f"** {model_name} deleted")
|
||||
logger.warning(f"{model_name} deleted")
|
||||
completer.update_models(gen.model_manager.list_models())
|
||||
|
||||
|
||||
def edit_model(model_name: str, gen, opt, completer):
|
||||
manager = gen.model_manager
|
||||
if not (info := manager.model_info(model_name)):
|
||||
print(f"** Unknown model {model_name}")
|
||||
logger.warning(f"** Unknown model {model_name}")
|
||||
return
|
||||
|
||||
print(f"\n>> Editing model {model_name} from configuration file {opt.conf}")
|
||||
print()
|
||||
logger.info(f"Editing model {model_name} from configuration file {opt.conf}")
|
||||
new_name = _get_model_name(manager.list_models(), completer, model_name)
|
||||
|
||||
for attribute in info.keys():
|
||||
@ -858,7 +856,7 @@ def edit_model(model_name: str, gen, opt, completer):
|
||||
manager.set_default_model(new_name)
|
||||
manager.commit(opt.conf)
|
||||
completer.update_models(manager.list_models())
|
||||
print(">> Model successfully updated")
|
||||
logger.info("Model successfully updated")
|
||||
|
||||
|
||||
def _get_model_name(existing_names, completer, default_name: str = "") -> str:
|
||||
@ -869,11 +867,11 @@ def _get_model_name(existing_names, completer, default_name: str = "") -> str:
|
||||
if len(model_name) == 0:
|
||||
model_name = default_name
|
||||
if not re.match("^[\w._+:/-]+$", model_name):
|
||||
print(
|
||||
'** model name must contain only words, digits and the characters "._+:/-" **'
|
||||
logger.warning(
|
||||
'model name must contain only words, digits and the characters "._+:/-" **'
|
||||
)
|
||||
elif model_name != default_name and model_name in existing_names:
|
||||
print(f"** the name {model_name} is already in use. Pick another.")
|
||||
logger.warning(f"the name {model_name} is already in use. Pick another.")
|
||||
else:
|
||||
done = True
|
||||
return model_name
|
||||
@ -940,11 +938,10 @@ def do_postprocess(gen, opt, callback):
|
||||
opt=opt,
|
||||
)
|
||||
except OSError:
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
print(f"** {file_path}: file could not be read")
|
||||
logger.error(f"{file_path}: file could not be read",exc_info=True)
|
||||
return
|
||||
except (KeyError, AttributeError):
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
logger.error(f"an error occurred while applying the {tool} postprocessor",exc_info=True)
|
||||
return
|
||||
return opt.last_operation
|
||||
|
||||
@ -999,13 +996,13 @@ def prepare_image_metadata(
|
||||
try:
|
||||
filename = opt.fnformat.format(**wildcards)
|
||||
except KeyError as e:
|
||||
print(
|
||||
f"** The filename format contains an unknown key '{e.args[0]}'. Will use {{prefix}}.{{seed}}.png' instead"
|
||||
logger.error(
|
||||
f"The filename format contains an unknown key '{e.args[0]}'. Will use {{prefix}}.{{seed}}.png' instead"
|
||||
)
|
||||
filename = f"{prefix}.{seed}.png"
|
||||
except IndexError:
|
||||
print(
|
||||
"** The filename format is broken or complete. Will use '{prefix}.{seed}.png' instead"
|
||||
logger.error(
|
||||
"The filename format is broken or complete. Will use '{prefix}.{seed}.png' instead"
|
||||
)
|
||||
filename = f"{prefix}.{seed}.png"
|
||||
|
||||
@ -1094,14 +1091,14 @@ def split_variations(variations_string) -> list:
|
||||
for part in variations_string.split(","):
|
||||
seed_and_weight = part.split(":")
|
||||
if len(seed_and_weight) != 2:
|
||||
print(f'** Could not parse with_variation part "{part}"')
|
||||
logger.warning(f'Could not parse with_variation part "{part}"')
|
||||
broken = True
|
||||
break
|
||||
try:
|
||||
seed = int(seed_and_weight[0])
|
||||
weight = float(seed_and_weight[1])
|
||||
except ValueError:
|
||||
print(f'** Could not parse with_variation part "{part}"')
|
||||
logger.warning(f'Could not parse with_variation part "{part}"')
|
||||
broken = True
|
||||
break
|
||||
parts.append([seed, weight])
|
||||
@ -1125,23 +1122,23 @@ def load_face_restoration(opt):
|
||||
opt.gfpgan_model_path
|
||||
)
|
||||
else:
|
||||
print(">> Face restoration disabled")
|
||||
logger.info("Face restoration disabled")
|
||||
if opt.esrgan:
|
||||
esrgan = restoration.load_esrgan(opt.esrgan_bg_tile)
|
||||
else:
|
||||
print(">> Upscaling disabled")
|
||||
logger.info("Upscaling disabled")
|
||||
else:
|
||||
print(">> Face restoration and upscaling disabled")
|
||||
logger.info("Face restoration and upscaling disabled")
|
||||
except (ModuleNotFoundError, ImportError):
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
print(">> You may need to install the ESRGAN and/or GFPGAN modules")
|
||||
logger.info("You may need to install the ESRGAN and/or GFPGAN modules")
|
||||
return gfpgan, codeformer, esrgan
|
||||
|
||||
|
||||
def make_step_callback(gen, opt, prefix):
|
||||
destination = os.path.join(opt.outdir, "intermediates", prefix)
|
||||
os.makedirs(destination, exist_ok=True)
|
||||
print(f">> Intermediate images will be written into {destination}")
|
||||
logger.info(f"Intermediate images will be written into {destination}")
|
||||
|
||||
def callback(state: PipelineIntermediateState):
|
||||
latents = state.latents
|
||||
@ -1183,21 +1180,20 @@ def retrieve_dream_command(opt, command, completer):
|
||||
try:
|
||||
cmd = dream_cmd_from_png(path)
|
||||
except OSError:
|
||||
print(f"## {tokens[0]}: file could not be read")
|
||||
logger.error(f"{tokens[0]}: file could not be read")
|
||||
except (KeyError, AttributeError, IndexError):
|
||||
print(f"## {tokens[0]}: file has no metadata")
|
||||
logger.error(f"{tokens[0]}: file has no metadata")
|
||||
except:
|
||||
print(f"## {tokens[0]}: file could not be processed")
|
||||
logger.error(f"{tokens[0]}: file could not be processed")
|
||||
if len(cmd) > 0:
|
||||
completer.set_line(cmd)
|
||||
|
||||
|
||||
def write_commands(opt, file_path: str, outfilepath: str):
|
||||
dir, basename = os.path.split(file_path)
|
||||
try:
|
||||
paths = sorted(list(Path(dir).glob(basename)))
|
||||
except ValueError:
|
||||
print(f'## "{basename}": unacceptable pattern')
|
||||
logger.error(f'"{basename}": unacceptable pattern')
|
||||
return
|
||||
|
||||
commands = []
|
||||
@ -1206,9 +1202,9 @@ def write_commands(opt, file_path: str, outfilepath: str):
|
||||
try:
|
||||
cmd = dream_cmd_from_png(path)
|
||||
except (KeyError, AttributeError, IndexError):
|
||||
print(f"## {path}: file has no metadata")
|
||||
logger.error(f"{path}: file has no metadata")
|
||||
except:
|
||||
print(f"## {path}: file could not be processed")
|
||||
logger.error(f"{path}: file could not be processed")
|
||||
if cmd:
|
||||
commands.append(f"# {path}")
|
||||
commands.append(cmd)
|
||||
@ -1218,18 +1214,18 @@ def write_commands(opt, file_path: str, outfilepath: str):
|
||||
outfilepath = os.path.join(opt.outdir, basename)
|
||||
with open(outfilepath, "w", encoding="utf-8") as f:
|
||||
f.write("\n".join(commands))
|
||||
print(f">> File {outfilepath} with commands created")
|
||||
logger.info(f"File {outfilepath} with commands created")
|
||||
|
||||
|
||||
def report_model_error(opt: Namespace, e: Exception):
|
||||
print(f'** An error occurred while attempting to initialize the model: "{str(e)}"')
|
||||
print(
|
||||
"** This can be caused by a missing or corrupted models file, and can sometimes be fixed by (re)installing the models."
|
||||
logger.warning(f'An error occurred while attempting to initialize the model: "{str(e)}"')
|
||||
logger.warning(
|
||||
"This can be caused by a missing or corrupted models file, and can sometimes be fixed by (re)installing the models."
|
||||
)
|
||||
yes_to_all = os.environ.get("INVOKE_MODEL_RECONFIGURE")
|
||||
if yes_to_all:
|
||||
print(
|
||||
"** Reconfiguration is being forced by environment variable INVOKE_MODEL_RECONFIGURE"
|
||||
logger.warning(
|
||||
"Reconfiguration is being forced by environment variable INVOKE_MODEL_RECONFIGURE"
|
||||
)
|
||||
else:
|
||||
if not click.confirm(
|
||||
@ -1238,7 +1234,7 @@ def report_model_error(opt: Namespace, e: Exception):
|
||||
):
|
||||
return
|
||||
|
||||
print("invokeai-configure is launching....\n")
|
||||
logger.info("invokeai-configure is launching....\n")
|
||||
|
||||
# Match arguments that were set on the CLI
|
||||
# only the arguments accepted by the configuration script are parsed
|
||||
@ -1255,7 +1251,7 @@ def report_model_error(opt: Namespace, e: Exception):
|
||||
from ..install import invokeai_configure
|
||||
|
||||
invokeai_configure()
|
||||
print("** InvokeAI will now restart")
|
||||
logger.warning("InvokeAI will now restart")
|
||||
sys.argv = previous_args
|
||||
main() # would rather do a os.exec(), but doesn't exist?
|
||||
sys.exit(0)
|
||||
|
@ -22,6 +22,7 @@ import torch
|
||||
from npyscreen import widget
|
||||
from omegaconf import OmegaConf
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from invokeai.backend.globals import Globals, global_config_dir
|
||||
|
||||
from ...backend.config.model_install_backend import (
|
||||
@ -455,8 +456,8 @@ def main():
|
||||
Globals.root = os.path.expanduser(get_root(opt.root) or "")
|
||||
|
||||
if not global_config_dir().exists():
|
||||
print(
|
||||
">> Your InvokeAI root directory is not set up. Calling invokeai-configure."
|
||||
logger.info(
|
||||
"Your InvokeAI root directory is not set up. Calling invokeai-configure."
|
||||
)
|
||||
from invokeai.frontend.install import invokeai_configure
|
||||
|
||||
@ -466,18 +467,18 @@ def main():
|
||||
try:
|
||||
select_and_download_models(opt)
|
||||
except AssertionError as e:
|
||||
print(str(e))
|
||||
logger.error(e)
|
||||
sys.exit(-1)
|
||||
except KeyboardInterrupt:
|
||||
print("\nGoodbye! Come back soon.")
|
||||
logger.info("Goodbye! Come back soon.")
|
||||
except widget.NotEnoughSpaceForWidget as e:
|
||||
if str(e).startswith("Height of 1 allocated"):
|
||||
print(
|
||||
"** Insufficient vertical space for the interface. Please make your window taller and try again"
|
||||
logger.error(
|
||||
"Insufficient vertical space for the interface. Please make your window taller and try again"
|
||||
)
|
||||
elif str(e).startswith("addwstr"):
|
||||
print(
|
||||
"** Insufficient horizontal space for the interface. Please make your window wider and try again."
|
||||
logger.error(
|
||||
"Insufficient horizontal space for the interface. Please make your window wider and try again."
|
||||
)
|
||||
|
||||
|
||||
|
@ -27,6 +27,8 @@ from ...backend.globals import (
|
||||
global_models_dir,
|
||||
global_set_root,
|
||||
)
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from ...backend.model_management import ModelManager
|
||||
from ...frontend.install.widgets import FloatTitleSlider
|
||||
|
||||
@ -113,7 +115,7 @@ def merge_diffusion_models_and_commit(
|
||||
model_name=merged_model_name, description=f'Merge of models {", ".join(models)}'
|
||||
)
|
||||
if vae := model_manager.config[models[0]].get("vae", None):
|
||||
print(f">> Using configured VAE assigned to {models[0]}")
|
||||
logger.info(f"Using configured VAE assigned to {models[0]}")
|
||||
import_args.update(vae=vae)
|
||||
model_manager.import_diffuser_model(dump_path, **import_args)
|
||||
model_manager.commit(config_file)
|
||||
@ -391,10 +393,8 @@ class mergeModelsForm(npyscreen.FormMultiPageAction):
|
||||
for name in self.model_manager.model_names()
|
||||
if self.model_manager.model_info(name).get("format") == "diffusers"
|
||||
]
|
||||
print(model_names)
|
||||
return sorted(model_names)
|
||||
|
||||
|
||||
class Mergeapp(npyscreen.NPSAppManaged):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
@ -414,7 +414,7 @@ def run_gui(args: Namespace):
|
||||
|
||||
args = mergeapp.merge_arguments
|
||||
merge_diffusion_models_and_commit(**args)
|
||||
print(f'>> Models merged into new model: "{args["merged_model_name"]}".')
|
||||
logger.info(f'Models merged into new model: "{args["merged_model_name"]}".')
|
||||
|
||||
|
||||
def run_cli(args: Namespace):
|
||||
@ -425,8 +425,8 @@ def run_cli(args: Namespace):
|
||||
|
||||
if not args.merged_model_name:
|
||||
args.merged_model_name = "+".join(args.models)
|
||||
print(
|
||||
f'>> No --merged_model_name provided. Defaulting to "{args.merged_model_name}"'
|
||||
logger.info(
|
||||
f'No --merged_model_name provided. Defaulting to "{args.merged_model_name}"'
|
||||
)
|
||||
|
||||
model_manager = ModelManager(OmegaConf.load(global_config_file()))
|
||||
@ -435,7 +435,7 @@ def run_cli(args: Namespace):
|
||||
), f'A model named "{args.merged_model_name}" already exists. Use --clobber to overwrite.'
|
||||
|
||||
merge_diffusion_models_and_commit(**vars(args))
|
||||
print(f'>> Models merged into new model: "{args.merged_model_name}".')
|
||||
logger.info(f'Models merged into new model: "{args.merged_model_name}".')
|
||||
|
||||
|
||||
def main():
|
||||
@ -455,17 +455,16 @@ def main():
|
||||
run_cli(args)
|
||||
except widget.NotEnoughSpaceForWidget as e:
|
||||
if str(e).startswith("Height of 1 allocated"):
|
||||
print(
|
||||
"** You need to have at least two diffusers models defined in models.yaml in order to merge"
|
||||
logger.error(
|
||||
"You need to have at least two diffusers models defined in models.yaml in order to merge"
|
||||
)
|
||||
else:
|
||||
print(
|
||||
"** Not enough room for the user interface. Try making this window larger."
|
||||
logger.error(
|
||||
"Not enough room for the user interface. Try making this window larger."
|
||||
)
|
||||
sys.exit(-1)
|
||||
except Exception:
|
||||
print(">> An error occurred:")
|
||||
traceback.print_exc()
|
||||
except Exception as e:
|
||||
logger.error(e)
|
||||
sys.exit(-1)
|
||||
except KeyboardInterrupt:
|
||||
sys.exit(-1)
|
||||
|
@ -20,6 +20,7 @@ import npyscreen
|
||||
from npyscreen import widget
|
||||
from omegaconf import OmegaConf
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from invokeai.backend.globals import Globals, global_set_root
|
||||
|
||||
from ...backend.training import do_textual_inversion_training, parse_args
|
||||
@ -368,14 +369,14 @@ def copy_to_embeddings_folder(args: dict):
|
||||
dest_dir_name = args["placeholder_token"].strip("<>")
|
||||
destination = Path(Globals.root, "embeddings", dest_dir_name)
|
||||
os.makedirs(destination, exist_ok=True)
|
||||
print(f">> Training completed. Copying learned_embeds.bin into {str(destination)}")
|
||||
logger.info(f"Training completed. Copying learned_embeds.bin into {str(destination)}")
|
||||
shutil.copy(source, destination)
|
||||
if (
|
||||
input("Delete training logs and intermediate checkpoints? [y] ") or "y"
|
||||
).startswith(("y", "Y")):
|
||||
shutil.rmtree(Path(args["output_dir"]))
|
||||
else:
|
||||
print(f'>> Keeping {args["output_dir"]}')
|
||||
logger.info(f'Keeping {args["output_dir"]}')
|
||||
|
||||
|
||||
def save_args(args: dict):
|
||||
@ -422,10 +423,10 @@ def do_front_end(args: Namespace):
|
||||
do_textual_inversion_training(**args)
|
||||
copy_to_embeddings_folder(args)
|
||||
except Exception as e:
|
||||
print("** An exception occurred during training. The exception was:")
|
||||
print(str(e))
|
||||
print("** DETAILS:")
|
||||
print(traceback.format_exc())
|
||||
logger.error("An exception occurred during training. The exception was:")
|
||||
logger.error(str(e))
|
||||
logger.error("DETAILS:")
|
||||
logger.error(traceback.format_exc())
|
||||
|
||||
|
||||
def main():
|
||||
@ -437,21 +438,21 @@ def main():
|
||||
else:
|
||||
do_textual_inversion_training(**vars(args))
|
||||
except AssertionError as e:
|
||||
print(str(e))
|
||||
logger.error(e)
|
||||
sys.exit(-1)
|
||||
except KeyboardInterrupt:
|
||||
pass
|
||||
except (widget.NotEnoughSpaceForWidget, Exception) as e:
|
||||
if str(e).startswith("Height of 1 allocated"):
|
||||
print(
|
||||
"** You need to have at least one diffusers models defined in models.yaml in order to train"
|
||||
logger.error(
|
||||
"You need to have at least one diffusers models defined in models.yaml in order to train"
|
||||
)
|
||||
elif str(e).startswith("addwstr"):
|
||||
print(
|
||||
"** Not enough window space for the interface. Please make your window larger and try again."
|
||||
logger.error(
|
||||
"Not enough window space for the interface. Please make your window larger and try again."
|
||||
)
|
||||
else:
|
||||
print(f"** An error has occurred: {str(e)}")
|
||||
logger.error(e)
|
||||
sys.exit(-1)
|
||||
|
||||
|
||||
|
40
invokeai/frontend/web/config/vite.app.config.ts
Normal file
40
invokeai/frontend/web/config/vite.app.config.ts
Normal file
@ -0,0 +1,40 @@
|
||||
import react from '@vitejs/plugin-react-swc';
|
||||
import { visualizer } from 'rollup-plugin-visualizer';
|
||||
import { PluginOption, UserConfig } from 'vite';
|
||||
import eslint from 'vite-plugin-eslint';
|
||||
import tsconfigPaths from 'vite-tsconfig-paths';
|
||||
|
||||
export const appConfig: UserConfig = {
|
||||
base: './',
|
||||
plugins: [
|
||||
react(),
|
||||
eslint(),
|
||||
tsconfigPaths(),
|
||||
visualizer() as unknown as PluginOption,
|
||||
],
|
||||
build: {
|
||||
chunkSizeWarningLimit: 1500,
|
||||
},
|
||||
server: {
|
||||
// Proxy HTTP requests to the flask server
|
||||
proxy: {
|
||||
// Proxy socket.io to the nodes socketio server
|
||||
'/ws/socket.io': {
|
||||
target: 'ws://127.0.0.1:9090',
|
||||
ws: true,
|
||||
},
|
||||
// Proxy openapi schema definiton
|
||||
'/openapi.json': {
|
||||
target: 'http://127.0.0.1:9090/openapi.json',
|
||||
rewrite: (path) => path.replace(/^\/openapi.json/, ''),
|
||||
changeOrigin: true,
|
||||
},
|
||||
// proxy nodes api
|
||||
'/api/v1': {
|
||||
target: 'http://127.0.0.1:9090/api/v1',
|
||||
rewrite: (path) => path.replace(/^\/api\/v1/, ''),
|
||||
changeOrigin: true,
|
||||
},
|
||||
},
|
||||
},
|
||||
};
|
47
invokeai/frontend/web/config/vite.package.config.ts
Normal file
47
invokeai/frontend/web/config/vite.package.config.ts
Normal file
@ -0,0 +1,47 @@
|
||||
import react from '@vitejs/plugin-react-swc';
|
||||
import path from 'path';
|
||||
import { visualizer } from 'rollup-plugin-visualizer';
|
||||
import { PluginOption, UserConfig } from 'vite';
|
||||
import dts from 'vite-plugin-dts';
|
||||
import eslint from 'vite-plugin-eslint';
|
||||
import tsconfigPaths from 'vite-tsconfig-paths';
|
||||
|
||||
export const packageConfig: UserConfig = {
|
||||
base: './',
|
||||
plugins: [
|
||||
react(),
|
||||
eslint(),
|
||||
tsconfigPaths(),
|
||||
visualizer() as unknown as PluginOption,
|
||||
dts({
|
||||
insertTypesEntry: true,
|
||||
}),
|
||||
],
|
||||
build: {
|
||||
chunkSizeWarningLimit: 1500,
|
||||
lib: {
|
||||
entry: path.resolve(__dirname, '../src/index.ts'),
|
||||
name: 'InvokeAIUI',
|
||||
fileName: (format) => `invoke-ai-ui.${format}.js`,
|
||||
},
|
||||
rollupOptions: {
|
||||
external: ['react', 'react-dom', '@emotion/react'],
|
||||
output: {
|
||||
globals: {
|
||||
react: 'React',
|
||||
'react-dom': 'ReactDOM',
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
resolve: {
|
||||
alias: {
|
||||
app: path.resolve(__dirname, '../src/app'),
|
||||
assets: path.resolve(__dirname, '../src/assets'),
|
||||
common: path.resolve(__dirname, '../src/common'),
|
||||
features: path.resolve(__dirname, '../src/features'),
|
||||
services: path.resolve(__dirname, '../src/services'),
|
||||
theme: path.resolve(__dirname, '../src/theme'),
|
||||
},
|
||||
},
|
||||
};
|
98
invokeai/frontend/web/index.d.ts
vendored
98
invokeai/frontend/web/index.d.ts
vendored
@ -1,98 +0,0 @@
|
||||
import React, { PropsWithChildren } from 'react';
|
||||
import { IAIPopoverProps } from '../web/src/common/components/IAIPopover';
|
||||
import { IAIIconButtonProps } from '../web/src/common/components/IAIIconButton';
|
||||
import { InvokeTabName } from 'features/ui/store/tabMap';
|
||||
|
||||
export {};
|
||||
|
||||
declare module 'redux-socket.io-middleware';
|
||||
|
||||
declare global {
|
||||
/* eslint-disable @typescript-eslint/no-explicit-any */
|
||||
interface Array<T> {
|
||||
/**
|
||||
* Returns the value of the last element in the array where predicate is true, and undefined
|
||||
* otherwise.
|
||||
* @param predicate findLast calls predicate once for each element of the array, in descending
|
||||
* order, until it finds one where predicate returns true. If such an element is found, findLast
|
||||
* immediately returns that element value. Otherwise, findLast returns undefined.
|
||||
* @param thisArg If provided, it will be used as the this value for each invocation of
|
||||
* predicate. If it is not provided, undefined is used instead.
|
||||
*/
|
||||
findLast<S extends T>(
|
||||
predicate: (value: T, index: number, array: T[]) => value is S,
|
||||
thisArg?: any
|
||||
): S | undefined;
|
||||
findLast(
|
||||
predicate: (value: T, index: number, array: T[]) => unknown,
|
||||
thisArg?: any
|
||||
): T | undefined;
|
||||
|
||||
/**
|
||||
* Returns the index of the last element in the array where predicate is true, and -1
|
||||
* otherwise.
|
||||
* @param predicate findLastIndex calls predicate once for each element of the array, in descending
|
||||
* order, until it finds one where predicate returns true. If such an element is found,
|
||||
* findLastIndex immediately returns that element index. Otherwise, findLastIndex returns -1.
|
||||
* @param thisArg If provided, it will be used as the this value for each invocation of
|
||||
* predicate. If it is not provided, undefined is used instead.
|
||||
*/
|
||||
findLastIndex(
|
||||
predicate: (value: T, index: number, array: T[]) => unknown,
|
||||
thisArg?: any
|
||||
): number;
|
||||
}
|
||||
/* eslint-enable @typescript-eslint/no-explicit-any */
|
||||
}
|
||||
|
||||
declare module '@invoke-ai/invoke-ai-ui' {
|
||||
declare class ThemeChanger extends React.Component<ThemeChangerProps> {
|
||||
public constructor(props: ThemeChangerProps);
|
||||
}
|
||||
|
||||
declare class InvokeAiLogoComponent extends React.Component<InvokeAILogoComponentProps> {
|
||||
public constructor(props: InvokeAILogoComponentProps);
|
||||
}
|
||||
|
||||
declare class IAIPopover extends React.Component<IAIPopoverProps> {
|
||||
public constructor(props: IAIPopoverProps);
|
||||
}
|
||||
|
||||
declare class IAIIconButton extends React.Component<IAIIconButtonProps> {
|
||||
public constructor(props: IAIIconButtonProps);
|
||||
}
|
||||
|
||||
declare class SettingsModal extends React.Component<SettingsModalProps> {
|
||||
public constructor(props: SettingsModalProps);
|
||||
}
|
||||
|
||||
declare class StatusIndicator extends React.Component<StatusIndicatorProps> {
|
||||
public constructor(props: StatusIndicatorProps);
|
||||
}
|
||||
|
||||
declare class ModelSelect extends React.Component<ModelSelectProps> {
|
||||
public constructor(props: ModelSelectProps);
|
||||
}
|
||||
}
|
||||
|
||||
interface InvokeProps extends PropsWithChildren {
|
||||
apiUrl?: string;
|
||||
disabledPanels?: string[];
|
||||
disabledTabs?: InvokeTabName[];
|
||||
token?: string;
|
||||
shouldTransformUrls?: boolean;
|
||||
shouldFetchImages?: boolean;
|
||||
}
|
||||
|
||||
declare function Invoke(props: InvokeProps): JSX.Element;
|
||||
|
||||
export {
|
||||
ThemeChanger,
|
||||
InvokeAiLogoComponent,
|
||||
IAIPopover,
|
||||
IAIIconButton,
|
||||
SettingsModal,
|
||||
StatusIndicator,
|
||||
ModelSelect,
|
||||
};
|
||||
export = Invoke;
|
@ -1,7 +1,23 @@
|
||||
{
|
||||
"name": "invoke-ai-ui",
|
||||
"name": "@invoke-ai/invoke-ai-ui",
|
||||
"private": true,
|
||||
"version": "0.0.1",
|
||||
"publishConfig": {
|
||||
"access": "restricted",
|
||||
"registry": "https://npm.pkg.github.com"
|
||||
},
|
||||
"main": "./dist/invoke-ai-ui.umd.js",
|
||||
"module": "./dist/invoke-ai-ui.es.js",
|
||||
"exports": {
|
||||
".": {
|
||||
"import": "./dist/invoke-ai-ui.es.js",
|
||||
"require": "./dist/invoke-ai-ui.umd.js"
|
||||
}
|
||||
},
|
||||
"types": "./dist/index.d.ts",
|
||||
"files": [
|
||||
"dist"
|
||||
],
|
||||
"scripts": {
|
||||
"prepare": "cd ../../../ && husky install invokeai/frontend/web/.husky",
|
||||
"dev": "concurrently \"vite dev\" \"yarn run theme:watch\"",
|
||||
@ -40,81 +56,96 @@
|
||||
},
|
||||
"dependencies": {
|
||||
"@chakra-ui/anatomy": "^2.1.1",
|
||||
"@chakra-ui/cli": "^2.3.0",
|
||||
"@chakra-ui/icons": "^2.0.17",
|
||||
"@chakra-ui/react": "^2.5.1",
|
||||
"@chakra-ui/styled-system": "^2.6.1",
|
||||
"@chakra-ui/icons": "^2.0.19",
|
||||
"@chakra-ui/react": "^2.6.0",
|
||||
"@chakra-ui/styled-system": "^2.9.0",
|
||||
"@chakra-ui/theme-tools": "^2.0.16",
|
||||
"@dagrejs/graphlib": "^2.1.12",
|
||||
"@emotion/react": "^11.10.6",
|
||||
"@emotion/styled": "^11.10.6",
|
||||
"@fontsource/inter": "^4.5.15",
|
||||
"@reduxjs/toolkit": "^1.9.3",
|
||||
"@reduxjs/toolkit": "^1.9.5",
|
||||
"@roarr/browser-log-writer": "^1.1.5",
|
||||
"chakra-ui-contextmenu": "^1.0.5",
|
||||
"dateformat": "^5.0.3",
|
||||
"formik": "^2.2.9",
|
||||
"framer-motion": "^9.0.4",
|
||||
"framer-motion": "^10.12.4",
|
||||
"fuse.js": "^6.6.2",
|
||||
"i18next": "^22.4.10",
|
||||
"i18next": "^22.4.15",
|
||||
"i18next-browser-languagedetector": "^7.0.1",
|
||||
"i18next-http-backend": "^2.1.1",
|
||||
"konva": "^8.4.2",
|
||||
"lodash": "^4.17.21",
|
||||
"patch-package": "^6.5.1",
|
||||
"i18next-http-backend": "^2.2.0",
|
||||
"konva": "^9.0.1",
|
||||
"lodash-es": "^4.17.21",
|
||||
"overlayscrollbars": "^2.1.1",
|
||||
"overlayscrollbars-react": "^0.5.0",
|
||||
"patch-package": "^7.0.0",
|
||||
"re-resizable": "^6.9.9",
|
||||
"react": "^18.2.0",
|
||||
"react-colorful": "^5.6.1",
|
||||
"react-dom": "^18.2.0",
|
||||
"react-dropzone": "^14.2.3",
|
||||
"react-hotkeys-hook": "4.3.5",
|
||||
"react-i18next": "^12.1.5",
|
||||
"react-hotkeys-hook": "4.4.0",
|
||||
"react-i18next": "^12.2.2",
|
||||
"react-icons": "^4.7.1",
|
||||
"react-konva": "^18.2.4",
|
||||
"react-konva-utils": "^0.3.2",
|
||||
"react-konva": "^18.2.7",
|
||||
"react-konva-utils": "^1.0.4",
|
||||
"react-redux": "^8.0.5",
|
||||
"react-rnd": "^10.4.1",
|
||||
"react-transition-group": "^4.4.5",
|
||||
"react-zoom-pan-pinch": "^2.6.1",
|
||||
"react-use": "^17.4.0",
|
||||
"react-virtuoso": "^4.3.5",
|
||||
"react-zoom-pan-pinch": "^3.0.7",
|
||||
"reactflow": "^11.7.0",
|
||||
"redux-deep-persist": "^1.0.7",
|
||||
"redux-dynamic-middlewares": "^2.2.0",
|
||||
"redux-persist": "^6.0.0",
|
||||
"roarr": "^7.15.0",
|
||||
"serialize-error": "^11.0.0",
|
||||
"socket.io-client": "^4.6.0",
|
||||
"use-image": "^1.1.0",
|
||||
"uuid": "^9.0.0"
|
||||
},
|
||||
"peerDependencies": {
|
||||
"@chakra-ui/cli": "^2.4.0",
|
||||
"react": "^18.2.0",
|
||||
"react-dom": "^18.2.0",
|
||||
"ts-toolbelt": "^9.6.0"
|
||||
},
|
||||
"devDependencies": {
|
||||
"@chakra-ui/cli": "^2.4.0",
|
||||
"@types/dateformat": "^5.0.0",
|
||||
"@types/lodash": "^4.14.194",
|
||||
"@types/react": "^18.0.28",
|
||||
"@types/react-dom": "^18.0.11",
|
||||
"@types/lodash-es": "^4.14.194",
|
||||
"@types/node": "^18.16.2",
|
||||
"@types/react": "^18.2.0",
|
||||
"@types/react-dom": "^18.2.1",
|
||||
"@types/react-transition-group": "^4.4.5",
|
||||
"@types/uuid": "^9.0.0",
|
||||
"@typescript-eslint/eslint-plugin": "^5.52.0",
|
||||
"@typescript-eslint/parser": "^5.52.0",
|
||||
"@vitejs/plugin-react-swc": "^3.2.0",
|
||||
"axios": "^1.3.4",
|
||||
"@typescript-eslint/eslint-plugin": "^5.59.1",
|
||||
"@typescript-eslint/parser": "^5.59.1",
|
||||
"@vitejs/plugin-react-swc": "^3.3.0",
|
||||
"axios": "^1.4.0",
|
||||
"babel-plugin-transform-imports": "^2.0.0",
|
||||
"concurrently": "^7.6.0",
|
||||
"eslint": "^8.34.0",
|
||||
"eslint-config-prettier": "^8.6.0",
|
||||
"concurrently": "^8.0.1",
|
||||
"eslint": "^8.39.0",
|
||||
"eslint-config-prettier": "^8.8.0",
|
||||
"eslint-plugin-prettier": "^4.2.1",
|
||||
"eslint-plugin-react": "^7.32.2",
|
||||
"eslint-plugin-react-hooks": "^4.6.0",
|
||||
"form-data": "^4.0.0",
|
||||
"husky": "^8.0.3",
|
||||
"lint-staged": "^13.1.2",
|
||||
"lint-staged": "^13.2.2",
|
||||
"madge": "^6.0.0",
|
||||
"openapi-types": "^12.1.0",
|
||||
"openapi-typescript-codegen": "^0.23.0",
|
||||
"openapi-typescript-codegen": "^0.24.0",
|
||||
"postinstall-postinstall": "^2.1.0",
|
||||
"prettier": "^2.8.4",
|
||||
"prettier": "^2.8.8",
|
||||
"rollup-plugin-visualizer": "^5.9.0",
|
||||
"terser": "^5.16.4",
|
||||
"terser": "^5.17.1",
|
||||
"ts-toolbelt": "^9.6.0",
|
||||
"typescript": "4.9.5",
|
||||
"vite": "^4.1.2",
|
||||
"vite": "^4.3.3",
|
||||
"vite-plugin-dts": "^2.3.0",
|
||||
"vite-plugin-eslint": "^1.8.1",
|
||||
"vite-tsconfig-paths": "^4.0.5",
|
||||
"vite-tsconfig-paths": "^4.2.0",
|
||||
"yarn": "^1.22.19"
|
||||
}
|
||||
}
|
||||
|
@ -527,10 +527,15 @@
|
||||
"useCanvasBeta": "Use Canvas Beta Layout",
|
||||
"enableImageDebugging": "Enable Image Debugging",
|
||||
"useSlidersForAll": "Use Sliders For All Options",
|
||||
"autoShowProgress": "Auto Show Progress Images",
|
||||
"resetWebUI": "Reset Web UI",
|
||||
"resetWebUIDesc1": "Resetting the web UI only resets the browser's local cache of your images and remembered settings. It does not delete any images from disk.",
|
||||
"resetWebUIDesc2": "If images aren't showing up in the gallery or something else isn't working, please try resetting before submitting an issue on GitHub.",
|
||||
"resetComplete": "Web UI has been reset. Refresh the page to reload."
|
||||
"resetComplete": "Web UI has been reset. Refresh the page to reload.",
|
||||
"consoleLogLevel": "Log Level",
|
||||
"shouldLogToConsole": "Console Logging",
|
||||
"developer": "Developer",
|
||||
"general": "General"
|
||||
},
|
||||
"toast": {
|
||||
"serverError": "Server Error",
|
||||
@ -641,5 +646,9 @@
|
||||
"betaDarkenOutside": "Darken Outside",
|
||||
"betaLimitToBox": "Limit To Box",
|
||||
"betaPreserveMasked": "Preserve Masked"
|
||||
},
|
||||
"ui": {
|
||||
"showProgressImages": "Show Progress Images",
|
||||
"hideProgressImages": "Hide Progress Images"
|
||||
}
|
||||
}
|
||||
|
@ -1,9 +1,7 @@
|
||||
import ImageUploader from 'common/components/ImageUploader';
|
||||
import Console from 'features/system/components/Console';
|
||||
import ProgressBar from 'features/system/components/ProgressBar';
|
||||
import SiteHeader from 'features/system/components/SiteHeader';
|
||||
import InvokeTabs from 'features/ui/components/InvokeTabs';
|
||||
import { keepGUIAlive } from './utils';
|
||||
|
||||
import useToastWatcher from 'features/system/hooks/useToastWatcher';
|
||||
|
||||
@ -13,25 +11,34 @@ import { Box, Flex, Grid, Portal, useColorMode } from '@chakra-ui/react';
|
||||
import { APP_HEIGHT, APP_WIDTH } from 'theme/util/constants';
|
||||
import ImageGalleryPanel from 'features/gallery/components/ImageGalleryPanel';
|
||||
import Lightbox from 'features/lightbox/components/Lightbox';
|
||||
import { useAppDispatch, useAppSelector } from './storeHooks';
|
||||
import { PropsWithChildren, useCallback, useEffect, useState } from 'react';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import {
|
||||
memo,
|
||||
PropsWithChildren,
|
||||
useCallback,
|
||||
useEffect,
|
||||
useState,
|
||||
} from 'react';
|
||||
import { motion, AnimatePresence } from 'framer-motion';
|
||||
import Loading from 'common/components/Loading/Loading';
|
||||
import { useIsApplicationReady } from 'features/system/hooks/useIsApplicationReady';
|
||||
import { PartialAppConfig } from './invokeai';
|
||||
import { PartialAppConfig } from 'app/types/invokeai';
|
||||
import { useGlobalHotkeys } from 'common/hooks/useGlobalHotkeys';
|
||||
import { configChanged } from 'features/system/store/configSlice';
|
||||
import { useFeatureStatus } from 'features/system/hooks/useFeatureStatus';
|
||||
import { useLogger } from 'app/logging/useLogger';
|
||||
import ProgressImagePreview from 'features/parameters/components/ProgressImagePreview';
|
||||
|
||||
keepGUIAlive();
|
||||
const DEFAULT_CONFIG = {};
|
||||
|
||||
interface Props extends PropsWithChildren {
|
||||
config?: PartialAppConfig;
|
||||
}
|
||||
|
||||
const App = ({ config = {}, children }: Props) => {
|
||||
const App = ({ config = DEFAULT_CONFIG, children }: Props) => {
|
||||
useToastWatcher();
|
||||
useGlobalHotkeys();
|
||||
const log = useLogger();
|
||||
|
||||
const currentTheme = useAppSelector((state) => state.ui.currentTheme);
|
||||
|
||||
@ -45,9 +52,9 @@ const App = ({ config = {}, children }: Props) => {
|
||||
const dispatch = useAppDispatch();
|
||||
|
||||
useEffect(() => {
|
||||
console.log('Received config: ', config);
|
||||
log.info({ namespace: 'App', data: config }, 'Received config');
|
||||
dispatch(configChanged(config));
|
||||
}, [dispatch, config]);
|
||||
}, [dispatch, config, log]);
|
||||
|
||||
useEffect(() => {
|
||||
setColorMode(['light'].includes(currentTheme) ? 'light' : 'dark');
|
||||
@ -58,7 +65,7 @@ const App = ({ config = {}, children }: Props) => {
|
||||
}, []);
|
||||
|
||||
return (
|
||||
<Grid w="100vw" h="100vh" position="relative">
|
||||
<Grid w="100vw" h="100vh" position="relative" overflow="hidden">
|
||||
{isLightboxEnabled && <Lightbox />}
|
||||
<ImageUploader>
|
||||
<ProgressBar />
|
||||
@ -114,11 +121,9 @@ const App = ({ config = {}, children }: Props) => {
|
||||
<Portal>
|
||||
<FloatingGalleryButton />
|
||||
</Portal>
|
||||
<Portal>
|
||||
<Console />
|
||||
</Portal>
|
||||
<ProgressImagePreview />
|
||||
</Grid>
|
||||
);
|
||||
};
|
||||
|
||||
export default App;
|
||||
export default memo(App);
|
@ -1,8 +1,8 @@
|
||||
import React, { lazy, PropsWithChildren, useEffect } from 'react';
|
||||
import React, { lazy, memo, PropsWithChildren, useEffect } from 'react';
|
||||
import { Provider } from 'react-redux';
|
||||
import { PersistGate } from 'redux-persist/integration/react';
|
||||
import { buildMiddleware, store } from './app/store';
|
||||
import { persistor } from './persistor';
|
||||
import { store } from 'app/store/store';
|
||||
import { persistor } from '../store/persistor';
|
||||
import { OpenAPI } from 'services/api';
|
||||
import '@fontsource/inter/100.css';
|
||||
import '@fontsource/inter/200.css';
|
||||
@ -14,14 +14,15 @@ import '@fontsource/inter/700.css';
|
||||
import '@fontsource/inter/800.css';
|
||||
import '@fontsource/inter/900.css';
|
||||
|
||||
import Loading from './common/components/Loading/Loading';
|
||||
import Loading from '../../common/components/Loading/Loading';
|
||||
import { addMiddleware, resetMiddlewares } from 'redux-dynamic-middlewares';
|
||||
import { PartialAppConfig } from 'app/invokeai';
|
||||
import { PartialAppConfig } from 'app/types/invokeai';
|
||||
|
||||
import './i18n';
|
||||
import '../../i18n';
|
||||
import { socketMiddleware } from 'services/events/middleware';
|
||||
|
||||
const App = lazy(() => import('./app/App'));
|
||||
const ThemeLocaleProvider = lazy(() => import('./app/ThemeLocaleProvider'));
|
||||
const App = lazy(() => import('./App'));
|
||||
const ThemeLocaleProvider = lazy(() => import('./ThemeLocaleProvider'));
|
||||
|
||||
interface Props extends PropsWithChildren {
|
||||
apiUrl?: string;
|
||||
@ -29,7 +30,7 @@ interface Props extends PropsWithChildren {
|
||||
config?: PartialAppConfig;
|
||||
}
|
||||
|
||||
export default function Component({ apiUrl, token, config, children }: Props) {
|
||||
const InvokeAIUI = ({ apiUrl, token, config, children }: Props) => {
|
||||
useEffect(() => {
|
||||
// configure API client token
|
||||
if (token) {
|
||||
@ -50,7 +51,7 @@ export default function Component({ apiUrl, token, config, children }: Props) {
|
||||
// the `apiUrl`/`token` dynamically.
|
||||
|
||||
// rebuild socket middleware with token and apiUrl
|
||||
addMiddleware(buildMiddleware());
|
||||
addMiddleware(socketMiddleware());
|
||||
}, [apiUrl, token]);
|
||||
|
||||
return (
|
||||
@ -66,4 +67,6 @@ export default function Component({ apiUrl, token, config, children }: Props) {
|
||||
</Provider>
|
||||
</React.StrictMode>
|
||||
);
|
||||
}
|
||||
};
|
||||
|
||||
export default memo(InvokeAIUI);
|
@ -2,8 +2,8 @@ import { ChakraProvider, extendTheme } from '@chakra-ui/react';
|
||||
import { ReactNode, useEffect } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { theme as invokeAITheme } from 'theme/theme';
|
||||
import { RootState } from './store';
|
||||
import { useAppSelector } from './storeHooks';
|
||||
import { RootState } from 'app/store/store';
|
||||
import { useAppSelector } from 'app/store/storeHooks';
|
||||
|
||||
import { greenTeaThemeColors } from 'theme/colors/greenTea';
|
||||
import { invokeAIThemeColors } from 'theme/colors/invokeAI';
|
||||
@ -18,6 +18,8 @@ import '@fontsource/inter/600.css';
|
||||
import '@fontsource/inter/700.css';
|
||||
import '@fontsource/inter/800.css';
|
||||
import '@fontsource/inter/900.css';
|
||||
import 'overlayscrollbars/overlayscrollbars.css';
|
||||
import 'theme/css/overlayscrollbars.css';
|
||||
|
||||
type ThemeLocaleProviderProps = {
|
||||
children: ReactNode;
|
@ -1,23 +1,6 @@
|
||||
// TODO: use Enums?
|
||||
|
||||
import { InProgressImageType } from 'features/system/store/systemSlice';
|
||||
|
||||
// Valid samplers
|
||||
export const SAMPLERS: Array<string> = [
|
||||
'ddim',
|
||||
'plms',
|
||||
'k_lms',
|
||||
'k_dpm_2',
|
||||
'k_dpm_2_a',
|
||||
'k_dpmpp_2',
|
||||
'k_dpmpp_2_a',
|
||||
'k_euler',
|
||||
'k_euler_a',
|
||||
'k_heun',
|
||||
];
|
||||
|
||||
// Valid Diffusers Samplers
|
||||
export const DIFFUSERS_SAMPLERS: Array<string> = [
|
||||
export const DIFFUSERS_SCHEDULERS: Array<string> = [
|
||||
'ddim',
|
||||
'plms',
|
||||
'k_lms',
|
||||
@ -48,17 +31,8 @@ export const UPSCALING_LEVELS: Array<{ key: string; value: number }> = [
|
||||
|
||||
export const NUMPY_RAND_MIN = 0;
|
||||
|
||||
export const NUMPY_RAND_MAX = 4294967295;
|
||||
export const NUMPY_RAND_MAX = 2147483647;
|
||||
|
||||
export const FACETOOL_TYPES = ['gfpgan', 'codeformer'] as const;
|
||||
|
||||
export const IN_PROGRESS_IMAGE_TYPES: Array<{
|
||||
key: string;
|
||||
value: InProgressImageType;
|
||||
}> = [
|
||||
{ key: 'None', value: 'none' },
|
||||
{ key: 'Fast', value: 'latents' },
|
||||
{ key: 'Accurate', value: 'full-res' },
|
||||
];
|
||||
|
||||
export const NODE_MIN_WIDTH = 250;
|
||||
|
94
invokeai/frontend/web/src/app/logging/useLogger.ts
Normal file
94
invokeai/frontend/web/src/app/logging/useLogger.ts
Normal file
@ -0,0 +1,94 @@
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { useAppSelector } from 'app/store/storeHooks';
|
||||
import { systemSelector } from 'features/system/store/systemSelectors';
|
||||
import { isEqual } from 'lodash-es';
|
||||
import { useEffect } from 'react';
|
||||
import { LogLevelName, ROARR, Roarr } from 'roarr';
|
||||
import { createLogWriter } from '@roarr/browser-log-writer';
|
||||
|
||||
// Base logging context includes only the package name
|
||||
const baseContext = { package: '@invoke-ai/invoke-ai-ui' };
|
||||
|
||||
// Create browser log writer
|
||||
ROARR.write = createLogWriter();
|
||||
|
||||
// Module-scoped logger - can be imported and used anywhere
|
||||
export let log = Roarr.child(baseContext);
|
||||
|
||||
// Translate human-readable log levels to numbers, used for log filtering
|
||||
export const LOG_LEVEL_MAP: Record<LogLevelName, number> = {
|
||||
trace: 10,
|
||||
debug: 20,
|
||||
info: 30,
|
||||
warn: 40,
|
||||
error: 50,
|
||||
fatal: 60,
|
||||
};
|
||||
|
||||
export const VALID_LOG_LEVELS = [
|
||||
'trace',
|
||||
'debug',
|
||||
'info',
|
||||
'warn',
|
||||
'error',
|
||||
'fatal',
|
||||
] as const;
|
||||
|
||||
export type InvokeLogLevel = (typeof VALID_LOG_LEVELS)[number];
|
||||
|
||||
const selector = createSelector(
|
||||
systemSelector,
|
||||
(system) => {
|
||||
const { app_version, consoleLogLevel, shouldLogToConsole } = system;
|
||||
|
||||
return {
|
||||
version: app_version,
|
||||
consoleLogLevel,
|
||||
shouldLogToConsole,
|
||||
};
|
||||
},
|
||||
{
|
||||
memoizeOptions: {
|
||||
resultEqualityCheck: isEqual,
|
||||
},
|
||||
}
|
||||
);
|
||||
|
||||
export const useLogger = () => {
|
||||
const { version, consoleLogLevel, shouldLogToConsole } =
|
||||
useAppSelector(selector);
|
||||
|
||||
// The provided Roarr browser log writer uses localStorage to config logging to console
|
||||
useEffect(() => {
|
||||
if (shouldLogToConsole) {
|
||||
// Enable console log output
|
||||
localStorage.setItem('ROARR_LOG', 'true');
|
||||
|
||||
// Use a filter to show only logs of the given level
|
||||
localStorage.setItem(
|
||||
'ROARR_FILTER',
|
||||
`context.logLevel:>=${LOG_LEVEL_MAP[consoleLogLevel]}`
|
||||
);
|
||||
} else {
|
||||
// Disable console log output
|
||||
localStorage.setItem('ROARR_LOG', 'false');
|
||||
}
|
||||
ROARR.write = createLogWriter();
|
||||
}, [consoleLogLevel, shouldLogToConsole]);
|
||||
|
||||
// Update the module-scoped logger context as needed
|
||||
useEffect(() => {
|
||||
const newContext: Record<string, any> = {
|
||||
...baseContext,
|
||||
};
|
||||
|
||||
if (version) {
|
||||
newContext.version = version;
|
||||
}
|
||||
|
||||
log = Roarr.child(newContext);
|
||||
}, [version]);
|
||||
|
||||
// Use the logger within components - no different than just importing it directly
|
||||
return log;
|
||||
};
|
@ -4,7 +4,7 @@ import { initialCanvasImageSelector } from 'features/canvas/store/canvasSelector
|
||||
import { generationSelector } from 'features/parameters/store/generationSelectors';
|
||||
import { systemSelector } from 'features/system/store/systemSelectors';
|
||||
import { activeTabNameSelector } from 'features/ui/store/uiSelectors';
|
||||
import { isEqual } from 'lodash';
|
||||
import { isEqual } from 'lodash-es';
|
||||
|
||||
export const readinessSelector = createSelector(
|
||||
[
|
||||
|
@ -1,65 +1,67 @@
|
||||
import { createAction } from '@reduxjs/toolkit';
|
||||
import * as InvokeAI from 'app/invokeai';
|
||||
import { GalleryCategory } from 'features/gallery/store/gallerySlice';
|
||||
import { InvokeTabName } from 'features/ui/store/tabMap';
|
||||
// import { createAction } from '@reduxjs/toolkit';
|
||||
// import * as InvokeAI from 'app/types/invokeai';
|
||||
// import { GalleryCategory } from 'features/gallery/store/gallerySlice';
|
||||
// import { InvokeTabName } from 'features/ui/store/tabMap';
|
||||
|
||||
/**
|
||||
* We can't use redux-toolkit's createSlice() to make these actions,
|
||||
* because they have no associated reducer. They only exist to dispatch
|
||||
* requests to the server via socketio. These actions will be handled
|
||||
* by the middleware.
|
||||
*/
|
||||
// /**
|
||||
// * We can't use redux-toolkit's createSlice() to make these actions,
|
||||
// * because they have no associated reducer. They only exist to dispatch
|
||||
// * requests to the server via socketio. These actions will be handled
|
||||
// * by the middleware.
|
||||
// */
|
||||
|
||||
export const generateImage = createAction<InvokeTabName>(
|
||||
'socketio/generateImage'
|
||||
);
|
||||
export const runESRGAN = createAction<InvokeAI._Image>('socketio/runESRGAN');
|
||||
export const runFacetool = createAction<InvokeAI._Image>(
|
||||
'socketio/runFacetool'
|
||||
);
|
||||
export const deleteImage = createAction<InvokeAI._Image>(
|
||||
'socketio/deleteImage'
|
||||
);
|
||||
export const requestImages = createAction<GalleryCategory>(
|
||||
'socketio/requestImages'
|
||||
);
|
||||
export const requestNewImages = createAction<GalleryCategory>(
|
||||
'socketio/requestNewImages'
|
||||
);
|
||||
export const cancelProcessing = createAction<undefined>(
|
||||
'socketio/cancelProcessing'
|
||||
);
|
||||
// export const generateImage = createAction<InvokeTabName>(
|
||||
// 'socketio/generateImage'
|
||||
// );
|
||||
// export const runESRGAN = createAction<InvokeAI._Image>('socketio/runESRGAN');
|
||||
// export const runFacetool = createAction<InvokeAI._Image>(
|
||||
// 'socketio/runFacetool'
|
||||
// );
|
||||
// export const deleteImage = createAction<InvokeAI._Image>(
|
||||
// 'socketio/deleteImage'
|
||||
// );
|
||||
// export const requestImages = createAction<GalleryCategory>(
|
||||
// 'socketio/requestImages'
|
||||
// );
|
||||
// export const requestNewImages = createAction<GalleryCategory>(
|
||||
// 'socketio/requestNewImages'
|
||||
// );
|
||||
// export const cancelProcessing = createAction<undefined>(
|
||||
// 'socketio/cancelProcessing'
|
||||
// );
|
||||
|
||||
export const requestSystemConfig = createAction<undefined>(
|
||||
'socketio/requestSystemConfig'
|
||||
);
|
||||
// export const requestSystemConfig = createAction<undefined>(
|
||||
// 'socketio/requestSystemConfig'
|
||||
// );
|
||||
|
||||
export const searchForModels = createAction<string>('socketio/searchForModels');
|
||||
// export const searchForModels = createAction<string>('socketio/searchForModels');
|
||||
|
||||
export const addNewModel = createAction<
|
||||
InvokeAI.InvokeModelConfigProps | InvokeAI.InvokeDiffusersModelConfigProps
|
||||
>('socketio/addNewModel');
|
||||
// export const addNewModel = createAction<
|
||||
// InvokeAI.InvokeModelConfigProps | InvokeAI.InvokeDiffusersModelConfigProps
|
||||
// >('socketio/addNewModel');
|
||||
|
||||
export const deleteModel = createAction<string>('socketio/deleteModel');
|
||||
// export const deleteModel = createAction<string>('socketio/deleteModel');
|
||||
|
||||
export const convertToDiffusers =
|
||||
createAction<InvokeAI.InvokeModelConversionProps>(
|
||||
'socketio/convertToDiffusers'
|
||||
);
|
||||
// export const convertToDiffusers =
|
||||
// createAction<InvokeAI.InvokeModelConversionProps>(
|
||||
// 'socketio/convertToDiffusers'
|
||||
// );
|
||||
|
||||
export const mergeDiffusersModels =
|
||||
createAction<InvokeAI.InvokeModelMergingProps>(
|
||||
'socketio/mergeDiffusersModels'
|
||||
);
|
||||
// export const mergeDiffusersModels =
|
||||
// createAction<InvokeAI.InvokeModelMergingProps>(
|
||||
// 'socketio/mergeDiffusersModels'
|
||||
// );
|
||||
|
||||
export const requestModelChange = createAction<string>(
|
||||
'socketio/requestModelChange'
|
||||
);
|
||||
// export const requestModelChange = createAction<string>(
|
||||
// 'socketio/requestModelChange'
|
||||
// );
|
||||
|
||||
export const saveStagingAreaImageToGallery = createAction<string>(
|
||||
'socketio/saveStagingAreaImageToGallery'
|
||||
);
|
||||
// export const saveStagingAreaImageToGallery = createAction<string>(
|
||||
// 'socketio/saveStagingAreaImageToGallery'
|
||||
// );
|
||||
|
||||
export const emptyTempFolder = createAction<undefined>(
|
||||
'socketio/requestEmptyTempFolder'
|
||||
);
|
||||
// export const emptyTempFolder = createAction<undefined>(
|
||||
// 'socketio/requestEmptyTempFolder'
|
||||
// );
|
||||
|
||||
export default {};
|
||||
|
@ -1,208 +1,209 @@
|
||||
import { AnyAction, Dispatch, MiddlewareAPI } from '@reduxjs/toolkit';
|
||||
import * as InvokeAI from 'app/invokeai';
|
||||
import type { RootState } from 'app/store';
|
||||
import {
|
||||
frontendToBackendParameters,
|
||||
FrontendToBackendParametersConfig,
|
||||
} from 'common/util/parameterTranslation';
|
||||
import dateFormat from 'dateformat';
|
||||
import {
|
||||
GalleryCategory,
|
||||
GalleryState,
|
||||
removeImage,
|
||||
} from 'features/gallery/store/gallerySlice';
|
||||
import {
|
||||
addLogEntry,
|
||||
generationRequested,
|
||||
modelChangeRequested,
|
||||
modelConvertRequested,
|
||||
modelMergingRequested,
|
||||
setIsProcessing,
|
||||
} from 'features/system/store/systemSlice';
|
||||
import { InvokeTabName } from 'features/ui/store/tabMap';
|
||||
import { Socket } from 'socket.io-client';
|
||||
// import { AnyAction, Dispatch, MiddlewareAPI } from '@reduxjs/toolkit';
|
||||
// import * as InvokeAI from 'app/types/invokeai';
|
||||
// import type { RootState } from 'app/store/store';
|
||||
// import {
|
||||
// frontendToBackendParameters,
|
||||
// FrontendToBackendParametersConfig,
|
||||
// } from 'common/util/parameterTranslation';
|
||||
// import dateFormat from 'dateformat';
|
||||
// import {
|
||||
// GalleryCategory,
|
||||
// GalleryState,
|
||||
// removeImage,
|
||||
// } from 'features/gallery/store/gallerySlice';
|
||||
// import {
|
||||
// generationRequested,
|
||||
// modelChangeRequested,
|
||||
// modelConvertRequested,
|
||||
// modelMergingRequested,
|
||||
// setIsProcessing,
|
||||
// } from 'features/system/store/systemSlice';
|
||||
// import { InvokeTabName } from 'features/ui/store/tabMap';
|
||||
// import { Socket } from 'socket.io-client';
|
||||
|
||||
/**
|
||||
* Returns an object containing all functions which use `socketio.emit()`.
|
||||
* i.e. those which make server requests.
|
||||
*/
|
||||
const makeSocketIOEmitters = (
|
||||
store: MiddlewareAPI<Dispatch<AnyAction>, RootState>,
|
||||
socketio: Socket
|
||||
) => {
|
||||
// We need to dispatch actions to redux and get pieces of state from the store.
|
||||
const { dispatch, getState } = store;
|
||||
// /**
|
||||
// * Returns an object containing all functions which use `socketio.emit()`.
|
||||
// * i.e. those which make server requests.
|
||||
// */
|
||||
// const makeSocketIOEmitters = (
|
||||
// store: MiddlewareAPI<Dispatch<AnyAction>, RootState>,
|
||||
// socketio: Socket
|
||||
// ) => {
|
||||
// // We need to dispatch actions to redux and get pieces of state from the store.
|
||||
// const { dispatch, getState } = store;
|
||||
|
||||
return {
|
||||
emitGenerateImage: (generationMode: InvokeTabName) => {
|
||||
dispatch(setIsProcessing(true));
|
||||
// return {
|
||||
// emitGenerateImage: (generationMode: InvokeTabName) => {
|
||||
// dispatch(setIsProcessing(true));
|
||||
|
||||
const state: RootState = getState();
|
||||
// const state: RootState = getState();
|
||||
|
||||
const {
|
||||
generation: generationState,
|
||||
postprocessing: postprocessingState,
|
||||
system: systemState,
|
||||
canvas: canvasState,
|
||||
} = state;
|
||||
// const {
|
||||
// generation: generationState,
|
||||
// postprocessing: postprocessingState,
|
||||
// system: systemState,
|
||||
// canvas: canvasState,
|
||||
// } = state;
|
||||
|
||||
const frontendToBackendParametersConfig: FrontendToBackendParametersConfig =
|
||||
{
|
||||
generationMode,
|
||||
generationState,
|
||||
postprocessingState,
|
||||
canvasState,
|
||||
systemState,
|
||||
};
|
||||
// const frontendToBackendParametersConfig: FrontendToBackendParametersConfig =
|
||||
// {
|
||||
// generationMode,
|
||||
// generationState,
|
||||
// postprocessingState,
|
||||
// canvasState,
|
||||
// systemState,
|
||||
// };
|
||||
|
||||
dispatch(generationRequested());
|
||||
// dispatch(generationRequested());
|
||||
|
||||
const { generationParameters, esrganParameters, facetoolParameters } =
|
||||
frontendToBackendParameters(frontendToBackendParametersConfig);
|
||||
// const { generationParameters, esrganParameters, facetoolParameters } =
|
||||
// frontendToBackendParameters(frontendToBackendParametersConfig);
|
||||
|
||||
socketio.emit(
|
||||
'generateImage',
|
||||
generationParameters,
|
||||
esrganParameters,
|
||||
facetoolParameters
|
||||
);
|
||||
// socketio.emit(
|
||||
// 'generateImage',
|
||||
// generationParameters,
|
||||
// esrganParameters,
|
||||
// facetoolParameters
|
||||
// );
|
||||
|
||||
// we need to truncate the init_mask base64 else it takes up the whole log
|
||||
// TODO: handle maintaining masks for reproducibility in future
|
||||
if (generationParameters.init_mask) {
|
||||
generationParameters.init_mask = generationParameters.init_mask
|
||||
.substr(0, 64)
|
||||
.concat('...');
|
||||
}
|
||||
if (generationParameters.init_img) {
|
||||
generationParameters.init_img = generationParameters.init_img
|
||||
.substr(0, 64)
|
||||
.concat('...');
|
||||
}
|
||||
// // we need to truncate the init_mask base64 else it takes up the whole log
|
||||
// // TODO: handle maintaining masks for reproducibility in future
|
||||
// if (generationParameters.init_mask) {
|
||||
// generationParameters.init_mask = generationParameters.init_mask
|
||||
// .substr(0, 64)
|
||||
// .concat('...');
|
||||
// }
|
||||
// if (generationParameters.init_img) {
|
||||
// generationParameters.init_img = generationParameters.init_img
|
||||
// .substr(0, 64)
|
||||
// .concat('...');
|
||||
// }
|
||||
|
||||
dispatch(
|
||||
addLogEntry({
|
||||
timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
message: `Image generation requested: ${JSON.stringify({
|
||||
...generationParameters,
|
||||
...esrganParameters,
|
||||
...facetoolParameters,
|
||||
})}`,
|
||||
})
|
||||
);
|
||||
},
|
||||
emitRunESRGAN: (imageToProcess: InvokeAI._Image) => {
|
||||
dispatch(setIsProcessing(true));
|
||||
// dispatch(
|
||||
// addLogEntry({
|
||||
// timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
// message: `Image generation requested: ${JSON.stringify({
|
||||
// ...generationParameters,
|
||||
// ...esrganParameters,
|
||||
// ...facetoolParameters,
|
||||
// })}`,
|
||||
// })
|
||||
// );
|
||||
// },
|
||||
// emitRunESRGAN: (imageToProcess: InvokeAI._Image) => {
|
||||
// dispatch(setIsProcessing(true));
|
||||
|
||||
const {
|
||||
postprocessing: {
|
||||
upscalingLevel,
|
||||
upscalingDenoising,
|
||||
upscalingStrength,
|
||||
},
|
||||
} = getState();
|
||||
// const {
|
||||
// postprocessing: {
|
||||
// upscalingLevel,
|
||||
// upscalingDenoising,
|
||||
// upscalingStrength,
|
||||
// },
|
||||
// } = getState();
|
||||
|
||||
const esrganParameters = {
|
||||
upscale: [upscalingLevel, upscalingDenoising, upscalingStrength],
|
||||
};
|
||||
socketio.emit('runPostprocessing', imageToProcess, {
|
||||
type: 'esrgan',
|
||||
...esrganParameters,
|
||||
});
|
||||
dispatch(
|
||||
addLogEntry({
|
||||
timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
message: `ESRGAN upscale requested: ${JSON.stringify({
|
||||
file: imageToProcess.url,
|
||||
...esrganParameters,
|
||||
})}`,
|
||||
})
|
||||
);
|
||||
},
|
||||
emitRunFacetool: (imageToProcess: InvokeAI._Image) => {
|
||||
dispatch(setIsProcessing(true));
|
||||
// const esrganParameters = {
|
||||
// upscale: [upscalingLevel, upscalingDenoising, upscalingStrength],
|
||||
// };
|
||||
// socketio.emit('runPostprocessing', imageToProcess, {
|
||||
// type: 'esrgan',
|
||||
// ...esrganParameters,
|
||||
// });
|
||||
// dispatch(
|
||||
// addLogEntry({
|
||||
// timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
// message: `ESRGAN upscale requested: ${JSON.stringify({
|
||||
// file: imageToProcess.url,
|
||||
// ...esrganParameters,
|
||||
// })}`,
|
||||
// })
|
||||
// );
|
||||
// },
|
||||
// emitRunFacetool: (imageToProcess: InvokeAI._Image) => {
|
||||
// dispatch(setIsProcessing(true));
|
||||
|
||||
const {
|
||||
postprocessing: { facetoolType, facetoolStrength, codeformerFidelity },
|
||||
} = getState();
|
||||
// const {
|
||||
// postprocessing: { facetoolType, facetoolStrength, codeformerFidelity },
|
||||
// } = getState();
|
||||
|
||||
const facetoolParameters: Record<string, unknown> = {
|
||||
facetool_strength: facetoolStrength,
|
||||
};
|
||||
// const facetoolParameters: Record<string, unknown> = {
|
||||
// facetool_strength: facetoolStrength,
|
||||
// };
|
||||
|
||||
if (facetoolType === 'codeformer') {
|
||||
facetoolParameters.codeformer_fidelity = codeformerFidelity;
|
||||
}
|
||||
// if (facetoolType === 'codeformer') {
|
||||
// facetoolParameters.codeformer_fidelity = codeformerFidelity;
|
||||
// }
|
||||
|
||||
socketio.emit('runPostprocessing', imageToProcess, {
|
||||
type: facetoolType,
|
||||
...facetoolParameters,
|
||||
});
|
||||
dispatch(
|
||||
addLogEntry({
|
||||
timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
message: `Face restoration (${facetoolType}) requested: ${JSON.stringify(
|
||||
{
|
||||
file: imageToProcess.url,
|
||||
...facetoolParameters,
|
||||
}
|
||||
)}`,
|
||||
})
|
||||
);
|
||||
},
|
||||
emitDeleteImage: (imageToDelete: InvokeAI._Image) => {
|
||||
const { url, uuid, category, thumbnail } = imageToDelete;
|
||||
dispatch(removeImage(imageToDelete));
|
||||
socketio.emit('deleteImage', url, thumbnail, uuid, category);
|
||||
},
|
||||
emitRequestImages: (category: GalleryCategory) => {
|
||||
const gallery: GalleryState = getState().gallery;
|
||||
const { earliest_mtime } = gallery.categories[category];
|
||||
socketio.emit('requestImages', category, earliest_mtime);
|
||||
},
|
||||
emitRequestNewImages: (category: GalleryCategory) => {
|
||||
const gallery: GalleryState = getState().gallery;
|
||||
const { latest_mtime } = gallery.categories[category];
|
||||
socketio.emit('requestLatestImages', category, latest_mtime);
|
||||
},
|
||||
emitCancelProcessing: () => {
|
||||
socketio.emit('cancel');
|
||||
},
|
||||
emitRequestSystemConfig: () => {
|
||||
socketio.emit('requestSystemConfig');
|
||||
},
|
||||
emitSearchForModels: (modelFolder: string) => {
|
||||
socketio.emit('searchForModels', modelFolder);
|
||||
},
|
||||
emitAddNewModel: (modelConfig: InvokeAI.InvokeModelConfigProps) => {
|
||||
socketio.emit('addNewModel', modelConfig);
|
||||
},
|
||||
emitDeleteModel: (modelName: string) => {
|
||||
socketio.emit('deleteModel', modelName);
|
||||
},
|
||||
emitConvertToDiffusers: (
|
||||
modelToConvert: InvokeAI.InvokeModelConversionProps
|
||||
) => {
|
||||
dispatch(modelConvertRequested());
|
||||
socketio.emit('convertToDiffusers', modelToConvert);
|
||||
},
|
||||
emitMergeDiffusersModels: (
|
||||
modelMergeInfo: InvokeAI.InvokeModelMergingProps
|
||||
) => {
|
||||
dispatch(modelMergingRequested());
|
||||
socketio.emit('mergeDiffusersModels', modelMergeInfo);
|
||||
},
|
||||
emitRequestModelChange: (modelName: string) => {
|
||||
dispatch(modelChangeRequested());
|
||||
socketio.emit('requestModelChange', modelName);
|
||||
},
|
||||
emitSaveStagingAreaImageToGallery: (url: string) => {
|
||||
socketio.emit('requestSaveStagingAreaImageToGallery', url);
|
||||
},
|
||||
emitRequestEmptyTempFolder: () => {
|
||||
socketio.emit('requestEmptyTempFolder');
|
||||
},
|
||||
};
|
||||
};
|
||||
// socketio.emit('runPostprocessing', imageToProcess, {
|
||||
// type: facetoolType,
|
||||
// ...facetoolParameters,
|
||||
// });
|
||||
// dispatch(
|
||||
// addLogEntry({
|
||||
// timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
// message: `Face restoration (${facetoolType}) requested: ${JSON.stringify(
|
||||
// {
|
||||
// file: imageToProcess.url,
|
||||
// ...facetoolParameters,
|
||||
// }
|
||||
// )}`,
|
||||
// })
|
||||
// );
|
||||
// },
|
||||
// emitDeleteImage: (imageToDelete: InvokeAI._Image) => {
|
||||
// const { url, uuid, category, thumbnail } = imageToDelete;
|
||||
// dispatch(removeImage(imageToDelete));
|
||||
// socketio.emit('deleteImage', url, thumbnail, uuid, category);
|
||||
// },
|
||||
// emitRequestImages: (category: GalleryCategory) => {
|
||||
// const gallery: GalleryState = getState().gallery;
|
||||
// const { earliest_mtime } = gallery.categories[category];
|
||||
// socketio.emit('requestImages', category, earliest_mtime);
|
||||
// },
|
||||
// emitRequestNewImages: (category: GalleryCategory) => {
|
||||
// const gallery: GalleryState = getState().gallery;
|
||||
// const { latest_mtime } = gallery.categories[category];
|
||||
// socketio.emit('requestLatestImages', category, latest_mtime);
|
||||
// },
|
||||
// emitCancelProcessing: () => {
|
||||
// socketio.emit('cancel');
|
||||
// },
|
||||
// emitRequestSystemConfig: () => {
|
||||
// socketio.emit('requestSystemConfig');
|
||||
// },
|
||||
// emitSearchForModels: (modelFolder: string) => {
|
||||
// socketio.emit('searchForModels', modelFolder);
|
||||
// },
|
||||
// emitAddNewModel: (modelConfig: InvokeAI.InvokeModelConfigProps) => {
|
||||
// socketio.emit('addNewModel', modelConfig);
|
||||
// },
|
||||
// emitDeleteModel: (modelName: string) => {
|
||||
// socketio.emit('deleteModel', modelName);
|
||||
// },
|
||||
// emitConvertToDiffusers: (
|
||||
// modelToConvert: InvokeAI.InvokeModelConversionProps
|
||||
// ) => {
|
||||
// dispatch(modelConvertRequested());
|
||||
// socketio.emit('convertToDiffusers', modelToConvert);
|
||||
// },
|
||||
// emitMergeDiffusersModels: (
|
||||
// modelMergeInfo: InvokeAI.InvokeModelMergingProps
|
||||
// ) => {
|
||||
// dispatch(modelMergingRequested());
|
||||
// socketio.emit('mergeDiffusersModels', modelMergeInfo);
|
||||
// },
|
||||
// emitRequestModelChange: (modelName: string) => {
|
||||
// dispatch(modelChangeRequested());
|
||||
// socketio.emit('requestModelChange', modelName);
|
||||
// },
|
||||
// emitSaveStagingAreaImageToGallery: (url: string) => {
|
||||
// socketio.emit('requestSaveStagingAreaImageToGallery', url);
|
||||
// },
|
||||
// emitRequestEmptyTempFolder: () => {
|
||||
// socketio.emit('requestEmptyTempFolder');
|
||||
// },
|
||||
// };
|
||||
// };
|
||||
|
||||
export default makeSocketIOEmitters;
|
||||
// export default makeSocketIOEmitters;
|
||||
|
||||
export default {};
|
||||
|
@ -1,501 +1,502 @@
|
||||
import { AnyAction, Dispatch, MiddlewareAPI } from '@reduxjs/toolkit';
|
||||
import dateFormat from 'dateformat';
|
||||
import i18n from 'i18n';
|
||||
import { v4 as uuidv4 } from 'uuid';
|
||||
// import { AnyAction, Dispatch, MiddlewareAPI } from '@reduxjs/toolkit';
|
||||
// import dateFormat from 'dateformat';
|
||||
// import i18n from 'i18n';
|
||||
// import { v4 as uuidv4 } from 'uuid';
|
||||
|
||||
import * as InvokeAI from 'app/invokeai';
|
||||
// import * as InvokeAI from 'app/types/invokeai';
|
||||
|
||||
import {
|
||||
addLogEntry,
|
||||
addToast,
|
||||
errorOccurred,
|
||||
processingCanceled,
|
||||
setCurrentStatus,
|
||||
setFoundModels,
|
||||
setIsCancelable,
|
||||
setIsConnected,
|
||||
setIsProcessing,
|
||||
setModelList,
|
||||
setSearchFolder,
|
||||
setSystemConfig,
|
||||
setSystemStatus,
|
||||
} from 'features/system/store/systemSlice';
|
||||
// import {
|
||||
// addToast,
|
||||
// errorOccurred,
|
||||
// processingCanceled,
|
||||
// setCurrentStatus,
|
||||
// setFoundModels,
|
||||
// setIsCancelable,
|
||||
// setIsConnected,
|
||||
// setIsProcessing,
|
||||
// setModelList,
|
||||
// setSearchFolder,
|
||||
// setSystemConfig,
|
||||
// setSystemStatus,
|
||||
// } from 'features/system/store/systemSlice';
|
||||
|
||||
import {
|
||||
addGalleryImages,
|
||||
addImage,
|
||||
clearIntermediateImage,
|
||||
GalleryState,
|
||||
removeImage,
|
||||
setIntermediateImage,
|
||||
} from 'features/gallery/store/gallerySlice';
|
||||
// import {
|
||||
// addGalleryImages,
|
||||
// addImage,
|
||||
// clearIntermediateImage,
|
||||
// GalleryState,
|
||||
// removeImage,
|
||||
// setIntermediateImage,
|
||||
// } from 'features/gallery/store/gallerySlice';
|
||||
|
||||
import type { RootState } from 'app/store';
|
||||
import { addImageToStagingArea } from 'features/canvas/store/canvasSlice';
|
||||
import {
|
||||
clearInitialImage,
|
||||
initialImageSelected,
|
||||
setInfillMethod,
|
||||
// setInitialImage,
|
||||
setMaskPath,
|
||||
} from 'features/parameters/store/generationSlice';
|
||||
import { tabMap } from 'features/ui/store/tabMap';
|
||||
import {
|
||||
requestImages,
|
||||
requestNewImages,
|
||||
requestSystemConfig,
|
||||
} from './actions';
|
||||
// import type { RootState } from 'app/store/store';
|
||||
// import { addImageToStagingArea } from 'features/canvas/store/canvasSlice';
|
||||
// import {
|
||||
// clearInitialImage,
|
||||
// initialImageSelected,
|
||||
// setInfillMethod,
|
||||
// // setInitialImage,
|
||||
// setMaskPath,
|
||||
// } from 'features/parameters/store/generationSlice';
|
||||
// import { tabMap } from 'features/ui/store/tabMap';
|
||||
// import {
|
||||
// requestImages,
|
||||
// requestNewImages,
|
||||
// requestSystemConfig,
|
||||
// } from './actions';
|
||||
|
||||
/**
|
||||
* Returns an object containing listener callbacks for socketio events.
|
||||
* TODO: This file is large, but simple. Should it be split up further?
|
||||
*/
|
||||
const makeSocketIOListeners = (
|
||||
store: MiddlewareAPI<Dispatch<AnyAction>, RootState>
|
||||
) => {
|
||||
const { dispatch, getState } = store;
|
||||
// /**
|
||||
// * Returns an object containing listener callbacks for socketio events.
|
||||
// * TODO: This file is large, but simple. Should it be split up further?
|
||||
// */
|
||||
// const makeSocketIOListeners = (
|
||||
// store: MiddlewareAPI<Dispatch<AnyAction>, RootState>
|
||||
// ) => {
|
||||
// const { dispatch, getState } = store;
|
||||
|
||||
return {
|
||||
/**
|
||||
* Callback to run when we receive a 'connect' event.
|
||||
*/
|
||||
onConnect: () => {
|
||||
try {
|
||||
dispatch(setIsConnected(true));
|
||||
dispatch(setCurrentStatus(i18n.t('common.statusConnected')));
|
||||
dispatch(requestSystemConfig());
|
||||
const gallery: GalleryState = getState().gallery;
|
||||
// return {
|
||||
// /**
|
||||
// * Callback to run when we receive a 'connect' event.
|
||||
// */
|
||||
// onConnect: () => {
|
||||
// try {
|
||||
// dispatch(setIsConnected(true));
|
||||
// dispatch(setCurrentStatus(i18n.t('common.statusConnected')));
|
||||
// dispatch(requestSystemConfig());
|
||||
// const gallery: GalleryState = getState().gallery;
|
||||
|
||||
if (gallery.categories.result.latest_mtime) {
|
||||
dispatch(requestNewImages('result'));
|
||||
} else {
|
||||
dispatch(requestImages('result'));
|
||||
}
|
||||
// if (gallery.categories.result.latest_mtime) {
|
||||
// dispatch(requestNewImages('result'));
|
||||
// } else {
|
||||
// dispatch(requestImages('result'));
|
||||
// }
|
||||
|
||||
if (gallery.categories.user.latest_mtime) {
|
||||
dispatch(requestNewImages('user'));
|
||||
} else {
|
||||
dispatch(requestImages('user'));
|
||||
}
|
||||
} catch (e) {
|
||||
console.error(e);
|
||||
}
|
||||
},
|
||||
/**
|
||||
* Callback to run when we receive a 'disconnect' event.
|
||||
*/
|
||||
onDisconnect: () => {
|
||||
try {
|
||||
dispatch(setIsConnected(false));
|
||||
dispatch(setCurrentStatus(i18n.t('common.statusDisconnected')));
|
||||
// if (gallery.categories.user.latest_mtime) {
|
||||
// dispatch(requestNewImages('user'));
|
||||
// } else {
|
||||
// dispatch(requestImages('user'));
|
||||
// }
|
||||
// } catch (e) {
|
||||
// console.error(e);
|
||||
// }
|
||||
// },
|
||||
// /**
|
||||
// * Callback to run when we receive a 'disconnect' event.
|
||||
// */
|
||||
// onDisconnect: () => {
|
||||
// try {
|
||||
// dispatch(setIsConnected(false));
|
||||
// dispatch(setCurrentStatus(i18n.t('common.statusDisconnected')));
|
||||
|
||||
dispatch(
|
||||
addLogEntry({
|
||||
timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
message: `Disconnected from server`,
|
||||
level: 'warning',
|
||||
})
|
||||
);
|
||||
} catch (e) {
|
||||
console.error(e);
|
||||
}
|
||||
},
|
||||
/**
|
||||
* Callback to run when we receive a 'generationResult' event.
|
||||
*/
|
||||
onGenerationResult: (data: InvokeAI.ImageResultResponse) => {
|
||||
try {
|
||||
const state = getState();
|
||||
const { activeTab } = state.ui;
|
||||
const { shouldLoopback } = state.postprocessing;
|
||||
const { boundingBox: _, generationMode, ...rest } = data;
|
||||
// dispatch(
|
||||
// addLogEntry({
|
||||
// timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
// message: `Disconnected from server`,
|
||||
// level: 'warning',
|
||||
// })
|
||||
// );
|
||||
// } catch (e) {
|
||||
// console.error(e);
|
||||
// }
|
||||
// },
|
||||
// /**
|
||||
// * Callback to run when we receive a 'generationResult' event.
|
||||
// */
|
||||
// onGenerationResult: (data: InvokeAI.ImageResultResponse) => {
|
||||
// try {
|
||||
// const state = getState();
|
||||
// const { activeTab } = state.ui;
|
||||
// const { shouldLoopback } = state.postprocessing;
|
||||
// const { boundingBox: _, generationMode, ...rest } = data;
|
||||
|
||||
const newImage = {
|
||||
uuid: uuidv4(),
|
||||
...rest,
|
||||
};
|
||||
// const newImage = {
|
||||
// uuid: uuidv4(),
|
||||
// ...rest,
|
||||
// };
|
||||
|
||||
if (['txt2img', 'img2img'].includes(generationMode)) {
|
||||
dispatch(
|
||||
addImage({
|
||||
category: 'result',
|
||||
image: { ...newImage, category: 'result' },
|
||||
})
|
||||
);
|
||||
}
|
||||
// if (['txt2img', 'img2img'].includes(generationMode)) {
|
||||
// dispatch(
|
||||
// addImage({
|
||||
// category: 'result',
|
||||
// image: { ...newImage, category: 'result' },
|
||||
// })
|
||||
// );
|
||||
// }
|
||||
|
||||
if (generationMode === 'unifiedCanvas' && data.boundingBox) {
|
||||
const { boundingBox } = data;
|
||||
dispatch(
|
||||
addImageToStagingArea({
|
||||
image: { ...newImage, category: 'temp' },
|
||||
boundingBox,
|
||||
})
|
||||
);
|
||||
// if (generationMode === 'unifiedCanvas' && data.boundingBox) {
|
||||
// const { boundingBox } = data;
|
||||
// dispatch(
|
||||
// addImageToStagingArea({
|
||||
// image: { ...newImage, category: 'temp' },
|
||||
// boundingBox,
|
||||
// })
|
||||
// );
|
||||
|
||||
if (state.canvas.shouldAutoSave) {
|
||||
dispatch(
|
||||
addImage({
|
||||
image: { ...newImage, category: 'result' },
|
||||
category: 'result',
|
||||
})
|
||||
);
|
||||
}
|
||||
}
|
||||
// if (state.canvas.shouldAutoSave) {
|
||||
// dispatch(
|
||||
// addImage({
|
||||
// image: { ...newImage, category: 'result' },
|
||||
// category: 'result',
|
||||
// })
|
||||
// );
|
||||
// }
|
||||
// }
|
||||
|
||||
// TODO: fix
|
||||
// if (shouldLoopback) {
|
||||
// const activeTabName = tabMap[activeTab];
|
||||
// switch (activeTabName) {
|
||||
// case 'img2img': {
|
||||
// dispatch(initialImageSelected(newImage.uuid));
|
||||
// // dispatch(setInitialImage(newImage));
|
||||
// break;
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
// // TODO: fix
|
||||
// // if (shouldLoopback) {
|
||||
// // const activeTabName = tabMap[activeTab];
|
||||
// // switch (activeTabName) {
|
||||
// // case 'img2img': {
|
||||
// // dispatch(initialImageSelected(newImage.uuid));
|
||||
// // // dispatch(setInitialImage(newImage));
|
||||
// // break;
|
||||
// // }
|
||||
// // }
|
||||
// // }
|
||||
|
||||
dispatch(clearIntermediateImage());
|
||||
// dispatch(clearIntermediateImage());
|
||||
|
||||
dispatch(
|
||||
addLogEntry({
|
||||
timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
message: `Image generated: ${data.url}`,
|
||||
})
|
||||
);
|
||||
} catch (e) {
|
||||
console.error(e);
|
||||
}
|
||||
},
|
||||
/**
|
||||
* Callback to run when we receive a 'intermediateResult' event.
|
||||
*/
|
||||
onIntermediateResult: (data: InvokeAI.ImageResultResponse) => {
|
||||
try {
|
||||
dispatch(
|
||||
setIntermediateImage({
|
||||
uuid: uuidv4(),
|
||||
...data,
|
||||
category: 'result',
|
||||
})
|
||||
);
|
||||
if (!data.isBase64) {
|
||||
dispatch(
|
||||
addLogEntry({
|
||||
timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
message: `Intermediate image generated: ${data.url}`,
|
||||
})
|
||||
);
|
||||
}
|
||||
} catch (e) {
|
||||
console.error(e);
|
||||
}
|
||||
},
|
||||
/**
|
||||
* Callback to run when we receive an 'esrganResult' event.
|
||||
*/
|
||||
onPostprocessingResult: (data: InvokeAI.ImageResultResponse) => {
|
||||
try {
|
||||
dispatch(
|
||||
addImage({
|
||||
category: 'result',
|
||||
image: {
|
||||
uuid: uuidv4(),
|
||||
...data,
|
||||
category: 'result',
|
||||
},
|
||||
})
|
||||
);
|
||||
// dispatch(
|
||||
// addLogEntry({
|
||||
// timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
// message: `Image generated: ${data.url}`,
|
||||
// })
|
||||
// );
|
||||
// } catch (e) {
|
||||
// console.error(e);
|
||||
// }
|
||||
// },
|
||||
// /**
|
||||
// * Callback to run when we receive a 'intermediateResult' event.
|
||||
// */
|
||||
// onIntermediateResult: (data: InvokeAI.ImageResultResponse) => {
|
||||
// try {
|
||||
// dispatch(
|
||||
// setIntermediateImage({
|
||||
// uuid: uuidv4(),
|
||||
// ...data,
|
||||
// category: 'result',
|
||||
// })
|
||||
// );
|
||||
// if (!data.isBase64) {
|
||||
// dispatch(
|
||||
// addLogEntry({
|
||||
// timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
// message: `Intermediate image generated: ${data.url}`,
|
||||
// })
|
||||
// );
|
||||
// }
|
||||
// } catch (e) {
|
||||
// console.error(e);
|
||||
// }
|
||||
// },
|
||||
// /**
|
||||
// * Callback to run when we receive an 'esrganResult' event.
|
||||
// */
|
||||
// onPostprocessingResult: (data: InvokeAI.ImageResultResponse) => {
|
||||
// try {
|
||||
// dispatch(
|
||||
// addImage({
|
||||
// category: 'result',
|
||||
// image: {
|
||||
// uuid: uuidv4(),
|
||||
// ...data,
|
||||
// category: 'result',
|
||||
// },
|
||||
// })
|
||||
// );
|
||||
|
||||
dispatch(
|
||||
addLogEntry({
|
||||
timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
message: `Postprocessed: ${data.url}`,
|
||||
})
|
||||
);
|
||||
} catch (e) {
|
||||
console.error(e);
|
||||
}
|
||||
},
|
||||
/**
|
||||
* Callback to run when we receive a 'progressUpdate' event.
|
||||
* TODO: Add additional progress phases
|
||||
*/
|
||||
onProgressUpdate: (data: InvokeAI.SystemStatus) => {
|
||||
try {
|
||||
dispatch(setIsProcessing(true));
|
||||
dispatch(setSystemStatus(data));
|
||||
} catch (e) {
|
||||
console.error(e);
|
||||
}
|
||||
},
|
||||
/**
|
||||
* Callback to run when we receive a 'progressUpdate' event.
|
||||
*/
|
||||
onError: (data: InvokeAI.ErrorResponse) => {
|
||||
const { message, additionalData } = data;
|
||||
// dispatch(
|
||||
// addLogEntry({
|
||||
// timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
// message: `Postprocessed: ${data.url}`,
|
||||
// })
|
||||
// );
|
||||
// } catch (e) {
|
||||
// console.error(e);
|
||||
// }
|
||||
// },
|
||||
// /**
|
||||
// * Callback to run when we receive a 'progressUpdate' event.
|
||||
// * TODO: Add additional progress phases
|
||||
// */
|
||||
// onProgressUpdate: (data: InvokeAI.SystemStatus) => {
|
||||
// try {
|
||||
// dispatch(setIsProcessing(true));
|
||||
// dispatch(setSystemStatus(data));
|
||||
// } catch (e) {
|
||||
// console.error(e);
|
||||
// }
|
||||
// },
|
||||
// /**
|
||||
// * Callback to run when we receive a 'progressUpdate' event.
|
||||
// */
|
||||
// onError: (data: InvokeAI.ErrorResponse) => {
|
||||
// const { message, additionalData } = data;
|
||||
|
||||
if (additionalData) {
|
||||
// TODO: handle more data than short message
|
||||
}
|
||||
// if (additionalData) {
|
||||
// // TODO: handle more data than short message
|
||||
// }
|
||||
|
||||
try {
|
||||
dispatch(
|
||||
addLogEntry({
|
||||
timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
message: `Server error: ${message}`,
|
||||
level: 'error',
|
||||
})
|
||||
);
|
||||
dispatch(errorOccurred());
|
||||
dispatch(clearIntermediateImage());
|
||||
} catch (e) {
|
||||
console.error(e);
|
||||
}
|
||||
},
|
||||
/**
|
||||
* Callback to run when we receive a 'galleryImages' event.
|
||||
*/
|
||||
onGalleryImages: (data: InvokeAI.GalleryImagesResponse) => {
|
||||
const { images, areMoreImagesAvailable, category } = data;
|
||||
// try {
|
||||
// dispatch(
|
||||
// addLogEntry({
|
||||
// timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
// message: `Server error: ${message}`,
|
||||
// level: 'error',
|
||||
// })
|
||||
// );
|
||||
// dispatch(errorOccurred());
|
||||
// dispatch(clearIntermediateImage());
|
||||
// } catch (e) {
|
||||
// console.error(e);
|
||||
// }
|
||||
// },
|
||||
// /**
|
||||
// * Callback to run when we receive a 'galleryImages' event.
|
||||
// */
|
||||
// onGalleryImages: (data: InvokeAI.GalleryImagesResponse) => {
|
||||
// const { images, areMoreImagesAvailable, category } = data;
|
||||
|
||||
/**
|
||||
* the logic here ideally would be in the reducer but we have a side effect:
|
||||
* generating a uuid. so the logic needs to be here, outside redux.
|
||||
*/
|
||||
// /**
|
||||
// * the logic here ideally would be in the reducer but we have a side effect:
|
||||
// * generating a uuid. so the logic needs to be here, outside redux.
|
||||
// */
|
||||
|
||||
// Generate a UUID for each image
|
||||
const preparedImages = images.map((image): InvokeAI._Image => {
|
||||
return {
|
||||
uuid: uuidv4(),
|
||||
...image,
|
||||
};
|
||||
});
|
||||
// // Generate a UUID for each image
|
||||
// const preparedImages = images.map((image): InvokeAI._Image => {
|
||||
// return {
|
||||
// uuid: uuidv4(),
|
||||
// ...image,
|
||||
// };
|
||||
// });
|
||||
|
||||
dispatch(
|
||||
addGalleryImages({
|
||||
images: preparedImages,
|
||||
areMoreImagesAvailable,
|
||||
category,
|
||||
})
|
||||
);
|
||||
// dispatch(
|
||||
// addGalleryImages({
|
||||
// images: preparedImages,
|
||||
// areMoreImagesAvailable,
|
||||
// category,
|
||||
// })
|
||||
// );
|
||||
|
||||
dispatch(
|
||||
addLogEntry({
|
||||
timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
message: `Loaded ${images.length} images`,
|
||||
})
|
||||
);
|
||||
},
|
||||
/**
|
||||
* Callback to run when we receive a 'processingCanceled' event.
|
||||
*/
|
||||
onProcessingCanceled: () => {
|
||||
dispatch(processingCanceled());
|
||||
// dispatch(
|
||||
// addLogEntry({
|
||||
// timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
// message: `Loaded ${images.length} images`,
|
||||
// })
|
||||
// );
|
||||
// },
|
||||
// /**
|
||||
// * Callback to run when we receive a 'processingCanceled' event.
|
||||
// */
|
||||
// onProcessingCanceled: () => {
|
||||
// dispatch(processingCanceled());
|
||||
|
||||
const { intermediateImage } = getState().gallery;
|
||||
// const { intermediateImage } = getState().gallery;
|
||||
|
||||
if (intermediateImage) {
|
||||
if (!intermediateImage.isBase64) {
|
||||
dispatch(
|
||||
addImage({
|
||||
category: 'result',
|
||||
image: intermediateImage,
|
||||
})
|
||||
);
|
||||
dispatch(
|
||||
addLogEntry({
|
||||
timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
message: `Intermediate image saved: ${intermediateImage.url}`,
|
||||
})
|
||||
);
|
||||
}
|
||||
dispatch(clearIntermediateImage());
|
||||
}
|
||||
// if (intermediateImage) {
|
||||
// if (!intermediateImage.isBase64) {
|
||||
// dispatch(
|
||||
// addImage({
|
||||
// category: 'result',
|
||||
// image: intermediateImage,
|
||||
// })
|
||||
// );
|
||||
// dispatch(
|
||||
// addLogEntry({
|
||||
// timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
// message: `Intermediate image saved: ${intermediateImage.url}`,
|
||||
// })
|
||||
// );
|
||||
// }
|
||||
// dispatch(clearIntermediateImage());
|
||||
// }
|
||||
|
||||
dispatch(
|
||||
addLogEntry({
|
||||
timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
message: `Processing canceled`,
|
||||
level: 'warning',
|
||||
})
|
||||
);
|
||||
},
|
||||
/**
|
||||
* Callback to run when we receive a 'imageDeleted' event.
|
||||
*/
|
||||
onImageDeleted: (data: InvokeAI.ImageDeletedResponse) => {
|
||||
const { url } = data;
|
||||
// dispatch(
|
||||
// addLogEntry({
|
||||
// timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
// message: `Processing canceled`,
|
||||
// level: 'warning',
|
||||
// })
|
||||
// );
|
||||
// },
|
||||
// /**
|
||||
// * Callback to run when we receive a 'imageDeleted' event.
|
||||
// */
|
||||
// onImageDeleted: (data: InvokeAI.ImageDeletedResponse) => {
|
||||
// const { url } = data;
|
||||
|
||||
// remove image from gallery
|
||||
dispatch(removeImage(data));
|
||||
// // remove image from gallery
|
||||
// dispatch(removeImage(data));
|
||||
|
||||
// remove references to image in options
|
||||
const {
|
||||
generation: { initialImage, maskPath },
|
||||
} = getState();
|
||||
// // remove references to image in options
|
||||
// const {
|
||||
// generation: { initialImage, maskPath },
|
||||
// } = getState();
|
||||
|
||||
if (
|
||||
initialImage === url ||
|
||||
(initialImage as InvokeAI._Image)?.url === url
|
||||
) {
|
||||
dispatch(clearInitialImage());
|
||||
}
|
||||
// if (
|
||||
// initialImage === url ||
|
||||
// (initialImage as InvokeAI._Image)?.url === url
|
||||
// ) {
|
||||
// dispatch(clearInitialImage());
|
||||
// }
|
||||
|
||||
if (maskPath === url) {
|
||||
dispatch(setMaskPath(''));
|
||||
}
|
||||
// if (maskPath === url) {
|
||||
// dispatch(setMaskPath(''));
|
||||
// }
|
||||
|
||||
dispatch(
|
||||
addLogEntry({
|
||||
timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
message: `Image deleted: ${url}`,
|
||||
})
|
||||
);
|
||||
},
|
||||
onSystemConfig: (data: InvokeAI.SystemConfig) => {
|
||||
dispatch(setSystemConfig(data));
|
||||
if (!data.infill_methods.includes('patchmatch')) {
|
||||
dispatch(setInfillMethod(data.infill_methods[0]));
|
||||
}
|
||||
},
|
||||
onFoundModels: (data: InvokeAI.FoundModelResponse) => {
|
||||
const { search_folder, found_models } = data;
|
||||
dispatch(setSearchFolder(search_folder));
|
||||
dispatch(setFoundModels(found_models));
|
||||
},
|
||||
onNewModelAdded: (data: InvokeAI.ModelAddedResponse) => {
|
||||
const { new_model_name, model_list, update } = data;
|
||||
dispatch(setModelList(model_list));
|
||||
dispatch(setIsProcessing(false));
|
||||
dispatch(setCurrentStatus(i18n.t('modelManager.modelAdded')));
|
||||
dispatch(
|
||||
addLogEntry({
|
||||
timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
message: `Model Added: ${new_model_name}`,
|
||||
level: 'info',
|
||||
})
|
||||
);
|
||||
dispatch(
|
||||
addToast({
|
||||
title: !update
|
||||
? `${i18n.t('modelManager.modelAdded')}: ${new_model_name}`
|
||||
: `${i18n.t('modelManager.modelUpdated')}: ${new_model_name}`,
|
||||
status: 'success',
|
||||
duration: 2500,
|
||||
isClosable: true,
|
||||
})
|
||||
);
|
||||
},
|
||||
onModelDeleted: (data: InvokeAI.ModelDeletedResponse) => {
|
||||
const { deleted_model_name, model_list } = data;
|
||||
dispatch(setModelList(model_list));
|
||||
dispatch(setIsProcessing(false));
|
||||
dispatch(
|
||||
addLogEntry({
|
||||
timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
message: `${i18n.t(
|
||||
'modelManager.modelAdded'
|
||||
)}: ${deleted_model_name}`,
|
||||
level: 'info',
|
||||
})
|
||||
);
|
||||
dispatch(
|
||||
addToast({
|
||||
title: `${i18n.t(
|
||||
'modelManager.modelEntryDeleted'
|
||||
)}: ${deleted_model_name}`,
|
||||
status: 'success',
|
||||
duration: 2500,
|
||||
isClosable: true,
|
||||
})
|
||||
);
|
||||
},
|
||||
onModelConverted: (data: InvokeAI.ModelConvertedResponse) => {
|
||||
const { converted_model_name, model_list } = data;
|
||||
dispatch(setModelList(model_list));
|
||||
dispatch(setCurrentStatus(i18n.t('common.statusModelConverted')));
|
||||
dispatch(setIsProcessing(false));
|
||||
dispatch(setIsCancelable(true));
|
||||
dispatch(
|
||||
addLogEntry({
|
||||
timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
message: `Model converted: ${converted_model_name}`,
|
||||
level: 'info',
|
||||
})
|
||||
);
|
||||
dispatch(
|
||||
addToast({
|
||||
title: `${i18n.t(
|
||||
'modelManager.modelConverted'
|
||||
)}: ${converted_model_name}`,
|
||||
status: 'success',
|
||||
duration: 2500,
|
||||
isClosable: true,
|
||||
})
|
||||
);
|
||||
},
|
||||
onModelsMerged: (data: InvokeAI.ModelsMergedResponse) => {
|
||||
const { merged_models, merged_model_name, model_list } = data;
|
||||
dispatch(setModelList(model_list));
|
||||
dispatch(setCurrentStatus(i18n.t('common.statusMergedModels')));
|
||||
dispatch(setIsProcessing(false));
|
||||
dispatch(setIsCancelable(true));
|
||||
dispatch(
|
||||
addLogEntry({
|
||||
timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
message: `Models merged: ${merged_models}`,
|
||||
level: 'info',
|
||||
})
|
||||
);
|
||||
dispatch(
|
||||
addToast({
|
||||
title: `${i18n.t('modelManager.modelsMerged')}: ${merged_model_name}`,
|
||||
status: 'success',
|
||||
duration: 2500,
|
||||
isClosable: true,
|
||||
})
|
||||
);
|
||||
},
|
||||
onModelChanged: (data: InvokeAI.ModelChangeResponse) => {
|
||||
const { model_name, model_list } = data;
|
||||
dispatch(setModelList(model_list));
|
||||
dispatch(setCurrentStatus(i18n.t('common.statusModelChanged')));
|
||||
dispatch(setIsProcessing(false));
|
||||
dispatch(setIsCancelable(true));
|
||||
dispatch(
|
||||
addLogEntry({
|
||||
timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
message: `Model changed: ${model_name}`,
|
||||
level: 'info',
|
||||
})
|
||||
);
|
||||
},
|
||||
onModelChangeFailed: (data: InvokeAI.ModelChangeResponse) => {
|
||||
const { model_name, model_list } = data;
|
||||
dispatch(setModelList(model_list));
|
||||
dispatch(setIsProcessing(false));
|
||||
dispatch(setIsCancelable(true));
|
||||
dispatch(errorOccurred());
|
||||
dispatch(
|
||||
addLogEntry({
|
||||
timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
message: `Model change failed: ${model_name}`,
|
||||
level: 'error',
|
||||
})
|
||||
);
|
||||
},
|
||||
onTempFolderEmptied: () => {
|
||||
dispatch(
|
||||
addToast({
|
||||
title: i18n.t('toast.tempFoldersEmptied'),
|
||||
status: 'success',
|
||||
duration: 2500,
|
||||
isClosable: true,
|
||||
})
|
||||
);
|
||||
},
|
||||
};
|
||||
};
|
||||
// dispatch(
|
||||
// addLogEntry({
|
||||
// timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
// message: `Image deleted: ${url}`,
|
||||
// })
|
||||
// );
|
||||
// },
|
||||
// onSystemConfig: (data: InvokeAI.SystemConfig) => {
|
||||
// dispatch(setSystemConfig(data));
|
||||
// if (!data.infill_methods.includes('patchmatch')) {
|
||||
// dispatch(setInfillMethod(data.infill_methods[0]));
|
||||
// }
|
||||
// },
|
||||
// onFoundModels: (data: InvokeAI.FoundModelResponse) => {
|
||||
// const { search_folder, found_models } = data;
|
||||
// dispatch(setSearchFolder(search_folder));
|
||||
// dispatch(setFoundModels(found_models));
|
||||
// },
|
||||
// onNewModelAdded: (data: InvokeAI.ModelAddedResponse) => {
|
||||
// const { new_model_name, model_list, update } = data;
|
||||
// dispatch(setModelList(model_list));
|
||||
// dispatch(setIsProcessing(false));
|
||||
// dispatch(setCurrentStatus(i18n.t('modelManager.modelAdded')));
|
||||
// dispatch(
|
||||
// addLogEntry({
|
||||
// timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
// message: `Model Added: ${new_model_name}`,
|
||||
// level: 'info',
|
||||
// })
|
||||
// );
|
||||
// dispatch(
|
||||
// addToast({
|
||||
// title: !update
|
||||
// ? `${i18n.t('modelManager.modelAdded')}: ${new_model_name}`
|
||||
// : `${i18n.t('modelManager.modelUpdated')}: ${new_model_name}`,
|
||||
// status: 'success',
|
||||
// duration: 2500,
|
||||
// isClosable: true,
|
||||
// })
|
||||
// );
|
||||
// },
|
||||
// onModelDeleted: (data: InvokeAI.ModelDeletedResponse) => {
|
||||
// const { deleted_model_name, model_list } = data;
|
||||
// dispatch(setModelList(model_list));
|
||||
// dispatch(setIsProcessing(false));
|
||||
// dispatch(
|
||||
// addLogEntry({
|
||||
// timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
// message: `${i18n.t(
|
||||
// 'modelManager.modelAdded'
|
||||
// )}: ${deleted_model_name}`,
|
||||
// level: 'info',
|
||||
// })
|
||||
// );
|
||||
// dispatch(
|
||||
// addToast({
|
||||
// title: `${i18n.t(
|
||||
// 'modelManager.modelEntryDeleted'
|
||||
// )}: ${deleted_model_name}`,
|
||||
// status: 'success',
|
||||
// duration: 2500,
|
||||
// isClosable: true,
|
||||
// })
|
||||
// );
|
||||
// },
|
||||
// onModelConverted: (data: InvokeAI.ModelConvertedResponse) => {
|
||||
// const { converted_model_name, model_list } = data;
|
||||
// dispatch(setModelList(model_list));
|
||||
// dispatch(setCurrentStatus(i18n.t('common.statusModelConverted')));
|
||||
// dispatch(setIsProcessing(false));
|
||||
// dispatch(setIsCancelable(true));
|
||||
// dispatch(
|
||||
// addLogEntry({
|
||||
// timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
// message: `Model converted: ${converted_model_name}`,
|
||||
// level: 'info',
|
||||
// })
|
||||
// );
|
||||
// dispatch(
|
||||
// addToast({
|
||||
// title: `${i18n.t(
|
||||
// 'modelManager.modelConverted'
|
||||
// )}: ${converted_model_name}`,
|
||||
// status: 'success',
|
||||
// duration: 2500,
|
||||
// isClosable: true,
|
||||
// })
|
||||
// );
|
||||
// },
|
||||
// onModelsMerged: (data: InvokeAI.ModelsMergedResponse) => {
|
||||
// const { merged_models, merged_model_name, model_list } = data;
|
||||
// dispatch(setModelList(model_list));
|
||||
// dispatch(setCurrentStatus(i18n.t('common.statusMergedModels')));
|
||||
// dispatch(setIsProcessing(false));
|
||||
// dispatch(setIsCancelable(true));
|
||||
// dispatch(
|
||||
// addLogEntry({
|
||||
// timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
// message: `Models merged: ${merged_models}`,
|
||||
// level: 'info',
|
||||
// })
|
||||
// );
|
||||
// dispatch(
|
||||
// addToast({
|
||||
// title: `${i18n.t('modelManager.modelsMerged')}: ${merged_model_name}`,
|
||||
// status: 'success',
|
||||
// duration: 2500,
|
||||
// isClosable: true,
|
||||
// })
|
||||
// );
|
||||
// },
|
||||
// onModelChanged: (data: InvokeAI.ModelChangeResponse) => {
|
||||
// const { model_name, model_list } = data;
|
||||
// dispatch(setModelList(model_list));
|
||||
// dispatch(setCurrentStatus(i18n.t('common.statusModelChanged')));
|
||||
// dispatch(setIsProcessing(false));
|
||||
// dispatch(setIsCancelable(true));
|
||||
// dispatch(
|
||||
// addLogEntry({
|
||||
// timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
// message: `Model changed: ${model_name}`,
|
||||
// level: 'info',
|
||||
// })
|
||||
// );
|
||||
// },
|
||||
// onModelChangeFailed: (data: InvokeAI.ModelChangeResponse) => {
|
||||
// const { model_name, model_list } = data;
|
||||
// dispatch(setModelList(model_list));
|
||||
// dispatch(setIsProcessing(false));
|
||||
// dispatch(setIsCancelable(true));
|
||||
// dispatch(errorOccurred());
|
||||
// dispatch(
|
||||
// addLogEntry({
|
||||
// timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
// message: `Model change failed: ${model_name}`,
|
||||
// level: 'error',
|
||||
// })
|
||||
// );
|
||||
// },
|
||||
// onTempFolderEmptied: () => {
|
||||
// dispatch(
|
||||
// addToast({
|
||||
// title: i18n.t('toast.tempFoldersEmptied'),
|
||||
// status: 'success',
|
||||
// duration: 2500,
|
||||
// isClosable: true,
|
||||
// })
|
||||
// );
|
||||
// },
|
||||
// };
|
||||
// };
|
||||
|
||||
export default makeSocketIOListeners;
|
||||
// export default makeSocketIOListeners;
|
||||
|
||||
export default {};
|
||||
|
@ -1,246 +1,248 @@
|
||||
import { Middleware } from '@reduxjs/toolkit';
|
||||
import { io } from 'socket.io-client';
|
||||
// import { Middleware } from '@reduxjs/toolkit';
|
||||
// import { io } from 'socket.io-client';
|
||||
|
||||
import makeSocketIOEmitters from './emitters';
|
||||
import makeSocketIOListeners from './listeners';
|
||||
// import makeSocketIOEmitters from './emitters';
|
||||
// import makeSocketIOListeners from './listeners';
|
||||
|
||||
import * as InvokeAI from 'app/invokeai';
|
||||
// import * as InvokeAI from 'app/types/invokeai';
|
||||
|
||||
/**
|
||||
* Creates a socketio middleware to handle communication with server.
|
||||
*
|
||||
* Special `socketio/actionName` actions are created in actions.ts and
|
||||
* exported for use by the application, which treats them like any old
|
||||
* action, using `dispatch` to dispatch them.
|
||||
*
|
||||
* These actions are intercepted here, where `socketio.emit()` calls are
|
||||
* made on their behalf - see `emitters.ts`. The emitter functions
|
||||
* are the outbound communication to the server.
|
||||
*
|
||||
* Listeners are also established here - see `listeners.ts`. The listener
|
||||
* functions receive communication from the server and usually dispatch
|
||||
* some new action to handle whatever data was sent from the server.
|
||||
*/
|
||||
export const socketioMiddleware = () => {
|
||||
const { origin } = new URL(window.location.href);
|
||||
// /**
|
||||
// * Creates a socketio middleware to handle communication with server.
|
||||
// *
|
||||
// * Special `socketio/actionName` actions are created in actions.ts and
|
||||
// * exported for use by the application, which treats them like any old
|
||||
// * action, using `dispatch` to dispatch them.
|
||||
// *
|
||||
// * These actions are intercepted here, where `socketio.emit()` calls are
|
||||
// * made on their behalf - see `emitters.ts`. The emitter functions
|
||||
// * are the outbound communication to the server.
|
||||
// *
|
||||
// * Listeners are also established here - see `listeners.ts`. The listener
|
||||
// * functions receive communication from the server and usually dispatch
|
||||
// * some new action to handle whatever data was sent from the server.
|
||||
// */
|
||||
// export const socketioMiddleware = () => {
|
||||
// const { origin } = new URL(window.location.href);
|
||||
|
||||
const socketio = io(origin, {
|
||||
timeout: 60000,
|
||||
path: `${window.location.pathname}socket.io`,
|
||||
});
|
||||
// const socketio = io(origin, {
|
||||
// timeout: 60000,
|
||||
// path: `${window.location.pathname}socket.io`,
|
||||
// });
|
||||
|
||||
socketio.disconnect();
|
||||
// socketio.disconnect();
|
||||
|
||||
let areListenersSet = false;
|
||||
// let areListenersSet = false;
|
||||
|
||||
const middleware: Middleware = (store) => (next) => (action) => {
|
||||
const {
|
||||
onConnect,
|
||||
onDisconnect,
|
||||
onError,
|
||||
onPostprocessingResult,
|
||||
onGenerationResult,
|
||||
onIntermediateResult,
|
||||
onProgressUpdate,
|
||||
onGalleryImages,
|
||||
onProcessingCanceled,
|
||||
onImageDeleted,
|
||||
onSystemConfig,
|
||||
onModelChanged,
|
||||
onFoundModels,
|
||||
onNewModelAdded,
|
||||
onModelDeleted,
|
||||
onModelConverted,
|
||||
onModelsMerged,
|
||||
onModelChangeFailed,
|
||||
onTempFolderEmptied,
|
||||
} = makeSocketIOListeners(store);
|
||||
// const middleware: Middleware = (store) => (next) => (action) => {
|
||||
// const {
|
||||
// onConnect,
|
||||
// onDisconnect,
|
||||
// onError,
|
||||
// onPostprocessingResult,
|
||||
// onGenerationResult,
|
||||
// onIntermediateResult,
|
||||
// onProgressUpdate,
|
||||
// onGalleryImages,
|
||||
// onProcessingCanceled,
|
||||
// onImageDeleted,
|
||||
// onSystemConfig,
|
||||
// onModelChanged,
|
||||
// onFoundModels,
|
||||
// onNewModelAdded,
|
||||
// onModelDeleted,
|
||||
// onModelConverted,
|
||||
// onModelsMerged,
|
||||
// onModelChangeFailed,
|
||||
// onTempFolderEmptied,
|
||||
// } = makeSocketIOListeners(store);
|
||||
|
||||
const {
|
||||
emitGenerateImage,
|
||||
emitRunESRGAN,
|
||||
emitRunFacetool,
|
||||
emitDeleteImage,
|
||||
emitRequestImages,
|
||||
emitRequestNewImages,
|
||||
emitCancelProcessing,
|
||||
emitRequestSystemConfig,
|
||||
emitSearchForModels,
|
||||
emitAddNewModel,
|
||||
emitDeleteModel,
|
||||
emitConvertToDiffusers,
|
||||
emitMergeDiffusersModels,
|
||||
emitRequestModelChange,
|
||||
emitSaveStagingAreaImageToGallery,
|
||||
emitRequestEmptyTempFolder,
|
||||
} = makeSocketIOEmitters(store, socketio);
|
||||
// const {
|
||||
// emitGenerateImage,
|
||||
// emitRunESRGAN,
|
||||
// emitRunFacetool,
|
||||
// emitDeleteImage,
|
||||
// emitRequestImages,
|
||||
// emitRequestNewImages,
|
||||
// emitCancelProcessing,
|
||||
// emitRequestSystemConfig,
|
||||
// emitSearchForModels,
|
||||
// emitAddNewModel,
|
||||
// emitDeleteModel,
|
||||
// emitConvertToDiffusers,
|
||||
// emitMergeDiffusersModels,
|
||||
// emitRequestModelChange,
|
||||
// emitSaveStagingAreaImageToGallery,
|
||||
// emitRequestEmptyTempFolder,
|
||||
// } = makeSocketIOEmitters(store, socketio);
|
||||
|
||||
/**
|
||||
* If this is the first time the middleware has been called (e.g. during store setup),
|
||||
* initialize all our socket.io listeners.
|
||||
*/
|
||||
if (!areListenersSet) {
|
||||
socketio.on('connect', () => onConnect());
|
||||
// /**
|
||||
// * If this is the first time the middleware has been called (e.g. during store setup),
|
||||
// * initialize all our socket.io listeners.
|
||||
// */
|
||||
// if (!areListenersSet) {
|
||||
// socketio.on('connect', () => onConnect());
|
||||
|
||||
socketio.on('disconnect', () => onDisconnect());
|
||||
// socketio.on('disconnect', () => onDisconnect());
|
||||
|
||||
socketio.on('error', (data: InvokeAI.ErrorResponse) => onError(data));
|
||||
// socketio.on('error', (data: InvokeAI.ErrorResponse) => onError(data));
|
||||
|
||||
socketio.on('generationResult', (data: InvokeAI.ImageResultResponse) =>
|
||||
onGenerationResult(data)
|
||||
);
|
||||
// socketio.on('generationResult', (data: InvokeAI.ImageResultResponse) =>
|
||||
// onGenerationResult(data)
|
||||
// );
|
||||
|
||||
socketio.on(
|
||||
'postprocessingResult',
|
||||
(data: InvokeAI.ImageResultResponse) => onPostprocessingResult(data)
|
||||
);
|
||||
// socketio.on(
|
||||
// 'postprocessingResult',
|
||||
// (data: InvokeAI.ImageResultResponse) => onPostprocessingResult(data)
|
||||
// );
|
||||
|
||||
socketio.on('intermediateResult', (data: InvokeAI.ImageResultResponse) =>
|
||||
onIntermediateResult(data)
|
||||
);
|
||||
// socketio.on('intermediateResult', (data: InvokeAI.ImageResultResponse) =>
|
||||
// onIntermediateResult(data)
|
||||
// );
|
||||
|
||||
socketio.on('progressUpdate', (data: InvokeAI.SystemStatus) =>
|
||||
onProgressUpdate(data)
|
||||
);
|
||||
// socketio.on('progressUpdate', (data: InvokeAI.SystemStatus) =>
|
||||
// onProgressUpdate(data)
|
||||
// );
|
||||
|
||||
socketio.on('galleryImages', (data: InvokeAI.GalleryImagesResponse) =>
|
||||
onGalleryImages(data)
|
||||
);
|
||||
// socketio.on('galleryImages', (data: InvokeAI.GalleryImagesResponse) =>
|
||||
// onGalleryImages(data)
|
||||
// );
|
||||
|
||||
socketio.on('processingCanceled', () => {
|
||||
onProcessingCanceled();
|
||||
});
|
||||
// socketio.on('processingCanceled', () => {
|
||||
// onProcessingCanceled();
|
||||
// });
|
||||
|
||||
socketio.on('imageDeleted', (data: InvokeAI.ImageDeletedResponse) => {
|
||||
onImageDeleted(data);
|
||||
});
|
||||
// socketio.on('imageDeleted', (data: InvokeAI.ImageDeletedResponse) => {
|
||||
// onImageDeleted(data);
|
||||
// });
|
||||
|
||||
socketio.on('systemConfig', (data: InvokeAI.SystemConfig) => {
|
||||
onSystemConfig(data);
|
||||
});
|
||||
// socketio.on('systemConfig', (data: InvokeAI.SystemConfig) => {
|
||||
// onSystemConfig(data);
|
||||
// });
|
||||
|
||||
socketio.on('foundModels', (data: InvokeAI.FoundModelResponse) => {
|
||||
onFoundModels(data);
|
||||
});
|
||||
// socketio.on('foundModels', (data: InvokeAI.FoundModelResponse) => {
|
||||
// onFoundModels(data);
|
||||
// });
|
||||
|
||||
socketio.on('newModelAdded', (data: InvokeAI.ModelAddedResponse) => {
|
||||
onNewModelAdded(data);
|
||||
});
|
||||
// socketio.on('newModelAdded', (data: InvokeAI.ModelAddedResponse) => {
|
||||
// onNewModelAdded(data);
|
||||
// });
|
||||
|
||||
socketio.on('modelDeleted', (data: InvokeAI.ModelDeletedResponse) => {
|
||||
onModelDeleted(data);
|
||||
});
|
||||
// socketio.on('modelDeleted', (data: InvokeAI.ModelDeletedResponse) => {
|
||||
// onModelDeleted(data);
|
||||
// });
|
||||
|
||||
socketio.on('modelConverted', (data: InvokeAI.ModelConvertedResponse) => {
|
||||
onModelConverted(data);
|
||||
});
|
||||
// socketio.on('modelConverted', (data: InvokeAI.ModelConvertedResponse) => {
|
||||
// onModelConverted(data);
|
||||
// });
|
||||
|
||||
socketio.on('modelsMerged', (data: InvokeAI.ModelsMergedResponse) => {
|
||||
onModelsMerged(data);
|
||||
});
|
||||
// socketio.on('modelsMerged', (data: InvokeAI.ModelsMergedResponse) => {
|
||||
// onModelsMerged(data);
|
||||
// });
|
||||
|
||||
socketio.on('modelChanged', (data: InvokeAI.ModelChangeResponse) => {
|
||||
onModelChanged(data);
|
||||
});
|
||||
// socketio.on('modelChanged', (data: InvokeAI.ModelChangeResponse) => {
|
||||
// onModelChanged(data);
|
||||
// });
|
||||
|
||||
socketio.on('modelChangeFailed', (data: InvokeAI.ModelChangeResponse) => {
|
||||
onModelChangeFailed(data);
|
||||
});
|
||||
// socketio.on('modelChangeFailed', (data: InvokeAI.ModelChangeResponse) => {
|
||||
// onModelChangeFailed(data);
|
||||
// });
|
||||
|
||||
socketio.on('tempFolderEmptied', () => {
|
||||
onTempFolderEmptied();
|
||||
});
|
||||
// socketio.on('tempFolderEmptied', () => {
|
||||
// onTempFolderEmptied();
|
||||
// });
|
||||
|
||||
areListenersSet = true;
|
||||
}
|
||||
// areListenersSet = true;
|
||||
// }
|
||||
|
||||
/**
|
||||
* Handle redux actions caught by middleware.
|
||||
*/
|
||||
switch (action.type) {
|
||||
case 'socketio/generateImage': {
|
||||
emitGenerateImage(action.payload);
|
||||
break;
|
||||
}
|
||||
// /**
|
||||
// * Handle redux actions caught by middleware.
|
||||
// */
|
||||
// switch (action.type) {
|
||||
// case 'socketio/generateImage': {
|
||||
// emitGenerateImage(action.payload);
|
||||
// break;
|
||||
// }
|
||||
|
||||
case 'socketio/runESRGAN': {
|
||||
emitRunESRGAN(action.payload);
|
||||
break;
|
||||
}
|
||||
// case 'socketio/runESRGAN': {
|
||||
// emitRunESRGAN(action.payload);
|
||||
// break;
|
||||
// }
|
||||
|
||||
case 'socketio/runFacetool': {
|
||||
emitRunFacetool(action.payload);
|
||||
break;
|
||||
}
|
||||
// case 'socketio/runFacetool': {
|
||||
// emitRunFacetool(action.payload);
|
||||
// break;
|
||||
// }
|
||||
|
||||
case 'socketio/deleteImage': {
|
||||
emitDeleteImage(action.payload);
|
||||
break;
|
||||
}
|
||||
// case 'socketio/deleteImage': {
|
||||
// emitDeleteImage(action.payload);
|
||||
// break;
|
||||
// }
|
||||
|
||||
case 'socketio/requestImages': {
|
||||
emitRequestImages(action.payload);
|
||||
break;
|
||||
}
|
||||
// case 'socketio/requestImages': {
|
||||
// emitRequestImages(action.payload);
|
||||
// break;
|
||||
// }
|
||||
|
||||
case 'socketio/requestNewImages': {
|
||||
emitRequestNewImages(action.payload);
|
||||
break;
|
||||
}
|
||||
// case 'socketio/requestNewImages': {
|
||||
// emitRequestNewImages(action.payload);
|
||||
// break;
|
||||
// }
|
||||
|
||||
case 'socketio/cancelProcessing': {
|
||||
emitCancelProcessing();
|
||||
break;
|
||||
}
|
||||
// case 'socketio/cancelProcessing': {
|
||||
// emitCancelProcessing();
|
||||
// break;
|
||||
// }
|
||||
|
||||
case 'socketio/requestSystemConfig': {
|
||||
emitRequestSystemConfig();
|
||||
break;
|
||||
}
|
||||
// case 'socketio/requestSystemConfig': {
|
||||
// emitRequestSystemConfig();
|
||||
// break;
|
||||
// }
|
||||
|
||||
case 'socketio/searchForModels': {
|
||||
emitSearchForModels(action.payload);
|
||||
break;
|
||||
}
|
||||
// case 'socketio/searchForModels': {
|
||||
// emitSearchForModels(action.payload);
|
||||
// break;
|
||||
// }
|
||||
|
||||
case 'socketio/addNewModel': {
|
||||
emitAddNewModel(action.payload);
|
||||
break;
|
||||
}
|
||||
// case 'socketio/addNewModel': {
|
||||
// emitAddNewModel(action.payload);
|
||||
// break;
|
||||
// }
|
||||
|
||||
case 'socketio/deleteModel': {
|
||||
emitDeleteModel(action.payload);
|
||||
break;
|
||||
}
|
||||
// case 'socketio/deleteModel': {
|
||||
// emitDeleteModel(action.payload);
|
||||
// break;
|
||||
// }
|
||||
|
||||
case 'socketio/convertToDiffusers': {
|
||||
emitConvertToDiffusers(action.payload);
|
||||
break;
|
||||
}
|
||||
// case 'socketio/convertToDiffusers': {
|
||||
// emitConvertToDiffusers(action.payload);
|
||||
// break;
|
||||
// }
|
||||
|
||||
case 'socketio/mergeDiffusersModels': {
|
||||
emitMergeDiffusersModels(action.payload);
|
||||
break;
|
||||
}
|
||||
// case 'socketio/mergeDiffusersModels': {
|
||||
// emitMergeDiffusersModels(action.payload);
|
||||
// break;
|
||||
// }
|
||||
|
||||
case 'socketio/requestModelChange': {
|
||||
emitRequestModelChange(action.payload);
|
||||
break;
|
||||
}
|
||||
// case 'socketio/requestModelChange': {
|
||||
// emitRequestModelChange(action.payload);
|
||||
// break;
|
||||
// }
|
||||
|
||||
case 'socketio/saveStagingAreaImageToGallery': {
|
||||
emitSaveStagingAreaImageToGallery(action.payload);
|
||||
break;
|
||||
}
|
||||
// case 'socketio/saveStagingAreaImageToGallery': {
|
||||
// emitSaveStagingAreaImageToGallery(action.payload);
|
||||
// break;
|
||||
// }
|
||||
|
||||
case 'socketio/requestEmptyTempFolder': {
|
||||
emitRequestEmptyTempFolder();
|
||||
break;
|
||||
}
|
||||
}
|
||||
// case 'socketio/requestEmptyTempFolder': {
|
||||
// emitRequestEmptyTempFolder();
|
||||
// break;
|
||||
// }
|
||||
// }
|
||||
|
||||
next(action);
|
||||
};
|
||||
// next(action);
|
||||
// };
|
||||
|
||||
return middleware;
|
||||
};
|
||||
// return middleware;
|
||||
// };
|
||||
|
||||
export default {};
|
||||
|
@ -1,4 +1,4 @@
|
||||
import { store } from 'app/store';
|
||||
import { store } from 'app/store/store';
|
||||
import { persistStore } from 'redux-persist';
|
||||
|
||||
export const persistor = persistStore(store);
|
@ -19,8 +19,6 @@ import hotkeysReducer from 'features/ui/store/hotkeysSlice';
|
||||
import modelsReducer from 'features/system/store/modelSlice';
|
||||
import nodesReducer from 'features/nodes/store/nodesSlice';
|
||||
|
||||
import { socketioMiddleware } from './socketio/middleware';
|
||||
import { socketMiddleware } from 'services/events/middleware';
|
||||
import { canvasDenylist } from 'features/canvas/store/canvasPersistDenylist';
|
||||
import { galleryDenylist } from 'features/gallery/store/galleryPersistDenylist';
|
||||
import { generationDenylist } from 'features/parameters/store/generationPersistDenylist';
|
||||
@ -28,8 +26,10 @@ import { lightboxDenylist } from 'features/lightbox/store/lightboxPersistDenylis
|
||||
import { modelsDenylist } from 'features/system/store/modelsPersistDenylist';
|
||||
import { nodesDenylist } from 'features/nodes/store/nodesPersistDenylist';
|
||||
import { postprocessingDenylist } from 'features/parameters/store/postprocessingPersistDenylist';
|
||||
import { systemDenylist } from 'features/system/store/systemPersistsDenylist';
|
||||
import { systemDenylist } from 'features/system/store/systemPersistDenylist';
|
||||
import { uiDenylist } from 'features/ui/store/uiPersistDenylist';
|
||||
import { resultsDenylist } from 'features/gallery/store/resultsPersistDenylist';
|
||||
import { uploadsDenylist } from 'features/gallery/store/uploadsPersistDenylist';
|
||||
|
||||
/**
|
||||
* redux-persist provides an easy and reliable way to persist state across reloads.
|
||||
@ -82,19 +82,18 @@ const rootPersistConfig = getPersistConfig({
|
||||
'hotkeys',
|
||||
'config',
|
||||
],
|
||||
debounce: 300,
|
||||
});
|
||||
|
||||
const persistedReducer = persistReducer(rootPersistConfig, rootReducer);
|
||||
|
||||
// TODO: rip the old middleware out when nodes is complete
|
||||
export function buildMiddleware() {
|
||||
if (import.meta.env.MODE === 'nodes' || import.meta.env.MODE === 'package') {
|
||||
return socketMiddleware();
|
||||
} else {
|
||||
return socketioMiddleware();
|
||||
}
|
||||
}
|
||||
// export function buildMiddleware() {
|
||||
// if (import.meta.env.MODE === 'nodes' || import.meta.env.MODE === 'package') {
|
||||
// return socketMiddleware();
|
||||
// } else {
|
||||
// return socketioMiddleware();
|
||||
// }
|
||||
// }
|
||||
|
||||
export const store = configureStore({
|
||||
reducer: persistedReducer,
|
||||
@ -114,6 +113,7 @@ export const store = configureStore({
|
||||
'canvas/setBoundingBoxDimensions',
|
||||
'canvas/setIsDrawing',
|
||||
'canvas/addPointToCurrentLine',
|
||||
'socket/generatorProgress',
|
||||
],
|
||||
},
|
||||
});
|
@ -1,5 +1,5 @@
|
||||
import { TypedUseSelectorHook, useDispatch, useSelector } from 'react-redux';
|
||||
import { AppDispatch, RootState } from './store';
|
||||
import { AppDispatch, RootState } from 'app/store/store';
|
||||
|
||||
// Use throughout your app instead of plain `useDispatch` and `useSelector`
|
||||
export const useAppDispatch: () => AppDispatch = useDispatch;
|
@ -1,5 +1,5 @@
|
||||
import { createAsyncThunk } from '@reduxjs/toolkit';
|
||||
import { AppDispatch, RootState } from './store';
|
||||
import { AppDispatch, RootState } from 'app/store/store';
|
||||
|
||||
// https://redux-toolkit.js.org/usage/usage-with-typescript#defining-a-pre-typed-createasyncthunk
|
||||
export const createAppAsyncThunk = createAsyncThunk.withTypes<{
|
@ -12,10 +12,11 @@
|
||||
* 'gfpgan'.
|
||||
*/
|
||||
|
||||
import { GalleryCategory } from 'features/gallery/store/gallerySlice';
|
||||
import { FacetoolType } from 'features/parameters/store/postprocessingSlice';
|
||||
import { InvokeTabName } from 'features/ui/store/tabMap';
|
||||
import { IRect } from 'konva/lib/types';
|
||||
import { ImageMetadata, ImageType } from 'services/api';
|
||||
import { ImageResponseMetadata, ImageType } from 'services/api';
|
||||
import { AnyInvocation } from 'services/events/types';
|
||||
import { O } from 'ts-toolbelt';
|
||||
|
||||
@ -28,24 +29,24 @@ import { O } from 'ts-toolbelt';
|
||||
* TODO: Better documentation of types.
|
||||
*/
|
||||
|
||||
export declare type PromptItem = {
|
||||
export type PromptItem = {
|
||||
prompt: string;
|
||||
weight: number;
|
||||
};
|
||||
|
||||
// TECHDEBT: We need to retain compatibility with plain prompt strings and the structure Prompt type
|
||||
export declare type Prompt = Array<PromptItem> | string;
|
||||
export type Prompt = Array<PromptItem> | string;
|
||||
|
||||
export declare type SeedWeightPair = {
|
||||
export type SeedWeightPair = {
|
||||
seed: number;
|
||||
weight: number;
|
||||
};
|
||||
|
||||
export declare type SeedWeights = Array<SeedWeightPair>;
|
||||
export type SeedWeights = Array<SeedWeightPair>;
|
||||
|
||||
// All generated images contain these metadata.
|
||||
export declare type CommonGeneratedImageMetadata = {
|
||||
postprocessing: null | Array<ESRGANMetadata | GFPGANMetadata>;
|
||||
export type CommonGeneratedImageMetadata = {
|
||||
postprocessing: null | Array<ESRGANMetadata | FacetoolMetadata>;
|
||||
sampler:
|
||||
| 'ddim'
|
||||
| 'k_dpm_2_a'
|
||||
@ -70,11 +71,11 @@ export declare type CommonGeneratedImageMetadata = {
|
||||
};
|
||||
|
||||
// txt2img and img2img images have some unique attributes.
|
||||
export declare type Txt2ImgMetadata = GeneratedImageMetadata & {
|
||||
export type Txt2ImgMetadata = CommonGeneratedImageMetadata & {
|
||||
type: 'txt2img';
|
||||
};
|
||||
|
||||
export declare type Img2ImgMetadata = GeneratedImageMetadata & {
|
||||
export type Img2ImgMetadata = CommonGeneratedImageMetadata & {
|
||||
type: 'img2img';
|
||||
orig_hash: string;
|
||||
strength: number;
|
||||
@ -84,102 +85,80 @@ export declare type Img2ImgMetadata = GeneratedImageMetadata & {
|
||||
};
|
||||
|
||||
// Superset of generated image metadata types.
|
||||
export declare type GeneratedImageMetadata = Txt2ImgMetadata | Img2ImgMetadata;
|
||||
export type GeneratedImageMetadata = Txt2ImgMetadata | Img2ImgMetadata;
|
||||
|
||||
// All post processed images contain these metadata.
|
||||
export declare type CommonPostProcessedImageMetadata = {
|
||||
export type CommonPostProcessedImageMetadata = {
|
||||
orig_path: string;
|
||||
orig_hash: string;
|
||||
};
|
||||
|
||||
// esrgan and gfpgan images have some unique attributes.
|
||||
export declare type ESRGANMetadata = CommonPostProcessedImageMetadata & {
|
||||
export type ESRGANMetadata = CommonPostProcessedImageMetadata & {
|
||||
type: 'esrgan';
|
||||
scale: 2 | 4;
|
||||
strength: number;
|
||||
denoise_str: number;
|
||||
};
|
||||
|
||||
export declare type FacetoolMetadata = CommonPostProcessedImageMetadata & {
|
||||
export type FacetoolMetadata = CommonPostProcessedImageMetadata & {
|
||||
type: 'gfpgan' | 'codeformer';
|
||||
strength: number;
|
||||
fidelity?: number;
|
||||
};
|
||||
|
||||
// Superset of all postprocessed image metadata types..
|
||||
export declare type PostProcessedImageMetadata =
|
||||
| ESRGANMetadata
|
||||
| FacetoolMetadata;
|
||||
export type PostProcessedImageMetadata = ESRGANMetadata | FacetoolMetadata;
|
||||
|
||||
// Metadata includes the system config and image metadata.
|
||||
export declare type Metadata = SystemGenerationMetadata & {
|
||||
image: GeneratedImageMetadata | PostProcessedImageMetadata;
|
||||
};
|
||||
|
||||
// An Image has a UUID, url, modified timestamp, width, height and maybe metadata
|
||||
export declare type _Image = {
|
||||
uuid: string;
|
||||
url: string;
|
||||
thumbnail: string;
|
||||
mtime: number;
|
||||
metadata?: Metadata;
|
||||
width: number;
|
||||
height: number;
|
||||
category: GalleryCategory;
|
||||
isBase64?: boolean;
|
||||
dreamPrompt?: 'string';
|
||||
name?: string;
|
||||
};
|
||||
// export type Metadata = SystemGenerationMetadata & {
|
||||
// image: GeneratedImageMetadata | PostProcessedImageMetadata;
|
||||
// };
|
||||
|
||||
/**
|
||||
* ResultImage
|
||||
*/
|
||||
export declare type Image = {
|
||||
export type Image = {
|
||||
name: string;
|
||||
type: ImageType;
|
||||
url: string;
|
||||
thumbnail: string;
|
||||
metadata: ImageMetadata;
|
||||
};
|
||||
|
||||
// GalleryImages is an array of Image.
|
||||
export declare type GalleryImages = {
|
||||
images: Array<_Image>;
|
||||
metadata: ImageResponseMetadata;
|
||||
};
|
||||
|
||||
/**
|
||||
* Types related to the system status.
|
||||
*/
|
||||
|
||||
// This represents the processing status of the backend.
|
||||
export declare type SystemStatus = {
|
||||
isProcessing: boolean;
|
||||
currentStep: number;
|
||||
totalSteps: number;
|
||||
currentIteration: number;
|
||||
totalIterations: number;
|
||||
currentStatus: string;
|
||||
currentStatusHasSteps: boolean;
|
||||
hasError: boolean;
|
||||
};
|
||||
// // This represents the processing status of the backend.
|
||||
// export type SystemStatus = {
|
||||
// isProcessing: boolean;
|
||||
// currentStep: number;
|
||||
// totalSteps: number;
|
||||
// currentIteration: number;
|
||||
// totalIterations: number;
|
||||
// currentStatus: string;
|
||||
// currentStatusHasSteps: boolean;
|
||||
// hasError: boolean;
|
||||
// };
|
||||
|
||||
export declare type SystemGenerationMetadata = {
|
||||
model: string;
|
||||
model_weights?: string;
|
||||
model_id?: string;
|
||||
model_hash: string;
|
||||
app_id: string;
|
||||
app_version: string;
|
||||
};
|
||||
// export type SystemGenerationMetadata = {
|
||||
// model: string;
|
||||
// model_weights?: string;
|
||||
// model_id?: string;
|
||||
// model_hash: string;
|
||||
// app_id: string;
|
||||
// app_version: string;
|
||||
// };
|
||||
|
||||
export declare type SystemConfig = SystemGenerationMetadata & {
|
||||
model_list: ModelList;
|
||||
infill_methods: string[];
|
||||
};
|
||||
// export type SystemConfig = SystemGenerationMetadata & {
|
||||
// model_list: ModelList;
|
||||
// infill_methods: string[];
|
||||
// };
|
||||
|
||||
export declare type ModelStatus = 'active' | 'cached' | 'not loaded';
|
||||
export type ModelStatus = 'active' | 'cached' | 'not loaded';
|
||||
|
||||
export declare type Model = {
|
||||
export type Model = {
|
||||
status: ModelStatus;
|
||||
description: string;
|
||||
weights: string;
|
||||
@ -191,7 +170,7 @@ export declare type Model = {
|
||||
format?: string;
|
||||
};
|
||||
|
||||
export declare type DiffusersModel = {
|
||||
export type DiffusersModel = {
|
||||
status: ModelStatus;
|
||||
description: string;
|
||||
repo_id?: string;
|
||||
@ -204,14 +183,14 @@ export declare type DiffusersModel = {
|
||||
default?: boolean;
|
||||
};
|
||||
|
||||
export declare type ModelList = Record<string, Model & DiffusersModel>;
|
||||
export type ModelList = Record<string, Model & DiffusersModel>;
|
||||
|
||||
export declare type FoundModel = {
|
||||
export type FoundModel = {
|
||||
name: string;
|
||||
location: string;
|
||||
};
|
||||
|
||||
export declare type InvokeModelConfigProps = {
|
||||
export type InvokeModelConfigProps = {
|
||||
name: string | undefined;
|
||||
description: string | undefined;
|
||||
config: string | undefined;
|
||||
@ -223,7 +202,7 @@ export declare type InvokeModelConfigProps = {
|
||||
format: string | undefined;
|
||||
};
|
||||
|
||||
export declare type InvokeDiffusersModelConfigProps = {
|
||||
export type InvokeDiffusersModelConfigProps = {
|
||||
name: string | undefined;
|
||||
description: string | undefined;
|
||||
repo_id: string | undefined;
|
||||
@ -236,13 +215,13 @@ export declare type InvokeDiffusersModelConfigProps = {
|
||||
};
|
||||
};
|
||||
|
||||
export declare type InvokeModelConversionProps = {
|
||||
export type InvokeModelConversionProps = {
|
||||
model_name: string;
|
||||
save_location: string;
|
||||
custom_location: string | null;
|
||||
};
|
||||
|
||||
export declare type InvokeModelMergingProps = {
|
||||
export type InvokeModelMergingProps = {
|
||||
models_to_merge: string[];
|
||||
alpha: number;
|
||||
interp: 'weighted_sum' | 'sigmoid' | 'inv_sigmoid' | 'add_difference';
|
||||
@ -255,48 +234,48 @@ export declare type InvokeModelMergingProps = {
|
||||
* These types type data received from the server via socketio.
|
||||
*/
|
||||
|
||||
export declare type ModelChangeResponse = {
|
||||
export type ModelChangeResponse = {
|
||||
model_name: string;
|
||||
model_list: ModelList;
|
||||
};
|
||||
|
||||
export declare type ModelConvertedResponse = {
|
||||
export type ModelConvertedResponse = {
|
||||
converted_model_name: string;
|
||||
model_list: ModelList;
|
||||
};
|
||||
|
||||
export declare type ModelsMergedResponse = {
|
||||
export type ModelsMergedResponse = {
|
||||
merged_models: string[];
|
||||
merged_model_name: string;
|
||||
model_list: ModelList;
|
||||
};
|
||||
|
||||
export declare type ModelAddedResponse = {
|
||||
export type ModelAddedResponse = {
|
||||
new_model_name: string;
|
||||
model_list: ModelList;
|
||||
update: boolean;
|
||||
};
|
||||
|
||||
export declare type ModelDeletedResponse = {
|
||||
export type ModelDeletedResponse = {
|
||||
deleted_model_name: string;
|
||||
model_list: ModelList;
|
||||
};
|
||||
|
||||
export declare type FoundModelResponse = {
|
||||
export type FoundModelResponse = {
|
||||
search_folder: string;
|
||||
found_models: FoundModel[];
|
||||
};
|
||||
|
||||
export declare type SystemStatusResponse = SystemStatus;
|
||||
// export type SystemStatusResponse = SystemStatus;
|
||||
|
||||
export declare type SystemConfigResponse = SystemConfig;
|
||||
// export type SystemConfigResponse = SystemConfig;
|
||||
|
||||
export declare type ImageResultResponse = Omit<_Image, 'uuid'> & {
|
||||
export type ImageResultResponse = Omit<_Image, 'uuid'> & {
|
||||
boundingBox?: IRect;
|
||||
generationMode: InvokeTabName;
|
||||
};
|
||||
|
||||
export declare type ImageUploadResponse = {
|
||||
export type ImageUploadResponse = {
|
||||
// image: Omit<Image, 'uuid' | 'metadata' | 'category'>;
|
||||
url: string;
|
||||
mtime: number;
|
||||
@ -306,33 +285,16 @@ export declare type ImageUploadResponse = {
|
||||
// bbox: [number, number, number, number];
|
||||
};
|
||||
|
||||
export declare type ErrorResponse = {
|
||||
export type ErrorResponse = {
|
||||
message: string;
|
||||
additionalData?: string;
|
||||
};
|
||||
|
||||
export declare type GalleryImagesResponse = {
|
||||
images: Array<Omit<_Image, 'uuid'>>;
|
||||
areMoreImagesAvailable: boolean;
|
||||
category: GalleryCategory;
|
||||
};
|
||||
|
||||
export declare type ImageDeletedResponse = {
|
||||
uuid: string;
|
||||
url: string;
|
||||
category: GalleryCategory;
|
||||
};
|
||||
|
||||
export declare type ImageUrlResponse = {
|
||||
export type ImageUrlResponse = {
|
||||
url: string;
|
||||
};
|
||||
|
||||
export declare type UploadImagePayload = {
|
||||
file: File;
|
||||
destination?: ImageUploadDestination;
|
||||
};
|
||||
|
||||
export declare type UploadOutpaintingMergeImagePayload = {
|
||||
export type UploadOutpaintingMergeImagePayload = {
|
||||
dataURL: string;
|
||||
name: string;
|
||||
};
|
||||
@ -340,7 +302,7 @@ export declare type UploadOutpaintingMergeImagePayload = {
|
||||
/**
|
||||
* A disable-able application feature
|
||||
*/
|
||||
export declare type AppFeature =
|
||||
export type AppFeature =
|
||||
| 'faceRestore'
|
||||
| 'upscaling'
|
||||
| 'lightbox'
|
||||
@ -353,7 +315,7 @@ export declare type AppFeature =
|
||||
/**
|
||||
* A disable-able Stable Diffusion feature
|
||||
*/
|
||||
export declare type StableDiffusionFeature =
|
||||
export type StableDiffusionFeature =
|
||||
| 'noiseConfig'
|
||||
| 'variations'
|
||||
| 'symmetry'
|
||||
@ -364,7 +326,7 @@ export declare type StableDiffusionFeature =
|
||||
* Configuration options for the InvokeAI UI.
|
||||
* Distinct from system settings which may be changed inside the app.
|
||||
*/
|
||||
export declare type AppConfig = {
|
||||
export type AppConfig = {
|
||||
/**
|
||||
* Whether or not URLs should be transformed to use a different host
|
||||
*/
|
||||
@ -428,4 +390,4 @@ export declare type AppConfig = {
|
||||
};
|
||||
};
|
||||
|
||||
export declare type PartialAppConfig = O.Partial<AppConfig, 'deep'>;
|
||||
export type PartialAppConfig = O.Partial<AppConfig, 'deep'>;
|
@ -1,25 +0,0 @@
|
||||
export function keepGUIAlive() {
|
||||
async function getRequest(url = '') {
|
||||
const response = await fetch(url, {
|
||||
method: 'GET',
|
||||
cache: 'no-cache',
|
||||
});
|
||||
return response;
|
||||
}
|
||||
|
||||
const keepAliveServer = () => {
|
||||
const url = document.location;
|
||||
const route = '/flaskwebgui-keep-server-alive';
|
||||
getRequest(url + route).then((data) => {
|
||||
return data;
|
||||
});
|
||||
};
|
||||
|
||||
if (!import.meta.env.NODE_ENV || import.meta.env.NODE_ENV === 'production') {
|
||||
document.addEventListener('DOMContentLoaded', () => {
|
||||
const intervalRequest = 3 * 1000;
|
||||
keepAliveServer();
|
||||
setInterval(keepAliveServer, intervalRequest);
|
||||
});
|
||||
}
|
||||
}
|
@ -8,7 +8,7 @@ import {
|
||||
} from '@chakra-ui/react';
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { Feature, useFeatureHelpInfo } from 'app/features';
|
||||
import { useAppSelector } from 'app/storeHooks';
|
||||
import { useAppSelector } from 'app/store/storeHooks';
|
||||
import { systemSelector } from 'features/system/store/systemSelectors';
|
||||
import { SystemState } from 'features/system/store/systemSlice';
|
||||
import { memo, ReactElement } from 'react';
|
||||
|
@ -14,7 +14,7 @@ import {
|
||||
Tooltip,
|
||||
TooltipProps,
|
||||
} from '@chakra-ui/react';
|
||||
import { clamp } from 'lodash';
|
||||
import { clamp } from 'lodash-es';
|
||||
|
||||
import { FocusEvent, memo, useEffect, useState } from 'react';
|
||||
|
||||
|
@ -16,13 +16,23 @@ type IAISelectProps = SelectProps & {
|
||||
validValues:
|
||||
| Array<number | string>
|
||||
| Array<{ key: string; value: string | number }>;
|
||||
horizontal?: boolean;
|
||||
spaceEvenly?: boolean;
|
||||
};
|
||||
/**
|
||||
* Customized Chakra FormControl + Select multi-part component.
|
||||
*/
|
||||
const IAISelect = (props: IAISelectProps) => {
|
||||
const { label, isDisabled, validValues, tooltip, tooltipProps, ...rest } =
|
||||
props;
|
||||
const {
|
||||
label,
|
||||
isDisabled,
|
||||
validValues,
|
||||
tooltip,
|
||||
tooltipProps,
|
||||
horizontal,
|
||||
spaceEvenly,
|
||||
...rest
|
||||
} = props;
|
||||
return (
|
||||
<FormControl
|
||||
isDisabled={isDisabled}
|
||||
@ -32,10 +42,28 @@ const IAISelect = (props: IAISelectProps) => {
|
||||
e.nativeEvent.stopPropagation();
|
||||
e.nativeEvent.cancelBubble = true;
|
||||
}}
|
||||
sx={
|
||||
horizontal
|
||||
? {
|
||||
display: 'flex',
|
||||
flexDirection: 'row',
|
||||
alignItems: 'center',
|
||||
justifyContent: 'space-between',
|
||||
gap: 4,
|
||||
}
|
||||
: {}
|
||||
}
|
||||
>
|
||||
{label && <FormLabel>{label}</FormLabel>}
|
||||
{label && (
|
||||
<FormLabel sx={spaceEvenly ? { flexBasis: 0, flexGrow: 1 } : {}}>
|
||||
{label}
|
||||
</FormLabel>
|
||||
)}
|
||||
<Tooltip label={tooltip} {...tooltipProps}>
|
||||
<Select {...rest}>
|
||||
<Select
|
||||
{...rest}
|
||||
rootProps={{ sx: spaceEvenly ? { flexBasis: 0, flexGrow: 1 } : {} }}
|
||||
>
|
||||
{validValues.map((opt) => {
|
||||
return typeof opt === 'string' || typeof opt === 'number' ? (
|
||||
<IAIOption key={opt} value={opt}>
|
||||
|
@ -23,7 +23,7 @@ import {
|
||||
Tooltip,
|
||||
TooltipProps,
|
||||
} from '@chakra-ui/react';
|
||||
import { clamp } from 'lodash';
|
||||
import { clamp } from 'lodash-es';
|
||||
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import {
|
||||
@ -233,7 +233,7 @@ const IAISlider = (props: IAIFullSliderProps) => {
|
||||
hidden={hideTooltip}
|
||||
{...sliderTooltipProps}
|
||||
>
|
||||
<SliderThumb {...sliderThumbProps} />
|
||||
<SliderThumb {...sliderThumbProps} zIndex={0} />
|
||||
</Tooltip>
|
||||
</Slider>
|
||||
|
||||
|
@ -1,32 +1,11 @@
|
||||
import { Badge, Box, ButtonGroup, Flex } from '@chakra-ui/react';
|
||||
import { RootState } from 'app/store';
|
||||
import { useAppDispatch, useAppSelector } from 'app/storeHooks';
|
||||
import { clearInitialImage } from 'features/parameters/store/generationSlice';
|
||||
import { useCallback } from 'react';
|
||||
import IAIIconButton from 'common/components/IAIIconButton';
|
||||
import { FaUndo, FaUpload } from 'react-icons/fa';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { Image } from 'app/invokeai';
|
||||
import { Badge, Box, Flex } from '@chakra-ui/react';
|
||||
import { Image } from 'app/types/invokeai';
|
||||
|
||||
type ImageToImageOverlayProps = {
|
||||
setIsLoaded: (isLoaded: boolean) => void;
|
||||
image: Image;
|
||||
};
|
||||
|
||||
const ImageToImageOverlay = ({
|
||||
setIsLoaded,
|
||||
image,
|
||||
}: ImageToImageOverlayProps) => {
|
||||
const isImageToImageEnabled = useAppSelector(
|
||||
(state: RootState) => state.generation.isImageToImageEnabled
|
||||
);
|
||||
const dispatch = useAppDispatch();
|
||||
const { t } = useTranslation();
|
||||
const handleResetInitialImage = useCallback(() => {
|
||||
dispatch(clearInitialImage());
|
||||
setIsLoaded(false);
|
||||
}, [dispatch, setIsLoaded]);
|
||||
|
||||
const ImageToImageOverlay = ({ image }: ImageToImageOverlayProps) => {
|
||||
return (
|
||||
<Box
|
||||
sx={{
|
||||
|
@ -1,34 +1,13 @@
|
||||
import {
|
||||
Box,
|
||||
ButtonGroup,
|
||||
Collapse,
|
||||
Flex,
|
||||
Heading,
|
||||
HStack,
|
||||
Image,
|
||||
Spacer,
|
||||
Text,
|
||||
useDisclosure,
|
||||
VStack,
|
||||
} from '@chakra-ui/react';
|
||||
import { motion } from 'framer-motion';
|
||||
|
||||
import IAIButton from 'common/components/IAIButton';
|
||||
import ImageFit from 'features/parameters/components/AdvancedParameters/ImageToImage/ImageFit';
|
||||
import ImageToImageStrength from 'features/parameters/components/AdvancedParameters/ImageToImage/ImageToImageStrength';
|
||||
import { ButtonGroup, Flex, Spacer, Text } from '@chakra-ui/react';
|
||||
import IAIIconButton from 'common/components/IAIIconButton';
|
||||
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { FaUndo, FaUpload } from 'react-icons/fa';
|
||||
import { useAppDispatch, useAppSelector } from 'app/storeHooks';
|
||||
import { RootState } from 'app/store';
|
||||
import { useAppDispatch } from 'app/store/storeHooks';
|
||||
import { useCallback } from 'react';
|
||||
import { clearInitialImage } from 'features/parameters/store/generationSlice';
|
||||
|
||||
const ImageToImageSettingsHeader = () => {
|
||||
const isImageToImageEnabled = useAppSelector(
|
||||
(state: RootState) => state.generation.isImageToImageEnabled
|
||||
);
|
||||
const dispatch = useAppDispatch();
|
||||
const { t } = useTranslation();
|
||||
|
||||
|
@ -1,6 +1,6 @@
|
||||
import { Box, useToast } from '@chakra-ui/react';
|
||||
import { ImageUploaderTriggerContext } from 'app/contexts/ImageUploaderTriggerContext';
|
||||
import { useAppDispatch, useAppSelector } from 'app/storeHooks';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import useImageUploader from 'common/hooks/useImageUploader';
|
||||
import { activeTabNameSelector } from 'features/ui/store/uiSelectors';
|
||||
import { ResourceKey } from 'i18next';
|
||||
|
@ -1,5 +1,6 @@
|
||||
import { Flex, Image, Spinner } from '@chakra-ui/react';
|
||||
import InvokeAILogoImage from 'assets/images/logo.png';
|
||||
import { memo } from 'react';
|
||||
|
||||
// This component loads before the theme so we cannot use theme tokens here
|
||||
|
||||
@ -29,4 +30,4 @@ const Loading = () => {
|
||||
);
|
||||
};
|
||||
|
||||
export default Loading;
|
||||
export default memo(Loading);
|
||||
|
@ -1,8 +1,8 @@
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { RootState } from 'app/store';
|
||||
import { useAppDispatch, useAppSelector } from 'app/storeHooks';
|
||||
import { RootState } from 'app/store/store';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import { shiftKeyPressed } from 'features/ui/store/hotkeysSlice';
|
||||
import { isEqual } from 'lodash';
|
||||
import { isEqual } from 'lodash-es';
|
||||
import { isHotkeyPressed, useHotkeys } from 'react-hotkeys-hook';
|
||||
|
||||
const globalHotkeysSelector = createSelector(
|
||||
|
@ -1,4 +1,4 @@
|
||||
import * as InvokeAI from 'app/invokeai';
|
||||
import * as InvokeAI from 'app/types/invokeai';
|
||||
import promptToString from './promptToString';
|
||||
|
||||
export function getPromptAndNegative(inputPrompt: InvokeAI.Prompt) {
|
||||
|
@ -1,5 +1,6 @@
|
||||
import { RootState } from 'app/store';
|
||||
import { useAppSelector } from 'app/storeHooks';
|
||||
import { RootState } from 'app/store/store';
|
||||
import { useAppSelector } from 'app/store/storeHooks';
|
||||
import { useCallback } from 'react';
|
||||
import { OpenAPI } from 'services/api';
|
||||
|
||||
export const getUrlAlt = (url: string, shouldTransformUrls: boolean) => {
|
||||
@ -15,14 +16,19 @@ export const useGetUrl = () => {
|
||||
(state: RootState) => state.config.shouldTransformUrls
|
||||
);
|
||||
|
||||
return {
|
||||
shouldTransformUrls,
|
||||
getUrl: (url?: string) => {
|
||||
const getUrl = useCallback(
|
||||
(url?: string) => {
|
||||
if (OpenAPI.BASE && shouldTransformUrls) {
|
||||
return [OpenAPI.BASE, url].join('/');
|
||||
}
|
||||
|
||||
return url;
|
||||
},
|
||||
[shouldTransformUrls]
|
||||
);
|
||||
|
||||
return {
|
||||
shouldTransformUrls,
|
||||
getUrl,
|
||||
};
|
||||
};
|
||||
|
@ -1,4 +1,4 @@
|
||||
import { forEach, size } from 'lodash';
|
||||
import { forEach, size } from 'lodash-es';
|
||||
import { ImageField, LatentsField, ConditioningField } from 'services/api';
|
||||
|
||||
const OBJECT_TYPESTRING = '[object Object]';
|
||||
|
@ -1,4 +1,4 @@
|
||||
import * as InvokeAI from 'app/invokeai';
|
||||
import * as InvokeAI from 'app/types/invokeai';
|
||||
|
||||
const promptToString = (prompt: InvokeAI.Prompt): string => {
|
||||
if (typeof prompt === 'string') {
|
||||
|
@ -1,4 +1,4 @@
|
||||
import * as InvokeAI from 'app/invokeai';
|
||||
import * as InvokeAI from 'app/types/invokeai';
|
||||
|
||||
export const stringToSeedWeights = (
|
||||
string: string
|
||||
|
@ -1,20 +0,0 @@
|
||||
import Component from './component';
|
||||
|
||||
import InvokeAiLogoComponent from './features/system/components/InvokeAILogoComponent';
|
||||
import ThemeChanger from './features/system/components/ThemeChanger';
|
||||
import IAIPopover from './common/components/IAIPopover';
|
||||
import IAIIconButton from './common/components/IAIIconButton';
|
||||
import SettingsModal from './features/system/components/SettingsModal/SettingsModal';
|
||||
import StatusIndicator from './features/system/components/StatusIndicator';
|
||||
import ModelSelect from 'features/system/components/ModelSelect';
|
||||
|
||||
export default Component;
|
||||
export {
|
||||
InvokeAiLogoComponent,
|
||||
ThemeChanger,
|
||||
IAIPopover,
|
||||
IAIIconButton,
|
||||
SettingsModal,
|
||||
StatusIndicator,
|
||||
ModelSelect,
|
||||
};
|
@ -1,4 +1,4 @@
|
||||
import { useAppDispatch, useAppSelector } from 'app/storeHooks';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import IAIAlertDialog from 'common/components/IAIAlertDialog';
|
||||
import IAIButton from 'common/components/IAIButton';
|
||||
import { clearCanvasHistory } from 'features/canvas/store/canvasSlice';
|
||||
|
@ -1,6 +1,6 @@
|
||||
import { Box, chakra, Flex } from '@chakra-ui/react';
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { useAppSelector } from 'app/storeHooks';
|
||||
import { useAppSelector } from 'app/store/storeHooks';
|
||||
import {
|
||||
canvasSelector,
|
||||
isStagingSelector,
|
||||
@ -8,7 +8,7 @@ import {
|
||||
import Konva from 'konva';
|
||||
import { KonvaEventObject } from 'konva/lib/Node';
|
||||
import { Vector2d } from 'konva/lib/types';
|
||||
import { isEqual } from 'lodash';
|
||||
import { isEqual } from 'lodash-es';
|
||||
|
||||
import { useCallback, useRef } from 'react';
|
||||
import { Layer, Stage } from 'react-konva';
|
||||
|
@ -1,6 +1,6 @@
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { useAppSelector } from 'app/storeHooks';
|
||||
import { isEqual } from 'lodash';
|
||||
import { useAppSelector } from 'app/store/storeHooks';
|
||||
import { isEqual } from 'lodash-es';
|
||||
|
||||
import { Group, Rect } from 'react-konva';
|
||||
import { canvasSelector } from '../store/canvasSelectors';
|
||||
|
@ -2,10 +2,10 @@
|
||||
|
||||
import { useToken } from '@chakra-ui/react';
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { RootState } from 'app/store';
|
||||
import { useAppSelector } from 'app/storeHooks';
|
||||
import { RootState } from 'app/store/store';
|
||||
import { useAppSelector } from 'app/store/storeHooks';
|
||||
import { canvasSelector } from 'features/canvas/store/canvasSelectors';
|
||||
import { isEqual, range } from 'lodash';
|
||||
import { isEqual, range } from 'lodash-es';
|
||||
|
||||
import { ReactNode, useCallback, useLayoutEffect, useState } from 'react';
|
||||
import { Group, Line as KonvaLine } from 'react-konva';
|
||||
|
@ -1,10 +1,10 @@
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { RootState } from 'app/store';
|
||||
import { useAppSelector } from 'app/storeHooks';
|
||||
import { RootState } from 'app/store/store';
|
||||
import { useAppSelector } from 'app/store/storeHooks';
|
||||
import { useGetUrl } from 'common/util/getUrl';
|
||||
import { GalleryState } from 'features/gallery/store/gallerySlice';
|
||||
import { ImageConfig } from 'konva/lib/shapes/Image';
|
||||
import { isEqual } from 'lodash';
|
||||
import { isEqual } from 'lodash-es';
|
||||
|
||||
import { useEffect, useState } from 'react';
|
||||
import { Image as KonvaImage } from 'react-konva';
|
||||
|
@ -1,12 +1,12 @@
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { useAppSelector } from 'app/storeHooks';
|
||||
import { useAppSelector } from 'app/store/storeHooks';
|
||||
import { canvasSelector } from 'features/canvas/store/canvasSelectors';
|
||||
import { RectConfig } from 'konva/lib/shapes/Rect';
|
||||
import { Rect } from 'react-konva';
|
||||
|
||||
import { rgbaColorToString } from 'features/canvas/util/colorToString';
|
||||
import Konva from 'konva';
|
||||
import { isNumber } from 'lodash';
|
||||
import { isNumber } from 'lodash-es';
|
||||
import { useCallback, useEffect, useRef, useState } from 'react';
|
||||
|
||||
export const canvasMaskCompositerSelector = createSelector(
|
||||
|
@ -1,8 +1,8 @@
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { useAppSelector } from 'app/storeHooks';
|
||||
import { useAppSelector } from 'app/store/storeHooks';
|
||||
import { canvasSelector } from 'features/canvas/store/canvasSelectors';
|
||||
import { GroupConfig } from 'konva/lib/Group';
|
||||
import { isEqual } from 'lodash';
|
||||
import { isEqual } from 'lodash-es';
|
||||
|
||||
import { Group, Line } from 'react-konva';
|
||||
import { isCanvasMaskLine } from '../store/canvasTypes';
|
||||
|
@ -1,9 +1,9 @@
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { useAppSelector } from 'app/storeHooks';
|
||||
import { useAppSelector } from 'app/store/storeHooks';
|
||||
import { useGetUrl } from 'common/util/getUrl';
|
||||
import { canvasSelector } from 'features/canvas/store/canvasSelectors';
|
||||
import { rgbaColorToString } from 'features/canvas/util/colorToString';
|
||||
import { isEqual } from 'lodash';
|
||||
import { isEqual } from 'lodash-es';
|
||||
|
||||
import { Group, Line, Rect } from 'react-konva';
|
||||
import {
|
||||
|
@ -1,6 +1,6 @@
|
||||
import { Flex, Spinner } from '@chakra-ui/react';
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { useAppDispatch, useAppSelector } from 'app/storeHooks';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import {
|
||||
canvasSelector,
|
||||
initialCanvasImageSelector,
|
||||
|
@ -1,9 +1,9 @@
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { useAppSelector } from 'app/storeHooks';
|
||||
import { useAppSelector } from 'app/store/storeHooks';
|
||||
import { useGetUrl } from 'common/util/getUrl';
|
||||
import { canvasSelector } from 'features/canvas/store/canvasSelectors';
|
||||
import { GroupConfig } from 'konva/lib/Group';
|
||||
import { isEqual } from 'lodash';
|
||||
import { isEqual } from 'lodash-es';
|
||||
|
||||
import { Group, Rect } from 'react-konva';
|
||||
import IAICanvasImage from './IAICanvasImage';
|
||||
|
@ -1,7 +1,7 @@
|
||||
import { ButtonGroup, Flex } from '@chakra-ui/react';
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { saveStagingAreaImageToGallery } from 'app/socketio/actions';
|
||||
import { useAppDispatch, useAppSelector } from 'app/storeHooks';
|
||||
// import { saveStagingAreaImageToGallery } from 'app/socketio/actions';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import IAIIconButton from 'common/components/IAIIconButton';
|
||||
import { canvasSelector } from 'features/canvas/store/canvasSelectors';
|
||||
import {
|
||||
@ -12,7 +12,7 @@ import {
|
||||
setShouldShowStagingImage,
|
||||
setShouldShowStagingOutline,
|
||||
} from 'features/canvas/store/canvasSlice';
|
||||
import { isEqual } from 'lodash';
|
||||
import { isEqual } from 'lodash-es';
|
||||
|
||||
import { useCallback } from 'react';
|
||||
import { useHotkeys } from 'react-hotkeys-hook';
|
||||
|
@ -1,8 +1,8 @@
|
||||
import { Box, Flex } from '@chakra-ui/react';
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { useAppSelector } from 'app/storeHooks';
|
||||
import { useAppSelector } from 'app/store/storeHooks';
|
||||
import { canvasSelector } from 'features/canvas/store/canvasSelectors';
|
||||
import { isEqual } from 'lodash';
|
||||
import { isEqual } from 'lodash-es';
|
||||
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import roundToHundreth from '../util/roundToHundreth';
|
||||
|
@ -1,9 +1,9 @@
|
||||
import { Box } from '@chakra-ui/react';
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { useAppSelector } from 'app/storeHooks';
|
||||
import { useAppSelector } from 'app/store/storeHooks';
|
||||
import { canvasSelector } from 'features/canvas/store/canvasSelectors';
|
||||
import roundToHundreth from 'features/canvas/util/roundToHundreth';
|
||||
import { isEqual } from 'lodash';
|
||||
import { isEqual } from 'lodash-es';
|
||||
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
|
@ -1,9 +1,9 @@
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { useAppSelector } from 'app/storeHooks';
|
||||
import { useAppSelector } from 'app/store/storeHooks';
|
||||
import { canvasSelector } from 'features/canvas/store/canvasSelectors';
|
||||
import { rgbaColorToString } from 'features/canvas/util/colorToString';
|
||||
import { GroupConfig } from 'konva/lib/Group';
|
||||
import { isEqual } from 'lodash';
|
||||
import { isEqual } from 'lodash-es';
|
||||
|
||||
import { Circle, Group } from 'react-konva';
|
||||
import {
|
||||
|
@ -1,5 +1,5 @@
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { useAppDispatch, useAppSelector } from 'app/storeHooks';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import {
|
||||
roundDownToMultiple,
|
||||
roundToMultiple,
|
||||
@ -16,7 +16,7 @@ import Konva from 'konva';
|
||||
import { GroupConfig } from 'konva/lib/Group';
|
||||
import { KonvaEventObject } from 'konva/lib/Node';
|
||||
import { Vector2d } from 'konva/lib/types';
|
||||
import { isEqual } from 'lodash';
|
||||
import { isEqual } from 'lodash-es';
|
||||
|
||||
import { useCallback, useEffect, useRef, useState } from 'react';
|
||||
import { Group, Rect, Transformer } from 'react-konva';
|
||||
|
@ -1,6 +1,6 @@
|
||||
import { ButtonGroup, Flex } from '@chakra-ui/react';
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { useAppDispatch, useAppSelector } from 'app/storeHooks';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import IAIButton from 'common/components/IAIButton';
|
||||
import IAICheckbox from 'common/components/IAICheckbox';
|
||||
import IAIColorPicker from 'common/components/IAIColorPicker';
|
||||
@ -18,7 +18,7 @@ import {
|
||||
setShouldPreserveMaskedArea,
|
||||
} from 'features/canvas/store/canvasSlice';
|
||||
import { rgbaColorToString } from 'features/canvas/util/colorToString';
|
||||
import { isEqual } from 'lodash';
|
||||
import { isEqual } from 'lodash-es';
|
||||
|
||||
import { useHotkeys } from 'react-hotkeys-hook';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
@ -1,5 +1,5 @@
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { useAppDispatch, useAppSelector } from 'app/storeHooks';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import IAIIconButton from 'common/components/IAIIconButton';
|
||||
import { canvasSelector } from 'features/canvas/store/canvasSelectors';
|
||||
import { activeTabNameSelector } from 'features/ui/store/uiSelectors';
|
||||
@ -9,7 +9,7 @@ import { FaRedo } from 'react-icons/fa';
|
||||
import { redo } from 'features/canvas/store/canvasSlice';
|
||||
import { systemSelector } from 'features/system/store/systemSelectors';
|
||||
|
||||
import { isEqual } from 'lodash';
|
||||
import { isEqual } from 'lodash-es';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
const canvasRedoSelector = createSelector(
|
||||
|
@ -1,6 +1,6 @@
|
||||
import { Flex } from '@chakra-ui/react';
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { useAppDispatch, useAppSelector } from 'app/storeHooks';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import IAICheckbox from 'common/components/IAICheckbox';
|
||||
import IAIIconButton from 'common/components/IAIIconButton';
|
||||
import IAIPopover from 'common/components/IAIPopover';
|
||||
@ -16,7 +16,7 @@ import {
|
||||
setShouldSnapToGrid,
|
||||
} from 'features/canvas/store/canvasSlice';
|
||||
import EmptyTempFolderButtonModal from 'features/system/components/ClearTempFolderButtonModal';
|
||||
import { isEqual } from 'lodash';
|
||||
import { isEqual } from 'lodash-es';
|
||||
|
||||
import { ChangeEvent } from 'react';
|
||||
import { useHotkeys } from 'react-hotkeys-hook';
|
||||
|
@ -1,6 +1,6 @@
|
||||
import { ButtonGroup, Flex } from '@chakra-ui/react';
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { useAppDispatch, useAppSelector } from 'app/storeHooks';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import IAIColorPicker from 'common/components/IAIColorPicker';
|
||||
import IAIIconButton from 'common/components/IAIIconButton';
|
||||
import IAIPopover from 'common/components/IAIPopover';
|
||||
@ -17,7 +17,7 @@ import {
|
||||
setTool,
|
||||
} from 'features/canvas/store/canvasSlice';
|
||||
import { systemSelector } from 'features/system/store/systemSelectors';
|
||||
import { clamp, isEqual } from 'lodash';
|
||||
import { clamp, isEqual } from 'lodash-es';
|
||||
|
||||
import { useHotkeys } from 'react-hotkeys-hook';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
@ -1,6 +1,6 @@
|
||||
import { ButtonGroup, Flex } from '@chakra-ui/react';
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { useAppDispatch, useAppSelector } from 'app/storeHooks';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import IAIIconButton from 'common/components/IAIIconButton';
|
||||
import IAISelect from 'common/components/IAISelect';
|
||||
import useImageUploader from 'common/hooks/useImageUploader';
|
||||
@ -24,7 +24,7 @@ import {
|
||||
import { mergeAndUploadCanvas } from 'features/canvas/store/thunks/mergeAndUploadCanvas';
|
||||
import { getCanvasBaseLayer } from 'features/canvas/util/konvaInstanceProvider';
|
||||
import { systemSelector } from 'features/system/store/systemSelectors';
|
||||
import { isEqual } from 'lodash';
|
||||
import { isEqual } from 'lodash-es';
|
||||
|
||||
import { ChangeEvent } from 'react';
|
||||
import { useHotkeys } from 'react-hotkeys-hook';
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user